An optimized model based on convolutional neural networks and orthogonal learning particle swarm optimization algorithm for plant diseases diagnosis

The plant disease classification based on using digital images is very challenging. In the last decade, machine learning techniques and plant images classification tools such as deep learning can be used for recognizing, detecting and diagnosing plant diseases. Currently, deep learning technology ha...

Full description

Saved in:
Bibliographic Details
Published inSwarm and evolutionary computation Vol. 52; p. 100616
Main Authors Darwish, Ashraf, Ezzat, Dalia, Hassanien, Aboul Ella
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2020
Subjects
Online AccessGet full text
ISSN2210-6502
DOI10.1016/j.swevo.2019.100616

Cover

Loading…
Abstract The plant disease classification based on using digital images is very challenging. In the last decade, machine learning techniques and plant images classification tools such as deep learning can be used for recognizing, detecting and diagnosing plant diseases. Currently, deep learning technology has been used for plant disease detection and classification. In this paper, an ensemble model of two pre-trained convolutional neural networks (CNNs) namely VGG16 and VGG19 have been developed for the task plant disease diagnosis by classifying the leaves images of healthy and unhealthy. In this context, CNNs are used due to its capability of overcoming the technical problems which are associated with the classification problem of plant diseases. However, CNNs suffer from a great variety of hyperparameters with specific architectures which is considered as a challenge to identify manually the optimal hyperparameters. Therefore, orthogonal learning particle swarm optimization (OLPSO) algorithm is utilized in this paper to optimize a number of these hyperparameters by finding optimal values for these hyperparameters rather than using traditional methods such as the manual trial and error method. In this paper, to prevent CNNs from falling into the local minimum and to train efficiently, an exponentially decaying learning rate (EDLR) schema is used. In this paper, the problem of the imbalanced used dataset has been solved by using random minority oversampling and random majority undersampling methods, and some restrictions in terms of both the number and diversity of samples have been overcome. The obtained results of this work show that the accuracy of the proposed model is very competitive. The experimental results are compared with the performance of other pre-trained CNN models namely InceptionV3 and Xception, whose hyperparameters were selected using a non-evolutionary method. The comparison results demonstrated that the proposed diagnostic approach has achieved higher performance than the other models. •This paper focuses on building an automatic classification model that identifies the infected and healthy maize leaves.•An ensemble model of two pre-trained convolutional neural networks is utilized.•Some of the hyperparameters of every single model in the ensemble model are optimized by the OLPSO optimization algorithm.•Every single model in the ensemble is trained using exponential learning rate decay schema.•The results obtained demonstrate the effectiveness of the proposed approach and its ability to outperform other methods.
AbstractList The plant disease classification based on using digital images is very challenging. In the last decade, machine learning techniques and plant images classification tools such as deep learning can be used for recognizing, detecting and diagnosing plant diseases. Currently, deep learning technology has been used for plant disease detection and classification. In this paper, an ensemble model of two pre-trained convolutional neural networks (CNNs) namely VGG16 and VGG19 have been developed for the task plant disease diagnosis by classifying the leaves images of healthy and unhealthy. In this context, CNNs are used due to its capability of overcoming the technical problems which are associated with the classification problem of plant diseases. However, CNNs suffer from a great variety of hyperparameters with specific architectures which is considered as a challenge to identify manually the optimal hyperparameters. Therefore, orthogonal learning particle swarm optimization (OLPSO) algorithm is utilized in this paper to optimize a number of these hyperparameters by finding optimal values for these hyperparameters rather than using traditional methods such as the manual trial and error method. In this paper, to prevent CNNs from falling into the local minimum and to train efficiently, an exponentially decaying learning rate (EDLR) schema is used. In this paper, the problem of the imbalanced used dataset has been solved by using random minority oversampling and random majority undersampling methods, and some restrictions in terms of both the number and diversity of samples have been overcome. The obtained results of this work show that the accuracy of the proposed model is very competitive. The experimental results are compared with the performance of other pre-trained CNN models namely InceptionV3 and Xception, whose hyperparameters were selected using a non-evolutionary method. The comparison results demonstrated that the proposed diagnostic approach has achieved higher performance than the other models. •This paper focuses on building an automatic classification model that identifies the infected and healthy maize leaves.•An ensemble model of two pre-trained convolutional neural networks is utilized.•Some of the hyperparameters of every single model in the ensemble model are optimized by the OLPSO optimization algorithm.•Every single model in the ensemble is trained using exponential learning rate decay schema.•The results obtained demonstrate the effectiveness of the proposed approach and its ability to outperform other methods.
ArticleNumber 100616
Author Ezzat, Dalia
Hassanien, Aboul Ella
Darwish, Ashraf
Author_xml – sequence: 1
  givenname: Ashraf
  surname: Darwish
  fullname: Darwish, Ashraf
  email: ashraf.darwish.eg@ieee.org
  organization: Faculty of Science, Helwan University, Cairo, Egypt
– sequence: 2
  givenname: Dalia
  surname: Ezzat
  fullname: Ezzat, Dalia
  email: dalia.Azzat@yahoo.com
  organization: Faculty of Computers and Artificial Intelligence, Cairo University, Giza, Egypt
– sequence: 3
  givenname: Aboul Ella
  surname: Hassanien
  fullname: Hassanien, Aboul Ella
  email: aboitcairo@cu.edu.eg
  organization: Faculty of Computers and Artificial Intelligence, Cairo University, Giza, Egypt
BookMark eNqFkM9OAyEQxjnUxKp9Ai-8QCuwW3Y5eGga_yVNvOiZUHZ2S2WhAdpGn8MHlrZ68aBzmQnM902-3wUaOO8AoWtKJpRQfrOexD3s_IQRKvIL4ZQP0JAxSsZ8Stg5GsW4Jrk4YdOpGKLPmcN-k0xvPqDBvW_A4qWKefYOa-923m6T8U5Z7GAbji3tfXiLWLm8FNLKd8dvCyo44zq8USEZbQHHvQr9j7s6uGBlOx9MWvW49QFvrHIJNyZCvhjzoDrno4lX6KxVNsLou1-i1_u7l_njePH88DSfLca64CKNgdY5R6kZKykjgpZFXRctF1XbcsJFrUWpOK81V40gS7asq4oXGYOuRVFpoopLVJx8dfAxBmjlJphehXdJiTzwlGt55CkPPOWJZ1aJXypt0jFeCsrYf7S3Jy3kWDsDQUZtwGloTACdZOPNn_oveJWaHQ
CitedBy_id crossref_primary_10_1109_ACCESS_2021_3123628
crossref_primary_10_1109_ACCESS_2020_3039345
crossref_primary_10_1002_ima_22530
crossref_primary_10_1016_j_engappai_2023_106924
crossref_primary_10_1016_j_compag_2024_109494
crossref_primary_10_1016_j_jag_2021_102428
crossref_primary_10_1016_j_swevo_2023_101354
crossref_primary_10_3390_agriculture12081192
crossref_primary_10_1007_s10462_024_10944_7
crossref_primary_10_1007_s11042_022_13144_z
crossref_primary_10_1080_13682199_2022_2164402
crossref_primary_10_1007_s11047_020_09809_z
crossref_primary_10_1007_s11356_021_16301_3
crossref_primary_10_1016_j_cie_2021_107651
crossref_primary_10_34133_research_0491
crossref_primary_10_1186_s13007_021_00770_1
crossref_primary_10_1002_cpe_6126
crossref_primary_10_1007_s41060_024_00578_x
crossref_primary_10_1109_ACCESS_2021_3135201
crossref_primary_10_3390_axioms12050456
crossref_primary_10_1016_j_neunet_2022_04_016
crossref_primary_10_1186_s13007_021_00818_2
crossref_primary_10_1007_s10489_021_03074_y
crossref_primary_10_1109_ACCESS_2021_3064976
crossref_primary_10_1007_s40858_021_00459_9
crossref_primary_10_3390_plants11212935
crossref_primary_10_1016_j_matpr_2020_08_397
crossref_primary_10_3390_agriculture13010139
crossref_primary_10_1007_s41870_023_01532_z
crossref_primary_10_1007_s11334_022_00461_7
crossref_primary_10_1109_ACCESS_2024_3361756
crossref_primary_10_3389_fpls_2022_897883
crossref_primary_10_1111_exsy_12746
crossref_primary_10_1016_j_scienta_2021_110245
crossref_primary_10_1007_s11356_021_15223_4
crossref_primary_10_1140_epjp_s13360_022_02421_3
crossref_primary_10_1016_j_procs_2024_04_193
crossref_primary_10_1038_s41598_023_37466_6
crossref_primary_10_3390_mi12121504
crossref_primary_10_1109_ACCESS_2022_3233596
crossref_primary_10_1007_s11600_022_00759_x
crossref_primary_10_1109_TFUZZ_2022_3177764
crossref_primary_10_1007_s00500_022_07177_7
crossref_primary_10_1016_j_measurement_2021_110030
crossref_primary_10_1088_1755_1315_1097_1_012042
crossref_primary_10_1016_j_compag_2022_107217
crossref_primary_10_1038_s41598_022_26566_4
crossref_primary_10_1016_j_rineng_2024_102878
crossref_primary_10_26634_jcom_11_2_20106
crossref_primary_10_1016_j_ins_2022_03_058
crossref_primary_10_1007_s11103_024_01491_4
crossref_primary_10_3390_app11041878
crossref_primary_10_1111_exsy_12875
crossref_primary_10_1007_s00500_021_06629_w
crossref_primary_10_1016_j_dajour_2024_100470
crossref_primary_10_1016_j_eswa_2022_118117
crossref_primary_10_1109_ACCESS_2024_3389648
crossref_primary_10_1007_s00500_024_09816_7
crossref_primary_10_1016_j_suscom_2020_100443
crossref_primary_10_1007_s00202_022_01501_y
crossref_primary_10_1155_2022_1036913
crossref_primary_10_3390_biomimetics8020235
crossref_primary_10_1007_s10668_023_03712_0
crossref_primary_10_1109_ACCESS_2021_3109120
crossref_primary_10_32604_cmc_2021_012315
crossref_primary_10_1109_ACCESS_2024_3373001
crossref_primary_10_3390_s23073607
crossref_primary_10_1002_cpe_7661
crossref_primary_10_1007_s10489_022_04446_8
crossref_primary_10_1080_13682199_2023_2169988
crossref_primary_10_3390_math8060936
crossref_primary_10_1016_j_engappai_2024_108502
crossref_primary_10_1007_s11042_023_18052_4
crossref_primary_10_3389_fpls_2023_1166296
crossref_primary_10_3390_axioms11090449
crossref_primary_10_1007_s11042_022_13925_6
crossref_primary_10_1109_ACCESS_2024_3511456
crossref_primary_10_1007_s41348_021_00528_w
crossref_primary_10_3390_a13030067
crossref_primary_10_1016_j_asoc_2021_107872
crossref_primary_10_3390_s21113758
crossref_primary_10_1016_j_compag_2021_106478
crossref_primary_10_1109_ACCESS_2023_3334428
crossref_primary_10_21605_cukurovaumfd_1189932
crossref_primary_10_1007_s42452_021_04694_2
crossref_primary_10_1016_j_jup_2021_101253
crossref_primary_10_1142_S0218001421570044
crossref_primary_10_3389_frai_2024_1384709
crossref_primary_10_3390_math11194115
crossref_primary_10_1007_s00366_020_01120_w
crossref_primary_10_3390_rs13030331
crossref_primary_10_1038_s41598_024_82022_5
crossref_primary_10_3390_agronomy14102231
crossref_primary_10_1007_s11831_021_09562_1
crossref_primary_10_1109_ACCESS_2021_3095967
crossref_primary_10_52756_ijerr_2024_v45spl_011
crossref_primary_10_1007_s11042_022_13055_z
crossref_primary_10_1155_2022_5755885
crossref_primary_10_1007_s11042_021_10599_4
crossref_primary_10_1109_ACCESS_2020_3031683
crossref_primary_10_1007_s11042_023_15175_6
crossref_primary_10_3390_f13122091
crossref_primary_10_3390_app122010508
crossref_primary_10_3233_JIFS_213423
crossref_primary_10_1016_j_inpa_2021_01_003
crossref_primary_10_3390_plants11151942
crossref_primary_10_2139_ssrn_4842105
crossref_primary_10_3389_fpls_2023_1292643
crossref_primary_10_1007_s41348_022_00660_1
crossref_primary_10_3390_agriculture10100436
crossref_primary_10_1007_s00521_021_06714_z
crossref_primary_10_1007_s12145_024_01276_9
crossref_primary_10_1016_j_swevo_2023_101452
crossref_primary_10_1016_j_imu_2022_101081
crossref_primary_10_1016_j_swevo_2024_101650
crossref_primary_10_1142_S021800142257004X
crossref_primary_10_1016_j_swevo_2022_101212
crossref_primary_10_1016_j_asoc_2020_106742
crossref_primary_10_1002_cpe_7674
crossref_primary_10_3390_agriculture11080707
crossref_primary_10_1016_j_cie_2022_107970
crossref_primary_10_3390_biology11121732
crossref_primary_10_1016_j_compag_2022_107486
crossref_primary_10_1016_j_compbiomed_2024_109222
crossref_primary_10_1080_19942060_2024_2391988
crossref_primary_10_1016_j_compag_2022_107485
crossref_primary_10_1007_s11042_023_17824_2
crossref_primary_10_1080_0954898X_2024_2337801
crossref_primary_10_1007_s12892_024_00263_2
crossref_primary_10_1109_TBME_2021_3129459
crossref_primary_10_1007_s11063_022_10880_z
crossref_primary_10_1007_s11042_024_20137_7
crossref_primary_10_1155_2023_2989533
crossref_primary_10_3390_s23094272
crossref_primary_10_1016_j_swevo_2023_101465
crossref_primary_10_1109_ACCESS_2023_3284760
crossref_primary_10_1016_j_compbiolchem_2021_107619
crossref_primary_10_1016_j_compag_2024_109869
crossref_primary_10_1038_s41598_024_77585_2
crossref_primary_10_36306_konjes_1078358
Cites_doi 10.1007/s11042-017-4480-9
10.1016/j.cmpb.2016.10.007
10.20546/ijcmas.2017.603.097
10.1007/s10462-019-09719-2
10.1016/j.swevo.2017.12.004
10.1186/2193-1801-2-660
10.1016/j.measurement.2018.11.040
10.1371/journal.pgen.1005045
10.3390/bdcc2030016
10.4025/actasciagron.v38i4.30573
10.1016/j.procs.2018.05.069
10.1016/j.neucom.2017.06.023
10.1109/5.726791
10.3390/e19060242
10.3126/jmrd.v1i1.14245
10.1371/journal.pone.0199539
10.1016/j.knosys.2018.06.035
10.1080/07352681003617285
10.1016/j.swevo.2019.04.008
10.5897/AJMR2015.7500
10.1016/j.procs.2016.04.216
10.5897/AJMR2014.7112
10.1007/978-1-4899-7488-4_293
10.1016/j.ins.2011.02.026
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.swevo.2019.100616
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_swevo_2019_100616
S2210650219305462
GroupedDBID --K
--M
.~1
0R~
1~.
1~5
4.4
457
4G.
5VS
7-5
8P~
AAAKF
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATLK
AAXUO
AAYFN
ABAOU
ABBOA
ABGRD
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADQTV
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CBWCG
EBS
EFJIC
EFLBG
EJD
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
J1W
JJJVA
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SES
SPC
SPCBC
SSA
SSB
SSD
SST
SSV
SSW
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c369t-e180604c2241209143883f697ff60698c94a668c6ad90b2b87763650c8937c0a3
IEDL.DBID .~1
ISSN 2210-6502
IngestDate Thu Apr 24 23:09:56 EDT 2025
Tue Jul 01 03:39:49 EDT 2025
Fri Feb 23 02:49:34 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Imbalanced data
Transfer learning
Convolutional neural networks (CNNs)
Orthogonal learning particle swarm optimization (OLPSO)
Plant disease classification
Hyperparameters optimization
Ensemble learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c369t-e180604c2241209143883f697ff60698c94a668c6ad90b2b87763650c8937c0a3
ParticipantIDs crossref_primary_10_1016_j_swevo_2019_100616
crossref_citationtrail_10_1016_j_swevo_2019_100616
elsevier_sciencedirect_doi_10_1016_j_swevo_2019_100616
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2020
2020-02-00
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: February 2020
PublicationDecade 2020
PublicationTitle Swarm and evolutionary computation
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Dhami, Kim, Paudel, Shrestha, Rijal (bib41) 2015; 1
She, Jia (bib25) March 2019; 135
Agarap (bib18) 2018
Simonyan, Zisserman (bib27) 2014
Montgomery (bib32) 1984
Yıldırım (bib11) 2016; 83
Wu, Li, Kong, Fu (bib20) 2016
LeCun, Bottou, Bengio, Haffner (bib7) 1998; 86
Szegedy, Vanhoucke, Ioffe, Shlens, Wojna (bib52) 2016
Singh Jakhar, Singh, Kumar, Singh (bib46) 2017; 6
Teklewold, Kelemu, Abraham, Wegary (bib44) 2017; vol. 31
Zhang, Yi (bib31) 2011; 181
Dey, Harlapur, Dhutraj, Suryawanshi, Bhattacharjee (bib43) 2015; 9
Senior, Heigold, Ranzato, Yang (bib24) 2013
Bock, Poole, Parker, Gottwald (bib1) 2010; 29
Al-Bahrani, Patra (bib33) 2018; 40
Tapas (bib28) 2016; 5
Albelwi, Mahmood (bib9) 2017; 19
Hua, Hsu, Hidayati, Cheng, Chen (bib5) 2014; 8
Ser, Osaba, Molina, Yang, Salcedo-Sanz, Camacho, Das, Suganthan, Carlos, Coello, Herrera (bib29) 2019; 48
.
F. Orabona, Tatiana Tommasi, ‘Training deep networks without learning rates through coin betting’, 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.
Albeahdili, Alwzwazy, Islam (bib16) 2015; 6
Samal, Amit, Das, Abraham (bib30) 25-28 Sept. 2007
Darwish, Hassanien, Das (bib17) 2019
Kaur, Gosain (bib10) 2018; vol. 653
Liu, Zhang, He, Li (bib14) 2018; 10
M.N.J.R., Balaji (bib48) 2016; 3
Gao, Hui, Tian (bib4) 2017; 138
Mohamad, Harun (bib21) 2017
Saroj Raj Sharma
Liu, Luo, Li (bib34) 2018; 160
Pretorius, Bierman, Steel (bib35) 2016
Goodfellow, Bengio, Courville (bib51) 2016
Indolia, Kumar, Mishra, Asopa (bib22) 2018; 132
Ribeiro, Amaral Júnior, Pena, Vivas, Kurosawa, Gonçalves (bib45) 2016; 38
Abidi, Dar, Lone, Ali, Gazal, Mohiddin, Dar, Hamid, Bhat (bib42) 2015; 9
Lu, Yi, Zeng, Liu, Zhang (bib15) 2017; 267
Rafi, Leibe, Gall, Kostrikov (bib12) 2016
Zhou (bib36) 2015
Kuki, Scapim, Rossi, Mangolin, Amaral Júnior, Pinto (bib39) 2018; 13
Silva, da Silva Neto, Silva, de Paiva, Gattass (bib6) 2017; 76
Sagi, Rokach (bib13) 2018; 8
Ioffe, Szegedy (bib19) 2015
Barbedo (bib2) 2013; 2
Chollet (bib49) 2015
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (bib8) 2014; 15
Ju, Bibaut, Van Der Laan (bib37) 2018
Benson, Poland, Benson, Stromberg, Nelson (bib40) 2015; 11
Wathaneeyawech, Kirdsiri, Sirithunya, Smitamana (bib47) 2015; 11
Strau (bib3) 2018; 2
Khan, Yong (bib26) 2017; vol. 2018
Senior (10.1016/j.swevo.2019.100616_bib24) 2013
10.1016/j.swevo.2019.100616_bib38
Teklewold (10.1016/j.swevo.2019.100616_bib44) 2017; vol. 31
Abidi (10.1016/j.swevo.2019.100616_bib42) 2015; 9
Goodfellow (10.1016/j.swevo.2019.100616_bib51) 2016
Darwish (10.1016/j.swevo.2019.100616_bib17) 2019
Ser (10.1016/j.swevo.2019.100616_bib29) 2019; 48
Wu (10.1016/j.swevo.2019.100616_bib20) 2016
Strau (10.1016/j.swevo.2019.100616_bib3) 2018; 2
Agarap (10.1016/j.swevo.2019.100616_bib18) 2018
Albeahdili (10.1016/j.swevo.2019.100616_bib16) 2015; 6
Ju (10.1016/j.swevo.2019.100616_bib37) 2018
Mohamad (10.1016/j.swevo.2019.100616_bib21) 2017
Khan (10.1016/j.swevo.2019.100616_bib26) 2017; vol. 2018
She (10.1016/j.swevo.2019.100616_bib25) 2019; 135
Kuki (10.1016/j.swevo.2019.100616_bib39) 2018; 13
Yıldırım (10.1016/j.swevo.2019.100616_bib11) 2016; 83
Bock (10.1016/j.swevo.2019.100616_bib1) 2010; 29
Rafi (10.1016/j.swevo.2019.100616_bib12) 2016
Zhou (10.1016/j.swevo.2019.100616_bib36) 2015
Albelwi (10.1016/j.swevo.2019.100616_bib9) 2017; 19
M.N.J.R. (10.1016/j.swevo.2019.100616_bib48) 2016; 3
Hua (10.1016/j.swevo.2019.100616_bib5) 2014; 8
Dhami (10.1016/j.swevo.2019.100616_bib41) 2015; 1
Samal (10.1016/j.swevo.2019.100616_bib30) 2007
Liu (10.1016/j.swevo.2019.100616_bib34) 2018; 160
Zhang (10.1016/j.swevo.2019.100616_bib31) 2011; 181
Chollet (10.1016/j.swevo.2019.100616_bib49)
Liu (10.1016/j.swevo.2019.100616_bib14) 2018; 10
LeCun (10.1016/j.swevo.2019.100616_bib7) 1998; 86
Kaur (10.1016/j.swevo.2019.100616_bib10) 2018; vol. 653
Srivastava (10.1016/j.swevo.2019.100616_bib8) 2014; 15
Dey (10.1016/j.swevo.2019.100616_bib43) 2015; 9
Gao (10.1016/j.swevo.2019.100616_bib4) 2017; 138
Lu (10.1016/j.swevo.2019.100616_bib15) 2017; 267
Indolia (10.1016/j.swevo.2019.100616_bib22) 2018; 132
Benson (10.1016/j.swevo.2019.100616_bib40) 2015; 11
Ioffe (10.1016/j.swevo.2019.100616_bib19) 2015
Pretorius (10.1016/j.swevo.2019.100616_bib35) 2016
Szegedy (10.1016/j.swevo.2019.100616_bib52) 2016
Sagi (10.1016/j.swevo.2019.100616_bib13) 2018; 8
10.1016/j.swevo.2019.100616_bib23
Al-Bahrani (10.1016/j.swevo.2019.100616_bib33) 2018; 40
Simonyan (10.1016/j.swevo.2019.100616_bib27) 2014
Montgomery (10.1016/j.swevo.2019.100616_bib32) 1984
Singh Jakhar (10.1016/j.swevo.2019.100616_bib46) 2017; 6
Barbedo (10.1016/j.swevo.2019.100616_bib2) 2013; 2
Ribeiro (10.1016/j.swevo.2019.100616_bib45) 2016; 38
Tapas (10.1016/j.swevo.2019.100616_bib28) 2016; 5
Wathaneeyawech (10.1016/j.swevo.2019.100616_bib47) 2015; 11
Silva (10.1016/j.swevo.2019.100616_bib6) 2017; 76
References_xml – volume: 5
  start-page: 2664
  year: 2016
  end-page: 2669
  ident: bib28
  article-title: Transfer learning for image classification and plant phenotyping
  publication-title: Int. J. Adv. Res. Comput. Eng. Technol. (IJARCET)
– reference: F. Orabona, Tatiana Tommasi, ‘Training deep networks without learning rates through coin betting’, 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: bib7
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
– volume: 181
  start-page: 4550
  year: 2011
  end-page: 4568
  ident: bib31
  article-title: Scale-free fully informed particle swarm optimization Algorithm
  publication-title: Inf. Sci.
– year: 2018
  ident: bib18
  article-title: Deep Learning Using Rectified Linear Units (ReLU)
– volume: 19
  start-page: 242
  year: 2017
  ident: bib9
  article-title: A framework for designing the architectures of deep convolutional neural networks
  publication-title: Entropy
– volume: vol. 2018
  start-page: 1661
  year: 2017
  end-page: 1668
  ident: bib26
  article-title: A deep learning architecture for classifying medical images of anatomy object
  publication-title: Proceedings - 9th Asia-Pacific Signal and Information Processing Association Annual Summit and Conference
– year: 2019
  ident: bib17
  article-title: A survey of swarm and evolutionary computing approaches for deep learning
  publication-title: Artif. Intell. Rev.
– volume: 13
  year: 2018
  ident: bib39
  article-title: Genome wide association study for gray leaf spot resistance in tropical maize core
  publication-title: PLoS One
– year: 2015
  ident: bib19
  article-title: Batch Normalization: Accelerating Deep Network Training byReducing Internal Covariate Shift
– volume: 132
  start-page: 679
  year: 2018
  end-page: 688
  ident: bib22
  article-title: Conceptual understanding of convolutional neural network- A deep learning approach
  publication-title: Procedia Comput. Sci.
– volume: 267
  start-page: 378
  year: 2017
  end-page: 384
  ident: bib15
  article-title: Identification of rice diseases using deep convolutional neural networks
  publication-title: Neurocomputing
– volume: 8
  year: 2018
  ident: bib13
  article-title: Ensemble learning: a survey
  publication-title: Wiley Interdisc. Rew. Data Min. Knowl. Discov.
– volume: vol. 31
  year: 2017
  ident: bib44
  publication-title: A Quality Protein Maize (QPM) Manual for Agricultural Extension Workers in Ethiopia
– volume: 6
  start-page: 105
  year: 2015
  end-page: 110
  ident: bib16
  article-title: Robust convolutional neural networks for image recognition
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– volume: 11
  start-page: 925
  year: 2015
  end-page: 936
  ident: bib47
  article-title: Efficacies of some fungicides and antagonists in controlling northern corn leaf blight disease
  publication-title: Int. J. Agric. Technol.
– year: 2016
  ident: bib51
  article-title: Deep Learning
– volume: 6
  start-page: 825
  year: 2017
  end-page: 831
  ident: bib46
  article-title: Turcicum leaf blight: a ubiquitous foliar disease of maize (Zea mays L.)
  publication-title: Int. J. Curr. Microbiol. Appl. Sci.
– year: 2014
  ident: bib27
  article-title: Very Deep Convolutional Networks for Large-Scale Image Recognition
– year: 2013
  ident: bib24
  article-title: An empirical study of learning rates in deep neural networks for speech recognition
  publication-title: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing
– volume: 2
  start-page: 16
  year: 2018
  ident: bib3
  article-title: From big data to deep learning: a leap towards strong AI or “intelligentia obscura”?
  publication-title: Big Data Cognit. Comput.
– volume: 76
  start-page: 19039
  year: 2017
  end-page: 19055
  ident: bib6
  article-title: Lung nodules diagnosis based on evolutionary convolutional neural network
  publication-title: Multimed. Tools Appl.
– volume: 29
  start-page: 59
  year: 2010
  end-page: 107
  ident: bib1
  article-title: Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging
  publication-title: Crit. Rev. Plant Sci.
– volume: 83
  start-page: 1013
  year: 2016
  end-page: 1018
  ident: bib11
  article-title: Pattern classification with imbalanced and multiclass data for the prediction of albendazole adverse event outcomes
  publication-title: Procedia Comput. Sci.
– volume: vol. 653
  year: 2018
  ident: bib10
  article-title: Comparing the behavior of oversampling and undersampling approach of class imbalance learning by combining class imbalance problem with noise
  publication-title: ICT Based Innovations. Advances in Intelligent Systems and Computing
– start-page: 411
  year: 2015
  end-page: 416
  ident: bib36
  article-title: Ensemble learning
  publication-title: Encycl. Biom.
– year: 2017
  ident: bib21
  article-title: Enhancement of cross-entropy based stopping criteria via turning point indicator
  publication-title: 2017 7th International Conference on Modeling, Simulation, and Applied Optimization
– start-page: 1
  year: 2018
  end-page: 19
  ident: bib37
  article-title: The relative performance of ensemble methods with deep convolutional neural networks for image classification
  publication-title: J. Appl. Stat.
– volume: 160
  start-page: 167
  year: 2018
  end-page: 175
  ident: bib34
  article-title: Improving deep ensemble vehicle classification by using selected adversarial samples
  publication-title: Knowl. Based Syst.
– year: 25-28 Sept. 2007
  ident: bib30
  article-title: A closed loop stability analysis and parameter selection of the Particle Swarm Optimization dynamics for faster convergence
  publication-title: IEEE Congress on Evolutionary Computation, Singapore
– volume: 9
  start-page: 1543
  year: 2015
  end-page: 1547
  ident: bib42
  article-title: Genetic studies on common rust (Puccinia sorghii) of maize under Kashmir conditions
  publication-title: Afr. J. Microbiol. Res.
– volume: 38
  start-page: 447
  year: 2016
  ident: bib45
  article-title: History of northern corn leaf blight disease in the seventh cycle of recurrent selection of an UENF-14 popcorn population
  publication-title: Acta Sci. Agron.
– year: 1984
  ident: bib32
  article-title: Design and Analysis of Experiments
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: bib8
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– volume: 9
  start-page: 1345
  year: 2015
  end-page: 1351
  ident: bib43
  article-title: Integrated disease management strategy of common rust of maize incited by Puccinia sorghi Schw
  publication-title: Afr. J. Microbiol. Res.
– volume: 11
  year: 2015
  ident: bib40
  article-title: Resistance to gray leaf spot of maize: genetic architecture and mechanisms elucidated through nested association mapping and near-isogenic line analysis
  publication-title: PLoS Genet.
– year: 2016
  ident: bib12
  article-title: An efficient convolutional network for human pose estimation
  publication-title: Proceedings of the British Machine Vision Conference (BMVC)
– volume: 3
  start-page: 2106
  year: 2016
  end-page: 2109
  ident: bib48
  article-title: Performance analysis of neural networks and support vector machines using confusion matrix
– start-page: 57
  year: 2016
  end-page: 64
  ident: bib35
  article-title: A bias-variance analysis of ensemble learning for Classification
  publication-title: Proceedings of the 58th Annual Conference of SASA
– volume: 8
  start-page: 2015
  year: 2014
  end-page: 2022
  ident: bib5
  article-title: Computer-aided classification of lung nodules on computed tomography images via deep learn- ing technique
  publication-title: OncoTargets Ther.
– year: 2016
  ident: bib52
  article-title: Rethinking the inception architecture for computer vision
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 48
  start-page: 220
  year: 2019
  end-page: 250
  ident: bib29
  article-title: Bio-inspired computation: where we stand and what’s next
  publication-title: Swarm Evol. Comput.
– year: 2015
  ident: bib49
  article-title: Keras: deep learning library for theano and tensorflow
– volume: 40
  start-page: 1
  year: 2018
  end-page: 23
  ident: bib33
  article-title: Novel orthogonal PSO algorithm based on orthogonal diagonalization
  publication-title: Swarm Evol. Comput.
– reference: Saroj Raj Sharma,
– volume: 2
  start-page: 660
  year: 2013
  ident: bib2
  article-title: Digital image processing techniques for detecting, quantifying and classifying plant diseases
  publication-title: SpringerPlus
– volume: 10
  year: 2018
  ident: bib14
  article-title: Identification of apple leaf diseases based on deep convolutional neural networks
  publication-title: Symmetry
– reference: .
– volume: 1
  start-page: 71
  year: 2015
  end-page: 85
  ident: bib41
  article-title: A review on threat of gray leaf spot disease of maize in Asia
  publication-title: J. Maize Res. Dev.
– volume: 135
  start-page: 368
  year: March 2019
  end-page: 375
  ident: bib25
  article-title: Wear indicator construction of rolling bearings based on a multi-channel deep convolutional neural network with exponentially decaying learning rate
  publication-title: Measurement
– start-page: 1063
  year: 2016
  end-page: 1067
  ident: bib20
  article-title: Deep convolutional neural network with independent softmax for large scale face recognition
  publication-title: Proceedings of the 24th ACM International Conference on Multimedia
– volume: 138
  start-page: 49
  year: 2017
  end-page: 56
  ident: bib4
  article-title: Classification of ct brain images based on deep learn- ing networks
  publication-title: Comput. Methods Progr. Biomed.
– volume: 76
  start-page: 19039
  issue: 18
  year: 2017
  ident: 10.1016/j.swevo.2019.100616_bib6
  article-title: Lung nodules diagnosis based on evolutionary convolutional neural network
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-017-4480-9
– volume: vol. 31
  year: 2017
  ident: 10.1016/j.swevo.2019.100616_bib44
– volume: 138
  start-page: 49
  year: 2017
  ident: 10.1016/j.swevo.2019.100616_bib4
  article-title: Classification of ct brain images based on deep learn- ing networks
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2016.10.007
– year: 2015
  ident: 10.1016/j.swevo.2019.100616_bib19
– volume: 6
  start-page: 825
  issue: 3
  year: 2017
  ident: 10.1016/j.swevo.2019.100616_bib46
  article-title: Turcicum leaf blight: a ubiquitous foliar disease of maize (Zea mays L.)
  publication-title: Int. J. Curr. Microbiol. Appl. Sci.
  doi: 10.20546/ijcmas.2017.603.097
– volume: 8
  start-page: 2015
  year: 2014
  ident: 10.1016/j.swevo.2019.100616_bib5
  article-title: Computer-aided classification of lung nodules on computed tomography images via deep learn- ing technique
  publication-title: OncoTargets Ther.
– year: 2019
  ident: 10.1016/j.swevo.2019.100616_bib17
  article-title: A survey of swarm and evolutionary computing approaches for deep learning
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-019-09719-2
– volume: 40
  start-page: 1
  year: 2018
  ident: 10.1016/j.swevo.2019.100616_bib33
  article-title: Novel orthogonal PSO algorithm based on orthogonal diagonalization
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2017.12.004
– start-page: 1
  year: 2018
  ident: 10.1016/j.swevo.2019.100616_bib37
  article-title: The relative performance of ensemble methods with deep convolutional neural networks for image classification
  publication-title: J. Appl. Stat.
– volume: 2
  start-page: 660
  year: 2013
  ident: 10.1016/j.swevo.2019.100616_bib2
  article-title: Digital image processing techniques for detecting, quantifying and classifying plant diseases
  publication-title: SpringerPlus
  doi: 10.1186/2193-1801-2-660
– volume: vol. 653
  year: 2018
  ident: 10.1016/j.swevo.2019.100616_bib10
  article-title: Comparing the behavior of oversampling and undersampling approach of class imbalance learning by combining class imbalance problem with noise
– start-page: 1063
  year: 2016
  ident: 10.1016/j.swevo.2019.100616_bib20
  article-title: Deep convolutional neural network with independent softmax for large scale face recognition
– volume: 135
  start-page: 368
  year: 2019
  ident: 10.1016/j.swevo.2019.100616_bib25
  article-title: Wear indicator construction of rolling bearings based on a multi-channel deep convolutional neural network with exponentially decaying learning rate
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.11.040
– volume: 11
  issue: 3
  year: 2015
  ident: 10.1016/j.swevo.2019.100616_bib40
  article-title: Resistance to gray leaf spot of maize: genetic architecture and mechanisms elucidated through nested association mapping and near-isogenic line analysis
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1005045
– volume: 5
  start-page: 2664
  year: 2016
  ident: 10.1016/j.swevo.2019.100616_bib28
  article-title: Transfer learning for image classification and plant phenotyping
  publication-title: Int. J. Adv. Res. Comput. Eng. Technol. (IJARCET)
– year: 2018
  ident: 10.1016/j.swevo.2019.100616_bib18
– volume: 2
  start-page: 16
  issue: 3
  year: 2018
  ident: 10.1016/j.swevo.2019.100616_bib3
  article-title: From big data to deep learning: a leap towards strong AI or “intelligentia obscura”?
  publication-title: Big Data Cognit. Comput.
  doi: 10.3390/bdcc2030016
– volume: 38
  start-page: 447
  issue: 4
  year: 2016
  ident: 10.1016/j.swevo.2019.100616_bib45
  article-title: History of northern corn leaf blight disease in the seventh cycle of recurrent selection of an UENF-14 popcorn population
  publication-title: Acta Sci. Agron.
  doi: 10.4025/actasciagron.v38i4.30573
– ident: 10.1016/j.swevo.2019.100616_bib49
– volume: 132
  start-page: 679
  year: 2018
  ident: 10.1016/j.swevo.2019.100616_bib22
  article-title: Conceptual understanding of convolutional neural network- A deep learning approach
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2018.05.069
– volume: 267
  start-page: 378
  year: 2017
  ident: 10.1016/j.swevo.2019.100616_bib15
  article-title: Identification of rice diseases using deep convolutional neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.06.023
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: 10.1016/j.swevo.2019.100616_bib7
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– volume: 19
  start-page: 242
  issue: 6
  year: 2017
  ident: 10.1016/j.swevo.2019.100616_bib9
  article-title: A framework for designing the architectures of deep convolutional neural networks
  publication-title: Entropy
  doi: 10.3390/e19060242
– year: 2016
  ident: 10.1016/j.swevo.2019.100616_bib51
– volume: 1
  start-page: 71
  issue: 1
  year: 2015
  ident: 10.1016/j.swevo.2019.100616_bib41
  article-title: A review on threat of gray leaf spot disease of maize in Asia
  publication-title: J. Maize Res. Dev.
  doi: 10.3126/jmrd.v1i1.14245
– volume: 13
  issue: 6
  year: 2018
  ident: 10.1016/j.swevo.2019.100616_bib39
  article-title: Genome wide association study for gray leaf spot resistance in tropical maize core
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0199539
– volume: 6
  start-page: 105
  issue: 11
  year: 2015
  ident: 10.1016/j.swevo.2019.100616_bib16
  article-title: Robust convolutional neural networks for image recognition
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– year: 2017
  ident: 10.1016/j.swevo.2019.100616_bib21
  article-title: Enhancement of cross-entropy based stopping criteria via turning point indicator
– volume: vol. 2018
  start-page: 1661
  year: 2017
  ident: 10.1016/j.swevo.2019.100616_bib26
  article-title: A deep learning architecture for classifying medical images of anatomy object
– volume: 8
  issue: 4
  year: 2018
  ident: 10.1016/j.swevo.2019.100616_bib13
  article-title: Ensemble learning: a survey
  publication-title: Wiley Interdisc. Rew. Data Min. Knowl. Discov.
– volume: 160
  start-page: 167
  year: 2018
  ident: 10.1016/j.swevo.2019.100616_bib34
  article-title: Improving deep ensemble vehicle classification by using selected adversarial samples
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2018.06.035
– year: 2007
  ident: 10.1016/j.swevo.2019.100616_bib30
  article-title: A closed loop stability analysis and parameter selection of the Particle Swarm Optimization dynamics for faster convergence
– volume: 29
  start-page: 59
  issue: 2
  year: 2010
  ident: 10.1016/j.swevo.2019.100616_bib1
  article-title: Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging
  publication-title: Crit. Rev. Plant Sci.
  doi: 10.1080/07352681003617285
– volume: 10
  year: 2018
  ident: 10.1016/j.swevo.2019.100616_bib14
  article-title: Identification of apple leaf diseases based on deep convolutional neural networks
  publication-title: Symmetry
– volume: 11
  start-page: 925
  issue: 4
  year: 2015
  ident: 10.1016/j.swevo.2019.100616_bib47
  article-title: Efficacies of some fungicides and antagonists in controlling northern corn leaf blight disease
  publication-title: Int. J. Agric. Technol.
– volume: 48
  start-page: 220
  year: 2019
  ident: 10.1016/j.swevo.2019.100616_bib29
  article-title: Bio-inspired computation: where we stand and what’s next
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2019.04.008
– year: 2014
  ident: 10.1016/j.swevo.2019.100616_bib27
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: 10.1016/j.swevo.2019.100616_bib8
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– year: 2016
  ident: 10.1016/j.swevo.2019.100616_bib52
  article-title: Rethinking the inception architecture for computer vision
– year: 2016
  ident: 10.1016/j.swevo.2019.100616_bib12
  article-title: An efficient convolutional network for human pose estimation
– volume: 9
  start-page: 1543
  issue: 23
  year: 2015
  ident: 10.1016/j.swevo.2019.100616_bib42
  article-title: Genetic studies on common rust (Puccinia sorghii) of maize under Kashmir conditions
  publication-title: Afr. J. Microbiol. Res.
  doi: 10.5897/AJMR2015.7500
– ident: 10.1016/j.swevo.2019.100616_bib23
– volume: 83
  start-page: 1013
  year: 2016
  ident: 10.1016/j.swevo.2019.100616_bib11
  article-title: Pattern classification with imbalanced and multiclass data for the prediction of albendazole adverse event outcomes
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2016.04.216
– volume: 9
  start-page: 1345
  issue: 20
  year: 2015
  ident: 10.1016/j.swevo.2019.100616_bib43
  article-title: Integrated disease management strategy of common rust of maize incited by Puccinia sorghi Schw
  publication-title: Afr. J. Microbiol. Res.
  doi: 10.5897/AJMR2014.7112
– start-page: 57
  year: 2016
  ident: 10.1016/j.swevo.2019.100616_bib35
  article-title: A bias-variance analysis of ensemble learning for Classification
– volume: 3
  start-page: 2106
  issue: 5
  year: 2016
  ident: 10.1016/j.swevo.2019.100616_bib48
  article-title: Performance analysis of neural networks and support vector machines using confusion matrix
– year: 1984
  ident: 10.1016/j.swevo.2019.100616_bib32
– start-page: 411
  year: 2015
  ident: 10.1016/j.swevo.2019.100616_bib36
  article-title: Ensemble learning
  publication-title: Encycl. Biom.
  doi: 10.1007/978-1-4899-7488-4_293
– year: 2013
  ident: 10.1016/j.swevo.2019.100616_bib24
  article-title: An empirical study of learning rates in deep neural networks for speech recognition
– volume: 181
  start-page: 4550
  issue: 20
  year: 2011
  ident: 10.1016/j.swevo.2019.100616_bib31
  article-title: Scale-free fully informed particle swarm optimization Algorithm
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2011.02.026
– ident: 10.1016/j.swevo.2019.100616_bib38
SSID ssj0000602559
Score 2.5955298
Snippet The plant disease classification based on using digital images is very challenging. In the last decade, machine learning techniques and plant images...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 100616
SubjectTerms Convolutional neural networks (CNNs)
Deep learning
Ensemble learning
Hyperparameters optimization
Imbalanced data
Orthogonal learning particle swarm optimization (OLPSO)
Plant disease classification
Transfer learning
Title An optimized model based on convolutional neural networks and orthogonal learning particle swarm optimization algorithm for plant diseases diagnosis
URI https://dx.doi.org/10.1016/j.swevo.2019.100616
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4QwEG6MXrz4Nj43PXgUl0cpcNwYzarRi26yN1JaWDG7sAF0Ew_-Cn-wM6VsNDEePEGgQ8jMdB7t1xlCzpjyRZA6vmVLP7NYojxL-KFjKddR4I08rgQu6N8_8OGI3Y798Qq57M7CIKzS2P7WpmtrbZ70DTf78zzvP7qQrUB8AVMOdJZpO8xYgPXzLz6c5TqLzXXUjD3mYLyFBF3xIQ3zqhfpGx4CdCIEDHDse_6bg_rmdK63yIaJFumg_aFtspIWO2Sz68RAzcTcJZ-DgpYw-Wf5e6qo7m5D0T8pWhYUgeVGweBbWMBSXzT8u6aigEFV81xO9GvTRWJC54YLtF6IatZ9XcuRiumkrPLmeUYh5KXzKUiHmp2eGm40eC-v98jo-urpcmiZfguW9HjUWKkTYikdiV7dhTiCeWHoZTwKsgzSnCiUEROch5ILFdmJm4QBGCdgqMSYR9rC2yerRVmkB4QqjwvupZAMOorhZmLiCyayQGROJIWwD4nbMTmWphg59sSYxh3q7CXWkolRMnErmUNyviSat7U4_h7OO-nFP1QqBm_xF-HRfwmPybqL6bgGdZ-Q1aZ6TU8hZmmSnlbKHlkb3NwNH74Ao63uRA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqOsDCG1GeHhiJmqebjFVF1dLHQpHYIsdOSlCbVE2gEr-DH8yd61QgoQ5MiRJfFN2d72F_viPkzpUeb8WWZ5jCSww3ko7BPd8ypG1J8EYOkxwX9Edj1nt2H1-8lxrpVGdhEFapbf_apitrrZ80NTebizRtPtmQrUB8AVMOdNZFO1zH6lSg7PV2f9Abb5ZaTKYCZ2wzByQG0lT1hxTSq1jFH3gO0AoQM8Cw9flfPuqH3-kekn0dMNL2-p-OSC3OjslB1YyB6rl5Qr7aGc1h_s_Tz1hS1eCGoouSNM8oYsu1jsG3sIaluigEeEF5BoOW5Ws-Va91I4kpXWhG0GLFl_Pq60qUlM-m-TItX-cUol66mIGAqN7sKeBG4ffS4pQ8dx8mnZ6hWy4YwmFBacSWj9V0BDp2G0IJ1_F9J2FBK0kg0wl8EbicMV8wLgMzsiO_BfYJGCow7BEmd87ITpZn8Tmh0mGcOTHkg5Z0cT8x8rjLkxZPrEBwbjaIXTE5FLoeObbFmIUV8OwtVJIJUTLhWjINcr8hWqzLcWwfzirphb-0KgSHsY3w4r-Et2S3NxkNw2F_PLgkezZm5wrjfUV2yuV7fA0hTBndaBX9Bsp18PU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+optimized+model+based+on+convolutional+neural+networks+and+orthogonal+learning+particle+swarm+optimization+algorithm+for+plant+diseases+diagnosis&rft.jtitle=Swarm+and+evolutionary+computation&rft.au=Darwish%2C+Ashraf&rft.au=Ezzat%2C+Dalia&rft.au=Hassanien%2C+Aboul+Ella&rft.date=2020-02-01&rft.pub=Elsevier+B.V&rft.issn=2210-6502&rft.volume=52&rft_id=info:doi/10.1016%2Fj.swevo.2019.100616&rft.externalDocID=S2210650219305462
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-6502&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-6502&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-6502&client=summon