Evaluating multitemporal vegetation indices from Zhuhai-1 hyperspectral images for detecting a rapidly spreading invasive species - Spartina alterniflora

Monitoring the spatiotemporal changes of Spartina alterniflora (SA) is essential in effectively managing coastal ecology since it is one of the most harmful invasive weeds worldwide. However, it remains challenging to accurately identify SA invasion, especially in regions subject to periodic tidal f...

Full description

Saved in:
Bibliographic Details
Published inEcological informatics Vol. 90; p. 103208
Main Authors Zhu, Yuanhui, Myint, Soe W., Cao, Jingjing, Liu, Kai, Zeng, Mei, Diao, Chenxi
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2025
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Monitoring the spatiotemporal changes of Spartina alterniflora (SA) is essential in effectively managing coastal ecology since it is one of the most harmful invasive weeds worldwide. However, it remains challenging to accurately identify SA invasion, especially in regions subject to periodic tidal flooding. Recent studies have shown that utilizing traditional multitemporal vegetation indices (VIs), such as NDVI and EVI derived from multispectral image features, can improve the accuracy of identifying SA. Still, the application potential of multitemporal hyperspectral images with rich derived VIs has not yet been explored. The Zhuhai-1 hyperspectral satellite offers high spectral, spatial, and temporal resolution, providing crucial multitemporal features for accurately identifying SA. This study examined multitemporal VIs from nine months using hyperspectral images and common machine learning methods (i.e., K-nearest neighbor, support vector machine, random forest) to compare a variety of VIs' performance in identifying SA invasion in the Guangxi Zhuang Autonomous Region. Results showed that multitemporal VIs are more effective in identifying SA in periodic tidal flooding areas than individual hyperspectral parameters (spectral features, VIs, and spatial texture features). Significantly, the unique multitemporal VIs derived from red-edge bands of hyperspectral images constantly demonstrated higher accuracies (exceeding 91.6 %) than traditional NDVI (91.47 %) and EVI (84.78 %). Our results consistently identified June, February, and November as the most critical months for identifying SA invasion, as observed across all three algorithms and VIs. These months are connected to SA phenology's greening, yellowing, and withering. Results and findings from this study provided insight into the overwhelming potential of multitemporal hyperspectral image analyses to improve the monitoring and management of invasive species for sustainable coastal ecosystems. The same procedure, algorithms, indices, and features can be employed to effectively identify any other specific species or detailed land cover types. •Hyperspectral time-series images detect invasive Spartina alterniflora.•Time-series VIs identify Spartina alterniflora better than individual images.•Time-series red-edge VIs exceed traditional NDVI and EVI in spotting this species.•Optimal imaging months were identified for Spartina alterniflora extraction.
AbstractList Monitoring the spatiotemporal changes of Spartina alterniflora (SA) is essential in effectively managing coastal ecology since it is one of the most harmful invasive weeds worldwide. However, it remains challenging to accurately identify SA invasion, especially in regions subject to periodic tidal flooding. Recent studies have shown that utilizing traditional multitemporal vegetation indices (VIs), such as NDVI and EVI derived from multispectral image features, can improve the accuracy of identifying SA. Still, the application potential of multitemporal hyperspectral images with rich derived VIs has not yet been explored. The Zhuhai-1 hyperspectral satellite offers high spectral, spatial, and temporal resolution, providing crucial multitemporal features for accurately identifying SA. This study examined multitemporal VIs from nine months using hyperspectral images and common machine learning methods (i.e., K-nearest neighbor, support vector machine, random forest) to compare a variety of VIs' performance in identifying SA invasion in the Guangxi Zhuang Autonomous Region. Results showed that multitemporal VIs are more effective in identifying SA in periodic tidal flooding areas than individual hyperspectral parameters (spectral features, VIs, and spatial texture features). Significantly, the unique multitemporal VIs derived from red-edge bands of hyperspectral images constantly demonstrated higher accuracies (exceeding 91.6 %) than traditional NDVI (91.47 %) and EVI (84.78 %). Our results consistently identified June, February, and November as the most critical months for identifying SA invasion, as observed across all three algorithms and VIs. These months are connected to SA phenology's greening, yellowing, and withering. Results and findings from this study provided insight into the overwhelming potential of multitemporal hyperspectral image analyses to improve the monitoring and management of invasive species for sustainable coastal ecosystems. The same procedure, algorithms, indices, and features can be employed to effectively identify any other specific species or detailed land cover types.
Monitoring the spatiotemporal changes of Spartina alterniflora (SA) is essential in effectively managing coastal ecology since it is one of the most harmful invasive weeds worldwide. However, it remains challenging to accurately identify SA invasion, especially in regions subject to periodic tidal flooding. Recent studies have shown that utilizing traditional multitemporal vegetation indices (VIs), such as NDVI and EVI derived from multispectral image features, can improve the accuracy of identifying SA. Still, the application potential of multitemporal hyperspectral images with rich derived VIs has not yet been explored. The Zhuhai-1 hyperspectral satellite offers high spectral, spatial, and temporal resolution, providing crucial multitemporal features for accurately identifying SA. This study examined multitemporal VIs from nine months using hyperspectral images and common machine learning methods (i.e., K-nearest neighbor, support vector machine, random forest) to compare a variety of VIs' performance in identifying SA invasion in the Guangxi Zhuang Autonomous Region. Results showed that multitemporal VIs are more effective in identifying SA in periodic tidal flooding areas than individual hyperspectral parameters (spectral features, VIs, and spatial texture features). Significantly, the unique multitemporal VIs derived from red-edge bands of hyperspectral images constantly demonstrated higher accuracies (exceeding 91.6 %) than traditional NDVI (91.47 %) and EVI (84.78 %). Our results consistently identified June, February, and November as the most critical months for identifying SA invasion, as observed across all three algorithms and VIs. These months are connected to SA phenology's greening, yellowing, and withering. Results and findings from this study provided insight into the overwhelming potential of multitemporal hyperspectral image analyses to improve the monitoring and management of invasive species for sustainable coastal ecosystems. The same procedure, algorithms, indices, and features can be employed to effectively identify any other specific species or detailed land cover types. •Hyperspectral time-series images detect invasive Spartina alterniflora.•Time-series VIs identify Spartina alterniflora better than individual images.•Time-series red-edge VIs exceed traditional NDVI and EVI in spotting this species.•Optimal imaging months were identified for Spartina alterniflora extraction.
ArticleNumber 103208
Author Diao, Chenxi
Zhu, Yuanhui
Myint, Soe W.
Zeng, Mei
Cao, Jingjing
Liu, Kai
Author_xml – sequence: 1
  givenname: Yuanhui
  surname: Zhu
  fullname: Zhu, Yuanhui
  organization: Department of Geography and Environmental Studies, Texas State University, San Marcos, TX 78666, USA
– sequence: 2
  givenname: Soe W.
  surname: Myint
  fullname: Myint, Soe W.
  organization: Department of Geography and Environmental Studies, Texas State University, San Marcos, TX 78666, USA
– sequence: 3
  givenname: Jingjing
  surname: Cao
  fullname: Cao, Jingjing
  email: caojj@gpnu.edu.cn
  organization: College of Computer Sciences, Guangdong Polytechnic Normal University, Guangzhou 510665, China
– sequence: 4
  givenname: Kai
  surname: Liu
  fullname: Liu, Kai
  organization: School of Geography and Planning, Sun Yat-sen University, Guangzhou 510006, China
– sequence: 5
  givenname: Mei
  surname: Zeng
  fullname: Zeng, Mei
  organization: School of Geographical Sciences, Lingnan Normal University, Zhanjiang 524048, China
– sequence: 6
  givenname: Chenxi
  surname: Diao
  fullname: Diao, Chenxi
  organization: School of Geographical Sciences, Lingnan Normal University, Zhanjiang 524048, China
BookMark eNp9kU2O3CAQhVlMpPm9wSy4gDuAjQ2bkaLRJBlppCwy2WSDylDupuUGC9yW-ii5bXAcZZkV0uO9T1X1bslViAEJeeRsxxlvPx53aKMPw04wIYtUC6auyA2XXVNp2fBrcpvzkbGmVkrckF8vC4xnmH3Y09N5nP2MpykmGOmCe5zLRwzUB-ctZjqkeKI_D-cD-IrTw2XClCe082r3J9ivlpiow7mIKxFogsm78ULzlBDcqvmwQPYL0jXqS6Si3ydIxQ8UxhlT8MNYJrgnHwYYMz78fe_Ij88v789fq7dvX16fP71Vtm71XDkndSv1IMAOPUPVOBCi5arGHlrWCYu9Ego6yaVkutNWYl83g-hZ11tnu_qOvG5cF-FoplQWSRcTwZs_Qkx7s05nRzRcKNnovkfkvGn7FpRlgiumbYOKtbqwmo1lU8w54fCPx5lZ6zFHs9Vj1nrMVk-JPW0xLHsuHpPJ5TLBovOpXLIM4v8P-A3P0aJ2
Cites_doi 10.3390/rs10040635
10.1016/j.foreco.2024.121755
10.1016/j.marpolbul.2022.113642
10.1023/A:1022627411411
10.3390/rs11090996
10.1080/15481603.2017.1408892
10.1080/01431161.2010.543182
10.1016/j.rse.2020.111745
10.1016/0034-4257(88)90106-X
10.1016/j.ecss.2016.11.024
10.1371/journal.pone.0067315
10.1016/j.isprsjprs.2016.06.007
10.1016/j.proenv.2011.09.385
10.3390/rs9101060
10.1073/pnas.1602205113
10.1016/j.rse.2019.01.031
10.1016/S0034-4257(96)00112-5
10.1080/01431169408954109
10.1002/ece3.11469
10.1016/j.rse.2011.01.009
10.1016/S0034-4257(02)00018-4
10.1016/j.rse.2012.06.011
10.1016/j.ecolind.2024.112671
10.1080/01431161.2013.870676
10.3390/app132312614
10.3390/rs10121933
10.1080/01431160600702632
10.1023/A:1010933404324
10.1016/j.ecoleng.2007.08.005
10.1109/36.934080
10.1109/JSTARS.2024.3495048
10.3390/rs11101208
10.1080/15481603.2018.1492213
10.1016/0034-4257(91)90009-U
10.1016/j.isprsjprs.2009.06.004
10.4236/oje.2016.63012
10.3390/rs10010089
10.1080/01431161.2012.725958
10.1562/0031-8655(2001)074<0038:OPANEO>2.0.CO;2
10.1109/TGRS.2016.2518167
10.2134/agronj2003.0257
10.3390/rs11050514
10.2307/1936256
10.1109/36.134076
10.1080/07038992.1996.10855178
10.1080/01431161.2013.827815
10.1016/j.isprsjprs.2019.09.007
10.1016/j.isprsjprs.2014.05.013
10.1038/ncomms12485
10.1109/TSMC.1973.4309314
10.1146/annurev.pp.44.060193.001311
10.1016/j.ecoinf.2018.05.006
10.1016/j.rse.2010.08.023
10.1016/S0176-1617(99)80314-9
10.1109/JSTARS.2020.3038648
10.1016/j.isprsjprs.2014.12.026
10.3390/rs10060807
10.1029/2024JG008217
10.1016/0034-4257(94)00114-3
10.1155/2017/1353691
10.1016/j.rse.2021.112810
10.5344/ajev.2009.60.1.87
10.1117/1.JRS.11.026020
10.1016/0034-4257(94)90134-1
10.3390/rs9060589
10.1016/j.rse.2010.12.017
10.1016/j.ecoleng.2009.05.008
10.1126/science.287.5459.1770
10.1038/nbt1206-1565
10.21037/atm.2016.03.37
10.3390/rs9060539
10.1016/0034-4257(94)90079-5
10.3390/rs70912192
ContentType Journal Article
Copyright 2025 The Author(s)
Copyright_xml – notice: 2025 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.ecoinf.2025.103208
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Open Access Full Text
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
ExternalDocumentID oai_doaj_org_article_128549bbee1146b6a8c021809c4e8069
10_1016_j_ecoinf_2025_103208
S1574954125002171
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
AAEDT
AAEDW
AAFTH
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABFYP
ABGRD
ABJNI
ABLST
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADQTV
ADVLN
AEBSH
AEIPS
AEKER
AENEX
AEQOU
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGUBO
AGYEJ
AHEUO
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKIFW
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
M41
MO0
M~E
N9A
N~3
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPCBC
SSA
SSJ
SSZ
T5K
~G-
AAYXX
CITATION
ID FETCH-LOGICAL-c369t-dd59659f2acfb0e84da226183eba6072ceb828a751550979c5eb34f2b07bcdc73
IEDL.DBID .~1
ISSN 1574-9541
IngestDate Wed Aug 27 00:12:24 EDT 2025
Thu Aug 21 00:24:18 EDT 2025
Sat Aug 30 17:14:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Mangrove
Spartina alterniflora invasion
Zhuhai-1 hyperspectral images
Remote sensing
Machine learning
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c369t-dd59659f2acfb0e84da226183eba6072ceb828a751550979c5eb34f2b07bcdc73
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1574954125002171
ParticipantIDs doaj_primary_oai_doaj_org_article_128549bbee1146b6a8c021809c4e8069
crossref_primary_10_1016_j_ecoinf_2025_103208
elsevier_sciencedirect_doi_10_1016_j_ecoinf_2025_103208
PublicationCentury 2000
PublicationDate December 2025
2025-12-00
2025-12-01
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: December 2025
PublicationDecade 2020
PublicationTitle Ecological informatics
PublicationYear 2025
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References van Deventer, Cho, Mutanga (bb0325) 2019; 157
Zhu, Meng, Zhang, Weng, Morris (bb0445) 2019; 11
Haboudane, Miller, Tremblay, Zarco-Tejada, Dextraze (bb0125) 2002; 81
Ren, Lu, Shen, Huang, Guo, Jian (bb0280) 2009; 35
Sibanda, Mutanga, Dube, Vundla, T., & L Mafongoya, P. (bb0300) 2019; 56
Rogers, Robertson, Hawbaker, Sousa (bb0285) 2024; 129
Araya, Ostendorf, Lyle, Lewis (bb0025) 2018; 46
Vapnik, Vapnik (bb0340) 1998
Gitelson, Merzlyak, Chivkunova (bb0120) 2001; 74
Cao, Leng, Liu, Liu, He, Zhu (bb0055) 2018; 10
Zhang (bb0420) 2016; 4
Jordan (bb0160) 1969; 50
Adelabu, Mutanga, Adam (bb0015) 2014; 95
Breiman (bb0050) 2001; 45
Noble (bb0240) 2006; 24
Ma, Crawford, Tian (bb0210) 2010; 48
Li, Zhang (bb0175) 2008; 32
Axelsson, Skidmore, Schlerf, Fauzi, Verhoef (bb0030) 2013; 34
Raper (bb0275) 2011
Early, Bradley, Dukes, Lawler, Olden, Blumenthal, Gonzalez, Grosholz, Ibañez, Miller (bb0105) 2016; 7
Tian, Wang, Yin, Li, Diao, Gong, Shi, Menenti, Ge, Nie (bb0320) 2020; 242
Qin, Wang, Yao, Qian, Xiong, Zhou (bb0270) 2023
Myint, Gober, Brazel, Grossman-Clarke, Weng (bb0230) 2011; 115
Pu, Landry (bb0260) 2012; 124
Yao, Chen, Huang, Huang, Wang, Liu (bb0395) 2024; 14
Ouyang, Gao, Xie, Guo, Zhang, Zhao (bb0245) 2013; 8
Paini, Sheppard, Cook, De Barro, Worner, Thomas (bb0250) 2016; 113
Xu, Zhao, Ke (bb0370) 2020; 14
Jiang, Tian, Fu, Meng, Tong (bb0150) 2023; 13
Liu, Jiang, Zhang, Li, Pan, Lu, Hou (bb0185) 2016; 6
Adam, Mutanga, Abdel-Rahman, Ismail (bb0010) 2014; 35
Yan, Mas, Maathuis, Xiangmin, Van Dijk (bb0380) 2006; 27
Liu, Mao, Wang, Li, Man, Jia, Ren, Zhang (bb0200) 2018; 10
Yang, Mansaray, Huang, Wang (bb0390) 2019; 11
Baret, Guyot (bb0035) 1991; 35
Liaw, Wiener (bb0180) 2002; 2
Van, Tran, Nguyen, Yeon, Do, Lee (bb0330) 2024; 81
Georganos, Grippa, Vanhuysse, Lennert, Shimoni, Kalogirou, Wolff (bb0115) 2018; 55
Wu, Chen, Kechadi, Sun (bb0360) 2013; 34
Garbulsky, Peñuelas, Gamon, Inoue, Filella (bb0110) 2011; 115
Clark, Kilham (bb0080) 2016; 119
Xie, Zhu, Xu, Zhang, Yi, Jiang, Liang, Wang (bb0365) 2022; 178
Datt (bb0095) 1999; 154
Sun, Liu, Ren, Liu, Yang, Meng, Peng (bb0315) 2021; 104
Adam, Mutanga, Rugege, Ismail (bb0005) 2012; 33
Peña-Barragán, Ngugi, Plant, Six (bb0255) 2011; 115
Huete (bb0135) 1988; 25
Nasiri, Hawryło, Janiec, Socha (bb0235) 2023; 125
Zarco-Tejada, Miller, Noland, Mohammed, Sampson (bb0405) 2001; 39
Ma, Cheng, Li, Liu, Ma (bb0215) 2015; 102
Ma, Zhuo, Cao (bb0220) 2024; 18
Carter, Miller (bb0065) 1994; 50
Jiang, Wang, Zhang, Zhang, Li, Wu (bb0145) 2019; 11
Blaschke (bb0040) 2010; 65
Dong, Wang, Yan, He, Zeng, Wei (bb0100) 2020; 14
Steele, Gitelson, Rundquist, Merzlyak (bb0310) 2009; 60
Liu, Lin, Zhang, Qi (bb0190) 2017; 185
Wang, Liu, Yu, Li (bb0350) 2017; 9
Zhang, Xiao, Qiu, Xu, Wang, Chang, Wu, Li (bb0430) 2022; 269
Wang, Wang, Tian, Shi (bb0355) 2021; 101
Carter (bb0060) 1994; 15
Chen, Rao, Shen, Wang, Zhou, Ma, Tang, Yang (bb0075) 2016; 54
Cortes, Vapnik (bb0090) 1995; 20
Jönsson, Cai, Melaas, Friedl, Eklundh (bb0155) 2018; 10
Kaufman, Tanre (bb0165) 1992; 30
Coops, Stone, Merton, Chisholm (bb0085) 2001
Roujean, Breon (bb0290) 1995; 51
Liu, Zhu, Dang, Myint, Liu, Cao (bb0205) 2024; 556
Zhang, Zeng, Tong, Zhang, Huang (bb0425) 2011; 10
Ai, Gao, Gao, Shi, Zhang (bb0020) 2017; 11
Merton (bb0225) 1998
Khan, Vibhute, Mali, Patil (bb0170) 2022; 69
Zarco-Tejada, Hornero, Beck, Kattenborn, Kempeneers, Hernández-Clemente (bb0415) 2019; 223
Xue, Su (bb0375) 2017; 2017
Zarco-Tejada, Ustin, Whiting (bb0410) 2005; 97
Liu, Li, Li, Man, Jia, Wang, Lu (bb0195) 2017; 9
Singh, Komal, Victorovich (bb0305) 2020; 44
Zabeo, Laurin, Tesfamariam, Giuliarelli, Valentini, Barbati (bb0400) 2024; 84
Vanguri, Laneve, Hościło (bb0335) 2024; 167
Boonprong, Cao, Chen, Bao (bb0045) 2018; 10
Qi, Chehbouni, Huete, Kerr, Sorooshian (bb0265) 1994; 48
Yang, Wang, Shi, Lu (bb0385) 2018; 73
Chen (bb0070) 1996; 22
Sala, Stuart Chapin, Armesto, Berlow, Bloomfield, Dirzo, Huber-Sanwald, Huenneke, Jackson, Kinzig (bb0295) 2000; 287
Zhu, Liu, Liu, Myint, Wang, Liu, He (bb0440) 2017; 9
Haralick, Shanmugam, Dinstein (bb0130) 1973
Zhu, Liu, Liu, Wang, Liu (bb0435) 2015; 7
Huete, Liu, Batchily, Van Leeuwen (bb0140) 1997; 59
Vogelmann (bb0345) 1993; 44
Adam (10.1016/j.ecoinf.2025.103208_bb0010) 2014; 35
Rogers (10.1016/j.ecoinf.2025.103208_bb0285) 2024; 129
Xie (10.1016/j.ecoinf.2025.103208_bb0365) 2022; 178
Zhang (10.1016/j.ecoinf.2025.103208_bb0425) 2011; 10
Sibanda (10.1016/j.ecoinf.2025.103208_bb0300) 2019; 56
Zarco-Tejada (10.1016/j.ecoinf.2025.103208_bb0405) 2001; 39
Liu (10.1016/j.ecoinf.2025.103208_bb0200) 2018; 10
Qi (10.1016/j.ecoinf.2025.103208_bb0265) 1994; 48
Ma (10.1016/j.ecoinf.2025.103208_bb0210) 2010; 48
Xue (10.1016/j.ecoinf.2025.103208_bb0375) 2017; 2017
Ai (10.1016/j.ecoinf.2025.103208_bb0020) 2017; 11
Chen (10.1016/j.ecoinf.2025.103208_bb0070) 1996; 22
Sala (10.1016/j.ecoinf.2025.103208_bb0295) 2000; 287
Wang (10.1016/j.ecoinf.2025.103208_bb0355) 2021; 101
Yang (10.1016/j.ecoinf.2025.103208_bb0385) 2018; 73
Huete (10.1016/j.ecoinf.2025.103208_bb0140) 1997; 59
Ma (10.1016/j.ecoinf.2025.103208_bb0220) 2024; 18
Zhang (10.1016/j.ecoinf.2025.103208_bb0430) 2022; 269
Axelsson (10.1016/j.ecoinf.2025.103208_bb0030) 2013; 34
Haboudane (10.1016/j.ecoinf.2025.103208_bb0125) 2002; 81
Raper (10.1016/j.ecoinf.2025.103208_bb0275) 2011
Zhu (10.1016/j.ecoinf.2025.103208_bb0445) 2019; 11
Ouyang (10.1016/j.ecoinf.2025.103208_bb0245) 2013; 8
Jiang (10.1016/j.ecoinf.2025.103208_bb0150) 2023; 13
Khan (10.1016/j.ecoinf.2025.103208_bb0170) 2022; 69
Gitelson (10.1016/j.ecoinf.2025.103208_bb0120) 2001; 74
Boonprong (10.1016/j.ecoinf.2025.103208_bb0045) 2018; 10
Blaschke (10.1016/j.ecoinf.2025.103208_bb0040) 2010; 65
Huete (10.1016/j.ecoinf.2025.103208_bb0135) 1988; 25
Sun (10.1016/j.ecoinf.2025.103208_bb0315) 2021; 104
Haralick (10.1016/j.ecoinf.2025.103208_bb0130) 1973
Zabeo (10.1016/j.ecoinf.2025.103208_bb0400) 2024; 84
Li (10.1016/j.ecoinf.2025.103208_bb0175) 2008; 32
Yang (10.1016/j.ecoinf.2025.103208_bb0390) 2019; 11
Vapnik (10.1016/j.ecoinf.2025.103208_bb0340) 1998
Carter (10.1016/j.ecoinf.2025.103208_bb0065) 1994; 50
Datt (10.1016/j.ecoinf.2025.103208_bb0095) 1999; 154
Adelabu (10.1016/j.ecoinf.2025.103208_bb0015) 2014; 95
Ren (10.1016/j.ecoinf.2025.103208_bb0280) 2009; 35
Liu (10.1016/j.ecoinf.2025.103208_bb0205) 2024; 556
Paini (10.1016/j.ecoinf.2025.103208_bb0250) 2016; 113
Yan (10.1016/j.ecoinf.2025.103208_bb0380) 2006; 27
Liu (10.1016/j.ecoinf.2025.103208_bb0190) 2017; 185
Merton (10.1016/j.ecoinf.2025.103208_bb0225) 1998
Dong (10.1016/j.ecoinf.2025.103208_bb0100) 2020; 14
van Deventer (10.1016/j.ecoinf.2025.103208_bb0325) 2019; 157
Early (10.1016/j.ecoinf.2025.103208_bb0105) 2016; 7
Garbulsky (10.1016/j.ecoinf.2025.103208_bb0110) 2011; 115
Wang (10.1016/j.ecoinf.2025.103208_bb0350) 2017; 9
Georganos (10.1016/j.ecoinf.2025.103208_bb0115) 2018; 55
Adam (10.1016/j.ecoinf.2025.103208_bb0005) 2012; 33
Araya (10.1016/j.ecoinf.2025.103208_bb0025) 2018; 46
Chen (10.1016/j.ecoinf.2025.103208_bb0075) 2016; 54
Nasiri (10.1016/j.ecoinf.2025.103208_bb0235) 2023; 125
Peña-Barragán (10.1016/j.ecoinf.2025.103208_bb0255) 2011; 115
Yao (10.1016/j.ecoinf.2025.103208_bb0395) 2024; 14
Liu (10.1016/j.ecoinf.2025.103208_bb0195) 2017; 9
Zhu (10.1016/j.ecoinf.2025.103208_bb0440) 2017; 9
Van (10.1016/j.ecoinf.2025.103208_bb0330) 2024; 81
Pu (10.1016/j.ecoinf.2025.103208_bb0260) 2012; 124
Qin (10.1016/j.ecoinf.2025.103208_bb0270) 2023
Xu (10.1016/j.ecoinf.2025.103208_bb0370) 2020; 14
Roujean (10.1016/j.ecoinf.2025.103208_bb0290) 1995; 51
Zarco-Tejada (10.1016/j.ecoinf.2025.103208_bb0415) 2019; 223
Liaw (10.1016/j.ecoinf.2025.103208_bb0180) 2002; 2
Wu (10.1016/j.ecoinf.2025.103208_bb0360) 2013; 34
Jönsson (10.1016/j.ecoinf.2025.103208_bb0155) 2018; 10
Steele (10.1016/j.ecoinf.2025.103208_bb0310) 2009; 60
Tian (10.1016/j.ecoinf.2025.103208_bb0320) 2020; 242
Kaufman (10.1016/j.ecoinf.2025.103208_bb0165) 1992; 30
Jordan (10.1016/j.ecoinf.2025.103208_bb0160) 1969; 50
Vogelmann (10.1016/j.ecoinf.2025.103208_bb0345) 1993; 44
Cortes (10.1016/j.ecoinf.2025.103208_bb0090) 1995; 20
Myint (10.1016/j.ecoinf.2025.103208_bb0230) 2011; 115
Coops (10.1016/j.ecoinf.2025.103208_bb0085) 2001
Zhu (10.1016/j.ecoinf.2025.103208_bb0435) 2015; 7
Clark (10.1016/j.ecoinf.2025.103208_bb0080) 2016; 119
Zarco-Tejada (10.1016/j.ecoinf.2025.103208_bb0410) 2005; 97
Baret (10.1016/j.ecoinf.2025.103208_bb0035) 1991; 35
Ma (10.1016/j.ecoinf.2025.103208_bb0215) 2015; 102
Liu (10.1016/j.ecoinf.2025.103208_bb0185) 2016; 6
Jiang (10.1016/j.ecoinf.2025.103208_bb0145) 2019; 11
Breiman (10.1016/j.ecoinf.2025.103208_bb0050) 2001; 45
Zhang (10.1016/j.ecoinf.2025.103208_bb0420) 2016; 4
Carter (10.1016/j.ecoinf.2025.103208_bb0060) 1994; 15
Noble (10.1016/j.ecoinf.2025.103208_bb0240) 2006; 24
Cao (10.1016/j.ecoinf.2025.103208_bb0055) 2018; 10
Vanguri (10.1016/j.ecoinf.2025.103208_bb0335) 2024; 167
Singh (10.1016/j.ecoinf.2025.103208_bb0305) 2020; 44
References_xml – volume: 9
  start-page: 589
  year: 2017
  ident: bb0350
  article-title: Mapping Spartina alterniflora biomass using LiDAR and hyperspectral data
  publication-title: Remote Sens.
– volume: 11
  start-page: 514
  year: 2019
  ident: bb0390
  article-title: Optimal segmentation scale parameter, feature subset and classification algorithm for geographic object-based crop recognition using multisource satellite imagery
  publication-title: Remote Sens.
– volume: 119
  start-page: 228
  year: 2016
  end-page: 245
  ident: bb0080
  article-title: Mapping of land cover in northern California with simulated hyperspectral satellite imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 287
  start-page: 1770
  year: 2000
  end-page: 1774
  ident: bb0295
  article-title: Global biodiversity scenarios for the year 2100
  publication-title: science
– volume: 51
  start-page: 375
  year: 1995
  end-page: 384
  ident: bb0290
  article-title: Estimating PAR absorbed by vegetation from bidirectional reflectance measurements
  publication-title: Remote Sens. Environ.
– volume: 34
  start-page: 1724
  year: 2013
  end-page: 1743
  ident: bb0030
  article-title: Hyperspectral analysis of mangrove foliar chemistry using PLSR and support vector regression
  publication-title: Int. J. Remote Sens.
– volume: 48
  start-page: 119
  year: 1994
  end-page: 126
  ident: bb0265
  article-title: A modified soil adjusted vegetation index
  publication-title: Remote Sens. Environ.
– volume: 101
  year: 2021
  ident: bb0355
  article-title: Object-based spectral-phenological features for mapping invasive Spartina alterniflora
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 14
  start-page: 044504
  year: 2020
  ident: bb0100
  article-title: Combing Sentinel-1 and Sentinel-2 image time series for invasive Spartina alterniflora mapping on Google earth engine: a case study in Zhangjiang estuary
  publication-title: J. Appl. Remote. Sens.
– volume: 124
  start-page: 516
  year: 2012
  end-page: 533
  ident: bb0260
  article-title: A comparative analysis of high spatial resolution IKONOS and WorldView-2 imagery for mapping urban tree species
  publication-title: Remote Sens. Environ.
– volume: 10
  start-page: 807
  year: 2018
  ident: bb0045
  article-title: Random forest variable importance spectral indices scheme for burnt forest recovery monitoring—multilevel RF-VIMP
  publication-title: Remote Sens.
– volume: 7
  start-page: 12485
  year: 2016
  ident: bb0105
  article-title: Global threats from invasive alien species in the twenty-first century and national response capacities
  publication-title: Nat. Commun.
– volume: 56
  start-page: 68
  year: 2019
  end-page: 86
  ident: bb0300
  article-title: Estimating LAI and mapping canopy storage capacity for hydrological applications in wattle infested ecosystems using Sentinel-2 MSI derived red edge bands
  publication-title: GIScie. & Remote Sens.
– volume: 55
  start-page: 221
  year: 2018
  end-page: 242
  ident: bb0115
  article-title: Less is more: optimizing classification performance through feature selection in a very-high-resolution remote sensing object-based urban application
  publication-title: GIScie. & Remote Sens.
– volume: 35
  start-page: 693
  year: 2014
  end-page: 714
  ident: bb0010
  article-title: Estimating standing biomass in papyrus (Cyperus papyrus L.) swamp: exploratory of in situ hyperspectral indices and random forest regression
  publication-title: Int. J. Remote Sens.
– volume: 556
  year: 2024
  ident: bb0205
  article-title: Examining spatial dynamics and interactions of planted alien, native, and invasive alien species in China’s largest artificial mangrove forest
  publication-title: For. Ecol. Manag.
– volume: 2017
  start-page: 1353691
  year: 2017
  ident: bb0375
  article-title: Significant remote sensing vegetation indices: a review of developments and applications
  publication-title: J Sens
– volume: 73
  start-page: 778
  year: 2018
  end-page: 785
  ident: bb0385
  article-title: Evaluating the relationship between the photochemical reflectance index and light use efficiency in a mangrove forest with Spartina alterniflora invasion
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– start-page: 603
  year: 2001
  end-page: 605
  ident: bb0085
  article-title: Assessing eucalypt foliar health with field-based spectra and high spatial resolution hyperspectral imagery
  publication-title: IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. vol. No. 01CH37217)
– volume: 34
  start-page: 7974
  year: 2013
  end-page: 7990
  ident: bb0360
  article-title: A comparative evaluation of filter-based feature selection methods for hyper-spectral band selection
  publication-title: Int. J. Remote Sens.
– volume: 60
  start-page: 87
  year: 2009
  end-page: 92
  ident: bb0310
  article-title: Nondestructive estimation of anthocyanin content in grapevine leaves
  publication-title: Am. J. Enol. Vitic.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bb0050
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 46
  start-page: 45
  year: 2018
  end-page: 56
  ident: bb0025
  article-title: CropPhenology: an R package for extracting crop phenology from time series remotely sensed vegetation index imagery
  publication-title: Eco. Inform.
– volume: 24
  start-page: 1565
  year: 2006
  end-page: 1567
  ident: bb0240
  article-title: What is a support vector machine?
  publication-title: Nat. Biotechnol.
– volume: 11
  start-page: 1208
  year: 2019
  ident: bb0445
  article-title: Tidal and meteorological influences on the growth of invasive Spartina alterniflora: evidence from UAV remote sensing
  publication-title: Remote Sens.
– volume: 10
  start-page: 635
  year: 2018
  ident: bb0155
  article-title: A method for robust estimation of vegetation seasonality from Landsat and Sentinel-2 time series data
  publication-title: Remote Sens.
– volume: 8
  year: 2013
  ident: bb0245
  article-title: Spectral discrimination of the invasive plant Spartina alterniflora at multiple phenological stages in a saltmarsh wetland
  publication-title: PLoS One
– volume: 10
  start-page: 1933
  year: 2018
  ident: bb0200
  article-title: Rapid invasion of Spartina alterniflora in the coastal zone of mainland China: new observations from Landsat OLI images
  publication-title: Remote Sens.
– volume: 44
  start-page: 409
  year: 2020
  end-page: 419
  ident: bb0305
  article-title: Crop growth monitoring through sentinel and Landsat data based NDVI time-series
  publication-title: Компьютерная оптика
– volume: 223
  start-page: 320
  year: 2019
  end-page: 335
  ident: bb0415
  article-title: Chlorophyll content estimation in an open-canopy conifer forest with sentinel-2A and hyperspectral imagery in the context of forest decline
  publication-title: Remote Sens. Environ.
– start-page: 12
  year: 1998
  end-page: 16
  ident: bb0225
  article-title: Monitoring community hysteresis using spectral shift analysis and the red-edge vegetation stress index
  publication-title: Proceedings of the seventh annual JPL airborne earth science workshop
– volume: 33
  start-page: 552
  year: 2012
  end-page: 569
  ident: bb0005
  article-title: Discriminating the papyrus vegetation (Cyperus papyrus L.) and its co-existent species using random forest and hyperspectral data resampled to HYMAP
  publication-title: Int. J. Remote Sens.
– volume: 35
  start-page: 1243
  year: 2009
  end-page: 1248
  ident: bb0280
  article-title: Sonneratia apetala Buch. Ham in the mangrove ecosystems of China: an invasive species or restoration species?
  publication-title: Ecol. Eng.
– volume: 35
  start-page: 161
  year: 1991
  end-page: 173
  ident: bb0035
  article-title: Potentials and limits of vegetation indices for LAI and APAR assessment
  publication-title: Remote Sens. Environ.
– volume: 125
  year: 2023
  ident: bb0235
  article-title: Comparing object-based and pixel-based machine learning models for tree-cutting detection with PlanetScope satellite images: exploring model generalization
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 2
  start-page: 18
  year: 2002
  end-page: 22
  ident: bb0180
  article-title: Classification and regression by randomForest
  publication-title: R News
– volume: 69
  year: 2022
  ident: bb0170
  article-title: A systematic review on hyperspectral imaging technology with a machine and deep learning methodology for agricultural applications
  publication-title: Eco. Inform.
– volume: 113
  start-page: 7575
  year: 2016
  end-page: 7579
  ident: bb0250
  article-title: Global threat to agriculture from invasive species
  publication-title: Proc. Natl. Acad. Sci.
– volume: 81
  year: 2024
  ident: bb0330
  article-title: Enhancing wildfire mapping accuracy using mono-temporal Sentinel-2 data: a novel approach through qualitative and quantitative feature selection with explainable AI
  publication-title: Eco. Inform.
– start-page: 15
  year: 2023
  ident: bb0270
  article-title: First Experience with Zhuhai-1 Hyperspectral Data for Urban Dominant Tree Species Classification in Shenzhen, China
  publication-title: Remote Sens.
– volume: 44
  start-page: 231
  year: 1993
  end-page: 251
  ident: bb0345
  article-title: Plant tissue optics
  publication-title: Annu. Rev. Plant Biol.
– volume: 50
  start-page: 663
  year: 1969
  end-page: 666
  ident: bb0160
  article-title: Derivation of leaf-area index from quality of light on the forest floor
  publication-title: Ecology
– volume: 95
  start-page: 34
  year: 2014
  end-page: 41
  ident: bb0015
  article-title: Evaluating the impact of red-edge band from Rapideye image for classifying insect defoliation levels
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 115
  start-page: 281
  year: 2011
  end-page: 297
  ident: bb0110
  article-title: The photochemical reflectance index (PRI) and the remote sensing of leaf, canopy and ecosystem radiation use efficiencies: a review and meta-analysis
  publication-title: Remote Sens. Environ.
– volume: 157
  start-page: 171
  year: 2019
  end-page: 187
  ident: bb0325
  article-title: Multi-season RapidEye imagery improves the classification of wetland and dryland communities in a subtropical coastal region
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 242
  year: 2020
  ident: bb0320
  article-title: Development of spectral-phenological features for deep learning to understand Spartina alterniflora invasion
  publication-title: Remote Sens. Environ.
– volume: 10
  start-page: 2472
  year: 2011
  end-page: 2477
  ident: bb0425
  article-title: Analysis of the expanding process of the Spartina Alterniflora salt marsh in Shanyutan wetland, Minjiang River estuary by remote sensing
  publication-title: Procedia Environ. Sci.
– volume: 185
  start-page: 22
  year: 2017
  end-page: 30
  ident: bb0190
  article-title: Relative importance of sexual and asexual reproduction for range expansion of Spartina alterniflora in different tidal zones on Chinese coast
  publication-title: Estuar. Coast. Shelf Sci.
– volume: 39
  start-page: 1491
  year: 2001
  end-page: 1507
  ident: bb0405
  article-title: Scaling-up and model inversion methods with narrowband optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 27
  start-page: 4039
  year: 2006
  end-page: 4055
  ident: bb0380
  article-title: Comparison of pixel-based and object-oriented image classification approaches—a case study in a coal fire area, Wuda, Inner Mongolia, China
  publication-title: Int. J. Remote Sens.
– volume: 9
  start-page: 1060
  year: 2017
  ident: bb0440
  article-title: Exploring the potential of worldview-2 red-edge band-based vegetation indices for estimation of mangrove leaf area index with machine learning algorithms
  publication-title: Remote Sens.
– volume: 4
  year: 2016
  ident: bb0420
  article-title: Introduction to machine learning: k-nearest neighbors
  publication-title: Ann. Translat. Med.
– volume: 167
  year: 2024
  ident: bb0335
  article-title: Mapping forest tree species and its biodiversity using EnMAP hyperspectral data along with Sentinel-2 temporal data: an approach of tree species classification and diversity indices
  publication-title: Ecol. Indic.
– volume: 14
  start-page: 190
  year: 2020
  end-page: 201
  ident: bb0370
  article-title: A simple phenology-based vegetation index for mapping invasive spartina alterniflora using Google earth engine
  publication-title: IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
– volume: 154
  start-page: 30
  year: 1999
  end-page: 36
  ident: bb0095
  article-title: A new reflectance index for remote sensing of chlorophyll content in higher plants: tests using Eucalyptus leaves
  publication-title: J. Plant Physiol.
– volume: 6
  start-page: 113
  year: 2016
  end-page: 128
  ident: bb0185
  article-title: Expansion and management implications of invasive alien Spartina alterniflora in Yancheng salt marshes, China
  publication-title: Open J. Ecol.
– volume: 32
  start-page: 11
  year: 2008
  end-page: 21
  ident: bb0175
  article-title: An experimental study on physical controls of an exotic plant Spartina alterniflora in Shanghai, China
  publication-title: Ecol. Eng.
– volume: 14
  year: 2024
  ident: bb0395
  article-title: Remote sensing monitoring and potential distribution analysis of Spartina alterniflora in coastal zone of Guangxi
  publication-title: Ecol. Evol.
– volume: 9
  start-page: 539
  year: 2017
  ident: bb0195
  article-title: Monitoring the invasion of Spartina alterniflora using multi-source high-resolution imagery in the Zhangjiang estuary, China
  publication-title: Remote Sens.
– volume: 178
  year: 2022
  ident: bb0365
  article-title: Risk assessment of heavy metals in a typical mangrove ecosystem-a case study of Shankou mangrove National Natural Reserve, southern China
  publication-title: Mar. Pollut. Bull.
– volume: 84
  year: 2024
  ident: bb0400
  article-title: A multi-source approach to mapping habitat diversity: combination of multi-date multispectral satellite imagery and comparison with single-date hyperspectral results in a Mediterranean natural reserve
  publication-title: Eco. Inform.
– volume: 22
  start-page: 229
  year: 1996
  end-page: 242
  ident: bb0070
  article-title: Evaluation of vegetation indices and a modified simple ratio for boreal applications
  publication-title: Can. J. Remote. Sens.
– volume: 129
  year: 2024
  ident: bb0285
  article-title: Classifying plant communities in the North American Coastal Plain with PRISMA spaceborne hyperspectral imagery and the spectral mixture residual
  publication-title: J. Geophys. Res. Biogeosci.
– volume: 50
  start-page: 295
  year: 1994
  end-page: 302
  ident: bb0065
  article-title: Early detection of plant stress by digital imaging within narrow stress-sensitive wavebands
  publication-title: Remote Sens. Environ.
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: bb0090
  article-title: Support-vector networks
  publication-title: Mach. Learn.
– volume: 18
  start-page: 13
  year: 2024
  end-page: 24
  ident: bb0220
  article-title: Mapping invasive Spartina alterniflora using Phenological information and red-edge bands of Sentinel-2 time-series data
  publication-title: IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens
– volume: 104
  year: 2021
  ident: bb0315
  article-title: A simple and effective spectral-spatial method for mapping large-scale coastal wetlands using China ZY1-02D satellite hyperspectral images
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– start-page: 610
  year: 1973
  end-page: 621
  ident: bb0130
  article-title: Textural features for image classification
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 65
  start-page: 2
  year: 2010
  end-page: 16
  ident: bb0040
  article-title: Object based image analysis for remote sensing
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 15
  start-page: 697
  year: 1994
  end-page: 703
  ident: bb0060
  article-title: Ratios of leaf reflectances in narrow wavebands as indicators of plant stress
  publication-title: Remote Sens.
– volume: 25
  start-page: 295
  year: 1988
  end-page: 309
  ident: bb0135
  article-title: A soil-adjusted vegetation index (SAVI)
  publication-title: Remote Sens. Environ.
– volume: 10
  start-page: 89
  year: 2018
  ident: bb0055
  article-title: Object-based mangrove species classification using unmanned aerial vehicle hyperspectral images and digital surface models
  publication-title: Remote Sens.
– volume: 115
  start-page: 1145
  year: 2011
  end-page: 1161
  ident: bb0230
  article-title: Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery
  publication-title: Remote Sens. Environ.
– volume: 269
  year: 2022
  ident: bb0430
  article-title: Quantifying latitudinal variation in land surface phenology of Spartina alterniflora saltmarshes across coastal wetlands in China by Landsat 7/8 and Sentinel-2 images
  publication-title: Remote Sens. Environ.
– volume: 30
  start-page: 261
  year: 1992
  end-page: 270
  ident: bb0165
  article-title: Atmospherically resistant vegetation index (ARVI) for EOS-MODIS
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 11
  start-page: 026020
  year: 2017
  ident: bb0020
  article-title: Phenology-based Spartina alterniflora mapping in coastal wetland of the Yangtze estuary using time series of GaoFen satellite no. 1 wide field of view imagery
  publication-title: J. Appl. Remote. Sens.
– volume: 7
  start-page: 12192
  year: 2015
  end-page: 12214
  ident: bb0435
  article-title: Retrieval of mangrove aboveground biomass at the individual species level with WorldView-2 images
  publication-title: Remote Sens.
– volume: 102
  start-page: 14
  year: 2015
  end-page: 27
  ident: bb0215
  article-title: Training set size, scale, and features in geographic object-based image analysis of very high resolution unmanned aerial vehicle imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 11
  start-page: 996
  year: 2019
  ident: bb0145
  article-title: Geometric processing and accuracy verification of Zhuhai-1 hyperspectral satellites
  publication-title: Remote Sens.
– volume: 81
  start-page: 416
  year: 2002
  end-page: 426
  ident: bb0125
  article-title: Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture
  publication-title: Remote Sens. Environ.
– year: 1998
  ident: bb0340
  article-title: Statistical Learning Theory
– volume: 74
  start-page: 38
  year: 2001
  end-page: 45
  ident: bb0120
  article-title: Optical properties and nondestructive estimation of anthocyanin content in plant leaves¶
  publication-title: Photochem. Photobiol.
– volume: 97
  start-page: 641
  year: 2005
  end-page: 653
  ident: bb0410
  article-title: Temporal and spatial relationships between within-field yield variability in cotton and high-spatial hyperspectral remote sensing imagery
  publication-title: Agron. J.
– volume: 13
  start-page: 12614
  year: 2023
  ident: bb0150
  article-title: Spatial and temporal changes of typical vegetation in the Yellow River Delta based on Zhuhai-1 hyperspectral data
  publication-title: Appl. Sci.
– volume: 48
  start-page: 4099
  year: 2010
  end-page: 4109
  ident: bb0210
  article-title: Local manifold learning-based $ k $-nearest-neighbor for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 54
  start-page: 3436
  year: 2016
  end-page: 3449
  ident: bb0075
  article-title: A simple method for detecting phenological change from time series of vegetation index
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 59
  start-page: 440
  year: 1997
  end-page: 451
  ident: bb0140
  article-title: A comparison of vegetation indices over a global set of TM images for EOS-MODIS
  publication-title: Remote Sens. Environ.
– volume: 115
  start-page: 1301
  year: 2011
  end-page: 1316
  ident: bb0255
  article-title: Object-based crop identification using multiple vegetation indices, textural features and crop phenology
  publication-title: Remote Sens. Environ.
– year: 2011
  ident: bb0275
  article-title: Effectiveness of Crop Reflectance Sensors on Detection of Cotton (
– volume: 10
  start-page: 635
  year: 2018
  ident: 10.1016/j.ecoinf.2025.103208_bb0155
  article-title: A method for robust estimation of vegetation seasonality from Landsat and Sentinel-2 time series data
  publication-title: Remote Sens.
  doi: 10.3390/rs10040635
– volume: 556
  year: 2024
  ident: 10.1016/j.ecoinf.2025.103208_bb0205
  article-title: Examining spatial dynamics and interactions of planted alien, native, and invasive alien species in China’s largest artificial mangrove forest
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2024.121755
– volume: 73
  start-page: 778
  year: 2018
  ident: 10.1016/j.ecoinf.2025.103208_bb0385
  article-title: Evaluating the relationship between the photochemical reflectance index and light use efficiency in a mangrove forest with Spartina alterniflora invasion
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 178
  year: 2022
  ident: 10.1016/j.ecoinf.2025.103208_bb0365
  article-title: Risk assessment of heavy metals in a typical mangrove ecosystem-a case study of Shankou mangrove National Natural Reserve, southern China
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2022.113642
– volume: 20
  start-page: 273
  year: 1995
  ident: 10.1016/j.ecoinf.2025.103208_bb0090
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1023/A:1022627411411
– volume: 11
  start-page: 996
  year: 2019
  ident: 10.1016/j.ecoinf.2025.103208_bb0145
  article-title: Geometric processing and accuracy verification of Zhuhai-1 hyperspectral satellites
  publication-title: Remote Sens.
  doi: 10.3390/rs11090996
– volume: 55
  start-page: 221
  year: 2018
  ident: 10.1016/j.ecoinf.2025.103208_bb0115
  article-title: Less is more: optimizing classification performance through feature selection in a very-high-resolution remote sensing object-based urban application
  publication-title: GIScie. & Remote Sens.
  doi: 10.1080/15481603.2017.1408892
– volume: 33
  start-page: 552
  year: 2012
  ident: 10.1016/j.ecoinf.2025.103208_bb0005
  article-title: Discriminating the papyrus vegetation (Cyperus papyrus L.) and its co-existent species using random forest and hyperspectral data resampled to HYMAP
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2010.543182
– volume: 242
  year: 2020
  ident: 10.1016/j.ecoinf.2025.103208_bb0320
  article-title: Development of spectral-phenological features for deep learning to understand Spartina alterniflora invasion
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111745
– volume: 25
  start-page: 295
  year: 1988
  ident: 10.1016/j.ecoinf.2025.103208_bb0135
  article-title: A soil-adjusted vegetation index (SAVI)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(88)90106-X
– volume: 185
  start-page: 22
  year: 2017
  ident: 10.1016/j.ecoinf.2025.103208_bb0190
  article-title: Relative importance of sexual and asexual reproduction for range expansion of Spartina alterniflora in different tidal zones on Chinese coast
  publication-title: Estuar. Coast. Shelf Sci.
  doi: 10.1016/j.ecss.2016.11.024
– volume: 8
  year: 2013
  ident: 10.1016/j.ecoinf.2025.103208_bb0245
  article-title: Spectral discrimination of the invasive plant Spartina alterniflora at multiple phenological stages in a saltmarsh wetland
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0067315
– volume: 119
  start-page: 228
  year: 2016
  ident: 10.1016/j.ecoinf.2025.103208_bb0080
  article-title: Mapping of land cover in northern California with simulated hyperspectral satellite imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.06.007
– volume: 10
  start-page: 2472
  year: 2011
  ident: 10.1016/j.ecoinf.2025.103208_bb0425
  article-title: Analysis of the expanding process of the Spartina Alterniflora salt marsh in Shanyutan wetland, Minjiang River estuary by remote sensing
  publication-title: Procedia Environ. Sci.
  doi: 10.1016/j.proenv.2011.09.385
– volume: 9
  start-page: 1060
  year: 2017
  ident: 10.1016/j.ecoinf.2025.103208_bb0440
  article-title: Exploring the potential of worldview-2 red-edge band-based vegetation indices for estimation of mangrove leaf area index with machine learning algorithms
  publication-title: Remote Sens.
  doi: 10.3390/rs9101060
– volume: 113
  start-page: 7575
  year: 2016
  ident: 10.1016/j.ecoinf.2025.103208_bb0250
  article-title: Global threat to agriculture from invasive species
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1602205113
– volume: 69
  year: 2022
  ident: 10.1016/j.ecoinf.2025.103208_bb0170
  article-title: A systematic review on hyperspectral imaging technology with a machine and deep learning methodology for agricultural applications
  publication-title: Eco. Inform.
– volume: 223
  start-page: 320
  year: 2019
  ident: 10.1016/j.ecoinf.2025.103208_bb0415
  article-title: Chlorophyll content estimation in an open-canopy conifer forest with sentinel-2A and hyperspectral imagery in the context of forest decline
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.01.031
– volume: 59
  start-page: 440
  year: 1997
  ident: 10.1016/j.ecoinf.2025.103208_bb0140
  article-title: A comparison of vegetation indices over a global set of TM images for EOS-MODIS
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(96)00112-5
– volume: 15
  start-page: 697
  year: 1994
  ident: 10.1016/j.ecoinf.2025.103208_bb0060
  article-title: Ratios of leaf reflectances in narrow wavebands as indicators of plant stress
  publication-title: Remote Sens.
  doi: 10.1080/01431169408954109
– volume: 125
  year: 2023
  ident: 10.1016/j.ecoinf.2025.103208_bb0235
  article-title: Comparing object-based and pixel-based machine learning models for tree-cutting detection with PlanetScope satellite images: exploring model generalization
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 14
  year: 2024
  ident: 10.1016/j.ecoinf.2025.103208_bb0395
  article-title: Remote sensing monitoring and potential distribution analysis of Spartina alterniflora in coastal zone of Guangxi
  publication-title: Ecol. Evol.
  doi: 10.1002/ece3.11469
– volume: 2
  start-page: 18
  year: 2002
  ident: 10.1016/j.ecoinf.2025.103208_bb0180
  article-title: Classification and regression by randomForest
  publication-title: R News
– volume: 115
  start-page: 1301
  year: 2011
  ident: 10.1016/j.ecoinf.2025.103208_bb0255
  article-title: Object-based crop identification using multiple vegetation indices, textural features and crop phenology
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.01.009
– volume: 81
  start-page: 416
  year: 2002
  ident: 10.1016/j.ecoinf.2025.103208_bb0125
  article-title: Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00018-4
– volume: 124
  start-page: 516
  year: 2012
  ident: 10.1016/j.ecoinf.2025.103208_bb0260
  article-title: A comparative analysis of high spatial resolution IKONOS and WorldView-2 imagery for mapping urban tree species
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.06.011
– volume: 167
  year: 2024
  ident: 10.1016/j.ecoinf.2025.103208_bb0335
  article-title: Mapping forest tree species and its biodiversity using EnMAP hyperspectral data along with Sentinel-2 temporal data: an approach of tree species classification and diversity indices
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2024.112671
– volume: 35
  start-page: 693
  year: 2014
  ident: 10.1016/j.ecoinf.2025.103208_bb0010
  article-title: Estimating standing biomass in papyrus (Cyperus papyrus L.) swamp: exploratory of in situ hyperspectral indices and random forest regression
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2013.870676
– volume: 13
  start-page: 12614
  year: 2023
  ident: 10.1016/j.ecoinf.2025.103208_bb0150
  article-title: Spatial and temporal changes of typical vegetation in the Yellow River Delta based on Zhuhai-1 hyperspectral data
  publication-title: Appl. Sci.
  doi: 10.3390/app132312614
– volume: 10
  start-page: 1933
  year: 2018
  ident: 10.1016/j.ecoinf.2025.103208_bb0200
  article-title: Rapid invasion of Spartina alterniflora in the coastal zone of mainland China: new observations from Landsat OLI images
  publication-title: Remote Sens.
  doi: 10.3390/rs10121933
– volume: 27
  start-page: 4039
  year: 2006
  ident: 10.1016/j.ecoinf.2025.103208_bb0380
  article-title: Comparison of pixel-based and object-oriented image classification approaches—a case study in a coal fire area, Wuda, Inner Mongolia, China
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160600702632
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.ecoinf.2025.103208_bb0050
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 32
  start-page: 11
  year: 2008
  ident: 10.1016/j.ecoinf.2025.103208_bb0175
  article-title: An experimental study on physical controls of an exotic plant Spartina alterniflora in Shanghai, China
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2007.08.005
– volume: 104
  year: 2021
  ident: 10.1016/j.ecoinf.2025.103208_bb0315
  article-title: A simple and effective spectral-spatial method for mapping large-scale coastal wetlands using China ZY1-02D satellite hyperspectral images
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 39
  start-page: 1491
  year: 2001
  ident: 10.1016/j.ecoinf.2025.103208_bb0405
  article-title: Scaling-up and model inversion methods with narrowband optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.934080
– start-page: 15
  year: 2023
  ident: 10.1016/j.ecoinf.2025.103208_bb0270
  article-title: First Experience with Zhuhai-1 Hyperspectral Data for Urban Dominant Tree Species Classification in Shenzhen, China
  publication-title: Remote Sens.
– volume: 18
  start-page: 13
  year: 2024
  ident: 10.1016/j.ecoinf.2025.103208_bb0220
  article-title: Mapping invasive Spartina alterniflora using Phenological information and red-edge bands of Sentinel-2 time-series data
  publication-title: IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens
  doi: 10.1109/JSTARS.2024.3495048
– volume: 11
  start-page: 1208
  year: 2019
  ident: 10.1016/j.ecoinf.2025.103208_bb0445
  article-title: Tidal and meteorological influences on the growth of invasive Spartina alterniflora: evidence from UAV remote sensing
  publication-title: Remote Sens.
  doi: 10.3390/rs11101208
– volume: 56
  start-page: 68
  year: 2019
  ident: 10.1016/j.ecoinf.2025.103208_bb0300
  article-title: Estimating LAI and mapping canopy storage capacity for hydrological applications in wattle infested ecosystems using Sentinel-2 MSI derived red edge bands
  publication-title: GIScie. & Remote Sens.
  doi: 10.1080/15481603.2018.1492213
– volume: 35
  start-page: 161
  year: 1991
  ident: 10.1016/j.ecoinf.2025.103208_bb0035
  article-title: Potentials and limits of vegetation indices for LAI and APAR assessment
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(91)90009-U
– volume: 65
  start-page: 2
  year: 2010
  ident: 10.1016/j.ecoinf.2025.103208_bb0040
  article-title: Object based image analysis for remote sensing
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2009.06.004
– volume: 6
  start-page: 113
  year: 2016
  ident: 10.1016/j.ecoinf.2025.103208_bb0185
  article-title: Expansion and management implications of invasive alien Spartina alterniflora in Yancheng salt marshes, China
  publication-title: Open J. Ecol.
  doi: 10.4236/oje.2016.63012
– year: 1998
  ident: 10.1016/j.ecoinf.2025.103208_bb0340
– volume: 10
  start-page: 89
  year: 2018
  ident: 10.1016/j.ecoinf.2025.103208_bb0055
  article-title: Object-based mangrove species classification using unmanned aerial vehicle hyperspectral images and digital surface models
  publication-title: Remote Sens.
  doi: 10.3390/rs10010089
– volume: 34
  start-page: 1724
  year: 2013
  ident: 10.1016/j.ecoinf.2025.103208_bb0030
  article-title: Hyperspectral analysis of mangrove foliar chemistry using PLSR and support vector regression
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2012.725958
– volume: 74
  start-page: 38
  year: 2001
  ident: 10.1016/j.ecoinf.2025.103208_bb0120
  article-title: Optical properties and nondestructive estimation of anthocyanin content in plant leaves¶
  publication-title: Photochem. Photobiol.
  doi: 10.1562/0031-8655(2001)074<0038:OPANEO>2.0.CO;2
– volume: 54
  start-page: 3436
  year: 2016
  ident: 10.1016/j.ecoinf.2025.103208_bb0075
  article-title: A simple method for detecting phenological change from time series of vegetation index
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2518167
– volume: 97
  start-page: 641
  year: 2005
  ident: 10.1016/j.ecoinf.2025.103208_bb0410
  article-title: Temporal and spatial relationships between within-field yield variability in cotton and high-spatial hyperspectral remote sensing imagery
  publication-title: Agron. J.
  doi: 10.2134/agronj2003.0257
– volume: 44
  start-page: 409
  year: 2020
  ident: 10.1016/j.ecoinf.2025.103208_bb0305
  article-title: Crop growth monitoring through sentinel and Landsat data based NDVI time-series
  publication-title: Компьютерная оптика
– volume: 81
  year: 2024
  ident: 10.1016/j.ecoinf.2025.103208_bb0330
  article-title: Enhancing wildfire mapping accuracy using mono-temporal Sentinel-2 data: a novel approach through qualitative and quantitative feature selection with explainable AI
  publication-title: Eco. Inform.
– volume: 11
  start-page: 514
  year: 2019
  ident: 10.1016/j.ecoinf.2025.103208_bb0390
  article-title: Optimal segmentation scale parameter, feature subset and classification algorithm for geographic object-based crop recognition using multisource satellite imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs11050514
– volume: 50
  start-page: 663
  year: 1969
  ident: 10.1016/j.ecoinf.2025.103208_bb0160
  article-title: Derivation of leaf-area index from quality of light on the forest floor
  publication-title: Ecology
  doi: 10.2307/1936256
– volume: 30
  start-page: 261
  year: 1992
  ident: 10.1016/j.ecoinf.2025.103208_bb0165
  article-title: Atmospherically resistant vegetation index (ARVI) for EOS-MODIS
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.134076
– volume: 22
  start-page: 229
  year: 1996
  ident: 10.1016/j.ecoinf.2025.103208_bb0070
  article-title: Evaluation of vegetation indices and a modified simple ratio for boreal applications
  publication-title: Can. J. Remote. Sens.
  doi: 10.1080/07038992.1996.10855178
– volume: 34
  start-page: 7974
  year: 2013
  ident: 10.1016/j.ecoinf.2025.103208_bb0360
  article-title: A comparative evaluation of filter-based feature selection methods for hyper-spectral band selection
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2013.827815
– volume: 157
  start-page: 171
  year: 2019
  ident: 10.1016/j.ecoinf.2025.103208_bb0325
  article-title: Multi-season RapidEye imagery improves the classification of wetland and dryland communities in a subtropical coastal region
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.09.007
– start-page: 603
  year: 2001
  ident: 10.1016/j.ecoinf.2025.103208_bb0085
  article-title: Assessing eucalypt foliar health with field-based spectra and high spatial resolution hyperspectral imagery
– volume: 95
  start-page: 34
  year: 2014
  ident: 10.1016/j.ecoinf.2025.103208_bb0015
  article-title: Evaluating the impact of red-edge band from Rapideye image for classifying insect defoliation levels
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2014.05.013
– volume: 7
  start-page: 12485
  year: 2016
  ident: 10.1016/j.ecoinf.2025.103208_bb0105
  article-title: Global threats from invasive alien species in the twenty-first century and national response capacities
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12485
– start-page: 610
  year: 1973
  ident: 10.1016/j.ecoinf.2025.103208_bb0130
  article-title: Textural features for image classification
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1973.4309314
– volume: 44
  start-page: 231
  year: 1993
  ident: 10.1016/j.ecoinf.2025.103208_bb0345
  article-title: Plant tissue optics
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.pp.44.060193.001311
– volume: 46
  start-page: 45
  year: 2018
  ident: 10.1016/j.ecoinf.2025.103208_bb0025
  article-title: CropPhenology: an R package for extracting crop phenology from time series remotely sensed vegetation index imagery
  publication-title: Eco. Inform.
  doi: 10.1016/j.ecoinf.2018.05.006
– volume: 115
  start-page: 281
  year: 2011
  ident: 10.1016/j.ecoinf.2025.103208_bb0110
  article-title: The photochemical reflectance index (PRI) and the remote sensing of leaf, canopy and ecosystem radiation use efficiencies: a review and meta-analysis
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.08.023
– volume: 84
  year: 2024
  ident: 10.1016/j.ecoinf.2025.103208_bb0400
  article-title: A multi-source approach to mapping habitat diversity: combination of multi-date multispectral satellite imagery and comparison with single-date hyperspectral results in a Mediterranean natural reserve
  publication-title: Eco. Inform.
– volume: 154
  start-page: 30
  year: 1999
  ident: 10.1016/j.ecoinf.2025.103208_bb0095
  article-title: A new reflectance index for remote sensing of chlorophyll content in higher plants: tests using Eucalyptus leaves
  publication-title: J. Plant Physiol.
  doi: 10.1016/S0176-1617(99)80314-9
– volume: 14
  start-page: 190
  year: 2020
  ident: 10.1016/j.ecoinf.2025.103208_bb0370
  article-title: A simple phenology-based vegetation index for mapping invasive spartina alterniflora using Google earth engine
  publication-title: IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2020.3038648
– volume: 102
  start-page: 14
  year: 2015
  ident: 10.1016/j.ecoinf.2025.103208_bb0215
  article-title: Training set size, scale, and features in geographic object-based image analysis of very high resolution unmanned aerial vehicle imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2014.12.026
– volume: 10
  start-page: 807
  year: 2018
  ident: 10.1016/j.ecoinf.2025.103208_bb0045
  article-title: Random forest variable importance spectral indices scheme for burnt forest recovery monitoring—multilevel RF-VIMP
  publication-title: Remote Sens.
  doi: 10.3390/rs10060807
– volume: 129
  year: 2024
  ident: 10.1016/j.ecoinf.2025.103208_bb0285
  article-title: Classifying plant communities in the North American Coastal Plain with PRISMA spaceborne hyperspectral imagery and the spectral mixture residual
  publication-title: J. Geophys. Res. Biogeosci.
  doi: 10.1029/2024JG008217
– volume: 51
  start-page: 375
  year: 1995
  ident: 10.1016/j.ecoinf.2025.103208_bb0290
  article-title: Estimating PAR absorbed by vegetation from bidirectional reflectance measurements
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(94)00114-3
– volume: 2017
  start-page: 1353691
  year: 2017
  ident: 10.1016/j.ecoinf.2025.103208_bb0375
  article-title: Significant remote sensing vegetation indices: a review of developments and applications
  publication-title: J Sens
  doi: 10.1155/2017/1353691
– volume: 269
  year: 2022
  ident: 10.1016/j.ecoinf.2025.103208_bb0430
  article-title: Quantifying latitudinal variation in land surface phenology of Spartina alterniflora saltmarshes across coastal wetlands in China by Landsat 7/8 and Sentinel-2 images
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112810
– volume: 60
  start-page: 87
  year: 2009
  ident: 10.1016/j.ecoinf.2025.103208_bb0310
  article-title: Nondestructive estimation of anthocyanin content in grapevine leaves
  publication-title: Am. J. Enol. Vitic.
  doi: 10.5344/ajev.2009.60.1.87
– volume: 11
  start-page: 026020
  year: 2017
  ident: 10.1016/j.ecoinf.2025.103208_bb0020
  article-title: Phenology-based Spartina alterniflora mapping in coastal wetland of the Yangtze estuary using time series of GaoFen satellite no. 1 wide field of view imagery
  publication-title: J. Appl. Remote. Sens.
  doi: 10.1117/1.JRS.11.026020
– volume: 14
  start-page: 044504
  year: 2020
  ident: 10.1016/j.ecoinf.2025.103208_bb0100
  article-title: Combing Sentinel-1 and Sentinel-2 image time series for invasive Spartina alterniflora mapping on Google earth engine: a case study in Zhangjiang estuary
  publication-title: J. Appl. Remote. Sens.
– volume: 48
  start-page: 119
  year: 1994
  ident: 10.1016/j.ecoinf.2025.103208_bb0265
  article-title: A modified soil adjusted vegetation index
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(94)90134-1
– volume: 9
  start-page: 589
  year: 2017
  ident: 10.1016/j.ecoinf.2025.103208_bb0350
  article-title: Mapping Spartina alterniflora biomass using LiDAR and hyperspectral data
  publication-title: Remote Sens.
  doi: 10.3390/rs9060589
– volume: 115
  start-page: 1145
  year: 2011
  ident: 10.1016/j.ecoinf.2025.103208_bb0230
  article-title: Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.12.017
– year: 2011
  ident: 10.1016/j.ecoinf.2025.103208_bb0275
– volume: 35
  start-page: 1243
  year: 2009
  ident: 10.1016/j.ecoinf.2025.103208_bb0280
  article-title: Sonneratia apetala Buch. Ham in the mangrove ecosystems of China: an invasive species or restoration species?
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2009.05.008
– volume: 287
  start-page: 1770
  year: 2000
  ident: 10.1016/j.ecoinf.2025.103208_bb0295
  article-title: Global biodiversity scenarios for the year 2100
  publication-title: science
  doi: 10.1126/science.287.5459.1770
– volume: 24
  start-page: 1565
  year: 2006
  ident: 10.1016/j.ecoinf.2025.103208_bb0240
  article-title: What is a support vector machine?
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1206-1565
– volume: 101
  year: 2021
  ident: 10.1016/j.ecoinf.2025.103208_bb0355
  article-title: Object-based spectral-phenological features for mapping invasive Spartina alterniflora
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 48
  start-page: 4099
  year: 2010
  ident: 10.1016/j.ecoinf.2025.103208_bb0210
  article-title: Local manifold learning-based $ k $-nearest-neighbor for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– start-page: 12
  year: 1998
  ident: 10.1016/j.ecoinf.2025.103208_bb0225
  article-title: Monitoring community hysteresis using spectral shift analysis and the red-edge vegetation stress index
– volume: 4
  year: 2016
  ident: 10.1016/j.ecoinf.2025.103208_bb0420
  article-title: Introduction to machine learning: k-nearest neighbors
  publication-title: Ann. Translat. Med.
  doi: 10.21037/atm.2016.03.37
– volume: 9
  start-page: 539
  year: 2017
  ident: 10.1016/j.ecoinf.2025.103208_bb0195
  article-title: Monitoring the invasion of Spartina alterniflora using multi-source high-resolution imagery in the Zhangjiang estuary, China
  publication-title: Remote Sens.
  doi: 10.3390/rs9060539
– volume: 50
  start-page: 295
  year: 1994
  ident: 10.1016/j.ecoinf.2025.103208_bb0065
  article-title: Early detection of plant stress by digital imaging within narrow stress-sensitive wavebands
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(94)90079-5
– volume: 7
  start-page: 12192
  year: 2015
  ident: 10.1016/j.ecoinf.2025.103208_bb0435
  article-title: Retrieval of mangrove aboveground biomass at the individual species level with WorldView-2 images
  publication-title: Remote Sens.
  doi: 10.3390/rs70912192
SSID ssj0043882
Score 2.3847144
Snippet Monitoring the spatiotemporal changes of Spartina alterniflora (SA) is essential in effectively managing coastal ecology since it is one of the most harmful...
SourceID doaj
crossref
elsevier
SourceType Open Website
Index Database
Publisher
StartPage 103208
SubjectTerms Machine learning
Mangrove
Remote sensing
Spartina alterniflora invasion
Zhuhai-1 hyperspectral images
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQElIvVYGibgvIB65Wk6wdO0dAu0JIcAEk1Es0_shuqm1YbZeV-Cn8W2bsBO2pvXCNHDvym3jmyTNvGDuTTWEzX5QCXQ8IqQsrjHJKgAWjLajcRSHtm9vy6kFeP6rHrVZflBOW5IHTxv3MqcSvsjYEqp-1JRhHbimrnAwmK2PpHvq8gUylM1iOTWwTlSstRaVkPhTNxcwu5HWIHnLDQlHNeUGtJbecUtTu3_JNW_5m-oV97gNFfp4-cJ_thO6A7U2iyPTLIXud9DLd3YzHpMBeY2rBN2HWpxByuo_Gc4BTDQn_NX-eQytyPkfqmSosaXj7B08UHPK04j7QjQLNCHwFy9YvXvjf5Sql2eNkG6Bcd06vIr_mgt8towgB8Hjn3rUNkn_4yh6mk_vLK9G3WRBuXFZr4b0iVcGmANfYLBjpAWMy_NWDhTLThQsWaRloagaTVbpyCgl4xFhb550eH7Hd7qkL3xg3HvfT2kaZgJEOIC6uGgfIdea9lQZGTAz7XC-TmkY9pJn9rhMuNeFSJ1xG7ILAeB9LWtjxAVpI3VtI_T8LGTE9QFn3YUUKF3Cq9p_Lf_-I5X-wTzRlSoE5Zrvr1XM4wUBmbU-jzb4B4tvxtA
  priority: 102
  providerName: Directory of Open Access Journals
Title Evaluating multitemporal vegetation indices from Zhuhai-1 hyperspectral images for detecting a rapidly spreading invasive species - Spartina alterniflora
URI https://dx.doi.org/10.1016/j.ecoinf.2025.103208
https://doaj.org/article/128549bbee1146b6a8c021809c4e8069
Volume 90
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQCIlLVWirLm1XPvTqbpK1Y-dI0aKFqlwACfUS-ZXdVEs2CgsSl_6P_tvOOA5aLj1wjDV2LI8zj_ibz4R85VVmEpflDFyPZlxmhilhBdNGK2m0SG0g0v55mc9v-MWtuN0hp0MtDMIqo-3vbXqw1rFlEldz0tb15CoVEqJ7Dh46BNahgp1L3OXf_jzDPPhUhQujUJih9FA-FzBekOGBHiFLzARWn2d4yeSWewos_lteasvznL0lb2LISE_6WR2SHd8ckf1ZoJt-ekf-ziJhd7OgAR4Y2aZW9NEvIpiQ4sk0WASK1ST01_JhqWuW0iUkoX2tJYrXd2BbQGTdUefxbAFH1LTTbe1WT_S-7XrAPQz2qBH1TrErZNqU0as20BFoGk7fm7pawQzek5uz2fXpnMULF5id5sWGOSeQX7DKtK1M4hV3GqIz-Oi90XkiM-sNJGha4rUwSSELKyAVD9qWxjorpx_IbrNu_EdClYP1NKYSykPMoyEqscXU61Qmzhmu9IiwYZ3LtufVKAfA2e-y10uJeil7vYzId1TGsyyyYoeGdbco47YoUywHLYzxHmutTa6VxRAmKSz3KsmLEZGDKssXmwyGqv_7-uNX9_xEDvCpR8B8Jrub7sF_gThmY8Zho47J3sn5j_nlOPwN-AdyIfY4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIgQXxFMs5eEDV7NJ1o6dI1RbLdD20laquFh-ZTfVko3CtlIv_R_8W2Ycp1ouHLg6E8fyOPOQv_mGkI-8Lmzmi5KB6zGMy8IyJZxgxholrRG5i0TaJ6fl4oJ_uxSXe-RwrIVBWGWy_YNNj9Y6jUzTbk67ppme5UJCdM_BQ8fAGlKgBxx-X2xj8OnuHufBZyp2jEJphuJj_VwEeUGKB4qENLEQWH5eYJfJHf8Uafx33NSO6zl6Sp6kmJF-Hpb1jOyF9jl5OI9807cvyO95YuxulzTiAxPd1JrehGVCE1K8mgaTQLGchP5YXa9Mw3K6gix0KLZE8eYnGBcQ2fTUB7xcwBkN7U3X-PUt_dX1A-IeJrsxCHun-Cqk2pTRsy7yERgar9_bpl7DCl6Si6P5-eGCpY4LzM3Kasu8F0gwWBfG1TYLinsD4Rn89cGaMpOFCxYyNCOxL0xWycoJyMWjuqV13snZK7LfbtrwmlDlYT-trYUKEPQYCEtcNQsml5n3liszIWzcZ90NxBp6RJxd6UEvGvWiB71MyBdUxr0s0mLHgU2_1Olc6BzrQStrQ8Bia1sa5TCGySrHg8rKakLkqEr91ymDqZp_fv7Nf7_5gTxanJ8c6-Ovp98PyGN8MsBh3pL9bX8d3kFQs7Xv46H9A0dD9tE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+multitemporal+vegetation+indices+from+Zhuhai-1+hyperspectral+images+for+detecting+a+rapidly+spreading+invasive+species+-+Spartina+alterniflora&rft.jtitle=Ecological+informatics&rft.au=Zhu%2C+Yuanhui&rft.au=Myint%2C+Soe+W.&rft.au=Cao%2C+Jingjing&rft.au=Liu%2C+Kai&rft.date=2025-12-01&rft.pub=Elsevier+B.V&rft.issn=1574-9541&rft.volume=90&rft_id=info:doi/10.1016%2Fj.ecoinf.2025.103208&rft.externalDocID=S1574954125002171
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1574-9541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1574-9541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1574-9541&client=summon