Numerical Study of Low Rank Approximation Methods for Mechanics Data and Its Analysis
This paper proposes a comparison of the numerical aspect and efficiency of several low rank approximation techniques for multidimensional data, namely CPD, HOSVD, TT-SVD, RPOD, QTT-SVD and HT. This approach is different from the numerous papers that compare the theoretical aspects of these methods o...
Saved in:
Published in | Journal of scientific computing Vol. 87; no. 1 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.04.2021
Springer Verlag |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper proposes a comparison of the numerical aspect and efficiency of several low rank approximation techniques for multidimensional data, namely CPD, HOSVD, TT-SVD, RPOD, QTT-SVD and HT. This approach is different from the numerous papers that compare the theoretical aspects of these methods or propose efficient implementation of a single technique. Here, after a brief presentation of the studied methods, they are tested in practical conditions in order to draw hindsight at which one should be preferred. Synthetic data provides sufficient evidence for dismissing CPD, T-HOSVD and RPOD. Then, three examples from mechanics provide data for realistic application of TT-SVD and ST-HOSVD. The obtained low rank approximation provides different levels of compression and accuracy depending on how separable the data is. In all cases, the data layout has significant influence on the analysis of modes and computing time while remaining similarly efficient at compressing information. Both methods provide satisfactory compression, from 0.1% to 20% of the original size within a few percent error in
L
2
norm. ST-HOSVD provides an orthonormal basis while TT-SVD doesn’t. QTT is performing well only when one dimension is very large. A final experiment is applied to an order 7 tensor with
(
4
×
8
×
8
×
64
×
64
×
64
×
64
)
entries (32 GB) from complex multi-physics experiment. In that case, only HT provides actual compression (50%) due to the low separability of this data. However, it is better suited for higher order
d
. Finally, these numerical tests have been performed with pydecomp , an open source python library developed by the author. |
---|---|
AbstractList | This paper proposes a comparison of the numerical aspect and efficiency of several low rank approximation techniques for multidimensional data, namely CPD, HOSVD, TT-SVD, RPOD, QTT-SVD and HT. This approach is different from the numerous papers that compare the theoretical aspects of these methods or propose efficient implementation of a single technique. Here, after a brief presentation of the studied methods, they are tested in practical conditions in order to draw hindsight at which one should be preferred. Synthetic data provides sufficient evidence for dismissing CPD, T-HOSVD and RPOD. Then, three examples from mechanics provide data for realistic application of TT-SVD and ST-HOSVD. The obtained low rank approximation provides different levels of compression and accuracy depending on how separable the data is. In all cases, the data layout has significant influence on the analysis of modes and computing time while remaining similarly efficient at compressing information. Both methods provide satisfactory compression, from 0.1% to 20% of the original size within a few percent error in
L
2
norm. ST-HOSVD provides an orthonormal basis while TT-SVD doesn’t. QTT is performing well only when one dimension is very large. A final experiment is applied to an order 7 tensor with
(
4
×
8
×
8
×
64
×
64
×
64
×
64
)
entries (32 GB) from complex multi-physics experiment. In that case, only HT provides actual compression (50%) due to the low separability of this data. However, it is better suited for higher order
d
. Finally, these numerical tests have been performed with pydecomp , an open source python library developed by the author. This paper proposes a comparison of the numerical aspect and efficiency of several low rank approximation techniques for multidimensional data, namely CPD, HOSVD, TT-SVD, RPOD, QTT-SVD and HT. This approach is different from the numerous papers that compare the theoretical aspects of these methods or propose efficient implementation of a single technique. Here, after a brief presentation of the studied methods, they are tested in practical conditions in order to draw hindsight at which one should be preferred. Synthetic data provides sufficient evidence for dismissing CPD, T-HOSVD and RPOD. Then, three examples from mechanics provide data for realistic application of TT-SVD and ST-HOSVD. The obtained low rank approximation provides different levels of compression and accuracy depending on how separable the data is. In all cases, the data layout has significant influence on the analysis of modes and computing time while remaining similarly efficient at compressing information. Both methods provide satisfactory compression, from 0.1% to 20% of the original size within a few percent error in L2 norm. ST-HOSVD provides an orthonormal basis while TT-SVD doesn’t. QTT is performing well only when one dimension is very large. A final experiment is applied to an order 7 tensor with (4 × 8 × 8 × 64 × 64 × 64 × 64) entries (32GB) from complex multi-physics experiment. In that case, only HT provides actual compression (50%) due to the low separability of this data. However, it is better suited for higher order d. Finally, these numerical tests have been performed with pydecomp , an open source python library developed by the author. |
ArticleNumber | 14 |
Author | Lestandi, Lucas |
Author_xml | – sequence: 1 givenname: Lucas orcidid: 0000-0001-8457-1131 surname: Lestandi fullname: Lestandi, Lucas email: Lucas_Lestandi@ihpc.a-star.edu.sg organization: School of Physical and Mathematical Sciences, Nanyang Technological University, Engineering Mechanics Department, IHPC, ASTAR |
BackLink | https://hal.science/hal-04543561$$DView record in HAL |
BookMark | eNp9kLtOwzAUhi1UJNrCCzB5ZQj4ksTxWJVLKwWQgM7WiZPQlNSu7BTo2-M2sDB0OT62_u_Y_kZoYKypELqk5JoSIm48JZImEWE0IjQOlZ2gIU0Ej0Qq6QANSZYlkYhFfIZG3q8IITKTbIgWT9t15RoNLX7ttuUO2xrn9gu_gPnAk83G2e9mDV1jDX6suqUtPa6tC71egmm0x7fQAQZT4nnn8cRAu_ONP0enNbS-uvhdx2hxf_c2nUX588N8OskjzVPZRWXNylrGRcFkxkQhJadchI0umYh1KXVSCKgZMJ6RlEMVA1DJdBaSVSpA8zG66ucuoVUbF17qdspCo2aTXO3PSJzEPEnpJw3ZrM9qZ713Va100x1-1jloWkWJ2qtUvUoVVKqDSsUCyv6hf3cdhXgP-RA275VTK7t1QZA_Rv0AZg2H1A |
CitedBy_id | crossref_primary_10_1103_PhysRevResearch_5_033123 crossref_primary_10_1080_0951192X_2023_2257628 |
Cites_doi | 10.1007/s00365-011-9131-1 10.1007/978-1-4684-9464-8 10.1007/978-3-642-28027-6 10.1016/j.compfluid.2018.01.038 10.1090/qam/910462 10.1002/gamm.201310004 10.1016/j.cma.2018.12.015 10.1016/j.laa.2011.08.010 10.1002/sapm19287139 10.1007/978-3-030-17012-7_5 10.1016/B978-0-12-493240-1.50017-X 10.1007/BF02310791 10.1007/BF02288367 10.1137/090757861 10.1016/j.compfluid.2018.01.035 10.1007/s00365-012-9175-x 10.1137/110836067 10.2478/cmam-2011-0016 10.1016/j.jcp.2013.02.028 10.1137/100799010 10.1109/SC.2012.58 10.1137/090752286 10.1007/978-3-319-11259-6_21-1 10.1145/2538688 10.1137/090764189 10.1137/15M1036919 10.1137/07070111X 10.1016/j.jcp.2020.109704 10.1063/1.857881 10.1037/h0071325 10.1007/s001620050119 10.1137/140960980 10.1186/s40323-018-0119-2 10.1137/S0895479896305696 10.1007/978-3-7091-1794-1 10.1109/IPDPS.2016.67 10.1007/BF02289464 10.1186/s40323-015-0038-4 10.1063/1.869686 10.1016/j.jcp.2019.108973 10.1016/j.actamat.2017.11.033 10.1137/16M1082214 10.1006/jcph.1998.5943 10.1002/nme.5252 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 1XC VOOES |
DOI | 10.1007/s10915-021-01421-2 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Mathematics Physics Computer Science |
EISSN | 1573-7691 |
ExternalDocumentID | oai_HAL_hal_04543561v1 10_1007_s10915_021_01421_2 |
GrantInformation_xml | – fundername: National Research Council grantid: A19E1a0097 – fundername: Ministery of Education grantid: MOE2018-T2-1-05 |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9R PF- PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8T Z92 ZMTXR ZWQNP ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 1XC VOOES |
ID | FETCH-LOGICAL-c369t-df2df94bb29827b993137b29cd274cd9c5b7af2a238063ae4aa192c8b99e67ac3 |
IEDL.DBID | U2A |
ISSN | 0885-7474 |
IngestDate | Fri May 09 12:24:51 EDT 2025 Thu Apr 24 22:53:12 EDT 2025 Tue Jul 01 00:51:43 EDT 2025 Fri Feb 21 02:49:34 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Tensor decomposition Hierarchical SVD HOSVD POD Canonical decomposition 15A69 Tensor train HT 78M34 QTT RPOD 35Q35 15A21 ST-HOSVD Low rank approximation Canonical Decomposition Tensor Train SVD Mathematics Subject Classification 35Q35 tensor decomposition |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c369t-df2df94bb29827b993137b29cd274cd9c5b7af2a238063ae4aa192c8b99e67ac3 |
ORCID | 0000-0001-8457-1131 |
OpenAccessLink | https://hal.science/hal-04543561 |
ParticipantIDs | hal_primary_oai_HAL_hal_04543561v1 crossref_citationtrail_10_1007_s10915_021_01421_2 crossref_primary_10_1007_s10915_021_01421_2 springer_journals_10_1007_s10915_021_01421_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210400 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 4 year: 2021 text: 20210400 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of scientific computing |
PublicationTitleAbbrev | J Sci Comput |
PublicationYear | 2021 |
Publisher | Springer US Springer Verlag |
Publisher_xml | – name: Springer US – name: Springer Verlag |
References | StabileGRozzaGFinite volume POD-Galerkin stabilised reduced order methods for the parametrised incompressible Navier-Stokes equationsComput. Fluids2018173273284384366910.1016/j.compfluid.2018.01.035 SenguptaTKLestandiLHaiderSIGullapalliAAzaïezMReduced order model of flows by time-scaling interpolation of DNS dataAdv. Model. Simulat. Eng. Sci.201852610.1186/s40323-018-0119-2 Cazemier, W., Verstappen, R.W.C.P., Veldman, E.P., Introduction, I.: Proper orthogonal decomposition and low-dimensional models for driven cavity flows. Phys. Fluids 10(7), 1685–1699 (1998) GrasedyckLHierarchical singular value decomposition of tensorsSIAM J. Matrix Anal. Appl.201031420292054267895510.1137/090764189 Kressner, D., Tobler, C.: htucker A Matlab toolbox for tensors in hierarchical Tucker format. pp. 1–28 (2013) Chinesta, F., Ladavèze, P.: Separated representations and PGD-based model reduction. Fund. Appl. Int. Centre Mech. Sci. Courses Lect., 554, 24. (2014) OseledetsIVTensor-train decompositionSIAM J. Sci. Comput.201133522952317283753310.1137/090752286 KhoromskijBNO(d logN)-Quantics approximation of N-d tensors in high-dimensional numerical modelingConstr. Approx.201134257280282277110.1007/s00365-011-9131-1 SaadYNumerical Methods for Large Eigenvalue Problems. Algorithms and Architectures for Advanced Scientific Computing1992ManchesterManchester University Press GrasedyckLHackbuschWNrBAn introduction to hierachical (H) rank and TT rank of tensors with examplesComput. Methods Appl. Math2011113291304284478010.2478/cmam-2011-0016 Deane, aE., Kevrekidis, I.G., Karniadakis, G.E., Orszag, Sa.: Low-dimensional models for complex geometry flows: application to grooved channels and circular cylinders. Phys Fluids A Fluid Dyn 3(10), 2337 (1991) Philippe, B., Saad, Y.: Calcul des valeurs propres. In: Techniques de l’ingénieur. Sciences fondamentales, (AF1224) (2014) Demchik, V., Bačák, M., Bordag, S.: Out-of-core singular value decomposition. pp. 1–11 (2019) TuckerLRSome mathematical notes on three-mode factor analysisPsychometrika196631327931120539510.1007/BF02289464 BallaniJFast Evaluation of Near-Field Boundary Integrals Using Tensor Approximations2012LeipzigUniversity of Leipzig1261.65026 Fahl, M.: Trust-region Methods for flow control based on reduced order modelling. PhD thesis (2001) KoldaTGBaderBWTensor decompositions and applicationsSIAM Rev.2009513455500253505610.1137/07070111X Lestandi, L., Bhaumik, S., Sengupta, T.K., Krishna Chand Avatar, G.R., Azaïez, M.: POD applied to numerical study of unsteady flow inside lid-driven cavity. J. Math. Study 51(2), 150–176 (2018) Rabani, E., Toledo, S.: Out-of-core SVD and QR decompositions. In: Proceedings of the 10th SIAM Conference on Parallel Processing for Scientific Computing, Portsmouth, VA, CD-ROM, SIAM, Philadelphia, vol. 572, pp. 1–9 (2001) CarlbergKFarhatCCortialJAmsallemDThe GNAT method for nonlinear model reduction: effective implementation and application to computational fluid dynamics and turbulent flowsJ. Comput. Phys.2013242623647306205110.1016/j.jcp.2013.02.028 Harshman, Ra.: Foundations of the PARAFAC procedure: models and conditions for an explanatory multimodal factor analysis. UCLA Work. Papers Phonetics 16(10), 1–84 (1970) OseledetsIVApproximation of 2dx2d matrices using tensor decompositionSIAM J. Matrix Anal. Appl.20103142130214510.1137/090757861 HotellingHAnalysis of a complex of statistical variables into principal componentsJ. Edu. Psychol.193324641744110.1037/h0071325 BallaniJGrasedyckLHierarchical tensor approximation of output quantities of parameter-dependent PDEsSIAM/ASA J. Uncertain. Quantif.201431852872340003110.1137/140960980 IolloALanteriSDésidériJ-AStability Properties of POD Galerkin approximations for the compressible Navier Stokes equationsTheoret. Comput. Fluid Dyn.20001337739610.1007/s001620050119 De LathauwerLDe MoorBVandewalleJA multilinear singular value decompositionSIAM J. Matrix Anal. Appl.200021412531278178027210.1137/S0895479896305696 LumleyJLMeyerRECoherent structures in turbulenceTransition and Turbulence1981CambridgeAcademic Press21524210.1016/B978-0-12-493240-1.50017-X EckartCYoungGThe approximation of one matrix by another of lower rankPsychometrika19361321121810.1007/BF02288367 VannieuwenhovenNVandebrilRMeerbergenKA new truncation strategy for the higher-order singular value decompositionSIAM J. Sci. Comput.2012342A1027A1052291431410.1137/110836067 Cichocki, A.: Tensor networks for big data analytics and large-scale optimization problems. arXiv preprintarXiv:1407.3124, pp. 1–36, (2014) AzaïezMLestandiLRebolloTCPirozzoliSSenguptaTLow rank approximation of multidimensional dataHigh-Performance Computing of Big Data for Turbulence and Combustion2019BerlinSpringer10.1007/978-3-030-17012-7_5 Falco, A., Hackbusch, W., Nouy, A.: Geometric structures in tensor representations (Final Release). pp 1–50 (2015) Gorodetsky, A.: Continuous low-rank tensor decompositions, with applications to stochastic optimal control and data assimilation. PhD thesis, MIT (2016) Sirovich, L.: Turbulence and the dynamics of coherent structures: I—Coherent structures, II—Symmetries and transformations. III—Dynamics and scaling. Q. Appl. Math. 45, 561 (1987) GrasedyckLKressnerDToblerCA literature survey of low-rank tensor approximation techniquesGAMM Mitt.20133615378309591410.1002/gamm.201310004 ChinestaFKeuningsRLeygueAThe Proper Generalized Decomposition for Advanced Numerical Simulations2013BerlinSpringer1287.65001 Daulbaev, T., Gusak, J., Ponomarev, E., Cichocki, A., Oseledets, I.: Reduced-order modeling of deep neural networks (2019) OseledetsIVConstructive representation of functions in low-rank tensor formatsConstr. Approx.2013371118301020810.1007/s00365-012-9175-x Novikov, A., Izmailov, P., Khrulkov, V., Figurnov, M., Oseledets, I.: Tensor Train decomposition on TensorFlow (T3F). (2018) LeeKCarlbergKModel reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencodersJ. Comput. Phys.2018404108973404388410.1016/j.jcp.2019.108973 AllierP-EChamoinLLadevèzePProper generalized decomposition computational methods on a benchmark problem: introducing a new strategy based on Constitutive Relation Error minimizationAdv. Model. Simulat. Eng. Sci.2015211710.1186/s40323-015-0038-4 Austin, W., Ballard, G., Kolda, T.G.: Parallel tensor compression for large-scale scientific data. In: Proceedings—2016 IEEE 30th International Parallel and Distributed Processing Symposium, IPDPS 2016, (2016) Carroll, J.D., Chang, J.J.: Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition. Psychometrika 35(3), 283–319 (1970) KressnerDToblerCLow-Rank tensor Krylov subspace methods for parametrized linear systemsSIAM J. Matrix Anal. Appl.201132412881316285461410.1137/100799010 Bader, B.W., Kolda, T.G. and Others: “MATLAB Tensor Toolbox Version 3.0-dev.” Available online (2017) BallaniJGrasedyckLKlugeMBlack box approximation of tensors in hierarchical tucker formatLinear Algebra Appl.20104382639657299635810.1016/j.laa.2011.08.010 AzaïezMBelgacemFBRebolloTCRecursive POD expansion for reaction-diffusion equationAdv. Model. Simulat. Eng. Sci.201631122 KhoromskijBNO(logN)-Quantics approximation of N-d tensors in high-dimensional numerical modelingConstr. Approx.201134257280282277110.1007/s00365-011-9131-1 BigoniDEngsig-karupAPMarzoukYMSpectral tensor-train decompositionSIAM J. Sci. Comput.201638132343977210.1137/15M1036919 LuL-XNarayanaswamiSZhangYWPhase field simulation of powder bed-based additive manufacturingActa Materialia201814480180910.1016/j.actamat.2017.11.033 HackbuschWTensor Spaces and Numerical Tensor Calculus2012BerlinSpringer10.1007/978-3-642-28027-6 HitchcockFMultiple invariants and generalized rank of a p-way matrix or tensorJ. Math. Phys.19277397910.1002/sapm19287139 Bergmann, M.: Optimisation aérodynamique par réduction de modèle POD et contrôle optimal. Application au sillage laminaire d’un cylindre circulaire. PhD thesis, Institut National Polytechnique de Lorraine / LEMTA (2004) Alimi, J.M., Bouillot, V., Rasera, Y., Reverdy, V., Corasaniti, P., Balmès, I., Requena, S., Delaruelle, X., Richet, J.-N.: First-ever full observable universe simulation. In: International Conference for HPC, Networking, Storage and Analysis, SC (2012) Pearson, K.: LIII. On lines and planes of closest fit to systems of points in space. Lond. Edinb. Dublin Philos. Mag. J. Sci. 2(11), 559–572 (1901) QuesadaCGonzálezDAlfaroICuetoEChinestaFComputational vademecums for real-time simulation of surgical cutting in haptic environmentsInt. J. Numer. Methods Eng.20161081012301247357372210.1002/nme.5252 WuLRomeroEStathopoulosAPRIMME\_SVDS: a high-performance preconditioned SVD solver for accurate large-scale computationsSIAM J. Sci. Comput.2017395S248S27110.1137/16M1082214 Oseledets, I.V., Dolgov, S., Savostyanov, D.: “ttpy,” (2018) Nouy, A.: Low-rank tensor methods for model order reduction, pp. 1–73 (2015) Oseledets, I., Tyrtyshnikov, E.E.: Tensor tree decomposition does not need a tree. Preprint, (2009) Loève, M.: Probability Theory 9, (1977) de Lathauwer, L., de Moor, B., Vandewalle, J.: On the best rank-1 and rank-(R1, R2,..., RN) approximation of higher order tensors. SIAM J. Matrix Anal. Appl. 21(4), 1324–1342 (2000) DuntonAMJofreLIaccarinoGDoostanAPass-efficient methods for compression of high-dimensional turbulent flow dataJ. Comput. Phys.2020423109704416310010.1016/j.jcp.2020.109704 Lestandi, L.: Low rank approximation techniques and reduced order modeling applied to some fluid dynamics problems. Phd. thesis, Université de Bordeaux (2018) ItoKRavindranSA Reduced-order method for simulation and control of fluid flowsJ. Comput. Phys.1998143403163117610.1006/jcph.1998.5943 GorodetskyAKaramanSMarzoukYA continuous analogue of the tensor-train decompositionComput. Methods Appl. Mech. Eng.20193475984389616410.1016/j.cma.2018.12.015 KosambiDDStatistics in Function Spaces1943New DelhiSpringer115123 LestandiLBhaumikSAvatarGRKCAzaiezMSenguptaTKMultiple Hopf bifurcations and flow dyn J Ballani (1421_CR58) 2012 1421_CR8 1421_CR50 1421_CR9 1421_CR11 1421_CR55 Y Saad (1421_CR48) 1992 1421_CR1 1421_CR13 C Quesada (1421_CR7) 2016; 108 1421_CR51 1421_CR54 L Lestandi (1421_CR64) 2018; 166 1421_CR19 IV Oseledets (1421_CR30) 2011; 33 1421_CR16 1421_CR18 L De Lathauwer (1421_CR26) 2000; 21 1421_CR17 D Bigoni (1421_CR39) 2016; 38 LR Tucker (1421_CR21) 1966; 31 K Carlberg (1421_CR4) 2013; 242 C Eckart (1421_CR14) 1936; 1 L Grasedyck (1421_CR35) 2010; 31 1421_CR61 K Lee (1421_CR5) 2018; 404 L-X Lu (1421_CR65) 2018; 144 A Iollo (1421_CR68) 2000; 13 K Ito (1421_CR15) 1998; 143 1421_CR23 1421_CR67 1421_CR22 1421_CR66 1421_CR63 TK Sengupta (1421_CR62) 2018; 5 1421_CR27 M Azaïez (1421_CR44) 2016; 3 1421_CR29 F Chinesta (1421_CR2) 2013 N Vannieuwenhoven (1421_CR28) 2012; 34 G Stabile (1421_CR3) 2018; 173 DD Kosambi (1421_CR53) 1943 W Hackbusch (1421_CR25) 2012 1421_CR33 AM Dunton (1421_CR52) 2020; 423 IV Oseledets (1421_CR32) 2010; 31 1421_CR37 P-E Allier (1421_CR56) 2015; 2 L Wu (1421_CR49) 2017; 39 A Gorodetsky (1421_CR41) 2019; 347 D Kressner (1421_CR6) 2011; 32 H Hotelling (1421_CR10) 1933; 24 L Grasedyck (1421_CR57) 2011; 11 J Ballani (1421_CR34) 2010; 438 L Grasedyck (1421_CR36) 2013; 36 M Azaïez (1421_CR45) 2019 F Hitchcock (1421_CR20) 1927; 7 1421_CR47 IV Oseledets (1421_CR38) 2013; 37 1421_CR46 1421_CR40 1421_CR43 J Ballani (1421_CR59) 2014; 3 1421_CR42 BN Khoromskij (1421_CR31) 2011; 34 JL Lumley (1421_CR12) 1981 TG Kolda (1421_CR24) 2009; 51 BN Khoromskij (1421_CR60) 2011; 34 |
References_xml | – reference: KressnerDToblerCLow-Rank tensor Krylov subspace methods for parametrized linear systemsSIAM J. Matrix Anal. Appl.201132412881316285461410.1137/100799010 – reference: Loève, M.: Probability Theory 9, (1977) – reference: De LathauwerLDe MoorBVandewalleJA multilinear singular value decompositionSIAM J. Matrix Anal. Appl.200021412531278178027210.1137/S0895479896305696 – reference: Deane, aE., Kevrekidis, I.G., Karniadakis, G.E., Orszag, Sa.: Low-dimensional models for complex geometry flows: application to grooved channels and circular cylinders. Phys Fluids A Fluid Dyn 3(10), 2337 (1991) – reference: Lestandi, L.: Low rank approximation techniques and reduced order modeling applied to some fluid dynamics problems. Phd. thesis, Université de Bordeaux (2018) – reference: CarlbergKFarhatCCortialJAmsallemDThe GNAT method for nonlinear model reduction: effective implementation and application to computational fluid dynamics and turbulent flowsJ. Comput. Phys.2013242623647306205110.1016/j.jcp.2013.02.028 – reference: QuesadaCGonzálezDAlfaroICuetoEChinestaFComputational vademecums for real-time simulation of surgical cutting in haptic environmentsInt. J. Numer. Methods Eng.20161081012301247357372210.1002/nme.5252 – reference: Falco, A., Hackbusch, W., Nouy, A.: Geometric structures in tensor representations (Final Release). pp 1–50 (2015) – reference: StabileGRozzaGFinite volume POD-Galerkin stabilised reduced order methods for the parametrised incompressible Navier-Stokes equationsComput. Fluids2018173273284384366910.1016/j.compfluid.2018.01.035 – reference: Rabani, E., Toledo, S.: Out-of-core SVD and QR decompositions. In: Proceedings of the 10th SIAM Conference on Parallel Processing for Scientific Computing, Portsmouth, VA, CD-ROM, SIAM, Philadelphia, vol. 572, pp. 1–9 (2001) – reference: AzaïezMLestandiLRebolloTCPirozzoliSSenguptaTLow rank approximation of multidimensional dataHigh-Performance Computing of Big Data for Turbulence and Combustion2019BerlinSpringer10.1007/978-3-030-17012-7_5 – reference: GrasedyckLHackbuschWNrBAn introduction to hierachical (H) rank and TT rank of tensors with examplesComput. Methods Appl. Math2011113291304284478010.2478/cmam-2011-0016 – reference: IolloALanteriSDésidériJ-AStability Properties of POD Galerkin approximations for the compressible Navier Stokes equationsTheoret. Comput. Fluid Dyn.20001337739610.1007/s001620050119 – reference: KhoromskijBNO(d logN)-Quantics approximation of N-d tensors in high-dimensional numerical modelingConstr. Approx.201134257280282277110.1007/s00365-011-9131-1 – reference: BallaniJFast Evaluation of Near-Field Boundary Integrals Using Tensor Approximations2012LeipzigUniversity of Leipzig1261.65026 – reference: Kressner, D., Tobler, C.: htucker A Matlab toolbox for tensors in hierarchical Tucker format. pp. 1–28 (2013) – reference: Bergmann, M.: Optimisation aérodynamique par réduction de modèle POD et contrôle optimal. Application au sillage laminaire d’un cylindre circulaire. PhD thesis, Institut National Polytechnique de Lorraine / LEMTA (2004) – reference: Harshman, Ra.: Foundations of the PARAFAC procedure: models and conditions for an explanatory multimodal factor analysis. UCLA Work. Papers Phonetics 16(10), 1–84 (1970) – reference: HotellingHAnalysis of a complex of statistical variables into principal componentsJ. Edu. Psychol.193324641744110.1037/h0071325 – reference: Lestandi, L., Bhaumik, S., Sengupta, T.K., Krishna Chand Avatar, G.R., Azaïez, M.: POD applied to numerical study of unsteady flow inside lid-driven cavity. J. Math. Study 51(2), 150–176 (2018) – reference: AllierP-EChamoinLLadevèzePProper generalized decomposition computational methods on a benchmark problem: introducing a new strategy based on Constitutive Relation Error minimizationAdv. Model. Simulat. Eng. Sci.2015211710.1186/s40323-015-0038-4 – reference: WuLRomeroEStathopoulosAPRIMME\_SVDS: a high-performance preconditioned SVD solver for accurate large-scale computationsSIAM J. Sci. Comput.2017395S248S27110.1137/16M1082214 – reference: de Lathauwer, L., de Moor, B., Vandewalle, J.: On the best rank-1 and rank-(R1, R2,..., RN) approximation of higher order tensors. SIAM J. Matrix Anal. Appl. 21(4), 1324–1342 (2000) – reference: Carroll, J.D., Chang, J.J.: Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition. Psychometrika 35(3), 283–319 (1970) – reference: LuL-XNarayanaswamiSZhangYWPhase field simulation of powder bed-based additive manufacturingActa Materialia201814480180910.1016/j.actamat.2017.11.033 – reference: Chinesta, F., Ladavèze, P.: Separated representations and PGD-based model reduction. Fund. Appl. Int. Centre Mech. Sci. Courses Lect., 554, 24. (2014) – reference: LestandiLBhaumikSAvatarGRKCAzaiezMSenguptaTKMultiple Hopf bifurcations and flow dynamics inside a 2D singular lid driven cavityComput. Fluids201816686103377501510.1016/j.compfluid.2018.01.038 – reference: KhoromskijBNO(logN)-Quantics approximation of N-d tensors in high-dimensional numerical modelingConstr. Approx.201134257280282277110.1007/s00365-011-9131-1 – reference: BallaniJGrasedyckLKlugeMBlack box approximation of tensors in hierarchical tucker formatLinear Algebra Appl.20104382639657299635810.1016/j.laa.2011.08.010 – reference: SaadYNumerical Methods for Large Eigenvalue Problems. Algorithms and Architectures for Advanced Scientific Computing1992ManchesterManchester University Press – reference: TuckerLRSome mathematical notes on three-mode factor analysisPsychometrika196631327931120539510.1007/BF02289464 – reference: Oseledets, I.V., Dolgov, S., Savostyanov, D.: “ttpy,” (2018) – reference: Demchik, V., Bačák, M., Bordag, S.: Out-of-core singular value decomposition. pp. 1–11 (2019) – reference: OseledetsIVTensor-train decompositionSIAM J. Sci. Comput.201133522952317283753310.1137/090752286 – reference: ItoKRavindranSA Reduced-order method for simulation and control of fluid flowsJ. Comput. Phys.1998143403163117610.1006/jcph.1998.5943 – reference: GrasedyckLHierarchical singular value decomposition of tensorsSIAM J. Matrix Anal. Appl.201031420292054267895510.1137/090764189 – reference: Philippe, B., Saad, Y.: Calcul des valeurs propres. In: Techniques de l’ingénieur. Sciences fondamentales, (AF1224) (2014) – reference: Sirovich, L.: Turbulence and the dynamics of coherent structures: I—Coherent structures, II—Symmetries and transformations. III—Dynamics and scaling. Q. Appl. Math. 45, 561 (1987) – reference: DuntonAMJofreLIaccarinoGDoostanAPass-efficient methods for compression of high-dimensional turbulent flow dataJ. Comput. Phys.2020423109704416310010.1016/j.jcp.2020.109704 – reference: Fahl, M.: Trust-region Methods for flow control based on reduced order modelling. PhD thesis (2001) – reference: KoldaTGBaderBWTensor decompositions and applicationsSIAM Rev.2009513455500253505610.1137/07070111X – reference: Cazemier, W., Verstappen, R.W.C.P., Veldman, E.P., Introduction, I.: Proper orthogonal decomposition and low-dimensional models for driven cavity flows. Phys. Fluids 10(7), 1685–1699 (1998) – reference: Cichocki, A.: Tensor networks for big data analytics and large-scale optimization problems. arXiv preprintarXiv:1407.3124, pp. 1–36, (2014) – reference: BigoniDEngsig-karupAPMarzoukYMSpectral tensor-train decompositionSIAM J. Sci. Comput.201638132343977210.1137/15M1036919 – reference: Austin, W., Ballard, G., Kolda, T.G.: Parallel tensor compression for large-scale scientific data. In: Proceedings—2016 IEEE 30th International Parallel and Distributed Processing Symposium, IPDPS 2016, (2016) – reference: EckartCYoungGThe approximation of one matrix by another of lower rankPsychometrika19361321121810.1007/BF02288367 – reference: LeeKCarlbergKModel reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencodersJ. Comput. Phys.2018404108973404388410.1016/j.jcp.2019.108973 – reference: Alimi, J.M., Bouillot, V., Rasera, Y., Reverdy, V., Corasaniti, P., Balmès, I., Requena, S., Delaruelle, X., Richet, J.-N.: First-ever full observable universe simulation. In: International Conference for HPC, Networking, Storage and Analysis, SC (2012) – reference: Gorodetsky, A.: Continuous low-rank tensor decompositions, with applications to stochastic optimal control and data assimilation. PhD thesis, MIT (2016) – reference: OseledetsIVConstructive representation of functions in low-rank tensor formatsConstr. Approx.2013371118301020810.1007/s00365-012-9175-x – reference: OseledetsIVApproximation of 2dx2d matrices using tensor decompositionSIAM J. Matrix Anal. Appl.20103142130214510.1137/090757861 – reference: GorodetskyAKaramanSMarzoukYA continuous analogue of the tensor-train decompositionComput. Methods Appl. Mech. Eng.20193475984389616410.1016/j.cma.2018.12.015 – reference: KosambiDDStatistics in Function Spaces1943New DelhiSpringer115123 – reference: BallaniJGrasedyckLHierarchical tensor approximation of output quantities of parameter-dependent PDEsSIAM/ASA J. Uncertain. Quantif.201431852872340003110.1137/140960980 – reference: GrasedyckLKressnerDToblerCA literature survey of low-rank tensor approximation techniquesGAMM Mitt.20133615378309591410.1002/gamm.201310004 – reference: Bader, B.W., Kolda, T.G. and Others: “MATLAB Tensor Toolbox Version 3.0-dev.” Available online (2017) – reference: VannieuwenhovenNVandebrilRMeerbergenKA new truncation strategy for the higher-order singular value decompositionSIAM J. Sci. Comput.2012342A1027A1052291431410.1137/110836067 – reference: SenguptaTKLestandiLHaiderSIGullapalliAAzaïezMReduced order model of flows by time-scaling interpolation of DNS dataAdv. Model. Simulat. Eng. Sci.201852610.1186/s40323-018-0119-2 – reference: Oseledets, I., Tyrtyshnikov, E.E.: Tensor tree decomposition does not need a tree. Preprint, (2009) – reference: Pearson, K.: LIII. On lines and planes of closest fit to systems of points in space. Lond. Edinb. Dublin Philos. Mag. J. Sci. 2(11), 559–572 (1901) – reference: LumleyJLMeyerRECoherent structures in turbulenceTransition and Turbulence1981CambridgeAcademic Press21524210.1016/B978-0-12-493240-1.50017-X – reference: HackbuschWTensor Spaces and Numerical Tensor Calculus2012BerlinSpringer10.1007/978-3-642-28027-6 – reference: AzaïezMBelgacemFBRebolloTCRecursive POD expansion for reaction-diffusion equationAdv. Model. Simulat. Eng. Sci.201631122 – reference: Daulbaev, T., Gusak, J., Ponomarev, E., Cichocki, A., Oseledets, I.: Reduced-order modeling of deep neural networks (2019) – reference: HitchcockFMultiple invariants and generalized rank of a p-way matrix or tensorJ. Math. Phys.19277397910.1002/sapm19287139 – reference: Novikov, A., Izmailov, P., Khrulkov, V., Figurnov, M., Oseledets, I.: Tensor Train decomposition on TensorFlow (T3F). (2018) – reference: ChinestaFKeuningsRLeygueAThe Proper Generalized Decomposition for Advanced Numerical Simulations2013BerlinSpringer1287.65001 – reference: Nouy, A.: Low-rank tensor methods for model order reduction, pp. 1–73 (2015) – volume: 34 start-page: 257 year: 2011 ident: 1421_CR60 publication-title: Constr. Approx. doi: 10.1007/s00365-011-9131-1 – ident: 1421_CR51 – volume: 34 start-page: 257 year: 2011 ident: 1421_CR31 publication-title: Constr. Approx. doi: 10.1007/s00365-011-9131-1 – ident: 1421_CR11 doi: 10.1007/978-1-4684-9464-8 – ident: 1421_CR61 – volume-title: Tensor Spaces and Numerical Tensor Calculus year: 2012 ident: 1421_CR25 doi: 10.1007/978-3-642-28027-6 – volume: 166 start-page: 86 year: 2018 ident: 1421_CR64 publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2018.01.038 – volume-title: Numerical Methods for Large Eigenvalue Problems. Algorithms and Architectures for Advanced Scientific Computing year: 1992 ident: 1421_CR48 – ident: 1421_CR13 doi: 10.1090/qam/910462 – volume: 36 start-page: 53 issue: 1 year: 2013 ident: 1421_CR36 publication-title: GAMM Mitt. doi: 10.1002/gamm.201310004 – volume: 347 start-page: 59 year: 2019 ident: 1421_CR41 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2018.12.015 – volume: 438 start-page: 639 issue: 2 year: 2010 ident: 1421_CR34 publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2011.08.010 – ident: 1421_CR29 – volume: 7 start-page: 39 year: 1927 ident: 1421_CR20 publication-title: J. Math. Phys. doi: 10.1002/sapm19287139 – volume-title: High-Performance Computing of Big Data for Turbulence and Combustion year: 2019 ident: 1421_CR45 doi: 10.1007/978-3-030-17012-7_5 – start-page: 215 volume-title: Transition and Turbulence year: 1981 ident: 1421_CR12 doi: 10.1016/B978-0-12-493240-1.50017-X – ident: 1421_CR22 doi: 10.1007/BF02310791 – volume: 1 start-page: 211 issue: 3 year: 1936 ident: 1421_CR14 publication-title: Psychometrika doi: 10.1007/BF02288367 – volume: 31 start-page: 2130 issue: 4 year: 2010 ident: 1421_CR32 publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/090757861 – volume: 173 start-page: 273 year: 2018 ident: 1421_CR3 publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2018.01.035 – ident: 1421_CR66 – ident: 1421_CR18 – volume: 37 start-page: 1 issue: 1 year: 2013 ident: 1421_CR38 publication-title: Constr. Approx. doi: 10.1007/s00365-012-9175-x – volume: 34 start-page: A1027 issue: 2 year: 2012 ident: 1421_CR28 publication-title: SIAM J. Sci. Comput. doi: 10.1137/110836067 – volume: 11 start-page: 291 issue: 3 year: 2011 ident: 1421_CR57 publication-title: Comput. Methods Appl. Math doi: 10.2478/cmam-2011-0016 – volume: 242 start-page: 623 year: 2013 ident: 1421_CR4 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2013.02.028 – start-page: 115 volume-title: Statistics in Function Spaces year: 1943 ident: 1421_CR53 – volume-title: Fast Evaluation of Near-Field Boundary Integrals Using Tensor Approximations year: 2012 ident: 1421_CR58 – volume: 32 start-page: 1288 issue: 4 year: 2011 ident: 1421_CR6 publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/100799010 – ident: 1421_CR1 doi: 10.1109/SC.2012.58 – volume: 33 start-page: 2295 issue: 5 year: 2011 ident: 1421_CR30 publication-title: SIAM J. Sci. Comput. doi: 10.1137/090752286 – ident: 1421_CR42 doi: 10.1007/978-3-319-11259-6_21-1 – ident: 1421_CR54 doi: 10.1145/2538688 – ident: 1421_CR47 – volume: 31 start-page: 2029 issue: 4 year: 2010 ident: 1421_CR35 publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/090764189 – volume: 38 start-page: 1 year: 2016 ident: 1421_CR39 publication-title: SIAM J. Sci. Comput. doi: 10.1137/15M1036919 – volume: 3 start-page: 1 issue: 1 year: 2016 ident: 1421_CR44 publication-title: Adv. Model. Simulat. Eng. Sci. – volume: 51 start-page: 455 issue: 3 year: 2009 ident: 1421_CR24 publication-title: SIAM Rev. doi: 10.1137/07070111X – ident: 1421_CR40 – volume: 423 start-page: 109704 year: 2020 ident: 1421_CR52 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2020.109704 – ident: 1421_CR67 – ident: 1421_CR9 – ident: 1421_CR16 doi: 10.1063/1.857881 – ident: 1421_CR63 – ident: 1421_CR19 – volume: 24 start-page: 417 issue: 6 year: 1933 ident: 1421_CR10 publication-title: J. Edu. Psychol. doi: 10.1037/h0071325 – volume: 13 start-page: 377 year: 2000 ident: 1421_CR68 publication-title: Theoret. Comput. Fluid Dyn. doi: 10.1007/s001620050119 – volume: 3 start-page: 852 issue: 1 year: 2014 ident: 1421_CR59 publication-title: SIAM/ASA J. Uncertain. Quantif. doi: 10.1137/140960980 – volume: 5 start-page: 26 year: 2018 ident: 1421_CR62 publication-title: Adv. Model. Simulat. Eng. Sci. doi: 10.1186/s40323-018-0119-2 – ident: 1421_CR27 – volume-title: The Proper Generalized Decomposition for Advanced Numerical Simulations year: 2013 ident: 1421_CR2 – volume: 21 start-page: 1253 issue: 4 year: 2000 ident: 1421_CR26 publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/S0895479896305696 – ident: 1421_CR55 doi: 10.1007/978-3-7091-1794-1 – ident: 1421_CR50 – ident: 1421_CR46 doi: 10.1109/IPDPS.2016.67 – volume: 31 start-page: 279 issue: 3 year: 1966 ident: 1421_CR21 publication-title: Psychometrika doi: 10.1007/BF02289464 – ident: 1421_CR23 – volume: 2 start-page: 17 issue: 1 year: 2015 ident: 1421_CR56 publication-title: Adv. Model. Simulat. Eng. Sci. doi: 10.1186/s40323-015-0038-4 – ident: 1421_CR17 doi: 10.1063/1.869686 – volume: 404 start-page: 108973 year: 2018 ident: 1421_CR5 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.108973 – volume: 144 start-page: 801 year: 2018 ident: 1421_CR65 publication-title: Acta Materialia doi: 10.1016/j.actamat.2017.11.033 – ident: 1421_CR8 – ident: 1421_CR43 – volume: 39 start-page: S248 issue: 5 year: 2017 ident: 1421_CR49 publication-title: SIAM J. Sci. Comput. doi: 10.1137/16M1082214 – ident: 1421_CR37 – ident: 1421_CR33 – volume: 143 start-page: 403 year: 1998 ident: 1421_CR15 publication-title: J. Comput. Phys. doi: 10.1006/jcph.1998.5943 – volume: 108 start-page: 1230 issue: 10 year: 2016 ident: 1421_CR7 publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.5252 |
SSID | ssj0009892 |
Score | 2.2832315 |
Snippet | This paper proposes a comparison of the numerical aspect and efficiency of several low rank approximation techniques for multidimensional data, namely CPD,... |
SourceID | hal crossref springer |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
SubjectTerms | Algorithms Computational Mathematics and Numerical Analysis Computer Science Data Analysis, Statistics and Probability Mathematical and Computational Engineering Mathematical and Computational Physics Mathematics Mathematics and Statistics Mechanics Modeling and Simulation Physics Theoretical |
Title | Numerical Study of Low Rank Approximation Methods for Mechanics Data and Its Analysis |
URI | https://link.springer.com/article/10.1007/s10915-021-01421-2 https://hal.science/hal-04543561 |
Volume | 87 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgvcAB0QKiLJWFOIAgUuw42zGFlgJtD4hK5RTZjiMQVYpIyvL3jNOkBYQqccmmiQ_jZZ7leW8QOo5MJUxJbIM5LDYY48zwTU8ZDsQ65QoiZc5y7Q-c7pDdjOxRQQpLy2z38kgyX6m_kd18otnEevvL4AoLb9WGvbtO5BrSYCG16-WlkGH62AaAZVZQZf5u40c4Wn3UyZC_TkTzQNPZRBsFQsTBrEtraEUldbTen8urpnVUK2Zkik8K2ejTLTQcTGenL2OskwM_8STGvck7vuPJMw60dPjH04yniPt52egUA2CFZ839hWbxJc845kmEr7MUl2Il22jYad9fdI2iaIIhLcfPjCimUewzIajvUVcA_CCWCy8ygv2njHxpC5fHlEOoBnTCFeMcQJ70wFI5LpfWDqokk0TtIsyF43AiaSxswSLHFjE17ZhQZZmMmNxtIFL6LpSForgubDEOF1rI2t8h-DvM_R3SBjqb__My09NYan0EXTI31FLY3aAX6m9aOtAC8PdGGui87LGwmIDpkjb3_me-j9ZoPl50ss4BqmSvU3UIOCQTTVQNOq3WQN-vHm7bzXwYfgEqttNh |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fT9swED5ReNh4mKBsomwMC4G0aYsUO86vBx4qCmpH24eJSn3LbMcRiCpFJIXx_-wP3dlJykAIaQ-8REl0saLz2Xcn3_cdwEHqaukq6js84JnDueBO7EbaCdDX6VBSpSzKdTQO-hP-Y-pPV-BPg4Wx1e7NkaTdqf8Bu8XUoIlN-svxyupSyjN9f4eJWnE06OGsHjJ2enJ-3HfqXgKO8oK4dNKMpVnMpWRxxEKJXpl6IT6oFNMylcbKl6HImEAPhk5baC4Exj4qQkkdhEJ5OG4L1jD4iMzambDuA7VvZFsv43L1HQzOeQ3Nef6fH7m_1oUpvnxyAmsd2-kGvKsjUtKtTGgTVnTehvXRks61aMNmvQMU5EtNU_11CybjRXXaMyOmGPGezDMynN-RnyK_Il1DVf77ssJFkpFtU10QDJDx3mCNcVjSE6UgIk_JoCxIQ47yHiavotgPsJrPc70NRMggEFSxTPqSp4EvM-b6GWXaczl1RdgB2uguUTWDuWmkMUseuJeNvhPUd2L1nbAOfFt-c13xd7wovY9TshQ01Nv97jAx7wxVoYfB5i3twPdmxpJ6wRcvjLnzf-J78KZ_Phomw8H47CO8ZdZ2TKHQJ1gtbxZ6F2OgUn62Jkjg12vb_F9pkg4V |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swED-aDkb7MNZspdlHJ8YGG5uJJct2_NAH0ywkywdjLNA3T5IlWhacMjvL-l_1T-zJH2k3RmEPeTG2OQtxOvnu0P1-B_AmdbV0FfUdHnDjcC64E7k97QTo63QoqVIlynU6C4Zz_vnMP9uB6wYLU1a7N0eSFabBsjRlRfcyNd07wLeIWmSxTYU5XlldVjnWV2tM2vKTUR9X-C1jg0_fTodO3VfAUV4QFU5qWGoiLiWLeiyU6KGpF-KDSjFFU2mkfBkKwwR6M3TgQnMhMA5SPZTUQSiUh-O24AG36GPcQXMW39L89so2zLh1fQcDdV7DdP495z9cYevcFmL-dRpbOrnBY3hUR6ckrszpAHZ01ob96YbaNW_DQf03yMm7mrL6_ROYz1bVyc-C2MLEK7I0ZLJck68i-0FiS1v--6LCSJJp2bI6Jxgs473FHeOwpC8KQUSWklGRk4Yo5SnMt6LYQ9jNlpk-AiJkEAiqmJG-5GngS8Nc31CmPZdTV4QdoI3uElWzmdumGovklofZ6jtBfSelvhPWgQ-bby4rLo97pV_jkmwELQ33MJ4k9p2lLfQw8PxFO_CxWbGk3vz5PWM--z_xV_DwS3-QTEaz8XPYY6Xp2JqhF7Bb_FzplxgOFfK4tEAC37dt8jdt7hJI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+Study+of+Low+Rank+Approximation+Methods+for+Mechanics+Data+and+Its+Analysis&rft.jtitle=Journal+of+scientific+computing&rft.au=Lestandi%2C+Lucas&rft.date=2021-04-01&rft.pub=Springer+US&rft.issn=0885-7474&rft.eissn=1573-7691&rft.volume=87&rft.issue=1&rft_id=info:doi/10.1007%2Fs10915-021-01421-2&rft.externalDocID=10_1007_s10915_021_01421_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-7474&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-7474&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-7474&client=summon |