Learning a bidirectional mapping between human whole-body motion and natural language using deep recurrent neural networks

Linking human whole-body motion and natural language is of great interest for the generation of semantic representations of observed human behaviors as well as for the generation of robot behaviors based on natural language input. While there has been a large body of research in this area, most appr...

Full description

Saved in:
Bibliographic Details
Published inRobotics and autonomous systems Vol. 109; pp. 13 - 26
Main Authors Plappert, Matthias, Mandery, Christian, Asfour, Tamim
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2018
Subjects
Online AccessGet full text
ISSN0921-8890
1872-793X
DOI10.1016/j.robot.2018.07.006

Cover

Loading…
Abstract Linking human whole-body motion and natural language is of great interest for the generation of semantic representations of observed human behaviors as well as for the generation of robot behaviors based on natural language input. While there has been a large body of research in this area, most approaches that exist today require a symbolic representation of motions (e.g. in the form of motion primitives), which have to be defined a-priori or require complex segmentation algorithms. In contrast, recent advances in the field of neural networks and especially deep learning have demonstrated that sub-symbolic representations that can be learned end-to-end usually outperform more traditional approaches, for applications such as machine translation. In this paper we propose a generative model that learns a bidirectional mapping between human whole-body motion and natural language using deep recurrent neural networks (RNNs) and sequence-to-sequence learning. Our approach does not require any segmentation or manual feature engineering and learns a distributed representation, which is shared for all motions and descriptions. We evaluate our approach on 2 846 human whole-body motions and 6 187 natural language descriptions thereof from the KIT Motion-Language Dataset. Our results clearly demonstrate the effectiveness of the proposed model: We show that our model generates a wide variety of realistic motions only from descriptions thereof in form of a single sentence. Conversely, our model is also capable of generating correct and detailed natural language descriptions from human motions. •We present a novel method to learn a bidirectional mapping between human motion and natural language.•Our model is capable of accurately describing a wide range of human motion in complete sentences.•We further show that our model can generate versatile and rich motions from natural language descriptions.
AbstractList Linking human whole-body motion and natural language is of great interest for the generation of semantic representations of observed human behaviors as well as for the generation of robot behaviors based on natural language input. While there has been a large body of research in this area, most approaches that exist today require a symbolic representation of motions (e.g. in the form of motion primitives), which have to be defined a-priori or require complex segmentation algorithms. In contrast, recent advances in the field of neural networks and especially deep learning have demonstrated that sub-symbolic representations that can be learned end-to-end usually outperform more traditional approaches, for applications such as machine translation. In this paper we propose a generative model that learns a bidirectional mapping between human whole-body motion and natural language using deep recurrent neural networks (RNNs) and sequence-to-sequence learning. Our approach does not require any segmentation or manual feature engineering and learns a distributed representation, which is shared for all motions and descriptions. We evaluate our approach on 2 846 human whole-body motions and 6 187 natural language descriptions thereof from the KIT Motion-Language Dataset. Our results clearly demonstrate the effectiveness of the proposed model: We show that our model generates a wide variety of realistic motions only from descriptions thereof in form of a single sentence. Conversely, our model is also capable of generating correct and detailed natural language descriptions from human motions. •We present a novel method to learn a bidirectional mapping between human motion and natural language.•Our model is capable of accurately describing a wide range of human motion in complete sentences.•We further show that our model can generate versatile and rich motions from natural language descriptions.
Author Asfour, Tamim
Mandery, Christian
Plappert, Matthias
Author_xml – sequence: 1
  givenname: Matthias
  orcidid: 0000-0002-0751-8094
  surname: Plappert
  fullname: Plappert, Matthias
  email: matthias.plappert@partner.kit.edu
– sequence: 2
  givenname: Christian
  orcidid: 0000-0001-9421-5675
  surname: Mandery
  fullname: Mandery, Christian
  email: mandery@kit.edu
– sequence: 3
  givenname: Tamim
  surname: Asfour
  fullname: Asfour, Tamim
  email: asfour@kit.edu
BookMark eNqFkM1Kw0AUhQdRsFafwM28QOK9GZpkFi6k-AcFNwruhpnJTTs1nSmTxFKf3qR15UJXFy7nO3C-C3bqgyfGrhFSBMxv1mkMJnRpBlimUKQA-QmbYFlkSSHF-ymbgMwwKUsJ5-yibdcAIGaFmLCvBenonV9yzY2rXCTbueB1wzd6ux3_hrodkeerfqM9361CQ4kJ1Z5vwpjk2lfc666PA9Nov-z1knjfjmhFtOVDYx8j-Y57OoT8UBjiR3vJzmrdtHT1c6fs7eH-df6ULF4en-d3i8SKXHYJYV1La2VmKKsMoimxEIWRKCxWppCAWst8ZvKqtCCtMRlIyARiXkuNmIkpE8deG0PbRqrVNrqNjnuFoEZ9aq0O-tSoT0GhBn0DJX9R1nV6XNxF7Zp_2NsjS8OsT0dRtdaRt3T0q6rg_uS_AQYykrw
CitedBy_id crossref_primary_10_1007_s00521_023_09227_z
crossref_primary_10_1016_j_jwpe_2024_105940
crossref_primary_10_3390_agronomy12030594
crossref_primary_10_1007_s10489_021_02764_x
crossref_primary_10_1016_j_aei_2025_103110
crossref_primary_10_12720_jait_11_4_228_232
crossref_primary_10_1109_LRA_2020_2977333
crossref_primary_10_1142_S1469026824500068
crossref_primary_10_1080_01691864_2019_1632223
crossref_primary_10_1109_LRA_2022_3196159
crossref_primary_10_1007_s11263_021_01550_z
crossref_primary_10_1016_j_jconhyd_2023_104262
crossref_primary_10_1109_ACCESS_2023_3304903
crossref_primary_10_1016_j_compag_2023_108125
crossref_primary_10_1016_j_eswa_2023_122003
crossref_primary_10_1145_3609235
crossref_primary_10_1016_j_rcim_2024_102769
crossref_primary_10_1002_cav_2257
crossref_primary_10_1109_LRA_2019_2932343
crossref_primary_10_1080_1206212X_2021_1964790
crossref_primary_10_3389_frobt_2021_650906
crossref_primary_10_1080_10447318_2024_2381931
crossref_primary_10_1007_s40710_021_00512_4
crossref_primary_10_1007_s43832_024_00073_1
crossref_primary_10_1007_s00477_020_01776_2
crossref_primary_10_1016_j_rcim_2021_102231
crossref_primary_10_1177_02783649241275674
crossref_primary_10_54097_ije_v3i1_10764
crossref_primary_10_3389_frobt_2022_870477
crossref_primary_10_1016_j_autcon_2023_104812
crossref_primary_10_7210_jrsj_39_411
crossref_primary_10_1177_02783649231212929
crossref_primary_10_1016_j_robot_2019_103378
crossref_primary_10_1016_j_robot_2019_103353
crossref_primary_10_1007_s10462_022_10347_6
crossref_primary_10_1007_s10846_025_02221_8
crossref_primary_10_7210_jrsj_39_391
crossref_primary_10_1109_LRA_2020_2965394
crossref_primary_10_1109_THMS_2019_2960630
Cites_doi 10.1109/CVPR.2016.90
10.1016/j.robot.2014.12.008
10.1016/j.neunet.2016.03.001
10.1109/TSMCB.2006.886952
10.1109/CVPR.2017.173
10.1109/CVPR.2016.573
10.1109/5.58337
10.1613/jair.3994
10.1177/0278364908091153
10.1177/105971230501300102
10.1177/0278364915587923
10.1089/big.2016.0028
10.1108/01439911111106372
10.1162/neco.1997.9.8.1735
10.1109/ICASSP.2013.6639349
10.1145/2932710
10.1109/TRO.2016.2572685
10.1038/nature14539
10.1007/978-3-319-50115-4_16
10.3115/v1/W14-4012
10.1109/70.338535
10.1162/089976600300015015
10.1016/j.neunet.2005.06.042
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.robot.2018.07.006
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-793X
EndPage 26
ExternalDocumentID 10_1016_j_robot_2018_07_006
S0921889017306280
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPGS
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
RXW
SBC
SCC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
UNMZH
WUQ
XPP
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c369t-e1ff9cc92be2db11b81737b913c1db7901aa965b6d8c09cbb209023116f9a1123
IEDL.DBID .~1
ISSN 0921-8890
IngestDate Tue Jul 01 01:41:47 EDT 2025
Thu Apr 24 23:07:58 EDT 2025
Fri Feb 23 02:33:49 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Natural language
Recurrent neural network
Human whole-body motion
Sequence-to-sequence learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c369t-e1ff9cc92be2db11b81737b913c1db7901aa965b6d8c09cbb209023116f9a1123
ORCID 0000-0002-0751-8094
0000-0001-9421-5675
PageCount 14
ParticipantIDs crossref_primary_10_1016_j_robot_2018_07_006
crossref_citationtrail_10_1016_j_robot_2018_07_006
elsevier_sciencedirect_doi_10_1016_j_robot_2018_07_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2018
2018-11-00
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: November 2018
PublicationDecade 2010
PublicationTitle Robotics and autonomous systems
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References LeCun, Bengio, Hinton (b4) 2015; 521
Hodosh, Young, Hockenmaier (b68) 2013; 47
Arie, Endo, Jeong, Lee, Sugano, Tani (b37) 2010
M. Field, Z. Pan, D. Stirling, F. Naghdy, Human Motion Capture Sensors and Analysis in Robotics, 38(2) 2011, pp. 163–171.
Graves, Schmidhuber (b52) 2005; 18
Takano, Nakamura (b32) 2015; 34
Takano, Kusajima, Nakamura (b67) 2016; 80
Krizhevsky, Sutskever, Hinton (b6) 2012
J. Chung, Ç. Gülçehre, K. Cho, Y. Bengio, Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. 2014, CoRR abs/1412.3555.
Vinyals, Toshev, Bengio, Erhan (b40) 2015
Medina, Shelley, Lee, Takano, Hirche (b33) 2012
Glorot, Bordes, Bengio (b9) 2011
Sutskever, Vinyals, Le (b8) 2014
Papineni, Roukos, Ward, Zhu (b66) 2002
Sugita, Tani (b34) 2005; 13
Hochreiter, Schmidhuber (b48) 1997; 9
Calinon, Guenter, Billard (b21) 2007; 37
D. Bahdanau, K. Cho, Y. Bengio, Neural machine translation by jointly learning to align and translate. 2014, CoRR abs/1409.0473.
Takano, Nakamura (b29) 2008
Takano, Nakamura (b31) 2012
Mikolov, Sutskever, Chen, Corrado, Dean (b47) 2013
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (b58) 2014; 15
Billard, Calinon, Dillmann, Schaal (b3) 2008
K. Cho, B. van Merrienboer, D. Bahdanau, Y. Bengio, On the properties of neural machine translation: Encoder-Decoder approaches. 2014 CoRR abs/1409.1259.
M. Plappert, C. Mandery, T. Asfour, The KIT Motion-Language Dataset. 2016, CoRR abs/1607.03827.
Azad, Asfour, Dillmann (b46) 2007
Taylor, Hinton (b20) 2009
Takano, Yamane, Sugihara, Yamamoto, Nakamura (b16) 2006
.
A. Jain, A.R. Zamir, S. Savarese, A. Saxena, Structural-rnn: Deep learning on spatio-temporal graphs. 2015, CoRR abs/1511.05298.
Mandery, Sol, Jöchner, Asfour (b72) 2015
K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition. 2015 CoRR abs/1512.03385.
Takano, Nakamura (b28) 2015; 66
L.J. Ba, R. Kiros, G.E. Hinton, Layer normalization. 2016, CoRR abs/1607.06450.
Takano, Kulic, Nakamura (b27) 2007
Y. Gal, A theoretically grounded application of dropout in recurrent neural networks. 2015, arXiv preprint
Goodfellow, Bengio, Courville (b5) 2016
K. Fragkiadaki, S. Levine, J. Malik, (2015) Recurrent network models for kinematic tracking. 2015, CoRR abs/1508.00271.
Hassani, Lee (b43) 2016; 49
Ogata, Okuno (b38) 2013
Taylor, Hinton, Roweis (b19) 2006
A. Graves, Generating sequences with recurrent neural networks. 2013, CoRR abs/1308.0850.
Graves, Mohamed, Hinton (b11) 2013
T. Dozat, Incorporating nesterov momentum into adam. Stanford University, Tech. Rep.
Ogata, Matsumoto, Tani, Komatani, Okuno (b35) 2007
Venugopalan, Xu, Donahue, Rohrbach, Mooney, Saenko (b42) 2015
Y. Bengio, N. Boulanger-Lewandowski, R. Pascanu, Advances in Optimizing Recurrent Networks. 2012, CoRR abs/1212.0901.
S. Gu, E. Holly, T.P. Lillicrap, S. Levine, Deep Reinforcement Learning for Robotic Manipulation. 2016, CoRR abs/1610.00633.
T. Cooijmans, N. Ballas, C. Laurent, A.C. Courville, Recurrent Batch Normalization. 2016, CoRR abs/1603.09025.
Maaten, Hinton (b69) 2008; 9
Ogata, Murase, Tani, Komatani, Okuno (b36) 2007
S. Levine, C. Finn, T. Darrell, P. Abbeel, End-to-End Training of Deep Visuomotor Policies. 2015, CoRR abs/1504.00702.
Gers, Schmidhuber, Cummins (b49) 2000; 12
Werbos (b54) 1990; 78
Ioffe, Szegedy (b64) 2015
Huang, Acero, Hon (b53) 2001
Dillmann, Rogalla, Ehrenmann, Zollner, Bordegoni (b2) 2000
Schaal (b22) 2006
J. Bütepage, M.J. Black, D. Kragic, H. Kjellström, (2017) Deep representation learning for human motion prediction and classification. 2017,CoRR abs/1702.07486.
S. Levine, P. Pastor, A. Krizhevsky, D. Quillen, Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection. 2016, CoRR abs/1603.02199.
Kulic, Takano, Nakamura (b17) 2008; 27
Mandery, Terlemez, Do, Vahrenkamp, Asfour (b57) 2015
Mordatch, Lowrey, Andrew, Popovic, Todorov (b25) 2015
Karpathy, Li (b39) 2015
Terlemez, Ulbrich, Mandery, Do, Vahrenkamp, Asfour (b15) 2014
Takano, Nakamura (b30) 2009
D.P. Kingma, J. Ba, Adam: A Method for Stochastic Optimization. 2014 CoRR abs/1412.6980.
Herzog, Ude, Krüger (b18) 2008
Mandery, Terlemez, Do, Vahrenkamp, Asfour (b45) 2016; 32
Y. Wu, M. Schuster, Z. Chen, Q.V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao, Q. Gao, K. Macherey, J. Klingner, A. Shah, M. Johnson, X. Liu, L. Kaiser, S. Gouws, Y. Kato, T. Kudo, H. Kazawa, K. Stevens, G. Kurian, N. Patil, W. Wang, C. Young, J. Smith, J. Riesa, A. Rudnick, O. Vinyals, G. Corrado, M. Hughes, J. Dean, Google’s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation. 2016, CoRR abs/1609.08144.
Du, Wang, Wang (b71) 2015
Donahue, Hendricks, Guadarrama, Rohrbach, Venugopalan, Darrell, Saenko (b41) 2015
Kuniyoshi, Inaba, Inoue (b1) 1994; 10
10.1016/j.robot.2018.07.006_b65
Takano (10.1016/j.robot.2018.07.006_b27) 2007
10.1016/j.robot.2018.07.006_b63
Takano (10.1016/j.robot.2018.07.006_b30) 2009
10.1016/j.robot.2018.07.006_b61
10.1016/j.robot.2018.07.006_b62
10.1016/j.robot.2018.07.006_b60
Venugopalan (10.1016/j.robot.2018.07.006_b42) 2015
10.1016/j.robot.2018.07.006_b26
Sutskever (10.1016/j.robot.2018.07.006_b8) 2014
10.1016/j.robot.2018.07.006_b23
10.1016/j.robot.2018.07.006_b24
Schaal (10.1016/j.robot.2018.07.006_b22) 2006
Arie (10.1016/j.robot.2018.07.006_b37) 2010
Maaten (10.1016/j.robot.2018.07.006_b69) 2008; 9
Karpathy (10.1016/j.robot.2018.07.006_b39) 2015
Ogata (10.1016/j.robot.2018.07.006_b38) 2013
Takano (10.1016/j.robot.2018.07.006_b67) 2016; 80
Graves (10.1016/j.robot.2018.07.006_b52) 2005; 18
Graves (10.1016/j.robot.2018.07.006_b11) 2013
Hodosh (10.1016/j.robot.2018.07.006_b68) 2013; 47
10.1016/j.robot.2018.07.006_b10
Hochreiter (10.1016/j.robot.2018.07.006_b48) 1997; 9
Taylor (10.1016/j.robot.2018.07.006_b20) 2009
10.1016/j.robot.2018.07.006_b55
Werbos (10.1016/j.robot.2018.07.006_b54) 1990; 78
10.1016/j.robot.2018.07.006_b50
10.1016/j.robot.2018.07.006_b51
Dillmann (10.1016/j.robot.2018.07.006_b2) 2000
Takano (10.1016/j.robot.2018.07.006_b28) 2015; 66
Mandery (10.1016/j.robot.2018.07.006_b72) 2015
10.1016/j.robot.2018.07.006_b14
Ogata (10.1016/j.robot.2018.07.006_b35) 2007
10.1016/j.robot.2018.07.006_b59
10.1016/j.robot.2018.07.006_b12
10.1016/j.robot.2018.07.006_b56
10.1016/j.robot.2018.07.006_b13
Mikolov (10.1016/j.robot.2018.07.006_b47) 2013
Takano (10.1016/j.robot.2018.07.006_b31) 2012
Huang (10.1016/j.robot.2018.07.006_b53) 2001
Gers (10.1016/j.robot.2018.07.006_b49) 2000; 12
Terlemez (10.1016/j.robot.2018.07.006_b15) 2014
10.1016/j.robot.2018.07.006_b44
Billard (10.1016/j.robot.2018.07.006_b3) 2008
Mandery (10.1016/j.robot.2018.07.006_b45) 2016; 32
Mordatch (10.1016/j.robot.2018.07.006_b25) 2015
Taylor (10.1016/j.robot.2018.07.006_b19) 2006
Ioffe (10.1016/j.robot.2018.07.006_b64) 2015
Vinyals (10.1016/j.robot.2018.07.006_b40) 2015
Krizhevsky (10.1016/j.robot.2018.07.006_b6) 2012
10.1016/j.robot.2018.07.006_b7
Hassani (10.1016/j.robot.2018.07.006_b43) 2016; 49
Takano (10.1016/j.robot.2018.07.006_b29) 2008
Goodfellow (10.1016/j.robot.2018.07.006_b5) 2016
LeCun (10.1016/j.robot.2018.07.006_b4) 2015; 521
Mandery (10.1016/j.robot.2018.07.006_b57) 2015
Herzog (10.1016/j.robot.2018.07.006_b18) 2008
Azad (10.1016/j.robot.2018.07.006_b46) 2007
Du (10.1016/j.robot.2018.07.006_b71) 2015
Donahue (10.1016/j.robot.2018.07.006_b41) 2015
10.1016/j.robot.2018.07.006_b70
Kulic (10.1016/j.robot.2018.07.006_b17) 2008; 27
Sugita (10.1016/j.robot.2018.07.006_b34) 2005; 13
Papineni (10.1016/j.robot.2018.07.006_b66) 2002
Medina (10.1016/j.robot.2018.07.006_b33) 2012
Kuniyoshi (10.1016/j.robot.2018.07.006_b1) 1994; 10
Takano (10.1016/j.robot.2018.07.006_b16) 2006
Srivastava (10.1016/j.robot.2018.07.006_b58) 2014; 15
Takano (10.1016/j.robot.2018.07.006_b32) 2015; 34
Calinon (10.1016/j.robot.2018.07.006_b21) 2007; 37
Ogata (10.1016/j.robot.2018.07.006_b36) 2007
Glorot (10.1016/j.robot.2018.07.006_b9) 2011
References_xml – start-page: 261
  year: 2006
  end-page: 280
  ident: b22
  article-title: Dynamic movement primitives -a framework for motor control in humans and humanoid robotics
  publication-title: Adaptive Motion of Animals and Machines
– volume: 66
  start-page: 75
  year: 2015
  end-page: 85
  ident: b28
  article-title: Symbolically structured database for human whole body motions based on association between motion symbols and motion words
  publication-title: Robot. Auton. Syst.
– reference: T. Dozat, Incorporating nesterov momentum into adam. Stanford University, Tech. Rep.
– start-page: 1097
  year: 2012
  end-page: 1102
  ident: b33
  article-title: Towards interactive physical robotic assistance: Parameterizing motion primitives through natural language
  publication-title: The 21st IEEE International Symposium on Robot and Human Interactive Communication, IEEE RO-MAN 2012, Paris, France, September 9-13, 2012
– start-page: 256
  year: 2010
  end-page: 265
  ident: b37
  article-title: Integrative learning between language and action: A neuro-robotics experiment
  publication-title: Artificial Neural Networks - ICANN 2010, 20th International Conference, Thessaloniki, Greece, September 15-18, 2010, Proceedings, Part II
– start-page: 3111
  year: 2013
  end-page: 3119
  ident: b47
  article-title: Distributed representations of words and phrases and their compositionality
  publication-title: Advances in Neural Information Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems 2013. Proceedings of a Meeting Held December 5-8, 2013, Lake Tahoe, Nevada, United States.
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: b58
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– volume: 18
  start-page: 602
  year: 2005
  end-page: 610
  ident: b52
  article-title: Framewise phoneme classification with bidirectional LSTM and other neural network architectures
  publication-title: Neural Net.
– volume: 13
  start-page: 33
  year: 2005
  end-page: 52
  ident: b34
  article-title: Learning semantic combinatoriality from the interaction between linguistic and behavioral processes
  publication-title: Adapt. Behav.
– reference: Y. Wu, M. Schuster, Z. Chen, Q.V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao, Q. Gao, K. Macherey, J. Klingner, A. Shah, M. Johnson, X. Liu, L. Kaiser, S. Gouws, Y. Kato, T. Kudo, H. Kazawa, K. Stevens, G. Kurian, N. Patil, W. Wang, C. Young, J. Smith, J. Riesa, A. Rudnick, O. Vinyals, G. Corrado, M. Hughes, J. Dean, Google’s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation. 2016, CoRR abs/1609.08144.
– start-page: 311
  year: 2002
  end-page: 318
  ident: b66
  article-title: Bleu: a method for automatic evaluation of machine translation
  publication-title: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, July 6-12, 2002, Philadelphia, PA, USA.
– volume: 47
  start-page: 853
  year: 2013
  end-page: 899
  ident: b68
  article-title: Framing image description as a ranking task: Data, models and evaluation metrics
  publication-title: J. Artificial Intelligence Res.
– start-page: 6645
  year: 2013
  end-page: 6649
  ident: b11
  article-title: Speech recognition with deep recurrent neural networks
  publication-title: IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2013, Vancouver, BC, Canada, May 26-31, 2013
– start-page: 894
  year: 2014
  end-page: 901
  ident: b15
  article-title: Master motor map (MMM) - framework and toolkit for capturing, representing, and reproducing human motion on humanoid robots
  publication-title: 14th IEEE-RAS International Conference on Humanoid Robots, Humanoids 2014, Madrid, Spain, November 18-20, 2014
– start-page: 1106
  year: 2012
  end-page: 1114
  ident: b6
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012. Proceedings of a Meeting Held December 3-6, 2012, Lake Tahoe, Nevada, United States.
– volume: 78
  start-page: 1550
  year: 1990
  end-page: 1560
  ident: b54
  article-title: Backpropagation through time: what it does and how to do it
  publication-title: Proc. IEEE
– volume: 37
  start-page: 286
  year: 2007
  end-page: 298
  ident: b21
  article-title: On learning, representing, and generalizing a task in a humanoid robot
  publication-title: IEEE Trans. Syst. Man Cybern. Part B
– start-page: 89
  year: 2013
  end-page: 95
  ident: b38
  article-title: Integration of behaviors and languages with a hierarchal structure self-organized in a neuro-dynamical model
  publication-title: 2013 IEEE Workshop on Robotic Intelligence in Informationally Structured Space, RiiSS 2013, Singapore, April 16-19, 2013
– start-page: 1494
  year: 2015
  end-page: 1504
  ident: b42
  article-title: Translating videos to natural language using deep recurrent neural networks
  publication-title: NAACL HLT 2015, the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Denver, Colorado, USA, May 31 - June 5, 2015
– start-page: 1345
  year: 2006
  end-page: 1352
  ident: b19
  article-title: Modeling human motion using binary latent variables
  publication-title: Advances in Neural Information Processing Systems 19, Proceedings of the Twentieth Annual Conference on Neural Information Processing Systems, Vancouver, British Columbia, Canada, December 4-7, 2006
– start-page: 1232
  year: 2012
  end-page: 1237
  ident: b31
  article-title: Bigram-based natural language model and statistical motion symbol model for scalable language of humanoid robots
  publication-title: IEEE International Conference on Robotics and Automation, ICRA 2012, 14-18 May, 2012, St. Paul, Minnesota, USA
– start-page: 448
  year: 2015
  end-page: 456
  ident: b64
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015
– reference: S. Gu, E. Holly, T.P. Lillicrap, S. Levine, Deep Reinforcement Learning for Robotic Manipulation. 2016, CoRR abs/1610.00633.
– start-page: 646
  year: 2009
  end-page: 652
  ident: b30
  article-title: Statistically integrated semiotics that enables mutual inference between linguistic and behavioral symbols for humanoid robots
  publication-title: 2009 IEEE International Conference on Robotics and Automation, ICRA 2009, Kobe, Japan, May 12-17, 2009
– reference: T. Cooijmans, N. Ballas, C. Laurent, A.C. Courville, Recurrent Batch Normalization. 2016, CoRR abs/1603.09025.
– volume: 10
  start-page: 799
  year: 1994
  end-page: 822
  ident: b1
  article-title: Learning by watching: Extracting reusable task knowledge from visual observation of human performance
  publication-title: IEEE Trans. Robot. Autom.
– reference: S. Levine, C. Finn, T. Darrell, P. Abbeel, End-to-End Training of Deep Visuomotor Policies. 2015, CoRR abs/1504.00702.
– start-page: 1416
  year: 2007
  end-page: 1422
  ident: b27
  article-title: Interactive topology formation of linguistic space and motion space
  publication-title: 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, October 29 - November 2, 2007, Sheraton Hotel and Marina, San Diego, California, USA
– start-page: 1110
  year: 2015
  end-page: 1118
  ident: b71
  article-title: Hierarchical recurrent neural network for skeleton based action recognition
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015
– year: 2016
  ident: b5
  article-title: Deep learning
  publication-title: Book in preparation for MIT Press
– reference: Y. Bengio, N. Boulanger-Lewandowski, R. Pascanu, Advances in Optimizing Recurrent Networks. 2012, CoRR abs/1212.0901.
– start-page: 329
  year: 2015
  end-page: 336
  ident: b57
  article-title: The KIT whole-body human motion database
  publication-title: International Conference on Advanced Robotics, ICAR 2015, Istanbul, Turkey, July 27-31, 2015
– reference: S. Levine, P. Pastor, A. Krizhevsky, D. Quillen, Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection. 2016, CoRR abs/1603.02199.
– start-page: 513
  year: 2011
  end-page: 520
  ident: b9
  article-title: Domain adaptation for large-scale sentiment classification: A Deep learning approach
  publication-title: Proceedings of the 28th International Conference on Machine Learning, ICML 2011, Bellevue, Washington, USA, June 28 - July 2, 2011
– volume: 32
  start-page: 796
  year: 2016
  end-page: 809
  ident: b45
  article-title: Unifying representations and large-scale whole-body motion databases for studying human motion
  publication-title: IEEE Trans. Robot.
– start-page: 708
  year: 2008
  end-page: 713
  ident: b29
  article-title: Integrating whole body motion primitives and natural language for humanoid robots
  publication-title: 8th IEEE-RAS International Conference on Humanoid Robots, Humanoids 2008, Daejeon, South Korea, December 1-3, 2008
– start-page: 3156
  year: 2015
  end-page: 3164
  ident: b40
  article-title: Show and tell: A neural image caption generator
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015
– year: 2001
  ident: b53
  article-title: Spoken language processing: A guide to theory, algorithm, and system development
– reference: D. Bahdanau, K. Cho, Y. Bengio, Neural machine translation by jointly learning to align and translate. 2014, CoRR abs/1409.0473.
– start-page: 339
  year: 2008
  end-page: 346
  ident: b18
  article-title: Motion imitation and recognition using parametric hidden Markov models
  publication-title: 8th IEEE-RAS International Conference on Humanoid Robots, Humanoids 2008, Daejeon, South Korea, December 1-3, 2008
– volume: 80
  start-page: 1
  year: 2016
  end-page: 8
  ident: b67
  article-title: Generating action descriptions from statistically integrated representations of human motions and sentences
  publication-title: Neural Net.
– reference: D.P. Kingma, J. Ba, Adam: A Method for Stochastic Optimization. 2014 CoRR abs/1412.6980.
– start-page: 1858
  year: 2007
  end-page: 1863
  ident: b36
  article-title: Two-way translation of compound sentences and arm motions by recurrent neural networks
  publication-title: 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, October 29 - November 2, 2007, Sheraton Hotel and Marina, San Diego, California, USA
– reference: L.J. Ba, R. Kiros, G.E. Hinton, Layer normalization. 2016, CoRR abs/1607.06450.
– start-page: 2156
  year: 2007
  end-page: 2161
  ident: b35
  article-title: Human-Robot cooperation using quasi-symbols generated by RNNPB Model
  publication-title: 2007 IEEE International Conference on Robotics and Automation, ICRA 2007, 10-14 April 2007, Roma, Italy
– start-page: 3602
  year: 2006
  end-page: 3609
  ident: b16
  article-title: Primitive communication based on motion recognition and generation with hierarchical mimesis model
  publication-title: Proceedings of the 2006 IEEE International Conference on Robotics and Automation, ICRA 2006, May 15-19, 2006, Orlando, Florida, USA
– reference: K. Fragkiadaki, S. Levine, J. Malik, (2015) Recurrent network models for kinematic tracking. 2015, CoRR abs/1508.00271.
– reference: J. Chung, Ç. Gülçehre, K. Cho, Y. Bengio, Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. 2014, CoRR abs/1412.3555.
– start-page: 229
  year: 2000
  end-page: 238
  ident: b2
  article-title: Learning robot behaviour and skills based on human demonstration and advice: the machine learning paradigm
  publication-title: Robotics Research-International Symposium-vol.9
– volume: 12
  start-page: 2451
  year: 2000
  end-page: 2471
  ident: b49
  article-title: Learning to forget: continual prediction with lstm
  publication-title: Neural Comput.
– start-page: 1025
  year: 2009
  end-page: 1032
  ident: b20
  article-title: Factored conditional restricted boltzmann machines for modeling motion style
  publication-title: Proceedings of the 26th Annual International Conference on Machine Learning, ICML 2009, Montreal, Quebec, Canada, June 14-18, 2009
– reference: M. Field, Z. Pan, D. Stirling, F. Naghdy, Human Motion Capture Sensors and Analysis in Robotics, 38(2) 2011, pp. 163–171.
– volume: 27
  start-page: 761
  year: 2008
  end-page: 784
  ident: b17
  article-title: Incremental learning, clustering and hierarchy formation of whole body motion patterns using adaptive hidden markov chains
  publication-title: I. J. Robot. Res.
– volume: 34
  start-page: 1314
  year: 2015
  end-page: 1328
  ident: b32
  article-title: Statistical mutual conversion between whole body motion primitives and linguistic sentences for human motions
  publication-title: I. J. Robot. Res.
– reference: M. Plappert, C. Mandery, T. Asfour, The KIT Motion-Language Dataset. 2016, CoRR abs/1607.03827.
– start-page: 3132
  year: 2015
  end-page: 3140
  ident: b25
  article-title: Interactive control of diverse complex characters with neural networks
  publication-title: Advances in Neural Information Processing Systems 28: Annual Conference on Neural Information Processing Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada
– start-page: 2625
  year: 2015
  end-page: 2634
  ident: b41
  article-title: Long-term recurrent convolutional networks for visual recognition and description
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015
– start-page: 3128
  year: 2015
  end-page: 3137
  ident: b39
  article-title: Deep visual-semantic alignments for generating image descriptions
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2605
  ident: b69
  article-title: Visualizing high-dimensional data using t-SNE
  publication-title: J. Mach. Learn. Res.
– reference: Y. Gal, A theoretically grounded application of dropout in recurrent neural networks. 2015, arXiv preprint
– start-page: 1371
  year: 2008
  end-page: 1394
  ident: b3
  article-title: Robot programming by demonstration
  publication-title: Springer Handbook of Robotics
– reference: J. Bütepage, M.J. Black, D. Kragic, H. Kjellström, (2017) Deep representation learning for human motion prediction and classification. 2017,CoRR abs/1702.07486.
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: b4
  article-title: Deep learning
  publication-title: Nature
– reference: .
– reference: A. Graves, Generating sequences with recurrent neural networks. 2013, CoRR abs/1308.0850.
– reference: K. Cho, B. van Merrienboer, D. Bahdanau, Y. Bengio, On the properties of neural machine translation: Encoder-Decoder approaches. 2014 CoRR abs/1409.1259.
– reference: A. Jain, A.R. Zamir, S. Savarese, A. Saxena, Structural-rnn: Deep learning on spatio-temporal graphs. 2015, CoRR abs/1511.05298.
– start-page: 1020
  year: 2015
  end-page: 1027
  ident: b72
  article-title: Analyzing whole-body pose transitions in multi-contact motions
  publication-title: 15th IEEE-RAS International Conference on Humanoid Robots, Humanoids 2015, Seoul, South Korea, November 3-5, 2015
– start-page: 2558
  year: 2007
  end-page: 2563
  ident: b46
  article-title: Toward an unified representation for imitation of human motion on humanoids
  publication-title: 2007 IEEE International Conference on Robotics and Automation, ICRA 2007, 10-14 April 2007, Roma, Italy
– reference: K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition. 2015 CoRR abs/1512.03385.
– start-page: 3104
  year: 2014
  end-page: 3112
  ident: b8
  article-title: Sequence to sequence learning with neural networks
  publication-title: Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada
– volume: 49
  start-page: 17
  year: 2016
  ident: b43
  article-title: Visualizing natural language descriptions: A survey
  publication-title: ACM Comput. Surv.
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b48
  article-title: Long short-term memory
  publication-title: Neural Comput.
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: 10.1016/j.robot.2018.07.006_b58
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– start-page: 329
  year: 2015
  ident: 10.1016/j.robot.2018.07.006_b57
  article-title: The KIT whole-body human motion database
– ident: 10.1016/j.robot.2018.07.006_b7
  doi: 10.1109/CVPR.2016.90
– ident: 10.1016/j.robot.2018.07.006_b70
– volume: 66
  start-page: 75
  year: 2015
  ident: 10.1016/j.robot.2018.07.006_b28
  article-title: Symbolically structured database for human whole body motions based on association between motion symbols and motion words
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2014.12.008
– ident: 10.1016/j.robot.2018.07.006_b51
– volume: 80
  start-page: 1
  year: 2016
  ident: 10.1016/j.robot.2018.07.006_b67
  article-title: Generating action descriptions from statistically integrated representations of human motions and sentences
  publication-title: Neural Net.
  doi: 10.1016/j.neunet.2016.03.001
– start-page: 708
  year: 2008
  ident: 10.1016/j.robot.2018.07.006_b29
  article-title: Integrating whole body motion primitives and natural language for humanoid robots
– start-page: 894
  year: 2014
  ident: 10.1016/j.robot.2018.07.006_b15
  article-title: Master motor map (MMM) - framework and toolkit for capturing, representing, and reproducing human motion on humanoid robots
– start-page: 339
  year: 2008
  ident: 10.1016/j.robot.2018.07.006_b18
  article-title: Motion imitation and recognition using parametric hidden Markov models
– start-page: 3104
  year: 2014
  ident: 10.1016/j.robot.2018.07.006_b8
  article-title: Sequence to sequence learning with neural networks
– start-page: 2558
  year: 2007
  ident: 10.1016/j.robot.2018.07.006_b46
  article-title: Toward an unified representation for imitation of human motion on humanoids
– ident: 10.1016/j.robot.2018.07.006_b61
– volume: 37
  start-page: 286
  issue: 2
  year: 2007
  ident: 10.1016/j.robot.2018.07.006_b21
  article-title: On learning, representing, and generalizing a task in a humanoid robot
  publication-title: IEEE Trans. Syst. Man Cybern. Part B
  doi: 10.1109/TSMCB.2006.886952
– start-page: 1110
  year: 2015
  ident: 10.1016/j.robot.2018.07.006_b71
  article-title: Hierarchical recurrent neural network for skeleton based action recognition
– start-page: 1020
  year: 2015
  ident: 10.1016/j.robot.2018.07.006_b72
  article-title: Analyzing whole-body pose transitions in multi-contact motions
– year: 2016
  ident: 10.1016/j.robot.2018.07.006_b5
  article-title: Deep learning
– ident: 10.1016/j.robot.2018.07.006_b26
  doi: 10.1109/CVPR.2017.173
– ident: 10.1016/j.robot.2018.07.006_b24
  doi: 10.1109/CVPR.2016.573
– start-page: 3602
  year: 2006
  ident: 10.1016/j.robot.2018.07.006_b16
  article-title: Primitive communication based on motion recognition and generation with hierarchical mimesis model
– start-page: 1345
  year: 2006
  ident: 10.1016/j.robot.2018.07.006_b19
  article-title: Modeling human motion using binary latent variables
– volume: 78
  start-page: 1550
  issue: 10
  year: 1990
  ident: 10.1016/j.robot.2018.07.006_b54
  article-title: Backpropagation through time: what it does and how to do it
  publication-title: Proc. IEEE
  doi: 10.1109/5.58337
– volume: 47
  start-page: 853
  year: 2013
  ident: 10.1016/j.robot.2018.07.006_b68
  article-title: Framing image description as a ranking task: Data, models and evaluation metrics
  publication-title: J. Artificial Intelligence Res.
  doi: 10.1613/jair.3994
– year: 2001
  ident: 10.1016/j.robot.2018.07.006_b53
– volume: 27
  start-page: 761
  issue: 7
  year: 2008
  ident: 10.1016/j.robot.2018.07.006_b17
  article-title: Incremental learning, clustering and hierarchy formation of whole body motion patterns using adaptive hidden markov chains
  publication-title: I. J. Robot. Res.
  doi: 10.1177/0278364908091153
– volume: 13
  start-page: 33
  issue: 1
  year: 2005
  ident: 10.1016/j.robot.2018.07.006_b34
  article-title: Learning semantic combinatoriality from the interaction between linguistic and behavioral processes
  publication-title: Adapt. Behav.
  doi: 10.1177/105971230501300102
– start-page: 3156
  year: 2015
  ident: 10.1016/j.robot.2018.07.006_b40
  article-title: Show and tell: A neural image caption generator
– start-page: 3111
  year: 2013
  ident: 10.1016/j.robot.2018.07.006_b47
  article-title: Distributed representations of words and phrases and their compositionality
– ident: 10.1016/j.robot.2018.07.006_b60
– start-page: 1416
  year: 2007
  ident: 10.1016/j.robot.2018.07.006_b27
  article-title: Interactive topology formation of linguistic space and motion space
– start-page: 513
  year: 2011
  ident: 10.1016/j.robot.2018.07.006_b9
  article-title: Domain adaptation for large-scale sentiment classification: A Deep learning approach
– start-page: 311
  year: 2002
  ident: 10.1016/j.robot.2018.07.006_b66
  article-title: Bleu: a method for automatic evaluation of machine translation
– start-page: 256
  year: 2010
  ident: 10.1016/j.robot.2018.07.006_b37
  article-title: Integrative learning between language and action: A neuro-robotics experiment
– start-page: 3132
  year: 2015
  ident: 10.1016/j.robot.2018.07.006_b25
  article-title: Interactive control of diverse complex characters with neural networks
– ident: 10.1016/j.robot.2018.07.006_b10
– ident: 10.1016/j.robot.2018.07.006_b14
– volume: 34
  start-page: 1314
  issue: 10
  year: 2015
  ident: 10.1016/j.robot.2018.07.006_b32
  article-title: Statistical mutual conversion between whole body motion primitives and linguistic sentences for human motions
  publication-title: I. J. Robot. Res.
  doi: 10.1177/0278364915587923
– start-page: 1858
  year: 2007
  ident: 10.1016/j.robot.2018.07.006_b36
  article-title: Two-way translation of compound sentences and arm motions by recurrent neural networks
– ident: 10.1016/j.robot.2018.07.006_b56
  doi: 10.1089/big.2016.0028
– ident: 10.1016/j.robot.2018.07.006_b44
  doi: 10.1108/01439911111106372
– start-page: 3128
  year: 2015
  ident: 10.1016/j.robot.2018.07.006_b39
  article-title: Deep visual-semantic alignments for generating image descriptions
– start-page: 448
  year: 2015
  ident: 10.1016/j.robot.2018.07.006_b64
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
– start-page: 1371
  year: 2008
  ident: 10.1016/j.robot.2018.07.006_b3
  article-title: Robot programming by demonstration
– volume: 9
  start-page: 2579
  issue: Nov
  year: 2008
  ident: 10.1016/j.robot.2018.07.006_b69
  article-title: Visualizing high-dimensional data using t-SNE
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.robot.2018.07.006_b23
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.robot.2018.07.006_b48
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– ident: 10.1016/j.robot.2018.07.006_b63
– start-page: 1106
  year: 2012
  ident: 10.1016/j.robot.2018.07.006_b6
  article-title: Imagenet classification with deep convolutional neural networks
– start-page: 1232
  year: 2012
  ident: 10.1016/j.robot.2018.07.006_b31
  article-title: Bigram-based natural language model and statistical motion symbol model for scalable language of humanoid robots
– ident: 10.1016/j.robot.2018.07.006_b65
– start-page: 6645
  year: 2013
  ident: 10.1016/j.robot.2018.07.006_b11
  article-title: Speech recognition with deep recurrent neural networks
– start-page: 1494
  year: 2015
  ident: 10.1016/j.robot.2018.07.006_b42
  article-title: Translating videos to natural language using deep recurrent neural networks
– start-page: 1097
  year: 2012
  ident: 10.1016/j.robot.2018.07.006_b33
  article-title: Towards interactive physical robotic assistance: Parameterizing motion primitives through natural language
– ident: 10.1016/j.robot.2018.07.006_b62
  doi: 10.1109/ICASSP.2013.6639349
– start-page: 261
  year: 2006
  ident: 10.1016/j.robot.2018.07.006_b22
  article-title: Dynamic movement primitives -a framework for motor control in humans and humanoid robotics
– volume: 49
  start-page: 17
  issue: 1
  year: 2016
  ident: 10.1016/j.robot.2018.07.006_b43
  article-title: Visualizing natural language descriptions: A survey
  publication-title: ACM Comput. Surv.
  doi: 10.1145/2932710
– ident: 10.1016/j.robot.2018.07.006_b13
– ident: 10.1016/j.robot.2018.07.006_b59
– volume: 32
  start-page: 796
  issue: 4
  year: 2016
  ident: 10.1016/j.robot.2018.07.006_b45
  article-title: Unifying representations and large-scale whole-body motion databases for studying human motion
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2016.2572685
– start-page: 646
  year: 2009
  ident: 10.1016/j.robot.2018.07.006_b30
  article-title: Statistically integrated semiotics that enables mutual inference between linguistic and behavioral symbols for humanoid robots
– start-page: 2156
  year: 2007
  ident: 10.1016/j.robot.2018.07.006_b35
  article-title: Human-Robot cooperation using quasi-symbols generated by RNNPB Model
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.robot.2018.07.006_b4
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: 10.1016/j.robot.2018.07.006_b12
  doi: 10.1007/978-3-319-50115-4_16
– ident: 10.1016/j.robot.2018.07.006_b50
  doi: 10.3115/v1/W14-4012
– ident: 10.1016/j.robot.2018.07.006_b55
– start-page: 1025
  year: 2009
  ident: 10.1016/j.robot.2018.07.006_b20
  article-title: Factored conditional restricted boltzmann machines for modeling motion style
– volume: 10
  start-page: 799
  year: 1994
  ident: 10.1016/j.robot.2018.07.006_b1
  article-title: Learning by watching: Extracting reusable task knowledge from visual observation of human performance
  publication-title: IEEE Trans. Robot. Autom.
  doi: 10.1109/70.338535
– volume: 12
  start-page: 2451
  issue: 10
  year: 2000
  ident: 10.1016/j.robot.2018.07.006_b49
  article-title: Learning to forget: continual prediction with lstm
  publication-title: Neural Comput.
  doi: 10.1162/089976600300015015
– start-page: 89
  year: 2013
  ident: 10.1016/j.robot.2018.07.006_b38
  article-title: Integration of behaviors and languages with a hierarchal structure self-organized in a neuro-dynamical model
– volume: 18
  start-page: 602
  issue: 5–6
  year: 2005
  ident: 10.1016/j.robot.2018.07.006_b52
  article-title: Framewise phoneme classification with bidirectional LSTM and other neural network architectures
  publication-title: Neural Net.
  doi: 10.1016/j.neunet.2005.06.042
– start-page: 229
  year: 2000
  ident: 10.1016/j.robot.2018.07.006_b2
  article-title: Learning robot behaviour and skills based on human demonstration and advice: the machine learning paradigm
– start-page: 2625
  year: 2015
  ident: 10.1016/j.robot.2018.07.006_b41
  article-title: Long-term recurrent convolutional networks for visual recognition and description
SSID ssj0003573
Score 2.5057871
Snippet Linking human whole-body motion and natural language is of great interest for the generation of semantic representations of observed human behaviors as well as...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 13
SubjectTerms Human whole-body motion
Natural language
Recurrent neural network
Sequence-to-sequence learning
Title Learning a bidirectional mapping between human whole-body motion and natural language using deep recurrent neural networks
URI https://dx.doi.org/10.1016/j.robot.2018.07.006
Volume 109
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXvQgPrE-yh48GpvdJJvssRRLtdiDWuwt7CMpFU1KrYge_O3ubDZaQXrwFBJmIPmyzOzjm28QOlMm6KnEjz0d5twsUCLt8UgEHs1C4kPU1LaK_2bI-qPwehyNG6hb18IArdLF_iqm22jtnrQdmu3ZdNq-87lJT4nJZ2aQMprAuj0MY9DPv_j8oXkEUXXKbIw9sK6VhyzHa17KEgiVJLEKntD26K_stJRxettoy00Vcad6mx3UyIpdtLkkILiHPpw86gQLLKfVp9i9PfwsQHhhgh0PC9tefPgNuuF6stTvuGrfg0WhsRX3ND713iUGMvwE6yyb4Tnsx4OCEwblS2NUVLzxl3006l3ed_ue66bgqYDxhZeRPOdKcSozqiUhMjHAxZKTQBEtY4OjEJxFkulE-VxJSYGyGRDCci7MrCw4QGtFWWSHCCdME025McmDMOGhUJRqHQhl0BaciyaiNYqpclLj0PHiKa05ZY-phT4F6FMfjsBZE51_O80qpY3V5qz-PemvAZOaXLDK8ei_jsdoA-6qQsQTtLaYv2anZkaykC075FpovXM16A_hOrh9GHwB2ErkSQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5Ke1AP4hPrcw8eDc1ukm32WIqltY-LLXgL-0hKRdNSK6K_3plkIwriwWsyA8m3w8w-vv2GkGsDSc_EftuzYSZhgRJZT0Yq8HgaMh-zpi1u8Y8noj8L7x6ihxrpVndhkFbpcn-Z04ts7Z60HJqt1WLRuvcllKcY6hkEqeAxrNsbqE4Fwd7oDIb9yVdCDqLyoBnsPXSoxIcKmtd6qZfIqWRxIeKJnY9-K1Dfik5vj-y62SLtlB-0T2ppfkB2vmkIHpIPp5A6p4rqRfk3xfYefVaovTCnjopFi3Z89A0b4np6ad9p2cGHqtzSQt8TfKrtS4p8-Dm1abqia9ySRxEniuKXYJSX1PGXIzLr3U67fc81VPBMIOTGS1mWSWMk1ym3mjEdA3ZtLVlgmNVtgFIpKSItbGx8abTmyNoMGBOZVDAxC45JPV_m6QmhsbDMcgkmWRDGMlSGc2sDZQBtJaVqEl6hmBinNo5NL56Silb2mBTQJwh94uMpuGiSmy-nVSm28be5qIYn-REzCZSDvxxP_-t4Rbb60_EoGQ0mwzOyjW_Ke4nnpL5Zv6YXMEHZ6EsXgJ-B4eVX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+a+bidirectional+mapping+between+human+whole-body+motion+and+natural+language+using+deep+recurrent+neural+networks&rft.jtitle=Robotics+and+autonomous+systems&rft.au=Plappert%2C+Matthias&rft.au=Mandery%2C+Christian&rft.au=Asfour%2C+Tamim&rft.date=2018-11-01&rft.pub=Elsevier+B.V&rft.issn=0921-8890&rft.eissn=1872-793X&rft.volume=109&rft.spage=13&rft.epage=26&rft_id=info:doi/10.1016%2Fj.robot.2018.07.006&rft.externalDocID=S0921889017306280
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-8890&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-8890&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-8890&client=summon