Numerical Study of Low Rank Approximation Methods for Mechanics Data and Its Analysis

This paper proposes a comparison of the numerical aspect and efficiency of several low rank approximation techniques for multidimensional data, namely CPD, HOSVD, TT-SVD, RPOD, QTT-SVD and HT. This approach is different from the numerous papers that compare the theoretical aspects of these methods o...

Full description

Saved in:
Bibliographic Details
Published inJournal of scientific computing Vol. 87; no. 1
Main Author Lestandi, Lucas
Format Journal Article
LanguageEnglish
Published New York Springer US 01.04.2021
Springer Verlag
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper proposes a comparison of the numerical aspect and efficiency of several low rank approximation techniques for multidimensional data, namely CPD, HOSVD, TT-SVD, RPOD, QTT-SVD and HT. This approach is different from the numerous papers that compare the theoretical aspects of these methods or propose efficient implementation of a single technique. Here, after a brief presentation of the studied methods, they are tested in practical conditions in order to draw hindsight at which one should be preferred. Synthetic data provides sufficient evidence for dismissing CPD, T-HOSVD and RPOD. Then, three examples from mechanics provide data for realistic application of TT-SVD and ST-HOSVD. The obtained low rank approximation provides different levels of compression and accuracy depending on how separable the data is. In all cases, the data layout has significant influence on the analysis of modes and computing time while remaining similarly efficient at compressing information. Both methods provide satisfactory compression, from 0.1% to 20% of the original size within a few percent error in L 2 norm. ST-HOSVD provides an orthonormal basis while TT-SVD doesn’t. QTT is performing well only when one dimension is very large. A final experiment is applied to an order 7 tensor with ( 4 × 8 × 8 × 64 × 64 × 64 × 64 ) entries (32 GB) from complex multi-physics experiment. In that case, only HT provides actual compression (50%) due to the low separability of this data. However, it is better suited for higher order d . Finally, these numerical tests have been performed with pydecomp , an open source python library developed by the author.
AbstractList This paper proposes a comparison of the numerical aspect and efficiency of several low rank approximation techniques for multidimensional data, namely CPD, HOSVD, TT-SVD, RPOD, QTT-SVD and HT. This approach is different from the numerous papers that compare the theoretical aspects of these methods or propose efficient implementation of a single technique. Here, after a brief presentation of the studied methods, they are tested in practical conditions in order to draw hindsight at which one should be preferred. Synthetic data provides sufficient evidence for dismissing CPD, T-HOSVD and RPOD. Then, three examples from mechanics provide data for realistic application of TT-SVD and ST-HOSVD. The obtained low rank approximation provides different levels of compression and accuracy depending on how separable the data is. In all cases, the data layout has significant influence on the analysis of modes and computing time while remaining similarly efficient at compressing information. Both methods provide satisfactory compression, from 0.1% to 20% of the original size within a few percent error in L 2 norm. ST-HOSVD provides an orthonormal basis while TT-SVD doesn’t. QTT is performing well only when one dimension is very large. A final experiment is applied to an order 7 tensor with ( 4 × 8 × 8 × 64 × 64 × 64 × 64 ) entries (32 GB) from complex multi-physics experiment. In that case, only HT provides actual compression (50%) due to the low separability of this data. However, it is better suited for higher order d . Finally, these numerical tests have been performed with pydecomp , an open source python library developed by the author.
This paper proposes a comparison of the numerical aspect and efficiency of several low rank approximation techniques for multidimensional data, namely CPD, HOSVD, TT-SVD, RPOD, QTT-SVD and HT. This approach is different from the numerous papers that compare the theoretical aspects of these methods or propose efficient implementation of a single technique. Here, after a brief presentation of the studied methods, they are tested in practical conditions in order to draw hindsight at which one should be preferred. Synthetic data provides sufficient evidence for dismissing CPD, T-HOSVD and RPOD. Then, three examples from mechanics provide data for realistic application of TT-SVD and ST-HOSVD. The obtained low rank approximation provides different levels of compression and accuracy depending on how separable the data is. In all cases, the data layout has significant influence on the analysis of modes and computing time while remaining similarly efficient at compressing information. Both methods provide satisfactory compression, from 0.1% to 20% of the original size within a few percent error in L2 norm. ST-HOSVD provides an orthonormal basis while TT-SVD doesn’t. QTT is performing well only when one dimension is very large. A final experiment is applied to an order 7 tensor with (4 × 8 × 8 × 64 × 64 × 64 × 64) entries (32GB) from complex multi-physics experiment. In that case, only HT provides actual compression (50%) due to the low separability of this data. However, it is better suited for higher order d. Finally, these numerical tests have been performed with pydecomp , an open source python library developed by the author.
ArticleNumber 14
Author Lestandi, Lucas
Author_xml – sequence: 1
  givenname: Lucas
  orcidid: 0000-0001-8457-1131
  surname: Lestandi
  fullname: Lestandi, Lucas
  email: Lucas_Lestandi@ihpc.a-star.edu.sg
  organization: School of Physical and Mathematical Sciences, Nanyang Technological University, Engineering Mechanics Department, IHPC, ASTAR
BackLink https://hal.science/hal-04543561$$DView record in HAL
BookMark eNp9kLtOwzAUhi1UJNrCCzB5ZQj4ksTxWJVLKwWQgM7WiZPQlNSu7BTo2-M2sDB0OT62_u_Y_kZoYKypELqk5JoSIm48JZImEWE0IjQOlZ2gIU0Ej0Qq6QANSZYlkYhFfIZG3q8IITKTbIgWT9t15RoNLX7ttuUO2xrn9gu_gPnAk83G2e9mDV1jDX6suqUtPa6tC71egmm0x7fQAQZT4nnn8cRAu_ONP0enNbS-uvhdx2hxf_c2nUX588N8OskjzVPZRWXNylrGRcFkxkQhJadchI0umYh1KXVSCKgZMJ6RlEMVA1DJdBaSVSpA8zG66ucuoVUbF17qdspCo2aTXO3PSJzEPEnpJw3ZrM9qZ713Va100x1-1jloWkWJ2qtUvUoVVKqDSsUCyv6hf3cdhXgP-RA275VTK7t1QZA_Rv0AZg2H1A
CitedBy_id crossref_primary_10_1103_PhysRevResearch_5_033123
crossref_primary_10_1080_0951192X_2023_2257628
Cites_doi 10.1007/s00365-011-9131-1
10.1007/978-1-4684-9464-8
10.1007/978-3-642-28027-6
10.1016/j.compfluid.2018.01.038
10.1090/qam/910462
10.1002/gamm.201310004
10.1016/j.cma.2018.12.015
10.1016/j.laa.2011.08.010
10.1002/sapm19287139
10.1007/978-3-030-17012-7_5
10.1016/B978-0-12-493240-1.50017-X
10.1007/BF02310791
10.1007/BF02288367
10.1137/090757861
10.1016/j.compfluid.2018.01.035
10.1007/s00365-012-9175-x
10.1137/110836067
10.2478/cmam-2011-0016
10.1016/j.jcp.2013.02.028
10.1137/100799010
10.1109/SC.2012.58
10.1137/090752286
10.1007/978-3-319-11259-6_21-1
10.1145/2538688
10.1137/090764189
10.1137/15M1036919
10.1137/07070111X
10.1016/j.jcp.2020.109704
10.1063/1.857881
10.1037/h0071325
10.1007/s001620050119
10.1137/140960980
10.1186/s40323-018-0119-2
10.1137/S0895479896305696
10.1007/978-3-7091-1794-1
10.1109/IPDPS.2016.67
10.1007/BF02289464
10.1186/s40323-015-0038-4
10.1063/1.869686
10.1016/j.jcp.2019.108973
10.1016/j.actamat.2017.11.033
10.1137/16M1082214
10.1006/jcph.1998.5943
10.1002/nme.5252
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1007/s10915-021-01421-2
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
Physics
Computer Science
EISSN 1573-7691
ExternalDocumentID oai_HAL_hal_04543561v1
10_1007_s10915_021_01421_2
GrantInformation_xml – fundername: National Research Council
  grantid: A19E1a0097
– fundername: Ministery of Education
  grantid: MOE2018-T2-1-05
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9R
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z92
ZMTXR
ZWQNP
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
1XC
VOOES
ID FETCH-LOGICAL-c369t-df2df94bb29827b993137b29cd274cd9c5b7af2a238063ae4aa192c8b99e67ac3
IEDL.DBID U2A
ISSN 0885-7474
IngestDate Fri May 09 12:24:51 EDT 2025
Thu Apr 24 22:53:12 EDT 2025
Tue Jul 01 00:51:43 EDT 2025
Fri Feb 21 02:49:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Tensor decomposition
Hierarchical
SVD
HOSVD
POD
Canonical decomposition
15A69
Tensor train
HT
78M34
QTT
RPOD
35Q35
15A21
ST-HOSVD
Low rank approximation
Canonical Decomposition
Tensor Train
SVD Mathematics Subject Classification 35Q35
tensor decomposition
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c369t-df2df94bb29827b993137b29cd274cd9c5b7af2a238063ae4aa192c8b99e67ac3
ORCID 0000-0001-8457-1131
OpenAccessLink https://hal.science/hal-04543561
ParticipantIDs hal_primary_oai_HAL_hal_04543561v1
crossref_citationtrail_10_1007_s10915_021_01421_2
crossref_primary_10_1007_s10915_021_01421_2
springer_journals_10_1007_s10915_021_01421_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210400
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 4
  year: 2021
  text: 20210400
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of scientific computing
PublicationTitleAbbrev J Sci Comput
PublicationYear 2021
Publisher Springer US
Springer Verlag
Publisher_xml – name: Springer US
– name: Springer Verlag
References StabileGRozzaGFinite volume POD-Galerkin stabilised reduced order methods for the parametrised incompressible Navier-Stokes equationsComput. Fluids2018173273284384366910.1016/j.compfluid.2018.01.035
SenguptaTKLestandiLHaiderSIGullapalliAAzaïezMReduced order model of flows by time-scaling interpolation of DNS dataAdv. Model. Simulat. Eng. Sci.201852610.1186/s40323-018-0119-2
Cazemier, W., Verstappen, R.W.C.P., Veldman, E.P., Introduction, I.: Proper orthogonal decomposition and low-dimensional models for driven cavity flows. Phys. Fluids 10(7), 1685–1699 (1998)
GrasedyckLHierarchical singular value decomposition of tensorsSIAM J. Matrix Anal. Appl.201031420292054267895510.1137/090764189
Kressner, D., Tobler, C.: htucker A Matlab toolbox for tensors in hierarchical Tucker format. pp. 1–28 (2013)
Chinesta, F., Ladavèze, P.: Separated representations and PGD-based model reduction. Fund. Appl. Int. Centre Mech. Sci. Courses Lect., 554, 24. (2014)
OseledetsIVTensor-train decompositionSIAM J. Sci. Comput.201133522952317283753310.1137/090752286
KhoromskijBNO(d logN)-Quantics approximation of N-d tensors in high-dimensional numerical modelingConstr. Approx.201134257280282277110.1007/s00365-011-9131-1
SaadYNumerical Methods for Large Eigenvalue Problems. Algorithms and Architectures for Advanced Scientific Computing1992ManchesterManchester University Press
GrasedyckLHackbuschWNrBAn introduction to hierachical (H) rank and TT rank of tensors with examplesComput. Methods Appl. Math2011113291304284478010.2478/cmam-2011-0016
Deane, aE., Kevrekidis, I.G., Karniadakis, G.E., Orszag, Sa.: Low-dimensional models for complex geometry flows: application to grooved channels and circular cylinders. Phys Fluids A Fluid Dyn 3(10), 2337 (1991)
Philippe, B., Saad, Y.: Calcul des valeurs propres. In: Techniques de l’ingénieur. Sciences fondamentales, (AF1224) (2014)
Demchik, V., Bačák, M., Bordag, S.: Out-of-core singular value decomposition. pp. 1–11 (2019)
TuckerLRSome mathematical notes on three-mode factor analysisPsychometrika196631327931120539510.1007/BF02289464
BallaniJFast Evaluation of Near-Field Boundary Integrals Using Tensor Approximations2012LeipzigUniversity of Leipzig1261.65026
Fahl, M.: Trust-region Methods for flow control based on reduced order modelling. PhD thesis (2001)
KoldaTGBaderBWTensor decompositions and applicationsSIAM Rev.2009513455500253505610.1137/07070111X
Lestandi, L., Bhaumik, S., Sengupta, T.K., Krishna Chand Avatar, G.R., Azaïez, M.: POD applied to numerical study of unsteady flow inside lid-driven cavity. J. Math. Study 51(2), 150–176 (2018)
Rabani, E., Toledo, S.: Out-of-core SVD and QR decompositions. In: Proceedings of the 10th SIAM Conference on Parallel Processing for Scientific Computing, Portsmouth, VA, CD-ROM, SIAM, Philadelphia, vol. 572, pp. 1–9 (2001)
CarlbergKFarhatCCortialJAmsallemDThe GNAT method for nonlinear model reduction: effective implementation and application to computational fluid dynamics and turbulent flowsJ. Comput. Phys.2013242623647306205110.1016/j.jcp.2013.02.028
Harshman, Ra.: Foundations of the PARAFAC procedure: models and conditions for an explanatory multimodal factor analysis. UCLA Work. Papers Phonetics 16(10), 1–84 (1970)
OseledetsIVApproximation of 2dx2d matrices using tensor decompositionSIAM J. Matrix Anal. Appl.20103142130214510.1137/090757861
HotellingHAnalysis of a complex of statistical variables into principal componentsJ. Edu. Psychol.193324641744110.1037/h0071325
BallaniJGrasedyckLHierarchical tensor approximation of output quantities of parameter-dependent PDEsSIAM/ASA J. Uncertain. Quantif.201431852872340003110.1137/140960980
IolloALanteriSDésidériJ-AStability Properties of POD Galerkin approximations for the compressible Navier Stokes equationsTheoret. Comput. Fluid Dyn.20001337739610.1007/s001620050119
De LathauwerLDe MoorBVandewalleJA multilinear singular value decompositionSIAM J. Matrix Anal. Appl.200021412531278178027210.1137/S0895479896305696
LumleyJLMeyerRECoherent structures in turbulenceTransition and Turbulence1981CambridgeAcademic Press21524210.1016/B978-0-12-493240-1.50017-X
EckartCYoungGThe approximation of one matrix by another of lower rankPsychometrika19361321121810.1007/BF02288367
VannieuwenhovenNVandebrilRMeerbergenKA new truncation strategy for the higher-order singular value decompositionSIAM J. Sci. Comput.2012342A1027A1052291431410.1137/110836067
Cichocki, A.: Tensor networks for big data analytics and large-scale optimization problems. arXiv preprintarXiv:1407.3124, pp. 1–36, (2014)
AzaïezMLestandiLRebolloTCPirozzoliSSenguptaTLow rank approximation of multidimensional dataHigh-Performance Computing of Big Data for Turbulence and Combustion2019BerlinSpringer10.1007/978-3-030-17012-7_5
Falco, A., Hackbusch, W., Nouy, A.: Geometric structures in tensor representations (Final Release). pp 1–50 (2015)
Gorodetsky, A.: Continuous low-rank tensor decompositions, with applications to stochastic optimal control and data assimilation. PhD thesis, MIT (2016)
Sirovich, L.: Turbulence and the dynamics of coherent structures: I—Coherent structures, II—Symmetries and transformations. III—Dynamics and scaling. Q. Appl. Math. 45, 561 (1987)
GrasedyckLKressnerDToblerCA literature survey of low-rank tensor approximation techniquesGAMM Mitt.20133615378309591410.1002/gamm.201310004
ChinestaFKeuningsRLeygueAThe Proper Generalized Decomposition for Advanced Numerical Simulations2013BerlinSpringer1287.65001
Daulbaev, T., Gusak, J., Ponomarev, E., Cichocki, A., Oseledets, I.: Reduced-order modeling of deep neural networks (2019)
OseledetsIVConstructive representation of functions in low-rank tensor formatsConstr. Approx.2013371118301020810.1007/s00365-012-9175-x
Novikov, A., Izmailov, P., Khrulkov, V., Figurnov, M., Oseledets, I.: Tensor Train decomposition on TensorFlow (T3F). (2018)
LeeKCarlbergKModel reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencodersJ. Comput. Phys.2018404108973404388410.1016/j.jcp.2019.108973
AllierP-EChamoinLLadevèzePProper generalized decomposition computational methods on a benchmark problem: introducing a new strategy based on Constitutive Relation Error minimizationAdv. Model. Simulat. Eng. Sci.2015211710.1186/s40323-015-0038-4
Austin, W., Ballard, G., Kolda, T.G.: Parallel tensor compression for large-scale scientific data. In: Proceedings—2016 IEEE 30th International Parallel and Distributed Processing Symposium, IPDPS 2016, (2016)
Carroll, J.D., Chang, J.J.: Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition. Psychometrika 35(3), 283–319 (1970)
KressnerDToblerCLow-Rank tensor Krylov subspace methods for parametrized linear systemsSIAM J. Matrix Anal. Appl.201132412881316285461410.1137/100799010
Bader, B.W., Kolda, T.G. and Others: “MATLAB Tensor Toolbox Version 3.0-dev.” Available online (2017)
BallaniJGrasedyckLKlugeMBlack box approximation of tensors in hierarchical tucker formatLinear Algebra Appl.20104382639657299635810.1016/j.laa.2011.08.010
AzaïezMBelgacemFBRebolloTCRecursive POD expansion for reaction-diffusion equationAdv. Model. Simulat. Eng. Sci.201631122
KhoromskijBNO(logN)-Quantics approximation of N-d tensors in high-dimensional numerical modelingConstr. Approx.201134257280282277110.1007/s00365-011-9131-1
BigoniDEngsig-karupAPMarzoukYMSpectral tensor-train decompositionSIAM J. Sci. Comput.201638132343977210.1137/15M1036919
LuL-XNarayanaswamiSZhangYWPhase field simulation of powder bed-based additive manufacturingActa Materialia201814480180910.1016/j.actamat.2017.11.033
HackbuschWTensor Spaces and Numerical Tensor Calculus2012BerlinSpringer10.1007/978-3-642-28027-6
HitchcockFMultiple invariants and generalized rank of a p-way matrix or tensorJ. Math. Phys.19277397910.1002/sapm19287139
Bergmann, M.: Optimisation aérodynamique par réduction de modèle POD et contrôle optimal. Application au sillage laminaire d’un cylindre circulaire. PhD thesis, Institut National Polytechnique de Lorraine / LEMTA (2004)
Alimi, J.M., Bouillot, V., Rasera, Y., Reverdy, V., Corasaniti, P., Balmès, I., Requena, S., Delaruelle, X., Richet, J.-N.: First-ever full observable universe simulation. In: International Conference for HPC, Networking, Storage and Analysis, SC (2012)
Pearson, K.: LIII. On lines and planes of closest fit to systems of points in space. Lond. Edinb. Dublin Philos. Mag. J. Sci. 2(11), 559–572 (1901)
QuesadaCGonzálezDAlfaroICuetoEChinestaFComputational vademecums for real-time simulation of surgical cutting in haptic environmentsInt. J. Numer. Methods Eng.20161081012301247357372210.1002/nme.5252
WuLRomeroEStathopoulosAPRIMME\_SVDS: a high-performance preconditioned SVD solver for accurate large-scale computationsSIAM J. Sci. Comput.2017395S248S27110.1137/16M1082214
Oseledets, I.V., Dolgov, S., Savostyanov, D.: “ttpy,” (2018)
Nouy, A.: Low-rank tensor methods for model order reduction, pp. 1–73 (2015)
Oseledets, I., Tyrtyshnikov, E.E.: Tensor tree decomposition does not need a tree. Preprint, (2009)
Loève, M.: Probability Theory 9, (1977)
de Lathauwer, L., de Moor, B., Vandewalle, J.: On the best rank-1 and rank-(R1, R2,..., RN) approximation of higher order tensors. SIAM J. Matrix Anal. Appl. 21(4), 1324–1342 (2000)
DuntonAMJofreLIaccarinoGDoostanAPass-efficient methods for compression of high-dimensional turbulent flow dataJ. Comput. Phys.2020423109704416310010.1016/j.jcp.2020.109704
Lestandi, L.: Low rank approximation techniques and reduced order modeling applied to some fluid dynamics problems. Phd. thesis, Université de Bordeaux (2018)
ItoKRavindranSA Reduced-order method for simulation and control of fluid flowsJ. Comput. Phys.1998143403163117610.1006/jcph.1998.5943
GorodetskyAKaramanSMarzoukYA continuous analogue of the tensor-train decompositionComput. Methods Appl. Mech. Eng.20193475984389616410.1016/j.cma.2018.12.015
KosambiDDStatistics in Function Spaces1943New DelhiSpringer115123
LestandiLBhaumikSAvatarGRKCAzaiezMSenguptaTKMultiple Hopf bifurcations and flow dyn
J Ballani (1421_CR58) 2012
1421_CR8
1421_CR50
1421_CR9
1421_CR11
1421_CR55
Y Saad (1421_CR48) 1992
1421_CR1
1421_CR13
C Quesada (1421_CR7) 2016; 108
1421_CR51
1421_CR54
L Lestandi (1421_CR64) 2018; 166
1421_CR19
IV Oseledets (1421_CR30) 2011; 33
1421_CR16
1421_CR18
L De Lathauwer (1421_CR26) 2000; 21
1421_CR17
D Bigoni (1421_CR39) 2016; 38
LR Tucker (1421_CR21) 1966; 31
K Carlberg (1421_CR4) 2013; 242
C Eckart (1421_CR14) 1936; 1
L Grasedyck (1421_CR35) 2010; 31
1421_CR61
K Lee (1421_CR5) 2018; 404
L-X Lu (1421_CR65) 2018; 144
A Iollo (1421_CR68) 2000; 13
K Ito (1421_CR15) 1998; 143
1421_CR23
1421_CR67
1421_CR22
1421_CR66
1421_CR63
TK Sengupta (1421_CR62) 2018; 5
1421_CR27
M Azaïez (1421_CR44) 2016; 3
1421_CR29
F Chinesta (1421_CR2) 2013
N Vannieuwenhoven (1421_CR28) 2012; 34
G Stabile (1421_CR3) 2018; 173
DD Kosambi (1421_CR53) 1943
W Hackbusch (1421_CR25) 2012
1421_CR33
AM Dunton (1421_CR52) 2020; 423
IV Oseledets (1421_CR32) 2010; 31
1421_CR37
P-E Allier (1421_CR56) 2015; 2
L Wu (1421_CR49) 2017; 39
A Gorodetsky (1421_CR41) 2019; 347
D Kressner (1421_CR6) 2011; 32
H Hotelling (1421_CR10) 1933; 24
L Grasedyck (1421_CR57) 2011; 11
J Ballani (1421_CR34) 2010; 438
L Grasedyck (1421_CR36) 2013; 36
M Azaïez (1421_CR45) 2019
F Hitchcock (1421_CR20) 1927; 7
1421_CR47
IV Oseledets (1421_CR38) 2013; 37
1421_CR46
1421_CR40
1421_CR43
J Ballani (1421_CR59) 2014; 3
1421_CR42
BN Khoromskij (1421_CR31) 2011; 34
JL Lumley (1421_CR12) 1981
TG Kolda (1421_CR24) 2009; 51
BN Khoromskij (1421_CR60) 2011; 34
References_xml – reference: KressnerDToblerCLow-Rank tensor Krylov subspace methods for parametrized linear systemsSIAM J. Matrix Anal. Appl.201132412881316285461410.1137/100799010
– reference: Loève, M.: Probability Theory 9, (1977)
– reference: De LathauwerLDe MoorBVandewalleJA multilinear singular value decompositionSIAM J. Matrix Anal. Appl.200021412531278178027210.1137/S0895479896305696
– reference: Deane, aE., Kevrekidis, I.G., Karniadakis, G.E., Orszag, Sa.: Low-dimensional models for complex geometry flows: application to grooved channels and circular cylinders. Phys Fluids A Fluid Dyn 3(10), 2337 (1991)
– reference: Lestandi, L.: Low rank approximation techniques and reduced order modeling applied to some fluid dynamics problems. Phd. thesis, Université de Bordeaux (2018)
– reference: CarlbergKFarhatCCortialJAmsallemDThe GNAT method for nonlinear model reduction: effective implementation and application to computational fluid dynamics and turbulent flowsJ. Comput. Phys.2013242623647306205110.1016/j.jcp.2013.02.028
– reference: QuesadaCGonzálezDAlfaroICuetoEChinestaFComputational vademecums for real-time simulation of surgical cutting in haptic environmentsInt. J. Numer. Methods Eng.20161081012301247357372210.1002/nme.5252
– reference: Falco, A., Hackbusch, W., Nouy, A.: Geometric structures in tensor representations (Final Release). pp 1–50 (2015)
– reference: StabileGRozzaGFinite volume POD-Galerkin stabilised reduced order methods for the parametrised incompressible Navier-Stokes equationsComput. Fluids2018173273284384366910.1016/j.compfluid.2018.01.035
– reference: Rabani, E., Toledo, S.: Out-of-core SVD and QR decompositions. In: Proceedings of the 10th SIAM Conference on Parallel Processing for Scientific Computing, Portsmouth, VA, CD-ROM, SIAM, Philadelphia, vol. 572, pp. 1–9 (2001)
– reference: AzaïezMLestandiLRebolloTCPirozzoliSSenguptaTLow rank approximation of multidimensional dataHigh-Performance Computing of Big Data for Turbulence and Combustion2019BerlinSpringer10.1007/978-3-030-17012-7_5
– reference: GrasedyckLHackbuschWNrBAn introduction to hierachical (H) rank and TT rank of tensors with examplesComput. Methods Appl. Math2011113291304284478010.2478/cmam-2011-0016
– reference: IolloALanteriSDésidériJ-AStability Properties of POD Galerkin approximations for the compressible Navier Stokes equationsTheoret. Comput. Fluid Dyn.20001337739610.1007/s001620050119
– reference: KhoromskijBNO(d logN)-Quantics approximation of N-d tensors in high-dimensional numerical modelingConstr. Approx.201134257280282277110.1007/s00365-011-9131-1
– reference: BallaniJFast Evaluation of Near-Field Boundary Integrals Using Tensor Approximations2012LeipzigUniversity of Leipzig1261.65026
– reference: Kressner, D., Tobler, C.: htucker A Matlab toolbox for tensors in hierarchical Tucker format. pp. 1–28 (2013)
– reference: Bergmann, M.: Optimisation aérodynamique par réduction de modèle POD et contrôle optimal. Application au sillage laminaire d’un cylindre circulaire. PhD thesis, Institut National Polytechnique de Lorraine / LEMTA (2004)
– reference: Harshman, Ra.: Foundations of the PARAFAC procedure: models and conditions for an explanatory multimodal factor analysis. UCLA Work. Papers Phonetics 16(10), 1–84 (1970)
– reference: HotellingHAnalysis of a complex of statistical variables into principal componentsJ. Edu. Psychol.193324641744110.1037/h0071325
– reference: Lestandi, L., Bhaumik, S., Sengupta, T.K., Krishna Chand Avatar, G.R., Azaïez, M.: POD applied to numerical study of unsteady flow inside lid-driven cavity. J. Math. Study 51(2), 150–176 (2018)
– reference: AllierP-EChamoinLLadevèzePProper generalized decomposition computational methods on a benchmark problem: introducing a new strategy based on Constitutive Relation Error minimizationAdv. Model. Simulat. Eng. Sci.2015211710.1186/s40323-015-0038-4
– reference: WuLRomeroEStathopoulosAPRIMME\_SVDS: a high-performance preconditioned SVD solver for accurate large-scale computationsSIAM J. Sci. Comput.2017395S248S27110.1137/16M1082214
– reference: de Lathauwer, L., de Moor, B., Vandewalle, J.: On the best rank-1 and rank-(R1, R2,..., RN) approximation of higher order tensors. SIAM J. Matrix Anal. Appl. 21(4), 1324–1342 (2000)
– reference: Carroll, J.D., Chang, J.J.: Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition. Psychometrika 35(3), 283–319 (1970)
– reference: LuL-XNarayanaswamiSZhangYWPhase field simulation of powder bed-based additive manufacturingActa Materialia201814480180910.1016/j.actamat.2017.11.033
– reference: Chinesta, F., Ladavèze, P.: Separated representations and PGD-based model reduction. Fund. Appl. Int. Centre Mech. Sci. Courses Lect., 554, 24. (2014)
– reference: LestandiLBhaumikSAvatarGRKCAzaiezMSenguptaTKMultiple Hopf bifurcations and flow dynamics inside a 2D singular lid driven cavityComput. Fluids201816686103377501510.1016/j.compfluid.2018.01.038
– reference: KhoromskijBNO(logN)-Quantics approximation of N-d tensors in high-dimensional numerical modelingConstr. Approx.201134257280282277110.1007/s00365-011-9131-1
– reference: BallaniJGrasedyckLKlugeMBlack box approximation of tensors in hierarchical tucker formatLinear Algebra Appl.20104382639657299635810.1016/j.laa.2011.08.010
– reference: SaadYNumerical Methods for Large Eigenvalue Problems. Algorithms and Architectures for Advanced Scientific Computing1992ManchesterManchester University Press
– reference: TuckerLRSome mathematical notes on three-mode factor analysisPsychometrika196631327931120539510.1007/BF02289464
– reference: Oseledets, I.V., Dolgov, S., Savostyanov, D.: “ttpy,” (2018)
– reference: Demchik, V., Bačák, M., Bordag, S.: Out-of-core singular value decomposition. pp. 1–11 (2019)
– reference: OseledetsIVTensor-train decompositionSIAM J. Sci. Comput.201133522952317283753310.1137/090752286
– reference: ItoKRavindranSA Reduced-order method for simulation and control of fluid flowsJ. Comput. Phys.1998143403163117610.1006/jcph.1998.5943
– reference: GrasedyckLHierarchical singular value decomposition of tensorsSIAM J. Matrix Anal. Appl.201031420292054267895510.1137/090764189
– reference: Philippe, B., Saad, Y.: Calcul des valeurs propres. In: Techniques de l’ingénieur. Sciences fondamentales, (AF1224) (2014)
– reference: Sirovich, L.: Turbulence and the dynamics of coherent structures: I—Coherent structures, II—Symmetries and transformations. III—Dynamics and scaling. Q. Appl. Math. 45, 561 (1987)
– reference: DuntonAMJofreLIaccarinoGDoostanAPass-efficient methods for compression of high-dimensional turbulent flow dataJ. Comput. Phys.2020423109704416310010.1016/j.jcp.2020.109704
– reference: Fahl, M.: Trust-region Methods for flow control based on reduced order modelling. PhD thesis (2001)
– reference: KoldaTGBaderBWTensor decompositions and applicationsSIAM Rev.2009513455500253505610.1137/07070111X
– reference: Cazemier, W., Verstappen, R.W.C.P., Veldman, E.P., Introduction, I.: Proper orthogonal decomposition and low-dimensional models for driven cavity flows. Phys. Fluids 10(7), 1685–1699 (1998)
– reference: Cichocki, A.: Tensor networks for big data analytics and large-scale optimization problems. arXiv preprintarXiv:1407.3124, pp. 1–36, (2014)
– reference: BigoniDEngsig-karupAPMarzoukYMSpectral tensor-train decompositionSIAM J. Sci. Comput.201638132343977210.1137/15M1036919
– reference: Austin, W., Ballard, G., Kolda, T.G.: Parallel tensor compression for large-scale scientific data. In: Proceedings—2016 IEEE 30th International Parallel and Distributed Processing Symposium, IPDPS 2016, (2016)
– reference: EckartCYoungGThe approximation of one matrix by another of lower rankPsychometrika19361321121810.1007/BF02288367
– reference: LeeKCarlbergKModel reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencodersJ. Comput. Phys.2018404108973404388410.1016/j.jcp.2019.108973
– reference: Alimi, J.M., Bouillot, V., Rasera, Y., Reverdy, V., Corasaniti, P., Balmès, I., Requena, S., Delaruelle, X., Richet, J.-N.: First-ever full observable universe simulation. In: International Conference for HPC, Networking, Storage and Analysis, SC (2012)
– reference: Gorodetsky, A.: Continuous low-rank tensor decompositions, with applications to stochastic optimal control and data assimilation. PhD thesis, MIT (2016)
– reference: OseledetsIVConstructive representation of functions in low-rank tensor formatsConstr. Approx.2013371118301020810.1007/s00365-012-9175-x
– reference: OseledetsIVApproximation of 2dx2d matrices using tensor decompositionSIAM J. Matrix Anal. Appl.20103142130214510.1137/090757861
– reference: GorodetskyAKaramanSMarzoukYA continuous analogue of the tensor-train decompositionComput. Methods Appl. Mech. Eng.20193475984389616410.1016/j.cma.2018.12.015
– reference: KosambiDDStatistics in Function Spaces1943New DelhiSpringer115123
– reference: BallaniJGrasedyckLHierarchical tensor approximation of output quantities of parameter-dependent PDEsSIAM/ASA J. Uncertain. Quantif.201431852872340003110.1137/140960980
– reference: GrasedyckLKressnerDToblerCA literature survey of low-rank tensor approximation techniquesGAMM Mitt.20133615378309591410.1002/gamm.201310004
– reference: Bader, B.W., Kolda, T.G. and Others: “MATLAB Tensor Toolbox Version 3.0-dev.” Available online (2017)
– reference: VannieuwenhovenNVandebrilRMeerbergenKA new truncation strategy for the higher-order singular value decompositionSIAM J. Sci. Comput.2012342A1027A1052291431410.1137/110836067
– reference: SenguptaTKLestandiLHaiderSIGullapalliAAzaïezMReduced order model of flows by time-scaling interpolation of DNS dataAdv. Model. Simulat. Eng. Sci.201852610.1186/s40323-018-0119-2
– reference: Oseledets, I., Tyrtyshnikov, E.E.: Tensor tree decomposition does not need a tree. Preprint, (2009)
– reference: Pearson, K.: LIII. On lines and planes of closest fit to systems of points in space. Lond. Edinb. Dublin Philos. Mag. J. Sci. 2(11), 559–572 (1901)
– reference: LumleyJLMeyerRECoherent structures in turbulenceTransition and Turbulence1981CambridgeAcademic Press21524210.1016/B978-0-12-493240-1.50017-X
– reference: HackbuschWTensor Spaces and Numerical Tensor Calculus2012BerlinSpringer10.1007/978-3-642-28027-6
– reference: AzaïezMBelgacemFBRebolloTCRecursive POD expansion for reaction-diffusion equationAdv. Model. Simulat. Eng. Sci.201631122
– reference: Daulbaev, T., Gusak, J., Ponomarev, E., Cichocki, A., Oseledets, I.: Reduced-order modeling of deep neural networks (2019)
– reference: HitchcockFMultiple invariants and generalized rank of a p-way matrix or tensorJ. Math. Phys.19277397910.1002/sapm19287139
– reference: Novikov, A., Izmailov, P., Khrulkov, V., Figurnov, M., Oseledets, I.: Tensor Train decomposition on TensorFlow (T3F). (2018)
– reference: ChinestaFKeuningsRLeygueAThe Proper Generalized Decomposition for Advanced Numerical Simulations2013BerlinSpringer1287.65001
– reference: Nouy, A.: Low-rank tensor methods for model order reduction, pp. 1–73 (2015)
– volume: 34
  start-page: 257
  year: 2011
  ident: 1421_CR60
  publication-title: Constr. Approx.
  doi: 10.1007/s00365-011-9131-1
– ident: 1421_CR51
– volume: 34
  start-page: 257
  year: 2011
  ident: 1421_CR31
  publication-title: Constr. Approx.
  doi: 10.1007/s00365-011-9131-1
– ident: 1421_CR11
  doi: 10.1007/978-1-4684-9464-8
– ident: 1421_CR61
– volume-title: Tensor Spaces and Numerical Tensor Calculus
  year: 2012
  ident: 1421_CR25
  doi: 10.1007/978-3-642-28027-6
– volume: 166
  start-page: 86
  year: 2018
  ident: 1421_CR64
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2018.01.038
– volume-title: Numerical Methods for Large Eigenvalue Problems. Algorithms and Architectures for Advanced Scientific Computing
  year: 1992
  ident: 1421_CR48
– ident: 1421_CR13
  doi: 10.1090/qam/910462
– volume: 36
  start-page: 53
  issue: 1
  year: 2013
  ident: 1421_CR36
  publication-title: GAMM Mitt.
  doi: 10.1002/gamm.201310004
– volume: 347
  start-page: 59
  year: 2019
  ident: 1421_CR41
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2018.12.015
– volume: 438
  start-page: 639
  issue: 2
  year: 2010
  ident: 1421_CR34
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2011.08.010
– ident: 1421_CR29
– volume: 7
  start-page: 39
  year: 1927
  ident: 1421_CR20
  publication-title: J. Math. Phys.
  doi: 10.1002/sapm19287139
– volume-title: High-Performance Computing of Big Data for Turbulence and Combustion
  year: 2019
  ident: 1421_CR45
  doi: 10.1007/978-3-030-17012-7_5
– start-page: 215
  volume-title: Transition and Turbulence
  year: 1981
  ident: 1421_CR12
  doi: 10.1016/B978-0-12-493240-1.50017-X
– ident: 1421_CR22
  doi: 10.1007/BF02310791
– volume: 1
  start-page: 211
  issue: 3
  year: 1936
  ident: 1421_CR14
  publication-title: Psychometrika
  doi: 10.1007/BF02288367
– volume: 31
  start-page: 2130
  issue: 4
  year: 2010
  ident: 1421_CR32
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/090757861
– volume: 173
  start-page: 273
  year: 2018
  ident: 1421_CR3
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2018.01.035
– ident: 1421_CR66
– ident: 1421_CR18
– volume: 37
  start-page: 1
  issue: 1
  year: 2013
  ident: 1421_CR38
  publication-title: Constr. Approx.
  doi: 10.1007/s00365-012-9175-x
– volume: 34
  start-page: A1027
  issue: 2
  year: 2012
  ident: 1421_CR28
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/110836067
– volume: 11
  start-page: 291
  issue: 3
  year: 2011
  ident: 1421_CR57
  publication-title: Comput. Methods Appl. Math
  doi: 10.2478/cmam-2011-0016
– volume: 242
  start-page: 623
  year: 2013
  ident: 1421_CR4
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2013.02.028
– start-page: 115
  volume-title: Statistics in Function Spaces
  year: 1943
  ident: 1421_CR53
– volume-title: Fast Evaluation of Near-Field Boundary Integrals Using Tensor Approximations
  year: 2012
  ident: 1421_CR58
– volume: 32
  start-page: 1288
  issue: 4
  year: 2011
  ident: 1421_CR6
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/100799010
– ident: 1421_CR1
  doi: 10.1109/SC.2012.58
– volume: 33
  start-page: 2295
  issue: 5
  year: 2011
  ident: 1421_CR30
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/090752286
– ident: 1421_CR42
  doi: 10.1007/978-3-319-11259-6_21-1
– ident: 1421_CR54
  doi: 10.1145/2538688
– ident: 1421_CR47
– volume: 31
  start-page: 2029
  issue: 4
  year: 2010
  ident: 1421_CR35
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/090764189
– volume: 38
  start-page: 1
  year: 2016
  ident: 1421_CR39
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/15M1036919
– volume: 3
  start-page: 1
  issue: 1
  year: 2016
  ident: 1421_CR44
  publication-title: Adv. Model. Simulat. Eng. Sci.
– volume: 51
  start-page: 455
  issue: 3
  year: 2009
  ident: 1421_CR24
  publication-title: SIAM Rev.
  doi: 10.1137/07070111X
– ident: 1421_CR40
– volume: 423
  start-page: 109704
  year: 2020
  ident: 1421_CR52
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2020.109704
– ident: 1421_CR67
– ident: 1421_CR9
– ident: 1421_CR16
  doi: 10.1063/1.857881
– ident: 1421_CR63
– ident: 1421_CR19
– volume: 24
  start-page: 417
  issue: 6
  year: 1933
  ident: 1421_CR10
  publication-title: J. Edu. Psychol.
  doi: 10.1037/h0071325
– volume: 13
  start-page: 377
  year: 2000
  ident: 1421_CR68
  publication-title: Theoret. Comput. Fluid Dyn.
  doi: 10.1007/s001620050119
– volume: 3
  start-page: 852
  issue: 1
  year: 2014
  ident: 1421_CR59
  publication-title: SIAM/ASA J. Uncertain. Quantif.
  doi: 10.1137/140960980
– volume: 5
  start-page: 26
  year: 2018
  ident: 1421_CR62
  publication-title: Adv. Model. Simulat. Eng. Sci.
  doi: 10.1186/s40323-018-0119-2
– ident: 1421_CR27
– volume-title: The Proper Generalized Decomposition for Advanced Numerical Simulations
  year: 2013
  ident: 1421_CR2
– volume: 21
  start-page: 1253
  issue: 4
  year: 2000
  ident: 1421_CR26
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/S0895479896305696
– ident: 1421_CR55
  doi: 10.1007/978-3-7091-1794-1
– ident: 1421_CR50
– ident: 1421_CR46
  doi: 10.1109/IPDPS.2016.67
– volume: 31
  start-page: 279
  issue: 3
  year: 1966
  ident: 1421_CR21
  publication-title: Psychometrika
  doi: 10.1007/BF02289464
– ident: 1421_CR23
– volume: 2
  start-page: 17
  issue: 1
  year: 2015
  ident: 1421_CR56
  publication-title: Adv. Model. Simulat. Eng. Sci.
  doi: 10.1186/s40323-015-0038-4
– ident: 1421_CR17
  doi: 10.1063/1.869686
– volume: 404
  start-page: 108973
  year: 2018
  ident: 1421_CR5
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.108973
– volume: 144
  start-page: 801
  year: 2018
  ident: 1421_CR65
  publication-title: Acta Materialia
  doi: 10.1016/j.actamat.2017.11.033
– ident: 1421_CR8
– ident: 1421_CR43
– volume: 39
  start-page: S248
  issue: 5
  year: 2017
  ident: 1421_CR49
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/16M1082214
– ident: 1421_CR37
– ident: 1421_CR33
– volume: 143
  start-page: 403
  year: 1998
  ident: 1421_CR15
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1998.5943
– volume: 108
  start-page: 1230
  issue: 10
  year: 2016
  ident: 1421_CR7
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.5252
SSID ssj0009892
Score 2.2832315
Snippet This paper proposes a comparison of the numerical aspect and efficiency of several low rank approximation techniques for multidimensional data, namely CPD,...
SourceID hal
crossref
springer
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Computational Mathematics and Numerical Analysis
Computer Science
Data Analysis, Statistics and Probability
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Mechanics
Modeling and Simulation
Physics
Theoretical
Title Numerical Study of Low Rank Approximation Methods for Mechanics Data and Its Analysis
URI https://link.springer.com/article/10.1007/s10915-021-01421-2
https://hal.science/hal-04543561
Volume 87
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgvcAB0QKiLJWFOIAgUuw42zGFlgJtD4hK5RTZjiMQVYpIyvL3jNOkBYQqccmmiQ_jZZ7leW8QOo5MJUxJbIM5LDYY48zwTU8ZDsQ65QoiZc5y7Q-c7pDdjOxRQQpLy2z38kgyX6m_kd18otnEevvL4AoLb9WGvbtO5BrSYCG16-WlkGH62AaAZVZQZf5u40c4Wn3UyZC_TkTzQNPZRBsFQsTBrEtraEUldbTen8urpnVUK2Zkik8K2ejTLTQcTGenL2OskwM_8STGvck7vuPJMw60dPjH04yniPt52egUA2CFZ839hWbxJc845kmEr7MUl2Il22jYad9fdI2iaIIhLcfPjCimUewzIajvUVcA_CCWCy8ygv2njHxpC5fHlEOoBnTCFeMcQJ70wFI5LpfWDqokk0TtIsyF43AiaSxswSLHFjE17ZhQZZmMmNxtIFL6LpSForgubDEOF1rI2t8h-DvM_R3SBjqb__My09NYan0EXTI31FLY3aAX6m9aOtAC8PdGGui87LGwmIDpkjb3_me-j9ZoPl50ss4BqmSvU3UIOCQTTVQNOq3WQN-vHm7bzXwYfgEqttNh
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fT9swED5ReNh4mKBsomwMC4G0aYsUO86vBx4qCmpH24eJSn3LbMcRiCpFJIXx_-wP3dlJykAIaQ-8REl0saLz2Xcn3_cdwEHqaukq6js84JnDueBO7EbaCdDX6VBSpSzKdTQO-hP-Y-pPV-BPg4Wx1e7NkaTdqf8Bu8XUoIlN-svxyupSyjN9f4eJWnE06OGsHjJ2enJ-3HfqXgKO8oK4dNKMpVnMpWRxxEKJXpl6IT6oFNMylcbKl6HImEAPhk5baC4Exj4qQkkdhEJ5OG4L1jD4iMzambDuA7VvZFsv43L1HQzOeQ3Nef6fH7m_1oUpvnxyAmsd2-kGvKsjUtKtTGgTVnTehvXRks61aMNmvQMU5EtNU_11CybjRXXaMyOmGPGezDMynN-RnyK_Il1DVf77ssJFkpFtU10QDJDx3mCNcVjSE6UgIk_JoCxIQ47yHiavotgPsJrPc70NRMggEFSxTPqSp4EvM-b6GWXaczl1RdgB2uguUTWDuWmkMUseuJeNvhPUd2L1nbAOfFt-c13xd7wovY9TshQ01Nv97jAx7wxVoYfB5i3twPdmxpJ6wRcvjLnzf-J78KZ_Phomw8H47CO8ZdZ2TKHQJ1gtbxZ6F2OgUn62Jkjg12vb_F9pkg4V
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swED-aDkb7MNZspdlHJ8YGG5uJJct2_NAH0ywkywdjLNA3T5IlWhacMjvL-l_1T-zJH2k3RmEPeTG2OQtxOvnu0P1-B_AmdbV0FfUdHnDjcC64E7k97QTo63QoqVIlynU6C4Zz_vnMP9uB6wYLU1a7N0eSFabBsjRlRfcyNd07wLeIWmSxTYU5XlldVjnWV2tM2vKTUR9X-C1jg0_fTodO3VfAUV4QFU5qWGoiLiWLeiyU6KGpF-KDSjFFU2mkfBkKwwR6M3TgQnMhMA5SPZTUQSiUh-O24AG36GPcQXMW39L89so2zLh1fQcDdV7DdP495z9cYevcFmL-dRpbOrnBY3hUR6ckrszpAHZ01ob96YbaNW_DQf03yMm7mrL6_ROYz1bVyc-C2MLEK7I0ZLJck68i-0FiS1v--6LCSJJp2bI6Jxgs473FHeOwpC8KQUSWklGRk4Yo5SnMt6LYQ9jNlpk-AiJkEAiqmJG-5GngS8Nc31CmPZdTV4QdoI3uElWzmdumGovklofZ6jtBfSelvhPWgQ-bby4rLo97pV_jkmwELQ33MJ4k9p2lLfQw8PxFO_CxWbGk3vz5PWM--z_xV_DwS3-QTEaz8XPYY6Xp2JqhF7Bb_FzplxgOFfK4tEAC37dt8jdt7hJI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+Study+of+Low+Rank+Approximation+Methods+for+Mechanics+Data+and+Its+Analysis&rft.jtitle=Journal+of+scientific+computing&rft.au=Lestandi%2C+Lucas&rft.date=2021-04-01&rft.pub=Springer+US&rft.issn=0885-7474&rft.eissn=1573-7691&rft.volume=87&rft.issue=1&rft_id=info:doi/10.1007%2Fs10915-021-01421-2&rft.externalDocID=10_1007_s10915_021_01421_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-7474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-7474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-7474&client=summon