An optimized model based on convolutional neural networks and orthogonal learning particle swarm optimization algorithm for plant diseases diagnosis
The plant disease classification based on using digital images is very challenging. In the last decade, machine learning techniques and plant images classification tools such as deep learning can be used for recognizing, detecting and diagnosing plant diseases. Currently, deep learning technology ha...
Saved in:
Published in | Swarm and evolutionary computation Vol. 52; p. 100616 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.02.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 2210-6502 |
DOI | 10.1016/j.swevo.2019.100616 |
Cover
Loading…
Abstract | The plant disease classification based on using digital images is very challenging. In the last decade, machine learning techniques and plant images classification tools such as deep learning can be used for recognizing, detecting and diagnosing plant diseases. Currently, deep learning technology has been used for plant disease detection and classification. In this paper, an ensemble model of two pre-trained convolutional neural networks (CNNs) namely VGG16 and VGG19 have been developed for the task plant disease diagnosis by classifying the leaves images of healthy and unhealthy. In this context, CNNs are used due to its capability of overcoming the technical problems which are associated with the classification problem of plant diseases. However, CNNs suffer from a great variety of hyperparameters with specific architectures which is considered as a challenge to identify manually the optimal hyperparameters. Therefore, orthogonal learning particle swarm optimization (OLPSO) algorithm is utilized in this paper to optimize a number of these hyperparameters by finding optimal values for these hyperparameters rather than using traditional methods such as the manual trial and error method. In this paper, to prevent CNNs from falling into the local minimum and to train efficiently, an exponentially decaying learning rate (EDLR) schema is used. In this paper, the problem of the imbalanced used dataset has been solved by using random minority oversampling and random majority undersampling methods, and some restrictions in terms of both the number and diversity of samples have been overcome. The obtained results of this work show that the accuracy of the proposed model is very competitive. The experimental results are compared with the performance of other pre-trained CNN models namely InceptionV3 and Xception, whose hyperparameters were selected using a non-evolutionary method. The comparison results demonstrated that the proposed diagnostic approach has achieved higher performance than the other models.
•This paper focuses on building an automatic classification model that identifies the infected and healthy maize leaves.•An ensemble model of two pre-trained convolutional neural networks is utilized.•Some of the hyperparameters of every single model in the ensemble model are optimized by the OLPSO optimization algorithm.•Every single model in the ensemble is trained using exponential learning rate decay schema.•The results obtained demonstrate the effectiveness of the proposed approach and its ability to outperform other methods. |
---|---|
AbstractList | The plant disease classification based on using digital images is very challenging. In the last decade, machine learning techniques and plant images classification tools such as deep learning can be used for recognizing, detecting and diagnosing plant diseases. Currently, deep learning technology has been used for plant disease detection and classification. In this paper, an ensemble model of two pre-trained convolutional neural networks (CNNs) namely VGG16 and VGG19 have been developed for the task plant disease diagnosis by classifying the leaves images of healthy and unhealthy. In this context, CNNs are used due to its capability of overcoming the technical problems which are associated with the classification problem of plant diseases. However, CNNs suffer from a great variety of hyperparameters with specific architectures which is considered as a challenge to identify manually the optimal hyperparameters. Therefore, orthogonal learning particle swarm optimization (OLPSO) algorithm is utilized in this paper to optimize a number of these hyperparameters by finding optimal values for these hyperparameters rather than using traditional methods such as the manual trial and error method. In this paper, to prevent CNNs from falling into the local minimum and to train efficiently, an exponentially decaying learning rate (EDLR) schema is used. In this paper, the problem of the imbalanced used dataset has been solved by using random minority oversampling and random majority undersampling methods, and some restrictions in terms of both the number and diversity of samples have been overcome. The obtained results of this work show that the accuracy of the proposed model is very competitive. The experimental results are compared with the performance of other pre-trained CNN models namely InceptionV3 and Xception, whose hyperparameters were selected using a non-evolutionary method. The comparison results demonstrated that the proposed diagnostic approach has achieved higher performance than the other models.
•This paper focuses on building an automatic classification model that identifies the infected and healthy maize leaves.•An ensemble model of two pre-trained convolutional neural networks is utilized.•Some of the hyperparameters of every single model in the ensemble model are optimized by the OLPSO optimization algorithm.•Every single model in the ensemble is trained using exponential learning rate decay schema.•The results obtained demonstrate the effectiveness of the proposed approach and its ability to outperform other methods. |
ArticleNumber | 100616 |
Author | Ezzat, Dalia Hassanien, Aboul Ella Darwish, Ashraf |
Author_xml | – sequence: 1 givenname: Ashraf surname: Darwish fullname: Darwish, Ashraf email: ashraf.darwish.eg@ieee.org organization: Faculty of Science, Helwan University, Cairo, Egypt – sequence: 2 givenname: Dalia surname: Ezzat fullname: Ezzat, Dalia email: dalia.Azzat@yahoo.com organization: Faculty of Computers and Artificial Intelligence, Cairo University, Giza, Egypt – sequence: 3 givenname: Aboul Ella surname: Hassanien fullname: Hassanien, Aboul Ella email: aboitcairo@cu.edu.eg organization: Faculty of Computers and Artificial Intelligence, Cairo University, Giza, Egypt |
BookMark | eNqFkM9OAyEQxjnUxKp9Ai-8QCuwW3Y5eGga_yVNvOiZUHZ2S2WhAdpGn8MHlrZ68aBzmQnM902-3wUaOO8AoWtKJpRQfrOexD3s_IQRKvIL4ZQP0JAxSsZ8Stg5GsW4Jrk4YdOpGKLPmcN-k0xvPqDBvW_A4qWKefYOa-923m6T8U5Z7GAbji3tfXiLWLm8FNLKd8dvCyo44zq8USEZbQHHvQr9j7s6uGBlOx9MWvW49QFvrHIJNyZCvhjzoDrno4lX6KxVNsLou1-i1_u7l_njePH88DSfLca64CKNgdY5R6kZKykjgpZFXRctF1XbcsJFrUWpOK81V40gS7asq4oXGYOuRVFpoopLVJx8dfAxBmjlJphehXdJiTzwlGt55CkPPOWJZ1aJXypt0jFeCsrYf7S3Jy3kWDsDQUZtwGloTACdZOPNn_oveJWaHQ |
CitedBy_id | crossref_primary_10_1109_ACCESS_2021_3123628 crossref_primary_10_1109_ACCESS_2020_3039345 crossref_primary_10_1002_ima_22530 crossref_primary_10_1016_j_engappai_2023_106924 crossref_primary_10_1016_j_compag_2024_109494 crossref_primary_10_1016_j_jag_2021_102428 crossref_primary_10_1016_j_swevo_2023_101354 crossref_primary_10_3390_agriculture12081192 crossref_primary_10_1007_s10462_024_10944_7 crossref_primary_10_1007_s11042_022_13144_z crossref_primary_10_1080_13682199_2022_2164402 crossref_primary_10_1007_s11047_020_09809_z crossref_primary_10_1007_s11356_021_16301_3 crossref_primary_10_1016_j_cie_2021_107651 crossref_primary_10_34133_research_0491 crossref_primary_10_1186_s13007_021_00770_1 crossref_primary_10_1002_cpe_6126 crossref_primary_10_1007_s41060_024_00578_x crossref_primary_10_1109_ACCESS_2021_3135201 crossref_primary_10_3390_axioms12050456 crossref_primary_10_1016_j_neunet_2022_04_016 crossref_primary_10_1186_s13007_021_00818_2 crossref_primary_10_1007_s10489_021_03074_y crossref_primary_10_1109_ACCESS_2021_3064976 crossref_primary_10_1007_s40858_021_00459_9 crossref_primary_10_3390_plants11212935 crossref_primary_10_1016_j_matpr_2020_08_397 crossref_primary_10_3390_agriculture13010139 crossref_primary_10_1007_s41870_023_01532_z crossref_primary_10_1007_s11334_022_00461_7 crossref_primary_10_1109_ACCESS_2024_3361756 crossref_primary_10_3389_fpls_2022_897883 crossref_primary_10_1111_exsy_12746 crossref_primary_10_1016_j_scienta_2021_110245 crossref_primary_10_1007_s11356_021_15223_4 crossref_primary_10_1140_epjp_s13360_022_02421_3 crossref_primary_10_1016_j_procs_2024_04_193 crossref_primary_10_1038_s41598_023_37466_6 crossref_primary_10_3390_mi12121504 crossref_primary_10_1109_ACCESS_2022_3233596 crossref_primary_10_1007_s11600_022_00759_x crossref_primary_10_1109_TFUZZ_2022_3177764 crossref_primary_10_1007_s00500_022_07177_7 crossref_primary_10_1016_j_measurement_2021_110030 crossref_primary_10_1088_1755_1315_1097_1_012042 crossref_primary_10_1016_j_compag_2022_107217 crossref_primary_10_1038_s41598_022_26566_4 crossref_primary_10_1016_j_rineng_2024_102878 crossref_primary_10_26634_jcom_11_2_20106 crossref_primary_10_1016_j_ins_2022_03_058 crossref_primary_10_1007_s11103_024_01491_4 crossref_primary_10_3390_app11041878 crossref_primary_10_1111_exsy_12875 crossref_primary_10_1007_s00500_021_06629_w crossref_primary_10_1016_j_dajour_2024_100470 crossref_primary_10_1016_j_eswa_2022_118117 crossref_primary_10_1109_ACCESS_2024_3389648 crossref_primary_10_1007_s00500_024_09816_7 crossref_primary_10_1016_j_suscom_2020_100443 crossref_primary_10_1007_s00202_022_01501_y crossref_primary_10_1155_2022_1036913 crossref_primary_10_3390_biomimetics8020235 crossref_primary_10_1007_s10668_023_03712_0 crossref_primary_10_1109_ACCESS_2021_3109120 crossref_primary_10_32604_cmc_2021_012315 crossref_primary_10_1109_ACCESS_2024_3373001 crossref_primary_10_3390_s23073607 crossref_primary_10_1002_cpe_7661 crossref_primary_10_1007_s10489_022_04446_8 crossref_primary_10_1080_13682199_2023_2169988 crossref_primary_10_3390_math8060936 crossref_primary_10_1016_j_engappai_2024_108502 crossref_primary_10_1007_s11042_023_18052_4 crossref_primary_10_3389_fpls_2023_1166296 crossref_primary_10_3390_axioms11090449 crossref_primary_10_1007_s11042_022_13925_6 crossref_primary_10_1109_ACCESS_2024_3511456 crossref_primary_10_1007_s41348_021_00528_w crossref_primary_10_3390_a13030067 crossref_primary_10_1016_j_asoc_2021_107872 crossref_primary_10_3390_s21113758 crossref_primary_10_1016_j_compag_2021_106478 crossref_primary_10_1109_ACCESS_2023_3334428 crossref_primary_10_21605_cukurovaumfd_1189932 crossref_primary_10_1007_s42452_021_04694_2 crossref_primary_10_1016_j_jup_2021_101253 crossref_primary_10_1142_S0218001421570044 crossref_primary_10_3389_frai_2024_1384709 crossref_primary_10_3390_math11194115 crossref_primary_10_1007_s00366_020_01120_w crossref_primary_10_3390_rs13030331 crossref_primary_10_1038_s41598_024_82022_5 crossref_primary_10_3390_agronomy14102231 crossref_primary_10_1007_s11831_021_09562_1 crossref_primary_10_1109_ACCESS_2021_3095967 crossref_primary_10_52756_ijerr_2024_v45spl_011 crossref_primary_10_1007_s11042_022_13055_z crossref_primary_10_1155_2022_5755885 crossref_primary_10_1007_s11042_021_10599_4 crossref_primary_10_1109_ACCESS_2020_3031683 crossref_primary_10_1007_s11042_023_15175_6 crossref_primary_10_3390_f13122091 crossref_primary_10_3390_app122010508 crossref_primary_10_3233_JIFS_213423 crossref_primary_10_1016_j_inpa_2021_01_003 crossref_primary_10_3390_plants11151942 crossref_primary_10_2139_ssrn_4842105 crossref_primary_10_3389_fpls_2023_1292643 crossref_primary_10_1007_s41348_022_00660_1 crossref_primary_10_3390_agriculture10100436 crossref_primary_10_1007_s00521_021_06714_z crossref_primary_10_1007_s12145_024_01276_9 crossref_primary_10_1016_j_swevo_2023_101452 crossref_primary_10_1016_j_imu_2022_101081 crossref_primary_10_1016_j_swevo_2024_101650 crossref_primary_10_1142_S021800142257004X crossref_primary_10_1016_j_swevo_2022_101212 crossref_primary_10_1016_j_asoc_2020_106742 crossref_primary_10_1002_cpe_7674 crossref_primary_10_3390_agriculture11080707 crossref_primary_10_1016_j_cie_2022_107970 crossref_primary_10_3390_biology11121732 crossref_primary_10_1016_j_compag_2022_107486 crossref_primary_10_1016_j_compbiomed_2024_109222 crossref_primary_10_1080_19942060_2024_2391988 crossref_primary_10_1016_j_compag_2022_107485 crossref_primary_10_1007_s11042_023_17824_2 crossref_primary_10_1080_0954898X_2024_2337801 crossref_primary_10_1007_s12892_024_00263_2 crossref_primary_10_1109_TBME_2021_3129459 crossref_primary_10_1007_s11063_022_10880_z crossref_primary_10_1007_s11042_024_20137_7 crossref_primary_10_1155_2023_2989533 crossref_primary_10_3390_s23094272 crossref_primary_10_1016_j_swevo_2023_101465 crossref_primary_10_1109_ACCESS_2023_3284760 crossref_primary_10_1016_j_compbiolchem_2021_107619 crossref_primary_10_1016_j_compag_2024_109869 crossref_primary_10_1038_s41598_024_77585_2 crossref_primary_10_36306_konjes_1078358 |
Cites_doi | 10.1007/s11042-017-4480-9 10.1016/j.cmpb.2016.10.007 10.20546/ijcmas.2017.603.097 10.1007/s10462-019-09719-2 10.1016/j.swevo.2017.12.004 10.1186/2193-1801-2-660 10.1016/j.measurement.2018.11.040 10.1371/journal.pgen.1005045 10.3390/bdcc2030016 10.4025/actasciagron.v38i4.30573 10.1016/j.procs.2018.05.069 10.1016/j.neucom.2017.06.023 10.1109/5.726791 10.3390/e19060242 10.3126/jmrd.v1i1.14245 10.1371/journal.pone.0199539 10.1016/j.knosys.2018.06.035 10.1080/07352681003617285 10.1016/j.swevo.2019.04.008 10.5897/AJMR2015.7500 10.1016/j.procs.2016.04.216 10.5897/AJMR2014.7112 10.1007/978-1-4899-7488-4_293 10.1016/j.ins.2011.02.026 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.swevo.2019.100616 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
ExternalDocumentID | 10_1016_j_swevo_2019_100616 S2210650219305462 |
GroupedDBID | --K --M .~1 0R~ 1~. 1~5 4.4 457 4G. 5VS 7-5 8P~ AAAKF AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AATLK AAXUO AAYFN ABAOU ABBOA ABGRD ABMAC ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADQTV ADTZH AEBSH AECPX AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR AXJTR BJAXD BKOJK BLXMC CBWCG EBS EFJIC EFLBG EJD FDB FEDTE FIRID FNPLU FYGXN GBLVA GBOLZ HAMUX HVGLF HZ~ J1W JJJVA KOM M41 MHUIS MO0 N9A O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SES SPC SPCBC SSA SSB SSD SST SSV SSW SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c369t-e180604c2241209143883f697ff60698c94a668c6ad90b2b87763650c8937c0a3 |
IEDL.DBID | .~1 |
ISSN | 2210-6502 |
IngestDate | Thu Apr 24 23:09:56 EDT 2025 Tue Jul 01 03:39:49 EDT 2025 Fri Feb 23 02:49:34 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Imbalanced data Transfer learning Convolutional neural networks (CNNs) Orthogonal learning particle swarm optimization (OLPSO) Plant disease classification Hyperparameters optimization Ensemble learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c369t-e180604c2241209143883f697ff60698c94a668c6ad90b2b87763650c8937c0a3 |
ParticipantIDs | crossref_primary_10_1016_j_swevo_2019_100616 crossref_citationtrail_10_1016_j_swevo_2019_100616 elsevier_sciencedirect_doi_10_1016_j_swevo_2019_100616 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2020 2020-02-00 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: February 2020 |
PublicationDecade | 2020 |
PublicationTitle | Swarm and evolutionary computation |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Dhami, Kim, Paudel, Shrestha, Rijal (bib41) 2015; 1 She, Jia (bib25) March 2019; 135 Agarap (bib18) 2018 Simonyan, Zisserman (bib27) 2014 Montgomery (bib32) 1984 Yıldırım (bib11) 2016; 83 Wu, Li, Kong, Fu (bib20) 2016 LeCun, Bottou, Bengio, Haffner (bib7) 1998; 86 Szegedy, Vanhoucke, Ioffe, Shlens, Wojna (bib52) 2016 Singh Jakhar, Singh, Kumar, Singh (bib46) 2017; 6 Teklewold, Kelemu, Abraham, Wegary (bib44) 2017; vol. 31 Zhang, Yi (bib31) 2011; 181 Dey, Harlapur, Dhutraj, Suryawanshi, Bhattacharjee (bib43) 2015; 9 Senior, Heigold, Ranzato, Yang (bib24) 2013 Bock, Poole, Parker, Gottwald (bib1) 2010; 29 Al-Bahrani, Patra (bib33) 2018; 40 Tapas (bib28) 2016; 5 Albelwi, Mahmood (bib9) 2017; 19 Hua, Hsu, Hidayati, Cheng, Chen (bib5) 2014; 8 Ser, Osaba, Molina, Yang, Salcedo-Sanz, Camacho, Das, Suganthan, Carlos, Coello, Herrera (bib29) 2019; 48 . F. Orabona, Tatiana Tommasi, ‘Training deep networks without learning rates through coin betting’, 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA. Albeahdili, Alwzwazy, Islam (bib16) 2015; 6 Samal, Amit, Das, Abraham (bib30) 25-28 Sept. 2007 Darwish, Hassanien, Das (bib17) 2019 Kaur, Gosain (bib10) 2018; vol. 653 Liu, Zhang, He, Li (bib14) 2018; 10 M.N.J.R., Balaji (bib48) 2016; 3 Gao, Hui, Tian (bib4) 2017; 138 Mohamad, Harun (bib21) 2017 Saroj Raj Sharma Liu, Luo, Li (bib34) 2018; 160 Pretorius, Bierman, Steel (bib35) 2016 Goodfellow, Bengio, Courville (bib51) 2016 Indolia, Kumar, Mishra, Asopa (bib22) 2018; 132 Ribeiro, Amaral Júnior, Pena, Vivas, Kurosawa, Gonçalves (bib45) 2016; 38 Abidi, Dar, Lone, Ali, Gazal, Mohiddin, Dar, Hamid, Bhat (bib42) 2015; 9 Lu, Yi, Zeng, Liu, Zhang (bib15) 2017; 267 Rafi, Leibe, Gall, Kostrikov (bib12) 2016 Zhou (bib36) 2015 Kuki, Scapim, Rossi, Mangolin, Amaral Júnior, Pinto (bib39) 2018; 13 Silva, da Silva Neto, Silva, de Paiva, Gattass (bib6) 2017; 76 Sagi, Rokach (bib13) 2018; 8 Ioffe, Szegedy (bib19) 2015 Barbedo (bib2) 2013; 2 Chollet (bib49) 2015 Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (bib8) 2014; 15 Ju, Bibaut, Van Der Laan (bib37) 2018 Benson, Poland, Benson, Stromberg, Nelson (bib40) 2015; 11 Wathaneeyawech, Kirdsiri, Sirithunya, Smitamana (bib47) 2015; 11 Strau (bib3) 2018; 2 Khan, Yong (bib26) 2017; vol. 2018 Senior (10.1016/j.swevo.2019.100616_bib24) 2013 10.1016/j.swevo.2019.100616_bib38 Teklewold (10.1016/j.swevo.2019.100616_bib44) 2017; vol. 31 Abidi (10.1016/j.swevo.2019.100616_bib42) 2015; 9 Goodfellow (10.1016/j.swevo.2019.100616_bib51) 2016 Darwish (10.1016/j.swevo.2019.100616_bib17) 2019 Ser (10.1016/j.swevo.2019.100616_bib29) 2019; 48 Wu (10.1016/j.swevo.2019.100616_bib20) 2016 Strau (10.1016/j.swevo.2019.100616_bib3) 2018; 2 Agarap (10.1016/j.swevo.2019.100616_bib18) 2018 Albeahdili (10.1016/j.swevo.2019.100616_bib16) 2015; 6 Ju (10.1016/j.swevo.2019.100616_bib37) 2018 Mohamad (10.1016/j.swevo.2019.100616_bib21) 2017 Khan (10.1016/j.swevo.2019.100616_bib26) 2017; vol. 2018 She (10.1016/j.swevo.2019.100616_bib25) 2019; 135 Kuki (10.1016/j.swevo.2019.100616_bib39) 2018; 13 Yıldırım (10.1016/j.swevo.2019.100616_bib11) 2016; 83 Bock (10.1016/j.swevo.2019.100616_bib1) 2010; 29 Rafi (10.1016/j.swevo.2019.100616_bib12) 2016 Zhou (10.1016/j.swevo.2019.100616_bib36) 2015 Albelwi (10.1016/j.swevo.2019.100616_bib9) 2017; 19 M.N.J.R. (10.1016/j.swevo.2019.100616_bib48) 2016; 3 Hua (10.1016/j.swevo.2019.100616_bib5) 2014; 8 Dhami (10.1016/j.swevo.2019.100616_bib41) 2015; 1 Samal (10.1016/j.swevo.2019.100616_bib30) 2007 Liu (10.1016/j.swevo.2019.100616_bib34) 2018; 160 Zhang (10.1016/j.swevo.2019.100616_bib31) 2011; 181 Chollet (10.1016/j.swevo.2019.100616_bib49) Liu (10.1016/j.swevo.2019.100616_bib14) 2018; 10 LeCun (10.1016/j.swevo.2019.100616_bib7) 1998; 86 Kaur (10.1016/j.swevo.2019.100616_bib10) 2018; vol. 653 Srivastava (10.1016/j.swevo.2019.100616_bib8) 2014; 15 Dey (10.1016/j.swevo.2019.100616_bib43) 2015; 9 Gao (10.1016/j.swevo.2019.100616_bib4) 2017; 138 Lu (10.1016/j.swevo.2019.100616_bib15) 2017; 267 Indolia (10.1016/j.swevo.2019.100616_bib22) 2018; 132 Benson (10.1016/j.swevo.2019.100616_bib40) 2015; 11 Ioffe (10.1016/j.swevo.2019.100616_bib19) 2015 Pretorius (10.1016/j.swevo.2019.100616_bib35) 2016 Szegedy (10.1016/j.swevo.2019.100616_bib52) 2016 Sagi (10.1016/j.swevo.2019.100616_bib13) 2018; 8 10.1016/j.swevo.2019.100616_bib23 Al-Bahrani (10.1016/j.swevo.2019.100616_bib33) 2018; 40 Simonyan (10.1016/j.swevo.2019.100616_bib27) 2014 Montgomery (10.1016/j.swevo.2019.100616_bib32) 1984 Singh Jakhar (10.1016/j.swevo.2019.100616_bib46) 2017; 6 Barbedo (10.1016/j.swevo.2019.100616_bib2) 2013; 2 Ribeiro (10.1016/j.swevo.2019.100616_bib45) 2016; 38 Tapas (10.1016/j.swevo.2019.100616_bib28) 2016; 5 Wathaneeyawech (10.1016/j.swevo.2019.100616_bib47) 2015; 11 Silva (10.1016/j.swevo.2019.100616_bib6) 2017; 76 |
References_xml | – volume: 5 start-page: 2664 year: 2016 end-page: 2669 ident: bib28 article-title: Transfer learning for image classification and plant phenotyping publication-title: Int. J. Adv. Res. Comput. Eng. Technol. (IJARCET) – reference: F. Orabona, Tatiana Tommasi, ‘Training deep networks without learning rates through coin betting’, 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA. – volume: 86 start-page: 2278 year: 1998 end-page: 2324 ident: bib7 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE – volume: 181 start-page: 4550 year: 2011 end-page: 4568 ident: bib31 article-title: Scale-free fully informed particle swarm optimization Algorithm publication-title: Inf. Sci. – year: 2018 ident: bib18 article-title: Deep Learning Using Rectified Linear Units (ReLU) – volume: 19 start-page: 242 year: 2017 ident: bib9 article-title: A framework for designing the architectures of deep convolutional neural networks publication-title: Entropy – volume: vol. 2018 start-page: 1661 year: 2017 end-page: 1668 ident: bib26 article-title: A deep learning architecture for classifying medical images of anatomy object publication-title: Proceedings - 9th Asia-Pacific Signal and Information Processing Association Annual Summit and Conference – year: 2019 ident: bib17 article-title: A survey of swarm and evolutionary computing approaches for deep learning publication-title: Artif. Intell. Rev. – volume: 13 year: 2018 ident: bib39 article-title: Genome wide association study for gray leaf spot resistance in tropical maize core publication-title: PLoS One – year: 2015 ident: bib19 article-title: Batch Normalization: Accelerating Deep Network Training byReducing Internal Covariate Shift – volume: 132 start-page: 679 year: 2018 end-page: 688 ident: bib22 article-title: Conceptual understanding of convolutional neural network- A deep learning approach publication-title: Procedia Comput. Sci. – volume: 267 start-page: 378 year: 2017 end-page: 384 ident: bib15 article-title: Identification of rice diseases using deep convolutional neural networks publication-title: Neurocomputing – volume: 8 year: 2018 ident: bib13 article-title: Ensemble learning: a survey publication-title: Wiley Interdisc. Rew. Data Min. Knowl. Discov. – volume: vol. 31 year: 2017 ident: bib44 publication-title: A Quality Protein Maize (QPM) Manual for Agricultural Extension Workers in Ethiopia – volume: 6 start-page: 105 year: 2015 end-page: 110 ident: bib16 article-title: Robust convolutional neural networks for image recognition publication-title: Int. J. Adv. Comput. Sci. Appl. – volume: 11 start-page: 925 year: 2015 end-page: 936 ident: bib47 article-title: Efficacies of some fungicides and antagonists in controlling northern corn leaf blight disease publication-title: Int. J. Agric. Technol. – year: 2016 ident: bib51 article-title: Deep Learning – volume: 6 start-page: 825 year: 2017 end-page: 831 ident: bib46 article-title: Turcicum leaf blight: a ubiquitous foliar disease of maize (Zea mays L.) publication-title: Int. J. Curr. Microbiol. Appl. Sci. – year: 2014 ident: bib27 article-title: Very Deep Convolutional Networks for Large-Scale Image Recognition – year: 2013 ident: bib24 article-title: An empirical study of learning rates in deep neural networks for speech recognition publication-title: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing – volume: 2 start-page: 16 year: 2018 ident: bib3 article-title: From big data to deep learning: a leap towards strong AI or “intelligentia obscura”? publication-title: Big Data Cognit. Comput. – volume: 76 start-page: 19039 year: 2017 end-page: 19055 ident: bib6 article-title: Lung nodules diagnosis based on evolutionary convolutional neural network publication-title: Multimed. Tools Appl. – volume: 29 start-page: 59 year: 2010 end-page: 107 ident: bib1 article-title: Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging publication-title: Crit. Rev. Plant Sci. – volume: 83 start-page: 1013 year: 2016 end-page: 1018 ident: bib11 article-title: Pattern classification with imbalanced and multiclass data for the prediction of albendazole adverse event outcomes publication-title: Procedia Comput. Sci. – volume: vol. 653 year: 2018 ident: bib10 article-title: Comparing the behavior of oversampling and undersampling approach of class imbalance learning by combining class imbalance problem with noise publication-title: ICT Based Innovations. Advances in Intelligent Systems and Computing – start-page: 411 year: 2015 end-page: 416 ident: bib36 article-title: Ensemble learning publication-title: Encycl. Biom. – year: 2017 ident: bib21 article-title: Enhancement of cross-entropy based stopping criteria via turning point indicator publication-title: 2017 7th International Conference on Modeling, Simulation, and Applied Optimization – start-page: 1 year: 2018 end-page: 19 ident: bib37 article-title: The relative performance of ensemble methods with deep convolutional neural networks for image classification publication-title: J. Appl. Stat. – volume: 160 start-page: 167 year: 2018 end-page: 175 ident: bib34 article-title: Improving deep ensemble vehicle classification by using selected adversarial samples publication-title: Knowl. Based Syst. – year: 25-28 Sept. 2007 ident: bib30 article-title: A closed loop stability analysis and parameter selection of the Particle Swarm Optimization dynamics for faster convergence publication-title: IEEE Congress on Evolutionary Computation, Singapore – volume: 9 start-page: 1543 year: 2015 end-page: 1547 ident: bib42 article-title: Genetic studies on common rust (Puccinia sorghii) of maize under Kashmir conditions publication-title: Afr. J. Microbiol. Res. – volume: 38 start-page: 447 year: 2016 ident: bib45 article-title: History of northern corn leaf blight disease in the seventh cycle of recurrent selection of an UENF-14 popcorn population publication-title: Acta Sci. Agron. – year: 1984 ident: bib32 article-title: Design and Analysis of Experiments – volume: 15 start-page: 1929 year: 2014 end-page: 1958 ident: bib8 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – volume: 9 start-page: 1345 year: 2015 end-page: 1351 ident: bib43 article-title: Integrated disease management strategy of common rust of maize incited by Puccinia sorghi Schw publication-title: Afr. J. Microbiol. Res. – volume: 11 year: 2015 ident: bib40 article-title: Resistance to gray leaf spot of maize: genetic architecture and mechanisms elucidated through nested association mapping and near-isogenic line analysis publication-title: PLoS Genet. – year: 2016 ident: bib12 article-title: An efficient convolutional network for human pose estimation publication-title: Proceedings of the British Machine Vision Conference (BMVC) – volume: 3 start-page: 2106 year: 2016 end-page: 2109 ident: bib48 article-title: Performance analysis of neural networks and support vector machines using confusion matrix – start-page: 57 year: 2016 end-page: 64 ident: bib35 article-title: A bias-variance analysis of ensemble learning for Classification publication-title: Proceedings of the 58th Annual Conference of SASA – volume: 8 start-page: 2015 year: 2014 end-page: 2022 ident: bib5 article-title: Computer-aided classification of lung nodules on computed tomography images via deep learn- ing technique publication-title: OncoTargets Ther. – year: 2016 ident: bib52 article-title: Rethinking the inception architecture for computer vision publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 48 start-page: 220 year: 2019 end-page: 250 ident: bib29 article-title: Bio-inspired computation: where we stand and what’s next publication-title: Swarm Evol. Comput. – year: 2015 ident: bib49 article-title: Keras: deep learning library for theano and tensorflow – volume: 40 start-page: 1 year: 2018 end-page: 23 ident: bib33 article-title: Novel orthogonal PSO algorithm based on orthogonal diagonalization publication-title: Swarm Evol. Comput. – reference: Saroj Raj Sharma, – volume: 2 start-page: 660 year: 2013 ident: bib2 article-title: Digital image processing techniques for detecting, quantifying and classifying plant diseases publication-title: SpringerPlus – volume: 10 year: 2018 ident: bib14 article-title: Identification of apple leaf diseases based on deep convolutional neural networks publication-title: Symmetry – reference: . – volume: 1 start-page: 71 year: 2015 end-page: 85 ident: bib41 article-title: A review on threat of gray leaf spot disease of maize in Asia publication-title: J. Maize Res. Dev. – volume: 135 start-page: 368 year: March 2019 end-page: 375 ident: bib25 article-title: Wear indicator construction of rolling bearings based on a multi-channel deep convolutional neural network with exponentially decaying learning rate publication-title: Measurement – start-page: 1063 year: 2016 end-page: 1067 ident: bib20 article-title: Deep convolutional neural network with independent softmax for large scale face recognition publication-title: Proceedings of the 24th ACM International Conference on Multimedia – volume: 138 start-page: 49 year: 2017 end-page: 56 ident: bib4 article-title: Classification of ct brain images based on deep learn- ing networks publication-title: Comput. Methods Progr. Biomed. – volume: 76 start-page: 19039 issue: 18 year: 2017 ident: 10.1016/j.swevo.2019.100616_bib6 article-title: Lung nodules diagnosis based on evolutionary convolutional neural network publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-017-4480-9 – volume: vol. 31 year: 2017 ident: 10.1016/j.swevo.2019.100616_bib44 – volume: 138 start-page: 49 year: 2017 ident: 10.1016/j.swevo.2019.100616_bib4 article-title: Classification of ct brain images based on deep learn- ing networks publication-title: Comput. Methods Progr. Biomed. doi: 10.1016/j.cmpb.2016.10.007 – year: 2015 ident: 10.1016/j.swevo.2019.100616_bib19 – volume: 6 start-page: 825 issue: 3 year: 2017 ident: 10.1016/j.swevo.2019.100616_bib46 article-title: Turcicum leaf blight: a ubiquitous foliar disease of maize (Zea mays L.) publication-title: Int. J. Curr. Microbiol. Appl. Sci. doi: 10.20546/ijcmas.2017.603.097 – volume: 8 start-page: 2015 year: 2014 ident: 10.1016/j.swevo.2019.100616_bib5 article-title: Computer-aided classification of lung nodules on computed tomography images via deep learn- ing technique publication-title: OncoTargets Ther. – year: 2019 ident: 10.1016/j.swevo.2019.100616_bib17 article-title: A survey of swarm and evolutionary computing approaches for deep learning publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-019-09719-2 – volume: 40 start-page: 1 year: 2018 ident: 10.1016/j.swevo.2019.100616_bib33 article-title: Novel orthogonal PSO algorithm based on orthogonal diagonalization publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2017.12.004 – start-page: 1 year: 2018 ident: 10.1016/j.swevo.2019.100616_bib37 article-title: The relative performance of ensemble methods with deep convolutional neural networks for image classification publication-title: J. Appl. Stat. – volume: 2 start-page: 660 year: 2013 ident: 10.1016/j.swevo.2019.100616_bib2 article-title: Digital image processing techniques for detecting, quantifying and classifying plant diseases publication-title: SpringerPlus doi: 10.1186/2193-1801-2-660 – volume: vol. 653 year: 2018 ident: 10.1016/j.swevo.2019.100616_bib10 article-title: Comparing the behavior of oversampling and undersampling approach of class imbalance learning by combining class imbalance problem with noise – start-page: 1063 year: 2016 ident: 10.1016/j.swevo.2019.100616_bib20 article-title: Deep convolutional neural network with independent softmax for large scale face recognition – volume: 135 start-page: 368 year: 2019 ident: 10.1016/j.swevo.2019.100616_bib25 article-title: Wear indicator construction of rolling bearings based on a multi-channel deep convolutional neural network with exponentially decaying learning rate publication-title: Measurement doi: 10.1016/j.measurement.2018.11.040 – volume: 11 issue: 3 year: 2015 ident: 10.1016/j.swevo.2019.100616_bib40 article-title: Resistance to gray leaf spot of maize: genetic architecture and mechanisms elucidated through nested association mapping and near-isogenic line analysis publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1005045 – volume: 5 start-page: 2664 year: 2016 ident: 10.1016/j.swevo.2019.100616_bib28 article-title: Transfer learning for image classification and plant phenotyping publication-title: Int. J. Adv. Res. Comput. Eng. Technol. (IJARCET) – year: 2018 ident: 10.1016/j.swevo.2019.100616_bib18 – volume: 2 start-page: 16 issue: 3 year: 2018 ident: 10.1016/j.swevo.2019.100616_bib3 article-title: From big data to deep learning: a leap towards strong AI or “intelligentia obscura”? publication-title: Big Data Cognit. Comput. doi: 10.3390/bdcc2030016 – volume: 38 start-page: 447 issue: 4 year: 2016 ident: 10.1016/j.swevo.2019.100616_bib45 article-title: History of northern corn leaf blight disease in the seventh cycle of recurrent selection of an UENF-14 popcorn population publication-title: Acta Sci. Agron. doi: 10.4025/actasciagron.v38i4.30573 – ident: 10.1016/j.swevo.2019.100616_bib49 – volume: 132 start-page: 679 year: 2018 ident: 10.1016/j.swevo.2019.100616_bib22 article-title: Conceptual understanding of convolutional neural network- A deep learning approach publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2018.05.069 – volume: 267 start-page: 378 year: 2017 ident: 10.1016/j.swevo.2019.100616_bib15 article-title: Identification of rice diseases using deep convolutional neural networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.06.023 – volume: 86 start-page: 2278 issue: 11 year: 1998 ident: 10.1016/j.swevo.2019.100616_bib7 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 – volume: 19 start-page: 242 issue: 6 year: 2017 ident: 10.1016/j.swevo.2019.100616_bib9 article-title: A framework for designing the architectures of deep convolutional neural networks publication-title: Entropy doi: 10.3390/e19060242 – year: 2016 ident: 10.1016/j.swevo.2019.100616_bib51 – volume: 1 start-page: 71 issue: 1 year: 2015 ident: 10.1016/j.swevo.2019.100616_bib41 article-title: A review on threat of gray leaf spot disease of maize in Asia publication-title: J. Maize Res. Dev. doi: 10.3126/jmrd.v1i1.14245 – volume: 13 issue: 6 year: 2018 ident: 10.1016/j.swevo.2019.100616_bib39 article-title: Genome wide association study for gray leaf spot resistance in tropical maize core publication-title: PLoS One doi: 10.1371/journal.pone.0199539 – volume: 6 start-page: 105 issue: 11 year: 2015 ident: 10.1016/j.swevo.2019.100616_bib16 article-title: Robust convolutional neural networks for image recognition publication-title: Int. J. Adv. Comput. Sci. Appl. – year: 2017 ident: 10.1016/j.swevo.2019.100616_bib21 article-title: Enhancement of cross-entropy based stopping criteria via turning point indicator – volume: vol. 2018 start-page: 1661 year: 2017 ident: 10.1016/j.swevo.2019.100616_bib26 article-title: A deep learning architecture for classifying medical images of anatomy object – volume: 8 issue: 4 year: 2018 ident: 10.1016/j.swevo.2019.100616_bib13 article-title: Ensemble learning: a survey publication-title: Wiley Interdisc. Rew. Data Min. Knowl. Discov. – volume: 160 start-page: 167 year: 2018 ident: 10.1016/j.swevo.2019.100616_bib34 article-title: Improving deep ensemble vehicle classification by using selected adversarial samples publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2018.06.035 – year: 2007 ident: 10.1016/j.swevo.2019.100616_bib30 article-title: A closed loop stability analysis and parameter selection of the Particle Swarm Optimization dynamics for faster convergence – volume: 29 start-page: 59 issue: 2 year: 2010 ident: 10.1016/j.swevo.2019.100616_bib1 article-title: Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging publication-title: Crit. Rev. Plant Sci. doi: 10.1080/07352681003617285 – volume: 10 year: 2018 ident: 10.1016/j.swevo.2019.100616_bib14 article-title: Identification of apple leaf diseases based on deep convolutional neural networks publication-title: Symmetry – volume: 11 start-page: 925 issue: 4 year: 2015 ident: 10.1016/j.swevo.2019.100616_bib47 article-title: Efficacies of some fungicides and antagonists in controlling northern corn leaf blight disease publication-title: Int. J. Agric. Technol. – volume: 48 start-page: 220 year: 2019 ident: 10.1016/j.swevo.2019.100616_bib29 article-title: Bio-inspired computation: where we stand and what’s next publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2019.04.008 – year: 2014 ident: 10.1016/j.swevo.2019.100616_bib27 – volume: 15 start-page: 1929 issue: 1 year: 2014 ident: 10.1016/j.swevo.2019.100616_bib8 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – year: 2016 ident: 10.1016/j.swevo.2019.100616_bib52 article-title: Rethinking the inception architecture for computer vision – year: 2016 ident: 10.1016/j.swevo.2019.100616_bib12 article-title: An efficient convolutional network for human pose estimation – volume: 9 start-page: 1543 issue: 23 year: 2015 ident: 10.1016/j.swevo.2019.100616_bib42 article-title: Genetic studies on common rust (Puccinia sorghii) of maize under Kashmir conditions publication-title: Afr. J. Microbiol. Res. doi: 10.5897/AJMR2015.7500 – ident: 10.1016/j.swevo.2019.100616_bib23 – volume: 83 start-page: 1013 year: 2016 ident: 10.1016/j.swevo.2019.100616_bib11 article-title: Pattern classification with imbalanced and multiclass data for the prediction of albendazole adverse event outcomes publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2016.04.216 – volume: 9 start-page: 1345 issue: 20 year: 2015 ident: 10.1016/j.swevo.2019.100616_bib43 article-title: Integrated disease management strategy of common rust of maize incited by Puccinia sorghi Schw publication-title: Afr. J. Microbiol. Res. doi: 10.5897/AJMR2014.7112 – start-page: 57 year: 2016 ident: 10.1016/j.swevo.2019.100616_bib35 article-title: A bias-variance analysis of ensemble learning for Classification – volume: 3 start-page: 2106 issue: 5 year: 2016 ident: 10.1016/j.swevo.2019.100616_bib48 article-title: Performance analysis of neural networks and support vector machines using confusion matrix – year: 1984 ident: 10.1016/j.swevo.2019.100616_bib32 – start-page: 411 year: 2015 ident: 10.1016/j.swevo.2019.100616_bib36 article-title: Ensemble learning publication-title: Encycl. Biom. doi: 10.1007/978-1-4899-7488-4_293 – year: 2013 ident: 10.1016/j.swevo.2019.100616_bib24 article-title: An empirical study of learning rates in deep neural networks for speech recognition – volume: 181 start-page: 4550 issue: 20 year: 2011 ident: 10.1016/j.swevo.2019.100616_bib31 article-title: Scale-free fully informed particle swarm optimization Algorithm publication-title: Inf. Sci. doi: 10.1016/j.ins.2011.02.026 – ident: 10.1016/j.swevo.2019.100616_bib38 |
SSID | ssj0000602559 |
Score | 2.5955298 |
Snippet | The plant disease classification based on using digital images is very challenging. In the last decade, machine learning techniques and plant images... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 100616 |
SubjectTerms | Convolutional neural networks (CNNs) Deep learning Ensemble learning Hyperparameters optimization Imbalanced data Orthogonal learning particle swarm optimization (OLPSO) Plant disease classification Transfer learning |
Title | An optimized model based on convolutional neural networks and orthogonal learning particle swarm optimization algorithm for plant diseases diagnosis |
URI | https://dx.doi.org/10.1016/j.swevo.2019.100616 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4QwEG6MXrz4Nj43PXgUl0cpcNwYzarRi26yN1JaWDG7sAF0Ew_-Cn-wM6VsNDEePEGgQ8jMdB7t1xlCzpjyRZA6vmVLP7NYojxL-KFjKddR4I08rgQu6N8_8OGI3Y798Qq57M7CIKzS2P7WpmtrbZ70DTf78zzvP7qQrUB8AVMOdJZpO8xYgPXzLz6c5TqLzXXUjD3mYLyFBF3xIQ3zqhfpGx4CdCIEDHDse_6bg_rmdK63yIaJFumg_aFtspIWO2Sz68RAzcTcJZ-DgpYw-Wf5e6qo7m5D0T8pWhYUgeVGweBbWMBSXzT8u6aigEFV81xO9GvTRWJC54YLtF6IatZ9XcuRiumkrPLmeUYh5KXzKUiHmp2eGm40eC-v98jo-urpcmiZfguW9HjUWKkTYikdiV7dhTiCeWHoZTwKsgzSnCiUEROch5ILFdmJm4QBGCdgqMSYR9rC2yerRVmkB4QqjwvupZAMOorhZmLiCyayQGROJIWwD4nbMTmWphg59sSYxh3q7CXWkolRMnErmUNyviSat7U4_h7OO-nFP1QqBm_xF-HRfwmPybqL6bgGdZ-Q1aZ6TU8hZmmSnlbKHlkb3NwNH74Ao63uRA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqOsDCG1GeHhiJmqebjFVF1dLHQpHYIsdOSlCbVE2gEr-DH8yd61QgoQ5MiRJfFN2d72F_viPkzpUeb8WWZ5jCSww3ko7BPd8ypG1J8EYOkxwX9Edj1nt2H1-8lxrpVGdhEFapbf_apitrrZ80NTebizRtPtmQrUB8AVMOdNZFO1zH6lSg7PV2f9Abb5ZaTKYCZ2wzByQG0lT1hxTSq1jFH3gO0AoQM8Cw9flfPuqH3-kekn0dMNL2-p-OSC3OjslB1YyB6rl5Qr7aGc1h_s_Tz1hS1eCGoouSNM8oYsu1jsG3sIaluigEeEF5BoOW5Ws-Va91I4kpXWhG0GLFl_Pq60qUlM-m-TItX-cUol66mIGAqN7sKeBG4ffS4pQ8dx8mnZ6hWy4YwmFBacSWj9V0BDp2G0IJ1_F9J2FBK0kg0wl8EbicMV8wLgMzsiO_BfYJGCow7BEmd87ITpZn8Tmh0mGcOTHkg5Z0cT8x8rjLkxZPrEBwbjaIXTE5FLoeObbFmIUV8OwtVJIJUTLhWjINcr8hWqzLcWwfzirphb-0KgSHsY3w4r-Et2S3NxkNw2F_PLgkezZm5wrjfUV2yuV7fA0hTBndaBX9Bsp18PU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+optimized+model+based+on+convolutional+neural+networks+and+orthogonal+learning+particle+swarm+optimization+algorithm+for+plant+diseases+diagnosis&rft.jtitle=Swarm+and+evolutionary+computation&rft.au=Darwish%2C+Ashraf&rft.au=Ezzat%2C+Dalia&rft.au=Hassanien%2C+Aboul+Ella&rft.date=2020-02-01&rft.pub=Elsevier+B.V&rft.issn=2210-6502&rft.volume=52&rft_id=info:doi/10.1016%2Fj.swevo.2019.100616&rft.externalDocID=S2210650219305462 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-6502&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-6502&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-6502&client=summon |