Learning a bidirectional mapping between human whole-body motion and natural language using deep recurrent neural networks
Linking human whole-body motion and natural language is of great interest for the generation of semantic representations of observed human behaviors as well as for the generation of robot behaviors based on natural language input. While there has been a large body of research in this area, most appr...
Saved in:
Published in | Robotics and autonomous systems Vol. 109; pp. 13 - 26 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0921-8890 1872-793X |
DOI | 10.1016/j.robot.2018.07.006 |
Cover
Loading…
Abstract | Linking human whole-body motion and natural language is of great interest for the generation of semantic representations of observed human behaviors as well as for the generation of robot behaviors based on natural language input. While there has been a large body of research in this area, most approaches that exist today require a symbolic representation of motions (e.g. in the form of motion primitives), which have to be defined a-priori or require complex segmentation algorithms. In contrast, recent advances in the field of neural networks and especially deep learning have demonstrated that sub-symbolic representations that can be learned end-to-end usually outperform more traditional approaches, for applications such as machine translation. In this paper we propose a generative model that learns a bidirectional mapping between human whole-body motion and natural language using deep recurrent neural networks (RNNs) and sequence-to-sequence learning. Our approach does not require any segmentation or manual feature engineering and learns a distributed representation, which is shared for all motions and descriptions. We evaluate our approach on 2 846 human whole-body motions and 6 187 natural language descriptions thereof from the KIT Motion-Language Dataset. Our results clearly demonstrate the effectiveness of the proposed model: We show that our model generates a wide variety of realistic motions only from descriptions thereof in form of a single sentence. Conversely, our model is also capable of generating correct and detailed natural language descriptions from human motions.
•We present a novel method to learn a bidirectional mapping between human motion and natural language.•Our model is capable of accurately describing a wide range of human motion in complete sentences.•We further show that our model can generate versatile and rich motions from natural language descriptions. |
---|---|
AbstractList | Linking human whole-body motion and natural language is of great interest for the generation of semantic representations of observed human behaviors as well as for the generation of robot behaviors based on natural language input. While there has been a large body of research in this area, most approaches that exist today require a symbolic representation of motions (e.g. in the form of motion primitives), which have to be defined a-priori or require complex segmentation algorithms. In contrast, recent advances in the field of neural networks and especially deep learning have demonstrated that sub-symbolic representations that can be learned end-to-end usually outperform more traditional approaches, for applications such as machine translation. In this paper we propose a generative model that learns a bidirectional mapping between human whole-body motion and natural language using deep recurrent neural networks (RNNs) and sequence-to-sequence learning. Our approach does not require any segmentation or manual feature engineering and learns a distributed representation, which is shared for all motions and descriptions. We evaluate our approach on 2 846 human whole-body motions and 6 187 natural language descriptions thereof from the KIT Motion-Language Dataset. Our results clearly demonstrate the effectiveness of the proposed model: We show that our model generates a wide variety of realistic motions only from descriptions thereof in form of a single sentence. Conversely, our model is also capable of generating correct and detailed natural language descriptions from human motions.
•We present a novel method to learn a bidirectional mapping between human motion and natural language.•Our model is capable of accurately describing a wide range of human motion in complete sentences.•We further show that our model can generate versatile and rich motions from natural language descriptions. |
Author | Asfour, Tamim Mandery, Christian Plappert, Matthias |
Author_xml | – sequence: 1 givenname: Matthias orcidid: 0000-0002-0751-8094 surname: Plappert fullname: Plappert, Matthias email: matthias.plappert@partner.kit.edu – sequence: 2 givenname: Christian orcidid: 0000-0001-9421-5675 surname: Mandery fullname: Mandery, Christian email: mandery@kit.edu – sequence: 3 givenname: Tamim surname: Asfour fullname: Asfour, Tamim email: asfour@kit.edu |
BookMark | eNqFkM1Kw0AUhQdRsFafwM28QOK9GZpkFi6k-AcFNwruhpnJTTs1nSmTxFKf3qR15UJXFy7nO3C-C3bqgyfGrhFSBMxv1mkMJnRpBlimUKQA-QmbYFlkSSHF-ymbgMwwKUsJ5-yibdcAIGaFmLCvBenonV9yzY2rXCTbueB1wzd6ux3_hrodkeerfqM9361CQ4kJ1Z5vwpjk2lfc666PA9Nov-z1knjfjmhFtOVDYx8j-Y57OoT8UBjiR3vJzmrdtHT1c6fs7eH-df6ULF4en-d3i8SKXHYJYV1La2VmKKsMoimxEIWRKCxWppCAWst8ZvKqtCCtMRlIyARiXkuNmIkpE8deG0PbRqrVNrqNjnuFoEZ9aq0O-tSoT0GhBn0DJX9R1nV6XNxF7Zp_2NsjS8OsT0dRtdaRt3T0q6rg_uS_AQYykrw |
CitedBy_id | crossref_primary_10_1007_s00521_023_09227_z crossref_primary_10_1016_j_jwpe_2024_105940 crossref_primary_10_3390_agronomy12030594 crossref_primary_10_1007_s10489_021_02764_x crossref_primary_10_1016_j_aei_2025_103110 crossref_primary_10_12720_jait_11_4_228_232 crossref_primary_10_1109_LRA_2020_2977333 crossref_primary_10_1142_S1469026824500068 crossref_primary_10_1080_01691864_2019_1632223 crossref_primary_10_1109_LRA_2022_3196159 crossref_primary_10_1007_s11263_021_01550_z crossref_primary_10_1016_j_jconhyd_2023_104262 crossref_primary_10_1109_ACCESS_2023_3304903 crossref_primary_10_1016_j_compag_2023_108125 crossref_primary_10_1016_j_eswa_2023_122003 crossref_primary_10_1145_3609235 crossref_primary_10_1016_j_rcim_2024_102769 crossref_primary_10_1002_cav_2257 crossref_primary_10_1109_LRA_2019_2932343 crossref_primary_10_1080_1206212X_2021_1964790 crossref_primary_10_3389_frobt_2021_650906 crossref_primary_10_1080_10447318_2024_2381931 crossref_primary_10_1007_s40710_021_00512_4 crossref_primary_10_1007_s43832_024_00073_1 crossref_primary_10_1007_s00477_020_01776_2 crossref_primary_10_1016_j_rcim_2021_102231 crossref_primary_10_1177_02783649241275674 crossref_primary_10_54097_ije_v3i1_10764 crossref_primary_10_3389_frobt_2022_870477 crossref_primary_10_1016_j_autcon_2023_104812 crossref_primary_10_7210_jrsj_39_411 crossref_primary_10_1177_02783649231212929 crossref_primary_10_1016_j_robot_2019_103378 crossref_primary_10_1016_j_robot_2019_103353 crossref_primary_10_1007_s10462_022_10347_6 crossref_primary_10_1007_s10846_025_02221_8 crossref_primary_10_7210_jrsj_39_391 crossref_primary_10_1109_LRA_2020_2965394 crossref_primary_10_1109_THMS_2019_2960630 |
Cites_doi | 10.1109/CVPR.2016.90 10.1016/j.robot.2014.12.008 10.1016/j.neunet.2016.03.001 10.1109/TSMCB.2006.886952 10.1109/CVPR.2017.173 10.1109/CVPR.2016.573 10.1109/5.58337 10.1613/jair.3994 10.1177/0278364908091153 10.1177/105971230501300102 10.1177/0278364915587923 10.1089/big.2016.0028 10.1108/01439911111106372 10.1162/neco.1997.9.8.1735 10.1109/ICASSP.2013.6639349 10.1145/2932710 10.1109/TRO.2016.2572685 10.1038/nature14539 10.1007/978-3-319-50115-4_16 10.3115/v1/W14-4012 10.1109/70.338535 10.1162/089976600300015015 10.1016/j.neunet.2005.06.042 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. |
Copyright_xml | – notice: 2018 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.robot.2018.07.006 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1872-793X |
EndPage | 26 |
ExternalDocumentID | 10_1016_j_robot_2018_07_006 S0921889017306280 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABIVO ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPGS AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ RXW SBC SCC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TAE UNMZH WUQ XPP ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c369t-e1ff9cc92be2db11b81737b913c1db7901aa965b6d8c09cbb209023116f9a1123 |
IEDL.DBID | .~1 |
ISSN | 0921-8890 |
IngestDate | Tue Jul 01 01:41:47 EDT 2025 Thu Apr 24 23:07:58 EDT 2025 Fri Feb 23 02:33:49 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Natural language Recurrent neural network Human whole-body motion Sequence-to-sequence learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c369t-e1ff9cc92be2db11b81737b913c1db7901aa965b6d8c09cbb209023116f9a1123 |
ORCID | 0000-0002-0751-8094 0000-0001-9421-5675 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1016_j_robot_2018_07_006 crossref_citationtrail_10_1016_j_robot_2018_07_006 elsevier_sciencedirect_doi_10_1016_j_robot_2018_07_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2018 2018-11-00 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: November 2018 |
PublicationDecade | 2010 |
PublicationTitle | Robotics and autonomous systems |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | LeCun, Bengio, Hinton (b4) 2015; 521 Hodosh, Young, Hockenmaier (b68) 2013; 47 Arie, Endo, Jeong, Lee, Sugano, Tani (b37) 2010 M. Field, Z. Pan, D. Stirling, F. Naghdy, Human Motion Capture Sensors and Analysis in Robotics, 38(2) 2011, pp. 163–171. Graves, Schmidhuber (b52) 2005; 18 Takano, Nakamura (b32) 2015; 34 Takano, Kusajima, Nakamura (b67) 2016; 80 Krizhevsky, Sutskever, Hinton (b6) 2012 J. Chung, Ç. Gülçehre, K. Cho, Y. Bengio, Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. 2014, CoRR abs/1412.3555. Vinyals, Toshev, Bengio, Erhan (b40) 2015 Medina, Shelley, Lee, Takano, Hirche (b33) 2012 Glorot, Bordes, Bengio (b9) 2011 Sutskever, Vinyals, Le (b8) 2014 Papineni, Roukos, Ward, Zhu (b66) 2002 Sugita, Tani (b34) 2005; 13 Hochreiter, Schmidhuber (b48) 1997; 9 Calinon, Guenter, Billard (b21) 2007; 37 D. Bahdanau, K. Cho, Y. Bengio, Neural machine translation by jointly learning to align and translate. 2014, CoRR abs/1409.0473. Takano, Nakamura (b29) 2008 Takano, Nakamura (b31) 2012 Mikolov, Sutskever, Chen, Corrado, Dean (b47) 2013 Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (b58) 2014; 15 Billard, Calinon, Dillmann, Schaal (b3) 2008 K. Cho, B. van Merrienboer, D. Bahdanau, Y. Bengio, On the properties of neural machine translation: Encoder-Decoder approaches. 2014 CoRR abs/1409.1259. M. Plappert, C. Mandery, T. Asfour, The KIT Motion-Language Dataset. 2016, CoRR abs/1607.03827. Azad, Asfour, Dillmann (b46) 2007 Taylor, Hinton (b20) 2009 Takano, Yamane, Sugihara, Yamamoto, Nakamura (b16) 2006 . A. Jain, A.R. Zamir, S. Savarese, A. Saxena, Structural-rnn: Deep learning on spatio-temporal graphs. 2015, CoRR abs/1511.05298. Mandery, Sol, Jöchner, Asfour (b72) 2015 K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition. 2015 CoRR abs/1512.03385. Takano, Nakamura (b28) 2015; 66 L.J. Ba, R. Kiros, G.E. Hinton, Layer normalization. 2016, CoRR abs/1607.06450. Takano, Kulic, Nakamura (b27) 2007 Y. Gal, A theoretically grounded application of dropout in recurrent neural networks. 2015, arXiv preprint Goodfellow, Bengio, Courville (b5) 2016 K. Fragkiadaki, S. Levine, J. Malik, (2015) Recurrent network models for kinematic tracking. 2015, CoRR abs/1508.00271. Hassani, Lee (b43) 2016; 49 Ogata, Okuno (b38) 2013 Taylor, Hinton, Roweis (b19) 2006 A. Graves, Generating sequences with recurrent neural networks. 2013, CoRR abs/1308.0850. Graves, Mohamed, Hinton (b11) 2013 T. Dozat, Incorporating nesterov momentum into adam. Stanford University, Tech. Rep. Ogata, Matsumoto, Tani, Komatani, Okuno (b35) 2007 Venugopalan, Xu, Donahue, Rohrbach, Mooney, Saenko (b42) 2015 Y. Bengio, N. Boulanger-Lewandowski, R. Pascanu, Advances in Optimizing Recurrent Networks. 2012, CoRR abs/1212.0901. S. Gu, E. Holly, T.P. Lillicrap, S. Levine, Deep Reinforcement Learning for Robotic Manipulation. 2016, CoRR abs/1610.00633. T. Cooijmans, N. Ballas, C. Laurent, A.C. Courville, Recurrent Batch Normalization. 2016, CoRR abs/1603.09025. Maaten, Hinton (b69) 2008; 9 Ogata, Murase, Tani, Komatani, Okuno (b36) 2007 S. Levine, C. Finn, T. Darrell, P. Abbeel, End-to-End Training of Deep Visuomotor Policies. 2015, CoRR abs/1504.00702. Gers, Schmidhuber, Cummins (b49) 2000; 12 Werbos (b54) 1990; 78 Ioffe, Szegedy (b64) 2015 Huang, Acero, Hon (b53) 2001 Dillmann, Rogalla, Ehrenmann, Zollner, Bordegoni (b2) 2000 Schaal (b22) 2006 J. Bütepage, M.J. Black, D. Kragic, H. Kjellström, (2017) Deep representation learning for human motion prediction and classification. 2017,CoRR abs/1702.07486. S. Levine, P. Pastor, A. Krizhevsky, D. Quillen, Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection. 2016, CoRR abs/1603.02199. Kulic, Takano, Nakamura (b17) 2008; 27 Mandery, Terlemez, Do, Vahrenkamp, Asfour (b57) 2015 Mordatch, Lowrey, Andrew, Popovic, Todorov (b25) 2015 Karpathy, Li (b39) 2015 Terlemez, Ulbrich, Mandery, Do, Vahrenkamp, Asfour (b15) 2014 Takano, Nakamura (b30) 2009 D.P. Kingma, J. Ba, Adam: A Method for Stochastic Optimization. 2014 CoRR abs/1412.6980. Herzog, Ude, Krüger (b18) 2008 Mandery, Terlemez, Do, Vahrenkamp, Asfour (b45) 2016; 32 Y. Wu, M. Schuster, Z. Chen, Q.V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao, Q. Gao, K. Macherey, J. Klingner, A. Shah, M. Johnson, X. Liu, L. Kaiser, S. Gouws, Y. Kato, T. Kudo, H. Kazawa, K. Stevens, G. Kurian, N. Patil, W. Wang, C. Young, J. Smith, J. Riesa, A. Rudnick, O. Vinyals, G. Corrado, M. Hughes, J. Dean, Google’s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation. 2016, CoRR abs/1609.08144. Du, Wang, Wang (b71) 2015 Donahue, Hendricks, Guadarrama, Rohrbach, Venugopalan, Darrell, Saenko (b41) 2015 Kuniyoshi, Inaba, Inoue (b1) 1994; 10 10.1016/j.robot.2018.07.006_b65 Takano (10.1016/j.robot.2018.07.006_b27) 2007 10.1016/j.robot.2018.07.006_b63 Takano (10.1016/j.robot.2018.07.006_b30) 2009 10.1016/j.robot.2018.07.006_b61 10.1016/j.robot.2018.07.006_b62 10.1016/j.robot.2018.07.006_b60 Venugopalan (10.1016/j.robot.2018.07.006_b42) 2015 10.1016/j.robot.2018.07.006_b26 Sutskever (10.1016/j.robot.2018.07.006_b8) 2014 10.1016/j.robot.2018.07.006_b23 10.1016/j.robot.2018.07.006_b24 Schaal (10.1016/j.robot.2018.07.006_b22) 2006 Arie (10.1016/j.robot.2018.07.006_b37) 2010 Maaten (10.1016/j.robot.2018.07.006_b69) 2008; 9 Karpathy (10.1016/j.robot.2018.07.006_b39) 2015 Ogata (10.1016/j.robot.2018.07.006_b38) 2013 Takano (10.1016/j.robot.2018.07.006_b67) 2016; 80 Graves (10.1016/j.robot.2018.07.006_b52) 2005; 18 Graves (10.1016/j.robot.2018.07.006_b11) 2013 Hodosh (10.1016/j.robot.2018.07.006_b68) 2013; 47 10.1016/j.robot.2018.07.006_b10 Hochreiter (10.1016/j.robot.2018.07.006_b48) 1997; 9 Taylor (10.1016/j.robot.2018.07.006_b20) 2009 10.1016/j.robot.2018.07.006_b55 Werbos (10.1016/j.robot.2018.07.006_b54) 1990; 78 10.1016/j.robot.2018.07.006_b50 10.1016/j.robot.2018.07.006_b51 Dillmann (10.1016/j.robot.2018.07.006_b2) 2000 Takano (10.1016/j.robot.2018.07.006_b28) 2015; 66 Mandery (10.1016/j.robot.2018.07.006_b72) 2015 10.1016/j.robot.2018.07.006_b14 Ogata (10.1016/j.robot.2018.07.006_b35) 2007 10.1016/j.robot.2018.07.006_b59 10.1016/j.robot.2018.07.006_b12 10.1016/j.robot.2018.07.006_b56 10.1016/j.robot.2018.07.006_b13 Mikolov (10.1016/j.robot.2018.07.006_b47) 2013 Takano (10.1016/j.robot.2018.07.006_b31) 2012 Huang (10.1016/j.robot.2018.07.006_b53) 2001 Gers (10.1016/j.robot.2018.07.006_b49) 2000; 12 Terlemez (10.1016/j.robot.2018.07.006_b15) 2014 10.1016/j.robot.2018.07.006_b44 Billard (10.1016/j.robot.2018.07.006_b3) 2008 Mandery (10.1016/j.robot.2018.07.006_b45) 2016; 32 Mordatch (10.1016/j.robot.2018.07.006_b25) 2015 Taylor (10.1016/j.robot.2018.07.006_b19) 2006 Ioffe (10.1016/j.robot.2018.07.006_b64) 2015 Vinyals (10.1016/j.robot.2018.07.006_b40) 2015 Krizhevsky (10.1016/j.robot.2018.07.006_b6) 2012 10.1016/j.robot.2018.07.006_b7 Hassani (10.1016/j.robot.2018.07.006_b43) 2016; 49 Takano (10.1016/j.robot.2018.07.006_b29) 2008 Goodfellow (10.1016/j.robot.2018.07.006_b5) 2016 LeCun (10.1016/j.robot.2018.07.006_b4) 2015; 521 Mandery (10.1016/j.robot.2018.07.006_b57) 2015 Herzog (10.1016/j.robot.2018.07.006_b18) 2008 Azad (10.1016/j.robot.2018.07.006_b46) 2007 Du (10.1016/j.robot.2018.07.006_b71) 2015 Donahue (10.1016/j.robot.2018.07.006_b41) 2015 10.1016/j.robot.2018.07.006_b70 Kulic (10.1016/j.robot.2018.07.006_b17) 2008; 27 Sugita (10.1016/j.robot.2018.07.006_b34) 2005; 13 Papineni (10.1016/j.robot.2018.07.006_b66) 2002 Medina (10.1016/j.robot.2018.07.006_b33) 2012 Kuniyoshi (10.1016/j.robot.2018.07.006_b1) 1994; 10 Takano (10.1016/j.robot.2018.07.006_b16) 2006 Srivastava (10.1016/j.robot.2018.07.006_b58) 2014; 15 Takano (10.1016/j.robot.2018.07.006_b32) 2015; 34 Calinon (10.1016/j.robot.2018.07.006_b21) 2007; 37 Ogata (10.1016/j.robot.2018.07.006_b36) 2007 Glorot (10.1016/j.robot.2018.07.006_b9) 2011 |
References_xml | – start-page: 261 year: 2006 end-page: 280 ident: b22 article-title: Dynamic movement primitives -a framework for motor control in humans and humanoid robotics publication-title: Adaptive Motion of Animals and Machines – volume: 66 start-page: 75 year: 2015 end-page: 85 ident: b28 article-title: Symbolically structured database for human whole body motions based on association between motion symbols and motion words publication-title: Robot. Auton. Syst. – reference: T. Dozat, Incorporating nesterov momentum into adam. Stanford University, Tech. Rep. – start-page: 1097 year: 2012 end-page: 1102 ident: b33 article-title: Towards interactive physical robotic assistance: Parameterizing motion primitives through natural language publication-title: The 21st IEEE International Symposium on Robot and Human Interactive Communication, IEEE RO-MAN 2012, Paris, France, September 9-13, 2012 – start-page: 256 year: 2010 end-page: 265 ident: b37 article-title: Integrative learning between language and action: A neuro-robotics experiment publication-title: Artificial Neural Networks - ICANN 2010, 20th International Conference, Thessaloniki, Greece, September 15-18, 2010, Proceedings, Part II – start-page: 3111 year: 2013 end-page: 3119 ident: b47 article-title: Distributed representations of words and phrases and their compositionality publication-title: Advances in Neural Information Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems 2013. Proceedings of a Meeting Held December 5-8, 2013, Lake Tahoe, Nevada, United States. – volume: 15 start-page: 1929 year: 2014 end-page: 1958 ident: b58 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – volume: 18 start-page: 602 year: 2005 end-page: 610 ident: b52 article-title: Framewise phoneme classification with bidirectional LSTM and other neural network architectures publication-title: Neural Net. – volume: 13 start-page: 33 year: 2005 end-page: 52 ident: b34 article-title: Learning semantic combinatoriality from the interaction between linguistic and behavioral processes publication-title: Adapt. Behav. – reference: Y. Wu, M. Schuster, Z. Chen, Q.V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao, Q. Gao, K. Macherey, J. Klingner, A. Shah, M. Johnson, X. Liu, L. Kaiser, S. Gouws, Y. Kato, T. Kudo, H. Kazawa, K. Stevens, G. Kurian, N. Patil, W. Wang, C. Young, J. Smith, J. Riesa, A. Rudnick, O. Vinyals, G. Corrado, M. Hughes, J. Dean, Google’s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation. 2016, CoRR abs/1609.08144. – start-page: 311 year: 2002 end-page: 318 ident: b66 article-title: Bleu: a method for automatic evaluation of machine translation publication-title: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, July 6-12, 2002, Philadelphia, PA, USA. – volume: 47 start-page: 853 year: 2013 end-page: 899 ident: b68 article-title: Framing image description as a ranking task: Data, models and evaluation metrics publication-title: J. Artificial Intelligence Res. – start-page: 6645 year: 2013 end-page: 6649 ident: b11 article-title: Speech recognition with deep recurrent neural networks publication-title: IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2013, Vancouver, BC, Canada, May 26-31, 2013 – start-page: 894 year: 2014 end-page: 901 ident: b15 article-title: Master motor map (MMM) - framework and toolkit for capturing, representing, and reproducing human motion on humanoid robots publication-title: 14th IEEE-RAS International Conference on Humanoid Robots, Humanoids 2014, Madrid, Spain, November 18-20, 2014 – start-page: 1106 year: 2012 end-page: 1114 ident: b6 article-title: Imagenet classification with deep convolutional neural networks publication-title: Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012. Proceedings of a Meeting Held December 3-6, 2012, Lake Tahoe, Nevada, United States. – volume: 78 start-page: 1550 year: 1990 end-page: 1560 ident: b54 article-title: Backpropagation through time: what it does and how to do it publication-title: Proc. IEEE – volume: 37 start-page: 286 year: 2007 end-page: 298 ident: b21 article-title: On learning, representing, and generalizing a task in a humanoid robot publication-title: IEEE Trans. Syst. Man Cybern. Part B – start-page: 89 year: 2013 end-page: 95 ident: b38 article-title: Integration of behaviors and languages with a hierarchal structure self-organized in a neuro-dynamical model publication-title: 2013 IEEE Workshop on Robotic Intelligence in Informationally Structured Space, RiiSS 2013, Singapore, April 16-19, 2013 – start-page: 1494 year: 2015 end-page: 1504 ident: b42 article-title: Translating videos to natural language using deep recurrent neural networks publication-title: NAACL HLT 2015, the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Denver, Colorado, USA, May 31 - June 5, 2015 – start-page: 1345 year: 2006 end-page: 1352 ident: b19 article-title: Modeling human motion using binary latent variables publication-title: Advances in Neural Information Processing Systems 19, Proceedings of the Twentieth Annual Conference on Neural Information Processing Systems, Vancouver, British Columbia, Canada, December 4-7, 2006 – start-page: 1232 year: 2012 end-page: 1237 ident: b31 article-title: Bigram-based natural language model and statistical motion symbol model for scalable language of humanoid robots publication-title: IEEE International Conference on Robotics and Automation, ICRA 2012, 14-18 May, 2012, St. Paul, Minnesota, USA – start-page: 448 year: 2015 end-page: 456 ident: b64 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift publication-title: Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015 – reference: S. Gu, E. Holly, T.P. Lillicrap, S. Levine, Deep Reinforcement Learning for Robotic Manipulation. 2016, CoRR abs/1610.00633. – start-page: 646 year: 2009 end-page: 652 ident: b30 article-title: Statistically integrated semiotics that enables mutual inference between linguistic and behavioral symbols for humanoid robots publication-title: 2009 IEEE International Conference on Robotics and Automation, ICRA 2009, Kobe, Japan, May 12-17, 2009 – reference: T. Cooijmans, N. Ballas, C. Laurent, A.C. Courville, Recurrent Batch Normalization. 2016, CoRR abs/1603.09025. – volume: 10 start-page: 799 year: 1994 end-page: 822 ident: b1 article-title: Learning by watching: Extracting reusable task knowledge from visual observation of human performance publication-title: IEEE Trans. Robot. Autom. – reference: S. Levine, C. Finn, T. Darrell, P. Abbeel, End-to-End Training of Deep Visuomotor Policies. 2015, CoRR abs/1504.00702. – start-page: 1416 year: 2007 end-page: 1422 ident: b27 article-title: Interactive topology formation of linguistic space and motion space publication-title: 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, October 29 - November 2, 2007, Sheraton Hotel and Marina, San Diego, California, USA – start-page: 1110 year: 2015 end-page: 1118 ident: b71 article-title: Hierarchical recurrent neural network for skeleton based action recognition publication-title: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015 – year: 2016 ident: b5 article-title: Deep learning publication-title: Book in preparation for MIT Press – reference: Y. Bengio, N. Boulanger-Lewandowski, R. Pascanu, Advances in Optimizing Recurrent Networks. 2012, CoRR abs/1212.0901. – start-page: 329 year: 2015 end-page: 336 ident: b57 article-title: The KIT whole-body human motion database publication-title: International Conference on Advanced Robotics, ICAR 2015, Istanbul, Turkey, July 27-31, 2015 – reference: S. Levine, P. Pastor, A. Krizhevsky, D. Quillen, Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection. 2016, CoRR abs/1603.02199. – start-page: 513 year: 2011 end-page: 520 ident: b9 article-title: Domain adaptation for large-scale sentiment classification: A Deep learning approach publication-title: Proceedings of the 28th International Conference on Machine Learning, ICML 2011, Bellevue, Washington, USA, June 28 - July 2, 2011 – volume: 32 start-page: 796 year: 2016 end-page: 809 ident: b45 article-title: Unifying representations and large-scale whole-body motion databases for studying human motion publication-title: IEEE Trans. Robot. – start-page: 708 year: 2008 end-page: 713 ident: b29 article-title: Integrating whole body motion primitives and natural language for humanoid robots publication-title: 8th IEEE-RAS International Conference on Humanoid Robots, Humanoids 2008, Daejeon, South Korea, December 1-3, 2008 – start-page: 3156 year: 2015 end-page: 3164 ident: b40 article-title: Show and tell: A neural image caption generator publication-title: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015 – year: 2001 ident: b53 article-title: Spoken language processing: A guide to theory, algorithm, and system development – reference: D. Bahdanau, K. Cho, Y. Bengio, Neural machine translation by jointly learning to align and translate. 2014, CoRR abs/1409.0473. – start-page: 339 year: 2008 end-page: 346 ident: b18 article-title: Motion imitation and recognition using parametric hidden Markov models publication-title: 8th IEEE-RAS International Conference on Humanoid Robots, Humanoids 2008, Daejeon, South Korea, December 1-3, 2008 – volume: 80 start-page: 1 year: 2016 end-page: 8 ident: b67 article-title: Generating action descriptions from statistically integrated representations of human motions and sentences publication-title: Neural Net. – reference: D.P. Kingma, J. Ba, Adam: A Method for Stochastic Optimization. 2014 CoRR abs/1412.6980. – start-page: 1858 year: 2007 end-page: 1863 ident: b36 article-title: Two-way translation of compound sentences and arm motions by recurrent neural networks publication-title: 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, October 29 - November 2, 2007, Sheraton Hotel and Marina, San Diego, California, USA – reference: L.J. Ba, R. Kiros, G.E. Hinton, Layer normalization. 2016, CoRR abs/1607.06450. – start-page: 2156 year: 2007 end-page: 2161 ident: b35 article-title: Human-Robot cooperation using quasi-symbols generated by RNNPB Model publication-title: 2007 IEEE International Conference on Robotics and Automation, ICRA 2007, 10-14 April 2007, Roma, Italy – start-page: 3602 year: 2006 end-page: 3609 ident: b16 article-title: Primitive communication based on motion recognition and generation with hierarchical mimesis model publication-title: Proceedings of the 2006 IEEE International Conference on Robotics and Automation, ICRA 2006, May 15-19, 2006, Orlando, Florida, USA – reference: K. Fragkiadaki, S. Levine, J. Malik, (2015) Recurrent network models for kinematic tracking. 2015, CoRR abs/1508.00271. – reference: J. Chung, Ç. Gülçehre, K. Cho, Y. Bengio, Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. 2014, CoRR abs/1412.3555. – start-page: 229 year: 2000 end-page: 238 ident: b2 article-title: Learning robot behaviour and skills based on human demonstration and advice: the machine learning paradigm publication-title: Robotics Research-International Symposium-vol.9 – volume: 12 start-page: 2451 year: 2000 end-page: 2471 ident: b49 article-title: Learning to forget: continual prediction with lstm publication-title: Neural Comput. – start-page: 1025 year: 2009 end-page: 1032 ident: b20 article-title: Factored conditional restricted boltzmann machines for modeling motion style publication-title: Proceedings of the 26th Annual International Conference on Machine Learning, ICML 2009, Montreal, Quebec, Canada, June 14-18, 2009 – reference: M. Field, Z. Pan, D. Stirling, F. Naghdy, Human Motion Capture Sensors and Analysis in Robotics, 38(2) 2011, pp. 163–171. – volume: 27 start-page: 761 year: 2008 end-page: 784 ident: b17 article-title: Incremental learning, clustering and hierarchy formation of whole body motion patterns using adaptive hidden markov chains publication-title: I. J. Robot. Res. – volume: 34 start-page: 1314 year: 2015 end-page: 1328 ident: b32 article-title: Statistical mutual conversion between whole body motion primitives and linguistic sentences for human motions publication-title: I. J. Robot. Res. – reference: M. Plappert, C. Mandery, T. Asfour, The KIT Motion-Language Dataset. 2016, CoRR abs/1607.03827. – start-page: 3132 year: 2015 end-page: 3140 ident: b25 article-title: Interactive control of diverse complex characters with neural networks publication-title: Advances in Neural Information Processing Systems 28: Annual Conference on Neural Information Processing Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada – start-page: 2625 year: 2015 end-page: 2634 ident: b41 article-title: Long-term recurrent convolutional networks for visual recognition and description publication-title: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015 – start-page: 3128 year: 2015 end-page: 3137 ident: b39 article-title: Deep visual-semantic alignments for generating image descriptions publication-title: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015 – volume: 9 start-page: 2579 year: 2008 end-page: 2605 ident: b69 article-title: Visualizing high-dimensional data using t-SNE publication-title: J. Mach. Learn. Res. – reference: Y. Gal, A theoretically grounded application of dropout in recurrent neural networks. 2015, arXiv preprint – start-page: 1371 year: 2008 end-page: 1394 ident: b3 article-title: Robot programming by demonstration publication-title: Springer Handbook of Robotics – reference: J. Bütepage, M.J. Black, D. Kragic, H. Kjellström, (2017) Deep representation learning for human motion prediction and classification. 2017,CoRR abs/1702.07486. – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: b4 article-title: Deep learning publication-title: Nature – reference: . – reference: A. Graves, Generating sequences with recurrent neural networks. 2013, CoRR abs/1308.0850. – reference: K. Cho, B. van Merrienboer, D. Bahdanau, Y. Bengio, On the properties of neural machine translation: Encoder-Decoder approaches. 2014 CoRR abs/1409.1259. – reference: A. Jain, A.R. Zamir, S. Savarese, A. Saxena, Structural-rnn: Deep learning on spatio-temporal graphs. 2015, CoRR abs/1511.05298. – start-page: 1020 year: 2015 end-page: 1027 ident: b72 article-title: Analyzing whole-body pose transitions in multi-contact motions publication-title: 15th IEEE-RAS International Conference on Humanoid Robots, Humanoids 2015, Seoul, South Korea, November 3-5, 2015 – start-page: 2558 year: 2007 end-page: 2563 ident: b46 article-title: Toward an unified representation for imitation of human motion on humanoids publication-title: 2007 IEEE International Conference on Robotics and Automation, ICRA 2007, 10-14 April 2007, Roma, Italy – reference: K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition. 2015 CoRR abs/1512.03385. – start-page: 3104 year: 2014 end-page: 3112 ident: b8 article-title: Sequence to sequence learning with neural networks publication-title: Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada – volume: 49 start-page: 17 year: 2016 ident: b43 article-title: Visualizing natural language descriptions: A survey publication-title: ACM Comput. Surv. – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: b48 article-title: Long short-term memory publication-title: Neural Comput. – volume: 15 start-page: 1929 issue: 1 year: 2014 ident: 10.1016/j.robot.2018.07.006_b58 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – start-page: 329 year: 2015 ident: 10.1016/j.robot.2018.07.006_b57 article-title: The KIT whole-body human motion database – ident: 10.1016/j.robot.2018.07.006_b7 doi: 10.1109/CVPR.2016.90 – ident: 10.1016/j.robot.2018.07.006_b70 – volume: 66 start-page: 75 year: 2015 ident: 10.1016/j.robot.2018.07.006_b28 article-title: Symbolically structured database for human whole body motions based on association between motion symbols and motion words publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2014.12.008 – ident: 10.1016/j.robot.2018.07.006_b51 – volume: 80 start-page: 1 year: 2016 ident: 10.1016/j.robot.2018.07.006_b67 article-title: Generating action descriptions from statistically integrated representations of human motions and sentences publication-title: Neural Net. doi: 10.1016/j.neunet.2016.03.001 – start-page: 708 year: 2008 ident: 10.1016/j.robot.2018.07.006_b29 article-title: Integrating whole body motion primitives and natural language for humanoid robots – start-page: 894 year: 2014 ident: 10.1016/j.robot.2018.07.006_b15 article-title: Master motor map (MMM) - framework and toolkit for capturing, representing, and reproducing human motion on humanoid robots – start-page: 339 year: 2008 ident: 10.1016/j.robot.2018.07.006_b18 article-title: Motion imitation and recognition using parametric hidden Markov models – start-page: 3104 year: 2014 ident: 10.1016/j.robot.2018.07.006_b8 article-title: Sequence to sequence learning with neural networks – start-page: 2558 year: 2007 ident: 10.1016/j.robot.2018.07.006_b46 article-title: Toward an unified representation for imitation of human motion on humanoids – ident: 10.1016/j.robot.2018.07.006_b61 – volume: 37 start-page: 286 issue: 2 year: 2007 ident: 10.1016/j.robot.2018.07.006_b21 article-title: On learning, representing, and generalizing a task in a humanoid robot publication-title: IEEE Trans. Syst. Man Cybern. Part B doi: 10.1109/TSMCB.2006.886952 – start-page: 1110 year: 2015 ident: 10.1016/j.robot.2018.07.006_b71 article-title: Hierarchical recurrent neural network for skeleton based action recognition – start-page: 1020 year: 2015 ident: 10.1016/j.robot.2018.07.006_b72 article-title: Analyzing whole-body pose transitions in multi-contact motions – year: 2016 ident: 10.1016/j.robot.2018.07.006_b5 article-title: Deep learning – ident: 10.1016/j.robot.2018.07.006_b26 doi: 10.1109/CVPR.2017.173 – ident: 10.1016/j.robot.2018.07.006_b24 doi: 10.1109/CVPR.2016.573 – start-page: 3602 year: 2006 ident: 10.1016/j.robot.2018.07.006_b16 article-title: Primitive communication based on motion recognition and generation with hierarchical mimesis model – start-page: 1345 year: 2006 ident: 10.1016/j.robot.2018.07.006_b19 article-title: Modeling human motion using binary latent variables – volume: 78 start-page: 1550 issue: 10 year: 1990 ident: 10.1016/j.robot.2018.07.006_b54 article-title: Backpropagation through time: what it does and how to do it publication-title: Proc. IEEE doi: 10.1109/5.58337 – volume: 47 start-page: 853 year: 2013 ident: 10.1016/j.robot.2018.07.006_b68 article-title: Framing image description as a ranking task: Data, models and evaluation metrics publication-title: J. Artificial Intelligence Res. doi: 10.1613/jair.3994 – year: 2001 ident: 10.1016/j.robot.2018.07.006_b53 – volume: 27 start-page: 761 issue: 7 year: 2008 ident: 10.1016/j.robot.2018.07.006_b17 article-title: Incremental learning, clustering and hierarchy formation of whole body motion patterns using adaptive hidden markov chains publication-title: I. J. Robot. Res. doi: 10.1177/0278364908091153 – volume: 13 start-page: 33 issue: 1 year: 2005 ident: 10.1016/j.robot.2018.07.006_b34 article-title: Learning semantic combinatoriality from the interaction between linguistic and behavioral processes publication-title: Adapt. Behav. doi: 10.1177/105971230501300102 – start-page: 3156 year: 2015 ident: 10.1016/j.robot.2018.07.006_b40 article-title: Show and tell: A neural image caption generator – start-page: 3111 year: 2013 ident: 10.1016/j.robot.2018.07.006_b47 article-title: Distributed representations of words and phrases and their compositionality – ident: 10.1016/j.robot.2018.07.006_b60 – start-page: 1416 year: 2007 ident: 10.1016/j.robot.2018.07.006_b27 article-title: Interactive topology formation of linguistic space and motion space – start-page: 513 year: 2011 ident: 10.1016/j.robot.2018.07.006_b9 article-title: Domain adaptation for large-scale sentiment classification: A Deep learning approach – start-page: 311 year: 2002 ident: 10.1016/j.robot.2018.07.006_b66 article-title: Bleu: a method for automatic evaluation of machine translation – start-page: 256 year: 2010 ident: 10.1016/j.robot.2018.07.006_b37 article-title: Integrative learning between language and action: A neuro-robotics experiment – start-page: 3132 year: 2015 ident: 10.1016/j.robot.2018.07.006_b25 article-title: Interactive control of diverse complex characters with neural networks – ident: 10.1016/j.robot.2018.07.006_b10 – ident: 10.1016/j.robot.2018.07.006_b14 – volume: 34 start-page: 1314 issue: 10 year: 2015 ident: 10.1016/j.robot.2018.07.006_b32 article-title: Statistical mutual conversion between whole body motion primitives and linguistic sentences for human motions publication-title: I. J. Robot. Res. doi: 10.1177/0278364915587923 – start-page: 1858 year: 2007 ident: 10.1016/j.robot.2018.07.006_b36 article-title: Two-way translation of compound sentences and arm motions by recurrent neural networks – ident: 10.1016/j.robot.2018.07.006_b56 doi: 10.1089/big.2016.0028 – ident: 10.1016/j.robot.2018.07.006_b44 doi: 10.1108/01439911111106372 – start-page: 3128 year: 2015 ident: 10.1016/j.robot.2018.07.006_b39 article-title: Deep visual-semantic alignments for generating image descriptions – start-page: 448 year: 2015 ident: 10.1016/j.robot.2018.07.006_b64 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift – start-page: 1371 year: 2008 ident: 10.1016/j.robot.2018.07.006_b3 article-title: Robot programming by demonstration – volume: 9 start-page: 2579 issue: Nov year: 2008 ident: 10.1016/j.robot.2018.07.006_b69 article-title: Visualizing high-dimensional data using t-SNE publication-title: J. Mach. Learn. Res. – ident: 10.1016/j.robot.2018.07.006_b23 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10.1016/j.robot.2018.07.006_b48 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – ident: 10.1016/j.robot.2018.07.006_b63 – start-page: 1106 year: 2012 ident: 10.1016/j.robot.2018.07.006_b6 article-title: Imagenet classification with deep convolutional neural networks – start-page: 1232 year: 2012 ident: 10.1016/j.robot.2018.07.006_b31 article-title: Bigram-based natural language model and statistical motion symbol model for scalable language of humanoid robots – ident: 10.1016/j.robot.2018.07.006_b65 – start-page: 6645 year: 2013 ident: 10.1016/j.robot.2018.07.006_b11 article-title: Speech recognition with deep recurrent neural networks – start-page: 1494 year: 2015 ident: 10.1016/j.robot.2018.07.006_b42 article-title: Translating videos to natural language using deep recurrent neural networks – start-page: 1097 year: 2012 ident: 10.1016/j.robot.2018.07.006_b33 article-title: Towards interactive physical robotic assistance: Parameterizing motion primitives through natural language – ident: 10.1016/j.robot.2018.07.006_b62 doi: 10.1109/ICASSP.2013.6639349 – start-page: 261 year: 2006 ident: 10.1016/j.robot.2018.07.006_b22 article-title: Dynamic movement primitives -a framework for motor control in humans and humanoid robotics – volume: 49 start-page: 17 issue: 1 year: 2016 ident: 10.1016/j.robot.2018.07.006_b43 article-title: Visualizing natural language descriptions: A survey publication-title: ACM Comput. Surv. doi: 10.1145/2932710 – ident: 10.1016/j.robot.2018.07.006_b13 – ident: 10.1016/j.robot.2018.07.006_b59 – volume: 32 start-page: 796 issue: 4 year: 2016 ident: 10.1016/j.robot.2018.07.006_b45 article-title: Unifying representations and large-scale whole-body motion databases for studying human motion publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2016.2572685 – start-page: 646 year: 2009 ident: 10.1016/j.robot.2018.07.006_b30 article-title: Statistically integrated semiotics that enables mutual inference between linguistic and behavioral symbols for humanoid robots – start-page: 2156 year: 2007 ident: 10.1016/j.robot.2018.07.006_b35 article-title: Human-Robot cooperation using quasi-symbols generated by RNNPB Model – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.robot.2018.07.006_b4 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – ident: 10.1016/j.robot.2018.07.006_b12 doi: 10.1007/978-3-319-50115-4_16 – ident: 10.1016/j.robot.2018.07.006_b50 doi: 10.3115/v1/W14-4012 – ident: 10.1016/j.robot.2018.07.006_b55 – start-page: 1025 year: 2009 ident: 10.1016/j.robot.2018.07.006_b20 article-title: Factored conditional restricted boltzmann machines for modeling motion style – volume: 10 start-page: 799 year: 1994 ident: 10.1016/j.robot.2018.07.006_b1 article-title: Learning by watching: Extracting reusable task knowledge from visual observation of human performance publication-title: IEEE Trans. Robot. Autom. doi: 10.1109/70.338535 – volume: 12 start-page: 2451 issue: 10 year: 2000 ident: 10.1016/j.robot.2018.07.006_b49 article-title: Learning to forget: continual prediction with lstm publication-title: Neural Comput. doi: 10.1162/089976600300015015 – start-page: 89 year: 2013 ident: 10.1016/j.robot.2018.07.006_b38 article-title: Integration of behaviors and languages with a hierarchal structure self-organized in a neuro-dynamical model – volume: 18 start-page: 602 issue: 5–6 year: 2005 ident: 10.1016/j.robot.2018.07.006_b52 article-title: Framewise phoneme classification with bidirectional LSTM and other neural network architectures publication-title: Neural Net. doi: 10.1016/j.neunet.2005.06.042 – start-page: 229 year: 2000 ident: 10.1016/j.robot.2018.07.006_b2 article-title: Learning robot behaviour and skills based on human demonstration and advice: the machine learning paradigm – start-page: 2625 year: 2015 ident: 10.1016/j.robot.2018.07.006_b41 article-title: Long-term recurrent convolutional networks for visual recognition and description |
SSID | ssj0003573 |
Score | 2.5057871 |
Snippet | Linking human whole-body motion and natural language is of great interest for the generation of semantic representations of observed human behaviors as well as... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 13 |
SubjectTerms | Human whole-body motion Natural language Recurrent neural network Sequence-to-sequence learning |
Title | Learning a bidirectional mapping between human whole-body motion and natural language using deep recurrent neural networks |
URI | https://dx.doi.org/10.1016/j.robot.2018.07.006 |
Volume | 109 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXvQgPrE-yh48GpvdJJvssRRLtdiDWuwt7CMpFU1KrYge_O3ubDZaQXrwFBJmIPmyzOzjm28QOlMm6KnEjz0d5twsUCLt8UgEHs1C4kPU1LaK_2bI-qPwehyNG6hb18IArdLF_iqm22jtnrQdmu3ZdNq-87lJT4nJZ2aQMprAuj0MY9DPv_j8oXkEUXXKbIw9sK6VhyzHa17KEgiVJLEKntD26K_stJRxettoy00Vcad6mx3UyIpdtLkkILiHPpw86gQLLKfVp9i9PfwsQHhhgh0PC9tefPgNuuF6stTvuGrfg0WhsRX3ND713iUGMvwE6yyb4Tnsx4OCEwblS2NUVLzxl3006l3ed_ue66bgqYDxhZeRPOdKcSozqiUhMjHAxZKTQBEtY4OjEJxFkulE-VxJSYGyGRDCci7MrCw4QGtFWWSHCCdME025McmDMOGhUJRqHQhl0BaciyaiNYqpclLj0PHiKa05ZY-phT4F6FMfjsBZE51_O80qpY3V5qz-PemvAZOaXLDK8ei_jsdoA-6qQsQTtLaYv2anZkaykC075FpovXM16A_hOrh9GHwB2ErkSQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5Ke1AP4hPrcw8eDc1ukm32WIqltY-LLXgL-0hKRdNSK6K_3plkIwriwWsyA8m3w8w-vv2GkGsDSc_EftuzYSZhgRJZT0Yq8HgaMh-zpi1u8Y8noj8L7x6ihxrpVndhkFbpcn-Z04ts7Z60HJqt1WLRuvcllKcY6hkEqeAxrNsbqE4Fwd7oDIb9yVdCDqLyoBnsPXSoxIcKmtd6qZfIqWRxIeKJnY9-K1Dfik5vj-y62SLtlB-0T2ppfkB2vmkIHpIPp5A6p4rqRfk3xfYefVaovTCnjopFi3Z89A0b4np6ad9p2cGHqtzSQt8TfKrtS4p8-Dm1abqia9ySRxEniuKXYJSX1PGXIzLr3U67fc81VPBMIOTGS1mWSWMk1ym3mjEdA3ZtLVlgmNVtgFIpKSItbGx8abTmyNoMGBOZVDAxC45JPV_m6QmhsbDMcgkmWRDGMlSGc2sDZQBtJaVqEl6hmBinNo5NL56Silb2mBTQJwh94uMpuGiSmy-nVSm28be5qIYn-REzCZSDvxxP_-t4Rbb60_EoGQ0mwzOyjW_Ke4nnpL5Zv6YXMEHZ6EsXgJ-B4eVX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+a+bidirectional+mapping+between+human+whole-body+motion+and+natural+language+using+deep+recurrent+neural+networks&rft.jtitle=Robotics+and+autonomous+systems&rft.au=Plappert%2C+Matthias&rft.au=Mandery%2C+Christian&rft.au=Asfour%2C+Tamim&rft.date=2018-11-01&rft.pub=Elsevier+B.V&rft.issn=0921-8890&rft.eissn=1872-793X&rft.volume=109&rft.spage=13&rft.epage=26&rft_id=info:doi/10.1016%2Fj.robot.2018.07.006&rft.externalDocID=S0921889017306280 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-8890&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-8890&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-8890&client=summon |