Evaluating multitemporal vegetation indices from Zhuhai-1 hyperspectral images for detecting a rapidly spreading invasive species - Spartina alterniflora
Monitoring the spatiotemporal changes of Spartina alterniflora (SA) is essential in effectively managing coastal ecology since it is one of the most harmful invasive weeds worldwide. However, it remains challenging to accurately identify SA invasion, especially in regions subject to periodic tidal f...
Saved in:
Published in | Ecological informatics Vol. 90; p. 103208 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2025
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Monitoring the spatiotemporal changes of Spartina alterniflora (SA) is essential in effectively managing coastal ecology since it is one of the most harmful invasive weeds worldwide. However, it remains challenging to accurately identify SA invasion, especially in regions subject to periodic tidal flooding. Recent studies have shown that utilizing traditional multitemporal vegetation indices (VIs), such as NDVI and EVI derived from multispectral image features, can improve the accuracy of identifying SA. Still, the application potential of multitemporal hyperspectral images with rich derived VIs has not yet been explored. The Zhuhai-1 hyperspectral satellite offers high spectral, spatial, and temporal resolution, providing crucial multitemporal features for accurately identifying SA. This study examined multitemporal VIs from nine months using hyperspectral images and common machine learning methods (i.e., K-nearest neighbor, support vector machine, random forest) to compare a variety of VIs' performance in identifying SA invasion in the Guangxi Zhuang Autonomous Region. Results showed that multitemporal VIs are more effective in identifying SA in periodic tidal flooding areas than individual hyperspectral parameters (spectral features, VIs, and spatial texture features). Significantly, the unique multitemporal VIs derived from red-edge bands of hyperspectral images constantly demonstrated higher accuracies (exceeding 91.6 %) than traditional NDVI (91.47 %) and EVI (84.78 %). Our results consistently identified June, February, and November as the most critical months for identifying SA invasion, as observed across all three algorithms and VIs. These months are connected to SA phenology's greening, yellowing, and withering. Results and findings from this study provided insight into the overwhelming potential of multitemporal hyperspectral image analyses to improve the monitoring and management of invasive species for sustainable coastal ecosystems. The same procedure, algorithms, indices, and features can be employed to effectively identify any other specific species or detailed land cover types.
•Hyperspectral time-series images detect invasive Spartina alterniflora.•Time-series VIs identify Spartina alterniflora better than individual images.•Time-series red-edge VIs exceed traditional NDVI and EVI in spotting this species.•Optimal imaging months were identified for Spartina alterniflora extraction. |
---|---|
AbstractList | Monitoring the spatiotemporal changes of Spartina alterniflora (SA) is essential in effectively managing coastal ecology since it is one of the most harmful invasive weeds worldwide. However, it remains challenging to accurately identify SA invasion, especially in regions subject to periodic tidal flooding. Recent studies have shown that utilizing traditional multitemporal vegetation indices (VIs), such as NDVI and EVI derived from multispectral image features, can improve the accuracy of identifying SA. Still, the application potential of multitemporal hyperspectral images with rich derived VIs has not yet been explored. The Zhuhai-1 hyperspectral satellite offers high spectral, spatial, and temporal resolution, providing crucial multitemporal features for accurately identifying SA. This study examined multitemporal VIs from nine months using hyperspectral images and common machine learning methods (i.e., K-nearest neighbor, support vector machine, random forest) to compare a variety of VIs' performance in identifying SA invasion in the Guangxi Zhuang Autonomous Region. Results showed that multitemporal VIs are more effective in identifying SA in periodic tidal flooding areas than individual hyperspectral parameters (spectral features, VIs, and spatial texture features). Significantly, the unique multitemporal VIs derived from red-edge bands of hyperspectral images constantly demonstrated higher accuracies (exceeding 91.6 %) than traditional NDVI (91.47 %) and EVI (84.78 %). Our results consistently identified June, February, and November as the most critical months for identifying SA invasion, as observed across all three algorithms and VIs. These months are connected to SA phenology's greening, yellowing, and withering. Results and findings from this study provided insight into the overwhelming potential of multitemporal hyperspectral image analyses to improve the monitoring and management of invasive species for sustainable coastal ecosystems. The same procedure, algorithms, indices, and features can be employed to effectively identify any other specific species or detailed land cover types. Monitoring the spatiotemporal changes of Spartina alterniflora (SA) is essential in effectively managing coastal ecology since it is one of the most harmful invasive weeds worldwide. However, it remains challenging to accurately identify SA invasion, especially in regions subject to periodic tidal flooding. Recent studies have shown that utilizing traditional multitemporal vegetation indices (VIs), such as NDVI and EVI derived from multispectral image features, can improve the accuracy of identifying SA. Still, the application potential of multitemporal hyperspectral images with rich derived VIs has not yet been explored. The Zhuhai-1 hyperspectral satellite offers high spectral, spatial, and temporal resolution, providing crucial multitemporal features for accurately identifying SA. This study examined multitemporal VIs from nine months using hyperspectral images and common machine learning methods (i.e., K-nearest neighbor, support vector machine, random forest) to compare a variety of VIs' performance in identifying SA invasion in the Guangxi Zhuang Autonomous Region. Results showed that multitemporal VIs are more effective in identifying SA in periodic tidal flooding areas than individual hyperspectral parameters (spectral features, VIs, and spatial texture features). Significantly, the unique multitemporal VIs derived from red-edge bands of hyperspectral images constantly demonstrated higher accuracies (exceeding 91.6 %) than traditional NDVI (91.47 %) and EVI (84.78 %). Our results consistently identified June, February, and November as the most critical months for identifying SA invasion, as observed across all three algorithms and VIs. These months are connected to SA phenology's greening, yellowing, and withering. Results and findings from this study provided insight into the overwhelming potential of multitemporal hyperspectral image analyses to improve the monitoring and management of invasive species for sustainable coastal ecosystems. The same procedure, algorithms, indices, and features can be employed to effectively identify any other specific species or detailed land cover types. •Hyperspectral time-series images detect invasive Spartina alterniflora.•Time-series VIs identify Spartina alterniflora better than individual images.•Time-series red-edge VIs exceed traditional NDVI and EVI in spotting this species.•Optimal imaging months were identified for Spartina alterniflora extraction. |
ArticleNumber | 103208 |
Author | Diao, Chenxi Zhu, Yuanhui Myint, Soe W. Zeng, Mei Cao, Jingjing Liu, Kai |
Author_xml | – sequence: 1 givenname: Yuanhui surname: Zhu fullname: Zhu, Yuanhui organization: Department of Geography and Environmental Studies, Texas State University, San Marcos, TX 78666, USA – sequence: 2 givenname: Soe W. surname: Myint fullname: Myint, Soe W. organization: Department of Geography and Environmental Studies, Texas State University, San Marcos, TX 78666, USA – sequence: 3 givenname: Jingjing surname: Cao fullname: Cao, Jingjing email: caojj@gpnu.edu.cn organization: College of Computer Sciences, Guangdong Polytechnic Normal University, Guangzhou 510665, China – sequence: 4 givenname: Kai surname: Liu fullname: Liu, Kai organization: School of Geography and Planning, Sun Yat-sen University, Guangzhou 510006, China – sequence: 5 givenname: Mei surname: Zeng fullname: Zeng, Mei organization: School of Geographical Sciences, Lingnan Normal University, Zhanjiang 524048, China – sequence: 6 givenname: Chenxi surname: Diao fullname: Diao, Chenxi organization: School of Geographical Sciences, Lingnan Normal University, Zhanjiang 524048, China |
BookMark | eNp9kU2O3CAQhVlMpPm9wSy4gDuAjQ2bkaLRJBlppCwy2WSDylDupuUGC9yW-ii5bXAcZZkV0uO9T1X1bslViAEJeeRsxxlvPx53aKMPw04wIYtUC6auyA2XXVNp2fBrcpvzkbGmVkrckF8vC4xnmH3Y09N5nP2MpykmGOmCe5zLRwzUB-ctZjqkeKI_D-cD-IrTw2XClCe082r3J9ivlpiow7mIKxFogsm78ULzlBDcqvmwQPYL0jXqS6Si3ydIxQ8UxhlT8MNYJrgnHwYYMz78fe_Ij88v789fq7dvX16fP71Vtm71XDkndSv1IMAOPUPVOBCi5arGHlrWCYu9Ego6yaVkutNWYl83g-hZ11tnu_qOvG5cF-FoplQWSRcTwZs_Qkx7s05nRzRcKNnovkfkvGn7FpRlgiumbYOKtbqwmo1lU8w54fCPx5lZ6zFHs9Vj1nrMVk-JPW0xLHsuHpPJ5TLBovOpXLIM4v8P-A3P0aJ2 |
Cites_doi | 10.3390/rs10040635 10.1016/j.foreco.2024.121755 10.1016/j.marpolbul.2022.113642 10.1023/A:1022627411411 10.3390/rs11090996 10.1080/15481603.2017.1408892 10.1080/01431161.2010.543182 10.1016/j.rse.2020.111745 10.1016/0034-4257(88)90106-X 10.1016/j.ecss.2016.11.024 10.1371/journal.pone.0067315 10.1016/j.isprsjprs.2016.06.007 10.1016/j.proenv.2011.09.385 10.3390/rs9101060 10.1073/pnas.1602205113 10.1016/j.rse.2019.01.031 10.1016/S0034-4257(96)00112-5 10.1080/01431169408954109 10.1002/ece3.11469 10.1016/j.rse.2011.01.009 10.1016/S0034-4257(02)00018-4 10.1016/j.rse.2012.06.011 10.1016/j.ecolind.2024.112671 10.1080/01431161.2013.870676 10.3390/app132312614 10.3390/rs10121933 10.1080/01431160600702632 10.1023/A:1010933404324 10.1016/j.ecoleng.2007.08.005 10.1109/36.934080 10.1109/JSTARS.2024.3495048 10.3390/rs11101208 10.1080/15481603.2018.1492213 10.1016/0034-4257(91)90009-U 10.1016/j.isprsjprs.2009.06.004 10.4236/oje.2016.63012 10.3390/rs10010089 10.1080/01431161.2012.725958 10.1562/0031-8655(2001)074<0038:OPANEO>2.0.CO;2 10.1109/TGRS.2016.2518167 10.2134/agronj2003.0257 10.3390/rs11050514 10.2307/1936256 10.1109/36.134076 10.1080/07038992.1996.10855178 10.1080/01431161.2013.827815 10.1016/j.isprsjprs.2019.09.007 10.1016/j.isprsjprs.2014.05.013 10.1038/ncomms12485 10.1109/TSMC.1973.4309314 10.1146/annurev.pp.44.060193.001311 10.1016/j.ecoinf.2018.05.006 10.1016/j.rse.2010.08.023 10.1016/S0176-1617(99)80314-9 10.1109/JSTARS.2020.3038648 10.1016/j.isprsjprs.2014.12.026 10.3390/rs10060807 10.1029/2024JG008217 10.1016/0034-4257(94)00114-3 10.1155/2017/1353691 10.1016/j.rse.2021.112810 10.5344/ajev.2009.60.1.87 10.1117/1.JRS.11.026020 10.1016/0034-4257(94)90134-1 10.3390/rs9060589 10.1016/j.rse.2010.12.017 10.1016/j.ecoleng.2009.05.008 10.1126/science.287.5459.1770 10.1038/nbt1206-1565 10.21037/atm.2016.03.37 10.3390/rs9060539 10.1016/0034-4257(94)90079-5 10.3390/rs70912192 |
ContentType | Journal Article |
Copyright | 2025 The Author(s) |
Copyright_xml | – notice: 2025 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.ecoinf.2025.103208 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Open Access Full Text |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Ecology |
ExternalDocumentID | oai_doaj_org_article_128549bbee1146b6a8c021809c4e8069 10_1016_j_ecoinf_2025_103208 S1574954125002171 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ AAEDT AAEDW AAFTH AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AATTM AAXKI AAXUO AAYWO ABFNM ABFYP ABGRD ABJNI ABLST ABMAC ABWVN ABXDB ACDAQ ACGFS ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADQTV ADVLN AEBSH AEIPS AEKER AENEX AEQOU AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGUBO AGYEJ AHEUO AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKIFW AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ HVGLF HZ~ IHE J1W KCYFY KOM M41 MO0 M~E N9A N~3 O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPCBC SSA SSJ SSZ T5K ~G- AAYXX CITATION |
ID | FETCH-LOGICAL-c369t-dd59659f2acfb0e84da226183eba6072ceb828a751550979c5eb34f2b07bcdc73 |
IEDL.DBID | .~1 |
ISSN | 1574-9541 |
IngestDate | Wed Aug 27 00:12:24 EDT 2025 Thu Aug 21 00:24:18 EDT 2025 Sat Aug 30 17:14:41 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Mangrove Spartina alterniflora invasion Zhuhai-1 hyperspectral images Remote sensing Machine learning |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c369t-dd59659f2acfb0e84da226183eba6072ceb828a751550979c5eb34f2b07bcdc73 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1574954125002171 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_128549bbee1146b6a8c021809c4e8069 crossref_primary_10_1016_j_ecoinf_2025_103208 elsevier_sciencedirect_doi_10_1016_j_ecoinf_2025_103208 |
PublicationCentury | 2000 |
PublicationDate | December 2025 2025-12-00 2025-12-01 |
PublicationDateYYYYMMDD | 2025-12-01 |
PublicationDate_xml | – month: 12 year: 2025 text: December 2025 |
PublicationDecade | 2020 |
PublicationTitle | Ecological informatics |
PublicationYear | 2025 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | van Deventer, Cho, Mutanga (bb0325) 2019; 157 Zhu, Meng, Zhang, Weng, Morris (bb0445) 2019; 11 Haboudane, Miller, Tremblay, Zarco-Tejada, Dextraze (bb0125) 2002; 81 Ren, Lu, Shen, Huang, Guo, Jian (bb0280) 2009; 35 Sibanda, Mutanga, Dube, Vundla, T., & L Mafongoya, P. (bb0300) 2019; 56 Rogers, Robertson, Hawbaker, Sousa (bb0285) 2024; 129 Araya, Ostendorf, Lyle, Lewis (bb0025) 2018; 46 Vapnik, Vapnik (bb0340) 1998 Gitelson, Merzlyak, Chivkunova (bb0120) 2001; 74 Cao, Leng, Liu, Liu, He, Zhu (bb0055) 2018; 10 Zhang (bb0420) 2016; 4 Jordan (bb0160) 1969; 50 Adelabu, Mutanga, Adam (bb0015) 2014; 95 Breiman (bb0050) 2001; 45 Noble (bb0240) 2006; 24 Ma, Crawford, Tian (bb0210) 2010; 48 Li, Zhang (bb0175) 2008; 32 Axelsson, Skidmore, Schlerf, Fauzi, Verhoef (bb0030) 2013; 34 Raper (bb0275) 2011 Early, Bradley, Dukes, Lawler, Olden, Blumenthal, Gonzalez, Grosholz, Ibañez, Miller (bb0105) 2016; 7 Tian, Wang, Yin, Li, Diao, Gong, Shi, Menenti, Ge, Nie (bb0320) 2020; 242 Qin, Wang, Yao, Qian, Xiong, Zhou (bb0270) 2023 Myint, Gober, Brazel, Grossman-Clarke, Weng (bb0230) 2011; 115 Pu, Landry (bb0260) 2012; 124 Yao, Chen, Huang, Huang, Wang, Liu (bb0395) 2024; 14 Ouyang, Gao, Xie, Guo, Zhang, Zhao (bb0245) 2013; 8 Paini, Sheppard, Cook, De Barro, Worner, Thomas (bb0250) 2016; 113 Xu, Zhao, Ke (bb0370) 2020; 14 Jiang, Tian, Fu, Meng, Tong (bb0150) 2023; 13 Liu, Jiang, Zhang, Li, Pan, Lu, Hou (bb0185) 2016; 6 Adam, Mutanga, Abdel-Rahman, Ismail (bb0010) 2014; 35 Yan, Mas, Maathuis, Xiangmin, Van Dijk (bb0380) 2006; 27 Liu, Mao, Wang, Li, Man, Jia, Ren, Zhang (bb0200) 2018; 10 Yang, Mansaray, Huang, Wang (bb0390) 2019; 11 Baret, Guyot (bb0035) 1991; 35 Liaw, Wiener (bb0180) 2002; 2 Van, Tran, Nguyen, Yeon, Do, Lee (bb0330) 2024; 81 Georganos, Grippa, Vanhuysse, Lennert, Shimoni, Kalogirou, Wolff (bb0115) 2018; 55 Wu, Chen, Kechadi, Sun (bb0360) 2013; 34 Garbulsky, Peñuelas, Gamon, Inoue, Filella (bb0110) 2011; 115 Clark, Kilham (bb0080) 2016; 119 Xie, Zhu, Xu, Zhang, Yi, Jiang, Liang, Wang (bb0365) 2022; 178 Datt (bb0095) 1999; 154 Sun, Liu, Ren, Liu, Yang, Meng, Peng (bb0315) 2021; 104 Adam, Mutanga, Rugege, Ismail (bb0005) 2012; 33 Peña-Barragán, Ngugi, Plant, Six (bb0255) 2011; 115 Huete (bb0135) 1988; 25 Nasiri, Hawryło, Janiec, Socha (bb0235) 2023; 125 Zarco-Tejada, Miller, Noland, Mohammed, Sampson (bb0405) 2001; 39 Ma, Cheng, Li, Liu, Ma (bb0215) 2015; 102 Ma, Zhuo, Cao (bb0220) 2024; 18 Carter, Miller (bb0065) 1994; 50 Jiang, Wang, Zhang, Zhang, Li, Wu (bb0145) 2019; 11 Blaschke (bb0040) 2010; 65 Dong, Wang, Yan, He, Zeng, Wei (bb0100) 2020; 14 Steele, Gitelson, Rundquist, Merzlyak (bb0310) 2009; 60 Liu, Lin, Zhang, Qi (bb0190) 2017; 185 Wang, Liu, Yu, Li (bb0350) 2017; 9 Zhang, Xiao, Qiu, Xu, Wang, Chang, Wu, Li (bb0430) 2022; 269 Wang, Wang, Tian, Shi (bb0355) 2021; 101 Carter (bb0060) 1994; 15 Chen, Rao, Shen, Wang, Zhou, Ma, Tang, Yang (bb0075) 2016; 54 Cortes, Vapnik (bb0090) 1995; 20 Jönsson, Cai, Melaas, Friedl, Eklundh (bb0155) 2018; 10 Kaufman, Tanre (bb0165) 1992; 30 Coops, Stone, Merton, Chisholm (bb0085) 2001 Roujean, Breon (bb0290) 1995; 51 Liu, Zhu, Dang, Myint, Liu, Cao (bb0205) 2024; 556 Zhang, Zeng, Tong, Zhang, Huang (bb0425) 2011; 10 Ai, Gao, Gao, Shi, Zhang (bb0020) 2017; 11 Merton (bb0225) 1998 Khan, Vibhute, Mali, Patil (bb0170) 2022; 69 Zarco-Tejada, Hornero, Beck, Kattenborn, Kempeneers, Hernández-Clemente (bb0415) 2019; 223 Xue, Su (bb0375) 2017; 2017 Zarco-Tejada, Ustin, Whiting (bb0410) 2005; 97 Liu, Li, Li, Man, Jia, Wang, Lu (bb0195) 2017; 9 Singh, Komal, Victorovich (bb0305) 2020; 44 Zabeo, Laurin, Tesfamariam, Giuliarelli, Valentini, Barbati (bb0400) 2024; 84 Vanguri, Laneve, Hościło (bb0335) 2024; 167 Boonprong, Cao, Chen, Bao (bb0045) 2018; 10 Qi, Chehbouni, Huete, Kerr, Sorooshian (bb0265) 1994; 48 Yang, Wang, Shi, Lu (bb0385) 2018; 73 Chen (bb0070) 1996; 22 Sala, Stuart Chapin, Armesto, Berlow, Bloomfield, Dirzo, Huber-Sanwald, Huenneke, Jackson, Kinzig (bb0295) 2000; 287 Zhu, Liu, Liu, Myint, Wang, Liu, He (bb0440) 2017; 9 Haralick, Shanmugam, Dinstein (bb0130) 1973 Zhu, Liu, Liu, Wang, Liu (bb0435) 2015; 7 Huete, Liu, Batchily, Van Leeuwen (bb0140) 1997; 59 Vogelmann (bb0345) 1993; 44 Adam (10.1016/j.ecoinf.2025.103208_bb0010) 2014; 35 Rogers (10.1016/j.ecoinf.2025.103208_bb0285) 2024; 129 Xie (10.1016/j.ecoinf.2025.103208_bb0365) 2022; 178 Zhang (10.1016/j.ecoinf.2025.103208_bb0425) 2011; 10 Sibanda (10.1016/j.ecoinf.2025.103208_bb0300) 2019; 56 Zarco-Tejada (10.1016/j.ecoinf.2025.103208_bb0405) 2001; 39 Liu (10.1016/j.ecoinf.2025.103208_bb0200) 2018; 10 Qi (10.1016/j.ecoinf.2025.103208_bb0265) 1994; 48 Ma (10.1016/j.ecoinf.2025.103208_bb0210) 2010; 48 Xue (10.1016/j.ecoinf.2025.103208_bb0375) 2017; 2017 Ai (10.1016/j.ecoinf.2025.103208_bb0020) 2017; 11 Chen (10.1016/j.ecoinf.2025.103208_bb0070) 1996; 22 Sala (10.1016/j.ecoinf.2025.103208_bb0295) 2000; 287 Wang (10.1016/j.ecoinf.2025.103208_bb0355) 2021; 101 Yang (10.1016/j.ecoinf.2025.103208_bb0385) 2018; 73 Huete (10.1016/j.ecoinf.2025.103208_bb0140) 1997; 59 Ma (10.1016/j.ecoinf.2025.103208_bb0220) 2024; 18 Zhang (10.1016/j.ecoinf.2025.103208_bb0430) 2022; 269 Axelsson (10.1016/j.ecoinf.2025.103208_bb0030) 2013; 34 Haboudane (10.1016/j.ecoinf.2025.103208_bb0125) 2002; 81 Raper (10.1016/j.ecoinf.2025.103208_bb0275) 2011 Zhu (10.1016/j.ecoinf.2025.103208_bb0445) 2019; 11 Ouyang (10.1016/j.ecoinf.2025.103208_bb0245) 2013; 8 Jiang (10.1016/j.ecoinf.2025.103208_bb0150) 2023; 13 Khan (10.1016/j.ecoinf.2025.103208_bb0170) 2022; 69 Gitelson (10.1016/j.ecoinf.2025.103208_bb0120) 2001; 74 Boonprong (10.1016/j.ecoinf.2025.103208_bb0045) 2018; 10 Blaschke (10.1016/j.ecoinf.2025.103208_bb0040) 2010; 65 Huete (10.1016/j.ecoinf.2025.103208_bb0135) 1988; 25 Sun (10.1016/j.ecoinf.2025.103208_bb0315) 2021; 104 Haralick (10.1016/j.ecoinf.2025.103208_bb0130) 1973 Zabeo (10.1016/j.ecoinf.2025.103208_bb0400) 2024; 84 Li (10.1016/j.ecoinf.2025.103208_bb0175) 2008; 32 Yang (10.1016/j.ecoinf.2025.103208_bb0390) 2019; 11 Vapnik (10.1016/j.ecoinf.2025.103208_bb0340) 1998 Carter (10.1016/j.ecoinf.2025.103208_bb0065) 1994; 50 Datt (10.1016/j.ecoinf.2025.103208_bb0095) 1999; 154 Adelabu (10.1016/j.ecoinf.2025.103208_bb0015) 2014; 95 Ren (10.1016/j.ecoinf.2025.103208_bb0280) 2009; 35 Liu (10.1016/j.ecoinf.2025.103208_bb0205) 2024; 556 Paini (10.1016/j.ecoinf.2025.103208_bb0250) 2016; 113 Yan (10.1016/j.ecoinf.2025.103208_bb0380) 2006; 27 Liu (10.1016/j.ecoinf.2025.103208_bb0190) 2017; 185 Merton (10.1016/j.ecoinf.2025.103208_bb0225) 1998 Dong (10.1016/j.ecoinf.2025.103208_bb0100) 2020; 14 van Deventer (10.1016/j.ecoinf.2025.103208_bb0325) 2019; 157 Early (10.1016/j.ecoinf.2025.103208_bb0105) 2016; 7 Garbulsky (10.1016/j.ecoinf.2025.103208_bb0110) 2011; 115 Wang (10.1016/j.ecoinf.2025.103208_bb0350) 2017; 9 Georganos (10.1016/j.ecoinf.2025.103208_bb0115) 2018; 55 Adam (10.1016/j.ecoinf.2025.103208_bb0005) 2012; 33 Araya (10.1016/j.ecoinf.2025.103208_bb0025) 2018; 46 Chen (10.1016/j.ecoinf.2025.103208_bb0075) 2016; 54 Nasiri (10.1016/j.ecoinf.2025.103208_bb0235) 2023; 125 Peña-Barragán (10.1016/j.ecoinf.2025.103208_bb0255) 2011; 115 Yao (10.1016/j.ecoinf.2025.103208_bb0395) 2024; 14 Liu (10.1016/j.ecoinf.2025.103208_bb0195) 2017; 9 Zhu (10.1016/j.ecoinf.2025.103208_bb0440) 2017; 9 Van (10.1016/j.ecoinf.2025.103208_bb0330) 2024; 81 Pu (10.1016/j.ecoinf.2025.103208_bb0260) 2012; 124 Qin (10.1016/j.ecoinf.2025.103208_bb0270) 2023 Xu (10.1016/j.ecoinf.2025.103208_bb0370) 2020; 14 Roujean (10.1016/j.ecoinf.2025.103208_bb0290) 1995; 51 Zarco-Tejada (10.1016/j.ecoinf.2025.103208_bb0415) 2019; 223 Liaw (10.1016/j.ecoinf.2025.103208_bb0180) 2002; 2 Wu (10.1016/j.ecoinf.2025.103208_bb0360) 2013; 34 Jönsson (10.1016/j.ecoinf.2025.103208_bb0155) 2018; 10 Steele (10.1016/j.ecoinf.2025.103208_bb0310) 2009; 60 Tian (10.1016/j.ecoinf.2025.103208_bb0320) 2020; 242 Kaufman (10.1016/j.ecoinf.2025.103208_bb0165) 1992; 30 Jordan (10.1016/j.ecoinf.2025.103208_bb0160) 1969; 50 Vogelmann (10.1016/j.ecoinf.2025.103208_bb0345) 1993; 44 Cortes (10.1016/j.ecoinf.2025.103208_bb0090) 1995; 20 Myint (10.1016/j.ecoinf.2025.103208_bb0230) 2011; 115 Coops (10.1016/j.ecoinf.2025.103208_bb0085) 2001 Zhu (10.1016/j.ecoinf.2025.103208_bb0435) 2015; 7 Clark (10.1016/j.ecoinf.2025.103208_bb0080) 2016; 119 Zarco-Tejada (10.1016/j.ecoinf.2025.103208_bb0410) 2005; 97 Baret (10.1016/j.ecoinf.2025.103208_bb0035) 1991; 35 Ma (10.1016/j.ecoinf.2025.103208_bb0215) 2015; 102 Liu (10.1016/j.ecoinf.2025.103208_bb0185) 2016; 6 Jiang (10.1016/j.ecoinf.2025.103208_bb0145) 2019; 11 Breiman (10.1016/j.ecoinf.2025.103208_bb0050) 2001; 45 Zhang (10.1016/j.ecoinf.2025.103208_bb0420) 2016; 4 Carter (10.1016/j.ecoinf.2025.103208_bb0060) 1994; 15 Noble (10.1016/j.ecoinf.2025.103208_bb0240) 2006; 24 Cao (10.1016/j.ecoinf.2025.103208_bb0055) 2018; 10 Vanguri (10.1016/j.ecoinf.2025.103208_bb0335) 2024; 167 Singh (10.1016/j.ecoinf.2025.103208_bb0305) 2020; 44 |
References_xml | – volume: 9 start-page: 589 year: 2017 ident: bb0350 article-title: Mapping Spartina alterniflora biomass using LiDAR and hyperspectral data publication-title: Remote Sens. – volume: 11 start-page: 514 year: 2019 ident: bb0390 article-title: Optimal segmentation scale parameter, feature subset and classification algorithm for geographic object-based crop recognition using multisource satellite imagery publication-title: Remote Sens. – volume: 119 start-page: 228 year: 2016 end-page: 245 ident: bb0080 article-title: Mapping of land cover in northern California with simulated hyperspectral satellite imagery publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 287 start-page: 1770 year: 2000 end-page: 1774 ident: bb0295 article-title: Global biodiversity scenarios for the year 2100 publication-title: science – volume: 51 start-page: 375 year: 1995 end-page: 384 ident: bb0290 article-title: Estimating PAR absorbed by vegetation from bidirectional reflectance measurements publication-title: Remote Sens. Environ. – volume: 34 start-page: 1724 year: 2013 end-page: 1743 ident: bb0030 article-title: Hyperspectral analysis of mangrove foliar chemistry using PLSR and support vector regression publication-title: Int. J. Remote Sens. – volume: 48 start-page: 119 year: 1994 end-page: 126 ident: bb0265 article-title: A modified soil adjusted vegetation index publication-title: Remote Sens. Environ. – volume: 101 year: 2021 ident: bb0355 article-title: Object-based spectral-phenological features for mapping invasive Spartina alterniflora publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 14 start-page: 044504 year: 2020 ident: bb0100 article-title: Combing Sentinel-1 and Sentinel-2 image time series for invasive Spartina alterniflora mapping on Google earth engine: a case study in Zhangjiang estuary publication-title: J. Appl. Remote. Sens. – volume: 124 start-page: 516 year: 2012 end-page: 533 ident: bb0260 article-title: A comparative analysis of high spatial resolution IKONOS and WorldView-2 imagery for mapping urban tree species publication-title: Remote Sens. Environ. – volume: 10 start-page: 807 year: 2018 ident: bb0045 article-title: Random forest variable importance spectral indices scheme for burnt forest recovery monitoring—multilevel RF-VIMP publication-title: Remote Sens. – volume: 7 start-page: 12485 year: 2016 ident: bb0105 article-title: Global threats from invasive alien species in the twenty-first century and national response capacities publication-title: Nat. Commun. – volume: 56 start-page: 68 year: 2019 end-page: 86 ident: bb0300 article-title: Estimating LAI and mapping canopy storage capacity for hydrological applications in wattle infested ecosystems using Sentinel-2 MSI derived red edge bands publication-title: GIScie. & Remote Sens. – volume: 55 start-page: 221 year: 2018 end-page: 242 ident: bb0115 article-title: Less is more: optimizing classification performance through feature selection in a very-high-resolution remote sensing object-based urban application publication-title: GIScie. & Remote Sens. – volume: 35 start-page: 693 year: 2014 end-page: 714 ident: bb0010 article-title: Estimating standing biomass in papyrus (Cyperus papyrus L.) swamp: exploratory of in situ hyperspectral indices and random forest regression publication-title: Int. J. Remote Sens. – volume: 556 year: 2024 ident: bb0205 article-title: Examining spatial dynamics and interactions of planted alien, native, and invasive alien species in China’s largest artificial mangrove forest publication-title: For. Ecol. Manag. – volume: 2017 start-page: 1353691 year: 2017 ident: bb0375 article-title: Significant remote sensing vegetation indices: a review of developments and applications publication-title: J Sens – volume: 73 start-page: 778 year: 2018 end-page: 785 ident: bb0385 article-title: Evaluating the relationship between the photochemical reflectance index and light use efficiency in a mangrove forest with Spartina alterniflora invasion publication-title: Int. J. Appl. Earth Obs. Geoinf. – start-page: 603 year: 2001 end-page: 605 ident: bb0085 article-title: Assessing eucalypt foliar health with field-based spectra and high spatial resolution hyperspectral imagery publication-title: IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. vol. No. 01CH37217) – volume: 34 start-page: 7974 year: 2013 end-page: 7990 ident: bb0360 article-title: A comparative evaluation of filter-based feature selection methods for hyper-spectral band selection publication-title: Int. J. Remote Sens. – volume: 60 start-page: 87 year: 2009 end-page: 92 ident: bb0310 article-title: Nondestructive estimation of anthocyanin content in grapevine leaves publication-title: Am. J. Enol. Vitic. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bb0050 article-title: Random forests publication-title: Mach. Learn. – volume: 46 start-page: 45 year: 2018 end-page: 56 ident: bb0025 article-title: CropPhenology: an R package for extracting crop phenology from time series remotely sensed vegetation index imagery publication-title: Eco. Inform. – volume: 24 start-page: 1565 year: 2006 end-page: 1567 ident: bb0240 article-title: What is a support vector machine? publication-title: Nat. Biotechnol. – volume: 11 start-page: 1208 year: 2019 ident: bb0445 article-title: Tidal and meteorological influences on the growth of invasive Spartina alterniflora: evidence from UAV remote sensing publication-title: Remote Sens. – volume: 10 start-page: 635 year: 2018 ident: bb0155 article-title: A method for robust estimation of vegetation seasonality from Landsat and Sentinel-2 time series data publication-title: Remote Sens. – volume: 8 year: 2013 ident: bb0245 article-title: Spectral discrimination of the invasive plant Spartina alterniflora at multiple phenological stages in a saltmarsh wetland publication-title: PLoS One – volume: 10 start-page: 1933 year: 2018 ident: bb0200 article-title: Rapid invasion of Spartina alterniflora in the coastal zone of mainland China: new observations from Landsat OLI images publication-title: Remote Sens. – volume: 44 start-page: 409 year: 2020 end-page: 419 ident: bb0305 article-title: Crop growth monitoring through sentinel and Landsat data based NDVI time-series publication-title: Компьютерная оптика – volume: 223 start-page: 320 year: 2019 end-page: 335 ident: bb0415 article-title: Chlorophyll content estimation in an open-canopy conifer forest with sentinel-2A and hyperspectral imagery in the context of forest decline publication-title: Remote Sens. Environ. – start-page: 12 year: 1998 end-page: 16 ident: bb0225 article-title: Monitoring community hysteresis using spectral shift analysis and the red-edge vegetation stress index publication-title: Proceedings of the seventh annual JPL airborne earth science workshop – volume: 33 start-page: 552 year: 2012 end-page: 569 ident: bb0005 article-title: Discriminating the papyrus vegetation (Cyperus papyrus L.) and its co-existent species using random forest and hyperspectral data resampled to HYMAP publication-title: Int. J. Remote Sens. – volume: 35 start-page: 1243 year: 2009 end-page: 1248 ident: bb0280 article-title: Sonneratia apetala Buch. Ham in the mangrove ecosystems of China: an invasive species or restoration species? publication-title: Ecol. Eng. – volume: 35 start-page: 161 year: 1991 end-page: 173 ident: bb0035 article-title: Potentials and limits of vegetation indices for LAI and APAR assessment publication-title: Remote Sens. Environ. – volume: 125 year: 2023 ident: bb0235 article-title: Comparing object-based and pixel-based machine learning models for tree-cutting detection with PlanetScope satellite images: exploring model generalization publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 2 start-page: 18 year: 2002 end-page: 22 ident: bb0180 article-title: Classification and regression by randomForest publication-title: R News – volume: 69 year: 2022 ident: bb0170 article-title: A systematic review on hyperspectral imaging technology with a machine and deep learning methodology for agricultural applications publication-title: Eco. Inform. – volume: 113 start-page: 7575 year: 2016 end-page: 7579 ident: bb0250 article-title: Global threat to agriculture from invasive species publication-title: Proc. Natl. Acad. Sci. – volume: 81 year: 2024 ident: bb0330 article-title: Enhancing wildfire mapping accuracy using mono-temporal Sentinel-2 data: a novel approach through qualitative and quantitative feature selection with explainable AI publication-title: Eco. Inform. – start-page: 15 year: 2023 ident: bb0270 article-title: First Experience with Zhuhai-1 Hyperspectral Data for Urban Dominant Tree Species Classification in Shenzhen, China publication-title: Remote Sens. – volume: 44 start-page: 231 year: 1993 end-page: 251 ident: bb0345 article-title: Plant tissue optics publication-title: Annu. Rev. Plant Biol. – volume: 50 start-page: 663 year: 1969 end-page: 666 ident: bb0160 article-title: Derivation of leaf-area index from quality of light on the forest floor publication-title: Ecology – volume: 95 start-page: 34 year: 2014 end-page: 41 ident: bb0015 article-title: Evaluating the impact of red-edge band from Rapideye image for classifying insect defoliation levels publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 115 start-page: 281 year: 2011 end-page: 297 ident: bb0110 article-title: The photochemical reflectance index (PRI) and the remote sensing of leaf, canopy and ecosystem radiation use efficiencies: a review and meta-analysis publication-title: Remote Sens. Environ. – volume: 157 start-page: 171 year: 2019 end-page: 187 ident: bb0325 article-title: Multi-season RapidEye imagery improves the classification of wetland and dryland communities in a subtropical coastal region publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 242 year: 2020 ident: bb0320 article-title: Development of spectral-phenological features for deep learning to understand Spartina alterniflora invasion publication-title: Remote Sens. Environ. – volume: 10 start-page: 2472 year: 2011 end-page: 2477 ident: bb0425 article-title: Analysis of the expanding process of the Spartina Alterniflora salt marsh in Shanyutan wetland, Minjiang River estuary by remote sensing publication-title: Procedia Environ. Sci. – volume: 185 start-page: 22 year: 2017 end-page: 30 ident: bb0190 article-title: Relative importance of sexual and asexual reproduction for range expansion of Spartina alterniflora in different tidal zones on Chinese coast publication-title: Estuar. Coast. Shelf Sci. – volume: 39 start-page: 1491 year: 2001 end-page: 1507 ident: bb0405 article-title: Scaling-up and model inversion methods with narrowband optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 27 start-page: 4039 year: 2006 end-page: 4055 ident: bb0380 article-title: Comparison of pixel-based and object-oriented image classification approaches—a case study in a coal fire area, Wuda, Inner Mongolia, China publication-title: Int. J. Remote Sens. – volume: 9 start-page: 1060 year: 2017 ident: bb0440 article-title: Exploring the potential of worldview-2 red-edge band-based vegetation indices for estimation of mangrove leaf area index with machine learning algorithms publication-title: Remote Sens. – volume: 4 year: 2016 ident: bb0420 article-title: Introduction to machine learning: k-nearest neighbors publication-title: Ann. Translat. Med. – volume: 167 year: 2024 ident: bb0335 article-title: Mapping forest tree species and its biodiversity using EnMAP hyperspectral data along with Sentinel-2 temporal data: an approach of tree species classification and diversity indices publication-title: Ecol. Indic. – volume: 14 start-page: 190 year: 2020 end-page: 201 ident: bb0370 article-title: A simple phenology-based vegetation index for mapping invasive spartina alterniflora using Google earth engine publication-title: IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. – volume: 154 start-page: 30 year: 1999 end-page: 36 ident: bb0095 article-title: A new reflectance index for remote sensing of chlorophyll content in higher plants: tests using Eucalyptus leaves publication-title: J. Plant Physiol. – volume: 6 start-page: 113 year: 2016 end-page: 128 ident: bb0185 article-title: Expansion and management implications of invasive alien Spartina alterniflora in Yancheng salt marshes, China publication-title: Open J. Ecol. – volume: 32 start-page: 11 year: 2008 end-page: 21 ident: bb0175 article-title: An experimental study on physical controls of an exotic plant Spartina alterniflora in Shanghai, China publication-title: Ecol. Eng. – volume: 14 year: 2024 ident: bb0395 article-title: Remote sensing monitoring and potential distribution analysis of Spartina alterniflora in coastal zone of Guangxi publication-title: Ecol. Evol. – volume: 9 start-page: 539 year: 2017 ident: bb0195 article-title: Monitoring the invasion of Spartina alterniflora using multi-source high-resolution imagery in the Zhangjiang estuary, China publication-title: Remote Sens. – volume: 178 year: 2022 ident: bb0365 article-title: Risk assessment of heavy metals in a typical mangrove ecosystem-a case study of Shankou mangrove National Natural Reserve, southern China publication-title: Mar. Pollut. Bull. – volume: 84 year: 2024 ident: bb0400 article-title: A multi-source approach to mapping habitat diversity: combination of multi-date multispectral satellite imagery and comparison with single-date hyperspectral results in a Mediterranean natural reserve publication-title: Eco. Inform. – volume: 22 start-page: 229 year: 1996 end-page: 242 ident: bb0070 article-title: Evaluation of vegetation indices and a modified simple ratio for boreal applications publication-title: Can. J. Remote. Sens. – volume: 129 year: 2024 ident: bb0285 article-title: Classifying plant communities in the North American Coastal Plain with PRISMA spaceborne hyperspectral imagery and the spectral mixture residual publication-title: J. Geophys. Res. Biogeosci. – volume: 50 start-page: 295 year: 1994 end-page: 302 ident: bb0065 article-title: Early detection of plant stress by digital imaging within narrow stress-sensitive wavebands publication-title: Remote Sens. Environ. – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: bb0090 article-title: Support-vector networks publication-title: Mach. Learn. – volume: 18 start-page: 13 year: 2024 end-page: 24 ident: bb0220 article-title: Mapping invasive Spartina alterniflora using Phenological information and red-edge bands of Sentinel-2 time-series data publication-title: IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens – volume: 104 year: 2021 ident: bb0315 article-title: A simple and effective spectral-spatial method for mapping large-scale coastal wetlands using China ZY1-02D satellite hyperspectral images publication-title: Int. J. Appl. Earth Obs. Geoinf. – start-page: 610 year: 1973 end-page: 621 ident: bb0130 article-title: Textural features for image classification publication-title: IEEE Trans. Syst. Man Cybern. – volume: 65 start-page: 2 year: 2010 end-page: 16 ident: bb0040 article-title: Object based image analysis for remote sensing publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 15 start-page: 697 year: 1994 end-page: 703 ident: bb0060 article-title: Ratios of leaf reflectances in narrow wavebands as indicators of plant stress publication-title: Remote Sens. – volume: 25 start-page: 295 year: 1988 end-page: 309 ident: bb0135 article-title: A soil-adjusted vegetation index (SAVI) publication-title: Remote Sens. Environ. – volume: 10 start-page: 89 year: 2018 ident: bb0055 article-title: Object-based mangrove species classification using unmanned aerial vehicle hyperspectral images and digital surface models publication-title: Remote Sens. – volume: 115 start-page: 1145 year: 2011 end-page: 1161 ident: bb0230 article-title: Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery publication-title: Remote Sens. Environ. – volume: 269 year: 2022 ident: bb0430 article-title: Quantifying latitudinal variation in land surface phenology of Spartina alterniflora saltmarshes across coastal wetlands in China by Landsat 7/8 and Sentinel-2 images publication-title: Remote Sens. Environ. – volume: 30 start-page: 261 year: 1992 end-page: 270 ident: bb0165 article-title: Atmospherically resistant vegetation index (ARVI) for EOS-MODIS publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 11 start-page: 026020 year: 2017 ident: bb0020 article-title: Phenology-based Spartina alterniflora mapping in coastal wetland of the Yangtze estuary using time series of GaoFen satellite no. 1 wide field of view imagery publication-title: J. Appl. Remote. Sens. – volume: 7 start-page: 12192 year: 2015 end-page: 12214 ident: bb0435 article-title: Retrieval of mangrove aboveground biomass at the individual species level with WorldView-2 images publication-title: Remote Sens. – volume: 102 start-page: 14 year: 2015 end-page: 27 ident: bb0215 article-title: Training set size, scale, and features in geographic object-based image analysis of very high resolution unmanned aerial vehicle imagery publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 11 start-page: 996 year: 2019 ident: bb0145 article-title: Geometric processing and accuracy verification of Zhuhai-1 hyperspectral satellites publication-title: Remote Sens. – volume: 81 start-page: 416 year: 2002 end-page: 426 ident: bb0125 article-title: Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture publication-title: Remote Sens. Environ. – year: 1998 ident: bb0340 article-title: Statistical Learning Theory – volume: 74 start-page: 38 year: 2001 end-page: 45 ident: bb0120 article-title: Optical properties and nondestructive estimation of anthocyanin content in plant leaves¶ publication-title: Photochem. Photobiol. – volume: 97 start-page: 641 year: 2005 end-page: 653 ident: bb0410 article-title: Temporal and spatial relationships between within-field yield variability in cotton and high-spatial hyperspectral remote sensing imagery publication-title: Agron. J. – volume: 13 start-page: 12614 year: 2023 ident: bb0150 article-title: Spatial and temporal changes of typical vegetation in the Yellow River Delta based on Zhuhai-1 hyperspectral data publication-title: Appl. Sci. – volume: 48 start-page: 4099 year: 2010 end-page: 4109 ident: bb0210 article-title: Local manifold learning-based $ k $-nearest-neighbor for hyperspectral image classification publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 54 start-page: 3436 year: 2016 end-page: 3449 ident: bb0075 article-title: A simple method for detecting phenological change from time series of vegetation index publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 59 start-page: 440 year: 1997 end-page: 451 ident: bb0140 article-title: A comparison of vegetation indices over a global set of TM images for EOS-MODIS publication-title: Remote Sens. Environ. – volume: 115 start-page: 1301 year: 2011 end-page: 1316 ident: bb0255 article-title: Object-based crop identification using multiple vegetation indices, textural features and crop phenology publication-title: Remote Sens. Environ. – year: 2011 ident: bb0275 article-title: Effectiveness of Crop Reflectance Sensors on Detection of Cotton ( – volume: 10 start-page: 635 year: 2018 ident: 10.1016/j.ecoinf.2025.103208_bb0155 article-title: A method for robust estimation of vegetation seasonality from Landsat and Sentinel-2 time series data publication-title: Remote Sens. doi: 10.3390/rs10040635 – volume: 556 year: 2024 ident: 10.1016/j.ecoinf.2025.103208_bb0205 article-title: Examining spatial dynamics and interactions of planted alien, native, and invasive alien species in China’s largest artificial mangrove forest publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2024.121755 – volume: 73 start-page: 778 year: 2018 ident: 10.1016/j.ecoinf.2025.103208_bb0385 article-title: Evaluating the relationship between the photochemical reflectance index and light use efficiency in a mangrove forest with Spartina alterniflora invasion publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 178 year: 2022 ident: 10.1016/j.ecoinf.2025.103208_bb0365 article-title: Risk assessment of heavy metals in a typical mangrove ecosystem-a case study of Shankou mangrove National Natural Reserve, southern China publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2022.113642 – volume: 20 start-page: 273 year: 1995 ident: 10.1016/j.ecoinf.2025.103208_bb0090 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1023/A:1022627411411 – volume: 11 start-page: 996 year: 2019 ident: 10.1016/j.ecoinf.2025.103208_bb0145 article-title: Geometric processing and accuracy verification of Zhuhai-1 hyperspectral satellites publication-title: Remote Sens. doi: 10.3390/rs11090996 – volume: 55 start-page: 221 year: 2018 ident: 10.1016/j.ecoinf.2025.103208_bb0115 article-title: Less is more: optimizing classification performance through feature selection in a very-high-resolution remote sensing object-based urban application publication-title: GIScie. & Remote Sens. doi: 10.1080/15481603.2017.1408892 – volume: 33 start-page: 552 year: 2012 ident: 10.1016/j.ecoinf.2025.103208_bb0005 article-title: Discriminating the papyrus vegetation (Cyperus papyrus L.) and its co-existent species using random forest and hyperspectral data resampled to HYMAP publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2010.543182 – volume: 242 year: 2020 ident: 10.1016/j.ecoinf.2025.103208_bb0320 article-title: Development of spectral-phenological features for deep learning to understand Spartina alterniflora invasion publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111745 – volume: 25 start-page: 295 year: 1988 ident: 10.1016/j.ecoinf.2025.103208_bb0135 article-title: A soil-adjusted vegetation index (SAVI) publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(88)90106-X – volume: 185 start-page: 22 year: 2017 ident: 10.1016/j.ecoinf.2025.103208_bb0190 article-title: Relative importance of sexual and asexual reproduction for range expansion of Spartina alterniflora in different tidal zones on Chinese coast publication-title: Estuar. Coast. Shelf Sci. doi: 10.1016/j.ecss.2016.11.024 – volume: 8 year: 2013 ident: 10.1016/j.ecoinf.2025.103208_bb0245 article-title: Spectral discrimination of the invasive plant Spartina alterniflora at multiple phenological stages in a saltmarsh wetland publication-title: PLoS One doi: 10.1371/journal.pone.0067315 – volume: 119 start-page: 228 year: 2016 ident: 10.1016/j.ecoinf.2025.103208_bb0080 article-title: Mapping of land cover in northern California with simulated hyperspectral satellite imagery publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.06.007 – volume: 10 start-page: 2472 year: 2011 ident: 10.1016/j.ecoinf.2025.103208_bb0425 article-title: Analysis of the expanding process of the Spartina Alterniflora salt marsh in Shanyutan wetland, Minjiang River estuary by remote sensing publication-title: Procedia Environ. Sci. doi: 10.1016/j.proenv.2011.09.385 – volume: 9 start-page: 1060 year: 2017 ident: 10.1016/j.ecoinf.2025.103208_bb0440 article-title: Exploring the potential of worldview-2 red-edge band-based vegetation indices for estimation of mangrove leaf area index with machine learning algorithms publication-title: Remote Sens. doi: 10.3390/rs9101060 – volume: 113 start-page: 7575 year: 2016 ident: 10.1016/j.ecoinf.2025.103208_bb0250 article-title: Global threat to agriculture from invasive species publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1602205113 – volume: 69 year: 2022 ident: 10.1016/j.ecoinf.2025.103208_bb0170 article-title: A systematic review on hyperspectral imaging technology with a machine and deep learning methodology for agricultural applications publication-title: Eco. Inform. – volume: 223 start-page: 320 year: 2019 ident: 10.1016/j.ecoinf.2025.103208_bb0415 article-title: Chlorophyll content estimation in an open-canopy conifer forest with sentinel-2A and hyperspectral imagery in the context of forest decline publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.01.031 – volume: 59 start-page: 440 year: 1997 ident: 10.1016/j.ecoinf.2025.103208_bb0140 article-title: A comparison of vegetation indices over a global set of TM images for EOS-MODIS publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(96)00112-5 – volume: 15 start-page: 697 year: 1994 ident: 10.1016/j.ecoinf.2025.103208_bb0060 article-title: Ratios of leaf reflectances in narrow wavebands as indicators of plant stress publication-title: Remote Sens. doi: 10.1080/01431169408954109 – volume: 125 year: 2023 ident: 10.1016/j.ecoinf.2025.103208_bb0235 article-title: Comparing object-based and pixel-based machine learning models for tree-cutting detection with PlanetScope satellite images: exploring model generalization publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 14 year: 2024 ident: 10.1016/j.ecoinf.2025.103208_bb0395 article-title: Remote sensing monitoring and potential distribution analysis of Spartina alterniflora in coastal zone of Guangxi publication-title: Ecol. Evol. doi: 10.1002/ece3.11469 – volume: 2 start-page: 18 year: 2002 ident: 10.1016/j.ecoinf.2025.103208_bb0180 article-title: Classification and regression by randomForest publication-title: R News – volume: 115 start-page: 1301 year: 2011 ident: 10.1016/j.ecoinf.2025.103208_bb0255 article-title: Object-based crop identification using multiple vegetation indices, textural features and crop phenology publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.01.009 – volume: 81 start-page: 416 year: 2002 ident: 10.1016/j.ecoinf.2025.103208_bb0125 article-title: Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00018-4 – volume: 124 start-page: 516 year: 2012 ident: 10.1016/j.ecoinf.2025.103208_bb0260 article-title: A comparative analysis of high spatial resolution IKONOS and WorldView-2 imagery for mapping urban tree species publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.06.011 – volume: 167 year: 2024 ident: 10.1016/j.ecoinf.2025.103208_bb0335 article-title: Mapping forest tree species and its biodiversity using EnMAP hyperspectral data along with Sentinel-2 temporal data: an approach of tree species classification and diversity indices publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2024.112671 – volume: 35 start-page: 693 year: 2014 ident: 10.1016/j.ecoinf.2025.103208_bb0010 article-title: Estimating standing biomass in papyrus (Cyperus papyrus L.) swamp: exploratory of in situ hyperspectral indices and random forest regression publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2013.870676 – volume: 13 start-page: 12614 year: 2023 ident: 10.1016/j.ecoinf.2025.103208_bb0150 article-title: Spatial and temporal changes of typical vegetation in the Yellow River Delta based on Zhuhai-1 hyperspectral data publication-title: Appl. Sci. doi: 10.3390/app132312614 – volume: 10 start-page: 1933 year: 2018 ident: 10.1016/j.ecoinf.2025.103208_bb0200 article-title: Rapid invasion of Spartina alterniflora in the coastal zone of mainland China: new observations from Landsat OLI images publication-title: Remote Sens. doi: 10.3390/rs10121933 – volume: 27 start-page: 4039 year: 2006 ident: 10.1016/j.ecoinf.2025.103208_bb0380 article-title: Comparison of pixel-based and object-oriented image classification approaches—a case study in a coal fire area, Wuda, Inner Mongolia, China publication-title: Int. J. Remote Sens. doi: 10.1080/01431160600702632 – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.ecoinf.2025.103208_bb0050 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 32 start-page: 11 year: 2008 ident: 10.1016/j.ecoinf.2025.103208_bb0175 article-title: An experimental study on physical controls of an exotic plant Spartina alterniflora in Shanghai, China publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2007.08.005 – volume: 104 year: 2021 ident: 10.1016/j.ecoinf.2025.103208_bb0315 article-title: A simple and effective spectral-spatial method for mapping large-scale coastal wetlands using China ZY1-02D satellite hyperspectral images publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 39 start-page: 1491 year: 2001 ident: 10.1016/j.ecoinf.2025.103208_bb0405 article-title: Scaling-up and model inversion methods with narrowband optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.934080 – start-page: 15 year: 2023 ident: 10.1016/j.ecoinf.2025.103208_bb0270 article-title: First Experience with Zhuhai-1 Hyperspectral Data for Urban Dominant Tree Species Classification in Shenzhen, China publication-title: Remote Sens. – volume: 18 start-page: 13 year: 2024 ident: 10.1016/j.ecoinf.2025.103208_bb0220 article-title: Mapping invasive Spartina alterniflora using Phenological information and red-edge bands of Sentinel-2 time-series data publication-title: IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens doi: 10.1109/JSTARS.2024.3495048 – volume: 11 start-page: 1208 year: 2019 ident: 10.1016/j.ecoinf.2025.103208_bb0445 article-title: Tidal and meteorological influences on the growth of invasive Spartina alterniflora: evidence from UAV remote sensing publication-title: Remote Sens. doi: 10.3390/rs11101208 – volume: 56 start-page: 68 year: 2019 ident: 10.1016/j.ecoinf.2025.103208_bb0300 article-title: Estimating LAI and mapping canopy storage capacity for hydrological applications in wattle infested ecosystems using Sentinel-2 MSI derived red edge bands publication-title: GIScie. & Remote Sens. doi: 10.1080/15481603.2018.1492213 – volume: 35 start-page: 161 year: 1991 ident: 10.1016/j.ecoinf.2025.103208_bb0035 article-title: Potentials and limits of vegetation indices for LAI and APAR assessment publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(91)90009-U – volume: 65 start-page: 2 year: 2010 ident: 10.1016/j.ecoinf.2025.103208_bb0040 article-title: Object based image analysis for remote sensing publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2009.06.004 – volume: 6 start-page: 113 year: 2016 ident: 10.1016/j.ecoinf.2025.103208_bb0185 article-title: Expansion and management implications of invasive alien Spartina alterniflora in Yancheng salt marshes, China publication-title: Open J. Ecol. doi: 10.4236/oje.2016.63012 – year: 1998 ident: 10.1016/j.ecoinf.2025.103208_bb0340 – volume: 10 start-page: 89 year: 2018 ident: 10.1016/j.ecoinf.2025.103208_bb0055 article-title: Object-based mangrove species classification using unmanned aerial vehicle hyperspectral images and digital surface models publication-title: Remote Sens. doi: 10.3390/rs10010089 – volume: 34 start-page: 1724 year: 2013 ident: 10.1016/j.ecoinf.2025.103208_bb0030 article-title: Hyperspectral analysis of mangrove foliar chemistry using PLSR and support vector regression publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2012.725958 – volume: 74 start-page: 38 year: 2001 ident: 10.1016/j.ecoinf.2025.103208_bb0120 article-title: Optical properties and nondestructive estimation of anthocyanin content in plant leaves¶ publication-title: Photochem. Photobiol. doi: 10.1562/0031-8655(2001)074<0038:OPANEO>2.0.CO;2 – volume: 54 start-page: 3436 year: 2016 ident: 10.1016/j.ecoinf.2025.103208_bb0075 article-title: A simple method for detecting phenological change from time series of vegetation index publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2518167 – volume: 97 start-page: 641 year: 2005 ident: 10.1016/j.ecoinf.2025.103208_bb0410 article-title: Temporal and spatial relationships between within-field yield variability in cotton and high-spatial hyperspectral remote sensing imagery publication-title: Agron. J. doi: 10.2134/agronj2003.0257 – volume: 44 start-page: 409 year: 2020 ident: 10.1016/j.ecoinf.2025.103208_bb0305 article-title: Crop growth monitoring through sentinel and Landsat data based NDVI time-series publication-title: Компьютерная оптика – volume: 81 year: 2024 ident: 10.1016/j.ecoinf.2025.103208_bb0330 article-title: Enhancing wildfire mapping accuracy using mono-temporal Sentinel-2 data: a novel approach through qualitative and quantitative feature selection with explainable AI publication-title: Eco. Inform. – volume: 11 start-page: 514 year: 2019 ident: 10.1016/j.ecoinf.2025.103208_bb0390 article-title: Optimal segmentation scale parameter, feature subset and classification algorithm for geographic object-based crop recognition using multisource satellite imagery publication-title: Remote Sens. doi: 10.3390/rs11050514 – volume: 50 start-page: 663 year: 1969 ident: 10.1016/j.ecoinf.2025.103208_bb0160 article-title: Derivation of leaf-area index from quality of light on the forest floor publication-title: Ecology doi: 10.2307/1936256 – volume: 30 start-page: 261 year: 1992 ident: 10.1016/j.ecoinf.2025.103208_bb0165 article-title: Atmospherically resistant vegetation index (ARVI) for EOS-MODIS publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.134076 – volume: 22 start-page: 229 year: 1996 ident: 10.1016/j.ecoinf.2025.103208_bb0070 article-title: Evaluation of vegetation indices and a modified simple ratio for boreal applications publication-title: Can. J. Remote. Sens. doi: 10.1080/07038992.1996.10855178 – volume: 34 start-page: 7974 year: 2013 ident: 10.1016/j.ecoinf.2025.103208_bb0360 article-title: A comparative evaluation of filter-based feature selection methods for hyper-spectral band selection publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2013.827815 – volume: 157 start-page: 171 year: 2019 ident: 10.1016/j.ecoinf.2025.103208_bb0325 article-title: Multi-season RapidEye imagery improves the classification of wetland and dryland communities in a subtropical coastal region publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.09.007 – start-page: 603 year: 2001 ident: 10.1016/j.ecoinf.2025.103208_bb0085 article-title: Assessing eucalypt foliar health with field-based spectra and high spatial resolution hyperspectral imagery – volume: 95 start-page: 34 year: 2014 ident: 10.1016/j.ecoinf.2025.103208_bb0015 article-title: Evaluating the impact of red-edge band from Rapideye image for classifying insect defoliation levels publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2014.05.013 – volume: 7 start-page: 12485 year: 2016 ident: 10.1016/j.ecoinf.2025.103208_bb0105 article-title: Global threats from invasive alien species in the twenty-first century and national response capacities publication-title: Nat. Commun. doi: 10.1038/ncomms12485 – start-page: 610 year: 1973 ident: 10.1016/j.ecoinf.2025.103208_bb0130 article-title: Textural features for image classification publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.1973.4309314 – volume: 44 start-page: 231 year: 1993 ident: 10.1016/j.ecoinf.2025.103208_bb0345 article-title: Plant tissue optics publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.pp.44.060193.001311 – volume: 46 start-page: 45 year: 2018 ident: 10.1016/j.ecoinf.2025.103208_bb0025 article-title: CropPhenology: an R package for extracting crop phenology from time series remotely sensed vegetation index imagery publication-title: Eco. Inform. doi: 10.1016/j.ecoinf.2018.05.006 – volume: 115 start-page: 281 year: 2011 ident: 10.1016/j.ecoinf.2025.103208_bb0110 article-title: The photochemical reflectance index (PRI) and the remote sensing of leaf, canopy and ecosystem radiation use efficiencies: a review and meta-analysis publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.08.023 – volume: 84 year: 2024 ident: 10.1016/j.ecoinf.2025.103208_bb0400 article-title: A multi-source approach to mapping habitat diversity: combination of multi-date multispectral satellite imagery and comparison with single-date hyperspectral results in a Mediterranean natural reserve publication-title: Eco. Inform. – volume: 154 start-page: 30 year: 1999 ident: 10.1016/j.ecoinf.2025.103208_bb0095 article-title: A new reflectance index for remote sensing of chlorophyll content in higher plants: tests using Eucalyptus leaves publication-title: J. Plant Physiol. doi: 10.1016/S0176-1617(99)80314-9 – volume: 14 start-page: 190 year: 2020 ident: 10.1016/j.ecoinf.2025.103208_bb0370 article-title: A simple phenology-based vegetation index for mapping invasive spartina alterniflora using Google earth engine publication-title: IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2020.3038648 – volume: 102 start-page: 14 year: 2015 ident: 10.1016/j.ecoinf.2025.103208_bb0215 article-title: Training set size, scale, and features in geographic object-based image analysis of very high resolution unmanned aerial vehicle imagery publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2014.12.026 – volume: 10 start-page: 807 year: 2018 ident: 10.1016/j.ecoinf.2025.103208_bb0045 article-title: Random forest variable importance spectral indices scheme for burnt forest recovery monitoring—multilevel RF-VIMP publication-title: Remote Sens. doi: 10.3390/rs10060807 – volume: 129 year: 2024 ident: 10.1016/j.ecoinf.2025.103208_bb0285 article-title: Classifying plant communities in the North American Coastal Plain with PRISMA spaceborne hyperspectral imagery and the spectral mixture residual publication-title: J. Geophys. Res. Biogeosci. doi: 10.1029/2024JG008217 – volume: 51 start-page: 375 year: 1995 ident: 10.1016/j.ecoinf.2025.103208_bb0290 article-title: Estimating PAR absorbed by vegetation from bidirectional reflectance measurements publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(94)00114-3 – volume: 2017 start-page: 1353691 year: 2017 ident: 10.1016/j.ecoinf.2025.103208_bb0375 article-title: Significant remote sensing vegetation indices: a review of developments and applications publication-title: J Sens doi: 10.1155/2017/1353691 – volume: 269 year: 2022 ident: 10.1016/j.ecoinf.2025.103208_bb0430 article-title: Quantifying latitudinal variation in land surface phenology of Spartina alterniflora saltmarshes across coastal wetlands in China by Landsat 7/8 and Sentinel-2 images publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112810 – volume: 60 start-page: 87 year: 2009 ident: 10.1016/j.ecoinf.2025.103208_bb0310 article-title: Nondestructive estimation of anthocyanin content in grapevine leaves publication-title: Am. J. Enol. Vitic. doi: 10.5344/ajev.2009.60.1.87 – volume: 11 start-page: 026020 year: 2017 ident: 10.1016/j.ecoinf.2025.103208_bb0020 article-title: Phenology-based Spartina alterniflora mapping in coastal wetland of the Yangtze estuary using time series of GaoFen satellite no. 1 wide field of view imagery publication-title: J. Appl. Remote. Sens. doi: 10.1117/1.JRS.11.026020 – volume: 14 start-page: 044504 year: 2020 ident: 10.1016/j.ecoinf.2025.103208_bb0100 article-title: Combing Sentinel-1 and Sentinel-2 image time series for invasive Spartina alterniflora mapping on Google earth engine: a case study in Zhangjiang estuary publication-title: J. Appl. Remote. Sens. – volume: 48 start-page: 119 year: 1994 ident: 10.1016/j.ecoinf.2025.103208_bb0265 article-title: A modified soil adjusted vegetation index publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(94)90134-1 – volume: 9 start-page: 589 year: 2017 ident: 10.1016/j.ecoinf.2025.103208_bb0350 article-title: Mapping Spartina alterniflora biomass using LiDAR and hyperspectral data publication-title: Remote Sens. doi: 10.3390/rs9060589 – volume: 115 start-page: 1145 year: 2011 ident: 10.1016/j.ecoinf.2025.103208_bb0230 article-title: Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.12.017 – year: 2011 ident: 10.1016/j.ecoinf.2025.103208_bb0275 – volume: 35 start-page: 1243 year: 2009 ident: 10.1016/j.ecoinf.2025.103208_bb0280 article-title: Sonneratia apetala Buch. Ham in the mangrove ecosystems of China: an invasive species or restoration species? publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2009.05.008 – volume: 287 start-page: 1770 year: 2000 ident: 10.1016/j.ecoinf.2025.103208_bb0295 article-title: Global biodiversity scenarios for the year 2100 publication-title: science doi: 10.1126/science.287.5459.1770 – volume: 24 start-page: 1565 year: 2006 ident: 10.1016/j.ecoinf.2025.103208_bb0240 article-title: What is a support vector machine? publication-title: Nat. Biotechnol. doi: 10.1038/nbt1206-1565 – volume: 101 year: 2021 ident: 10.1016/j.ecoinf.2025.103208_bb0355 article-title: Object-based spectral-phenological features for mapping invasive Spartina alterniflora publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 48 start-page: 4099 year: 2010 ident: 10.1016/j.ecoinf.2025.103208_bb0210 article-title: Local manifold learning-based $ k $-nearest-neighbor for hyperspectral image classification publication-title: IEEE Trans. Geosci. Remote Sens. – start-page: 12 year: 1998 ident: 10.1016/j.ecoinf.2025.103208_bb0225 article-title: Monitoring community hysteresis using spectral shift analysis and the red-edge vegetation stress index – volume: 4 year: 2016 ident: 10.1016/j.ecoinf.2025.103208_bb0420 article-title: Introduction to machine learning: k-nearest neighbors publication-title: Ann. Translat. Med. doi: 10.21037/atm.2016.03.37 – volume: 9 start-page: 539 year: 2017 ident: 10.1016/j.ecoinf.2025.103208_bb0195 article-title: Monitoring the invasion of Spartina alterniflora using multi-source high-resolution imagery in the Zhangjiang estuary, China publication-title: Remote Sens. doi: 10.3390/rs9060539 – volume: 50 start-page: 295 year: 1994 ident: 10.1016/j.ecoinf.2025.103208_bb0065 article-title: Early detection of plant stress by digital imaging within narrow stress-sensitive wavebands publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(94)90079-5 – volume: 7 start-page: 12192 year: 2015 ident: 10.1016/j.ecoinf.2025.103208_bb0435 article-title: Retrieval of mangrove aboveground biomass at the individual species level with WorldView-2 images publication-title: Remote Sens. doi: 10.3390/rs70912192 |
SSID | ssj0043882 |
Score | 2.3847144 |
Snippet | Monitoring the spatiotemporal changes of Spartina alterniflora (SA) is essential in effectively managing coastal ecology since it is one of the most harmful... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Index Database Publisher |
StartPage | 103208 |
SubjectTerms | Machine learning Mangrove Remote sensing Spartina alterniflora invasion Zhuhai-1 hyperspectral images |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQElIvVYGibgvIB65Wk6wdO0dAu0JIcAEk1Es0_shuqm1YbZeV-Cn8W2bsBO2pvXCNHDvym3jmyTNvGDuTTWEzX5QCXQ8IqQsrjHJKgAWjLajcRSHtm9vy6kFeP6rHrVZflBOW5IHTxv3MqcSvsjYEqp-1JRhHbimrnAwmK2PpHvq8gUylM1iOTWwTlSstRaVkPhTNxcwu5HWIHnLDQlHNeUGtJbecUtTu3_JNW_5m-oV97gNFfp4-cJ_thO6A7U2iyPTLIXud9DLd3YzHpMBeY2rBN2HWpxByuo_Gc4BTDQn_NX-eQytyPkfqmSosaXj7B08UHPK04j7QjQLNCHwFy9YvXvjf5Sql2eNkG6Bcd06vIr_mgt8towgB8Hjn3rUNkn_4yh6mk_vLK9G3WRBuXFZr4b0iVcGmANfYLBjpAWMy_NWDhTLThQsWaRloagaTVbpyCgl4xFhb550eH7Hd7qkL3xg3HvfT2kaZgJEOIC6uGgfIdea9lQZGTAz7XC-TmkY9pJn9rhMuNeFSJ1xG7ILAeB9LWtjxAVpI3VtI_T8LGTE9QFn3YUUKF3Cq9p_Lf_-I5X-wTzRlSoE5Zrvr1XM4wUBmbU-jzb4B4tvxtA priority: 102 providerName: Directory of Open Access Journals |
Title | Evaluating multitemporal vegetation indices from Zhuhai-1 hyperspectral images for detecting a rapidly spreading invasive species - Spartina alterniflora |
URI | https://dx.doi.org/10.1016/j.ecoinf.2025.103208 https://doaj.org/article/128549bbee1146b6a8c021809c4e8069 |
Volume | 90 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQCIlLVWirLm1XPvTqbpK1Y-dI0aKFqlwACfUS-ZXdVEs2CgsSl_6P_tvOOA5aLj1wjDV2LI8zj_ibz4R85VVmEpflDFyPZlxmhilhBdNGK2m0SG0g0v55mc9v-MWtuN0hp0MtDMIqo-3vbXqw1rFlEldz0tb15CoVEqJ7Dh46BNahgp1L3OXf_jzDPPhUhQujUJih9FA-FzBekOGBHiFLzARWn2d4yeSWewos_lteasvznL0lb2LISE_6WR2SHd8ckf1ZoJt-ekf-ziJhd7OgAR4Y2aZW9NEvIpiQ4sk0WASK1ST01_JhqWuW0iUkoX2tJYrXd2BbQGTdUefxbAFH1LTTbe1WT_S-7XrAPQz2qBH1TrErZNqU0as20BFoGk7fm7pawQzek5uz2fXpnMULF5id5sWGOSeQX7DKtK1M4hV3GqIz-Oi90XkiM-sNJGha4rUwSSELKyAVD9qWxjorpx_IbrNu_EdClYP1NKYSykPMoyEqscXU61Qmzhmu9IiwYZ3LtufVKAfA2e-y10uJeil7vYzId1TGsyyyYoeGdbco47YoUywHLYzxHmutTa6VxRAmKSz3KsmLEZGDKssXmwyGqv_7-uNX9_xEDvCpR8B8Jrub7sF_gThmY8Zho47J3sn5j_nlOPwN-AdyIfY4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIgQXxFMs5eEDV7NJ1o6dI1RbLdD20laquFh-ZTfVko3CtlIv_R_8W2Ycp1ouHLg6E8fyOPOQv_mGkI-8Lmzmi5KB6zGMy8IyJZxgxholrRG5i0TaJ6fl4oJ_uxSXe-RwrIVBWGWy_YNNj9Y6jUzTbk67ppme5UJCdM_BQ8fAGlKgBxx-X2xj8OnuHufBZyp2jEJphuJj_VwEeUGKB4qENLEQWH5eYJfJHf8Uafx33NSO6zl6Sp6kmJF-Hpb1jOyF9jl5OI9807cvyO95YuxulzTiAxPd1JrehGVCE1K8mgaTQLGchP5YXa9Mw3K6gix0KLZE8eYnGBcQ2fTUB7xcwBkN7U3X-PUt_dX1A-IeJrsxCHun-Cqk2pTRsy7yERgar9_bpl7DCl6Si6P5-eGCpY4LzM3Kasu8F0gwWBfG1TYLinsD4Rn89cGaMpOFCxYyNCOxL0xWycoJyMWjuqV13snZK7LfbtrwmlDlYT-trYUKEPQYCEtcNQsml5n3liszIWzcZ90NxBp6RJxd6UEvGvWiB71MyBdUxr0s0mLHgU2_1Olc6BzrQStrQ8Bia1sa5TCGySrHg8rKakLkqEr91ymDqZp_fv7Nf7_5gTxanJ8c6-Ovp98PyGN8MsBh3pL9bX8d3kFQs7Xv46H9A0dD9tE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+multitemporal+vegetation+indices+from+Zhuhai-1+hyperspectral+images+for+detecting+a+rapidly+spreading+invasive+species+-+Spartina+alterniflora&rft.jtitle=Ecological+informatics&rft.au=Zhu%2C+Yuanhui&rft.au=Myint%2C+Soe+W.&rft.au=Cao%2C+Jingjing&rft.au=Liu%2C+Kai&rft.date=2025-12-01&rft.pub=Elsevier+B.V&rft.issn=1574-9541&rft.volume=90&rft_id=info:doi/10.1016%2Fj.ecoinf.2025.103208&rft.externalDocID=S1574954125002171 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1574-9541&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1574-9541&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1574-9541&client=summon |