Clustering multivariate functional data in group-specific functional subspaces
With the emergence of numerical sensors in many aspects of everyday life, there is an increasing need in analyzing multivariate functional data. This work focuses on the clustering of such functional data, in order to ease their modeling and understanding. To this end, a novel clustering technique f...
Saved in:
Published in | Computational statistics Vol. 35; no. 3; pp. 1101 - 1131 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2020
Springer Verlag |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the emergence of numerical sensors in many aspects of everyday life, there is an increasing need in analyzing multivariate functional data. This work focuses on the clustering of such functional data, in order to ease their modeling and understanding. To this end, a novel clustering technique for multivariate functional data is presented. This method is based on a functional latent mixture model which fits the data into group-specific functional subspaces through a multivariate functional principal component analysis. A family of parsimonious models is obtained by constraining model parameters within and between groups. An Expectation Maximization algorithm is proposed for model inference and the choice of hyper-parameters is addressed through model selection. Numerical experiments on simulated datasets highlight the good performance of the proposed methodology compared to existing works. This algorithm is then applied to the analysis of the pollution in French cities for 1 year. |
---|---|
AbstractList | With the emergence of numerical sensors in many aspects of every- day life, there is an increasing need in analyzing multivariate functional data. This work focuses on the clustering of such functional data, in order to ease their modeling and understanding. To this end, a novel clustering technique for multivariate functional data is presented. This method is based on a func- tional latent mixture model which fits the data in group-specific functional subspaces through a multivariate functional principal component analysis. A family of parsimonious models is obtained by constraining model parameters within and between groups. An EM algorithm is proposed for model inference and the choice of hyper-parameters is addressed through model selection. Nu- merical experiments on simulated datasets highlight the good performance of the proposed methodology compared to existing works. This algorithm is then applied to the analysis of the pollution in French cities for one year. With the emergence of numerical sensors in many aspects of everyday life, there is an increasing need in analyzing multivariate functional data. This work focuses on the clustering of such functional data, in order to ease their modeling and understanding. To this end, a novel clustering technique for multivariate functional data is presented. This method is based on a functional latent mixture model which fits the data into group-specific functional subspaces through a multivariate functional principal component analysis. A family of parsimonious models is obtained by constraining model parameters within and between groups. An Expectation Maximization algorithm is proposed for model inference and the choice of hyper-parameters is addressed through model selection. Numerical experiments on simulated datasets highlight the good performance of the proposed methodology compared to existing works. This algorithm is then applied to the analysis of the pollution in French cities for 1 year. |
Author | Bouveyron, Charles Martin, Pauline Jacques, Julien Chèze, Laurence Schmutz, Amandine |
Author_xml | – sequence: 1 givenname: Amandine orcidid: 0000-0003-2523-0411 surname: Schmutz fullname: Schmutz, Amandine email: schmutz.amandine@gmail.com organization: Lim France, CWD-VetLab, Ecole Nationale Vétérinaire d’Alfort – sequence: 2 givenname: Julien orcidid: 0000-0003-4808-2781 surname: Jacques fullname: Jacques, Julien organization: ERIC EA3083, Université de Lyon, Lyon 2 – sequence: 3 givenname: Charles orcidid: 0000-0002-6956-4491 surname: Bouveyron fullname: Bouveyron, Charles organization: Inria, CNRS, LJAD, Maasai team, Université Côte d’Azur – sequence: 4 givenname: Laurence orcidid: 0000-0003-2265-9781 surname: Chèze fullname: Chèze, Laurence organization: LBMC UMR T9406, Université de Lyon, Lyon 1 – sequence: 5 givenname: Pauline orcidid: 0000-0002-3571-4244 surname: Martin fullname: Martin, Pauline organization: Lim France, CWD-VetLab, Ecole Nationale Vétérinaire d’Alfort |
BackLink | https://inria.hal.science/hal-01652467$$DView record in HAL |
BookMark | eNp9kE1Lw0AQhhepYK3-AU-5eojOfmSTHEtRKxS96HmZbnbrljQJu5uC_97EKIiHHoaB4X1mhueSzJq2MYTcULijAPl9AKAFpMCGgjIrUnFG5lRSnpYyK2ZkDqXgqQDJLshlCHsAxnJG5-RlVfchGu-aXXLo6-iO6B1Gk9i-0dG1DdZJhRET1yQ73_ZdGjqjnXX6byL029ChNuGKnFusg7n-6Qvy_vjwtlqnm9en59Vyk2ouy5hW221eMCypEFiwCittpQW0WaVRa5kZyARKJrCSkFthKad8GBnODUNA5AtyO-39wFp13h3Qf6oWnVovN2qcAZUZEzI_8iFbTFnt2xC8sUq7iOPn0aOrFQU1OlSTQzU4VN8OlRhQ9g_9vXUS4hMUulGr8Wrf9n7QFE5RX_DIh4c |
CitedBy_id | crossref_primary_10_1145_3581789 crossref_primary_10_1016_j_ecosta_2023_03_002 crossref_primary_10_3390_app112311475 crossref_primary_10_1016_j_ins_2022_05_112 crossref_primary_10_1002_cjs_11838 crossref_primary_10_1002_sta4_557 crossref_primary_10_1007_s00362_023_01408_1 crossref_primary_10_1007_s11749_020_00733_z crossref_primary_10_1007_s11222_023_10288_2 crossref_primary_10_1287_ijds_2022_0034 crossref_primary_10_1007_s00357_023_09437_z crossref_primary_10_1002_sim_9687 crossref_primary_10_1214_23_AOAS1857 crossref_primary_10_1007_s11222_023_10213_7 crossref_primary_10_1109_TSG_2023_3325276 crossref_primary_10_1016_j_csda_2024_108107 crossref_primary_10_1016_j_csda_2021_107376 crossref_primary_10_1080_10618600_2022_2149540 crossref_primary_10_1093_biostatistics_kxad020 crossref_primary_10_1007_s11222_022_10145_8 crossref_primary_10_1214_21_AOAS1547 crossref_primary_10_1007_s11634_022_00501_x crossref_primary_10_1016_j_jspi_2023_106133 crossref_primary_10_1007_s00477_024_02700_8 crossref_primary_10_1080_10485252_2024_2358435 crossref_primary_10_1007_s00477_021_02071_4 crossref_primary_10_1007_s11222_022_10128_9 crossref_primary_10_1080_10618600_2024_2431057 crossref_primary_10_1016_j_pocean_2023_103120 crossref_primary_10_1038_s41598_022_06767_7 crossref_primary_10_1080_24725838_2024_2331182 crossref_primary_10_1007_s11634_023_00542_w crossref_primary_10_3390_a17080358 crossref_primary_10_1080_10618600_2024_2366499 crossref_primary_10_1080_14763141_2024_2398508 crossref_primary_10_3390_joitmc8010006 crossref_primary_10_1002_bimj_202300363 crossref_primary_10_1093_jrsssc_qlad017 crossref_primary_10_1111_rssc_12589 crossref_primary_10_1007_s11356_023_25790_3 crossref_primary_10_1109_TNNLS_2021_3137795 crossref_primary_10_1177_0962280220921912 crossref_primary_10_1007_s41060_023_00410_y crossref_primary_10_1371_journal_pone_0283717 crossref_primary_10_1007_s11749_024_00952_8 |
Cites_doi | 10.1080/01621459.1971.10482356 10.1007/s11634-011-0095-6 10.1007/s00180-006-0013-0 10.1109/TAC.1974.1100705 10.1214/aos/1176344136 10.1016/j.csda.2014.05.010 10.1016/j.csda.2016.01.019 10.1007/s11634-013-0158-y 10.1007/s00357-010-9054-8 10.1007/s00180-018-0808-9 10.1111/j.1467-9868.2007.00605.x 10.1214/009053604000000940 10.1016/j.neucom.2012.11.042 10.1016/j.csda.2011.03.011 10.1007/s11222-016-9679-5 10.1016/S0167-9473(03)00032-X 10.1002/cem.945 10.1007/s00440-006-0011-8 10.1017/9781108644181 10.1007/s00357-003-0007-3 10.1198/016214503000189 10.1007/s11634-009-0044-9 10.1016/j.csda.2009.09.031 10.1111/j.1467-9876.2012.01062.x 10.1177/0962280213495988 10.1080/01621459.1998.10473711 10.1007/s00357-017-9232-z 10.1016/j.jspi.2006.06.011 10.1207/s15327906mbr0102_10 10.1109/34.865189 10.1111/j.2517-6161.1977.tb01600.x 10.1007/b98888 10.1007/s00180-018-00864-w 10.1016/j.csda.2012.12.004 10.1007/s11634-012-0113-3 10.1214/15-AOAS861 |
ContentType | Journal Article |
Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2020 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 1XC VOOES |
DOI | 10.1007/s00180-020-00958-4 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1613-9658 |
EndPage | 1131 |
ExternalDocumentID | oai_HAL_hal_01652467v3 10_1007_s00180_020_00958_4 |
GrantInformation_xml | – fundername: CWD-VetLab grantid: ANR 16-LCV2-0002-01 |
GroupedDBID | -5D -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 199 1N0 203 29F 2J2 2JN 2JY 2KG 2LR 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 53G 5GY 5VS 67Z 6NX 78A 7WY 88I 8C1 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BAPOH BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ H~9 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV L6V LAS LLZTM M0C M0N M2O M2P M4Y M7S MA- MK~ N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PTHSS Q2X QOS R89 R9I RNS ROL RPX RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Y Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT 1XC ABRTQ PUEGO VOOES |
ID | FETCH-LOGICAL-c369t-dbb782a9144a82dadcf6f0af5dcacc65e054a624ad607f4f1313054e33e2a0aa3 |
IEDL.DBID | U2A |
ISSN | 0943-4062 |
IngestDate | Wed Sep 03 07:03:16 EDT 2025 Tue Jul 01 04:23:17 EDT 2025 Thu Apr 24 22:53:13 EDT 2025 Fri Feb 21 02:33:32 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Multivariate functional principal component analysis EM algorithm Multivariate functional curves Model-based clustering multivariate functional principal component analysis Multivariate functional data model-based clustering EM-algorithm |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c369t-dbb782a9144a82dadcf6f0af5dcacc65e054a624ad607f4f1313054e33e2a0aa3 |
ORCID | 0000-0003-2523-0411 0000-0002-6956-4491 0000-0003-4808-2781 0000-0003-2265-9781 0000-0002-3571-4244 |
OpenAccessLink | https://inria.hal.science/hal-01652467 |
PageCount | 31 |
ParticipantIDs | hal_primary_oai_HAL_hal_01652467v3 crossref_citationtrail_10_1007_s00180_020_00958_4 crossref_primary_10_1007_s00180_020_00958_4 springer_journals_10_1007_s00180_020_00958_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-01 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg |
PublicationTitle | Computational statistics |
PublicationTitleAbbrev | Comput Stat |
PublicationYear | 2020 |
Publisher | Springer Berlin Heidelberg Springer Verlag |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Verlag |
References | Rand (CR31) 1971; 66 Dempster, Laird, Rubin (CR15) 1977; 39 Tokushige, Yadohisa, Inada (CR36) 2007; 22 Traore, Cristini, Favretto-Cristini, Pantera, Vieu, Viguier-Pla (CR37) 2019; 34 Yamamoto (CR38) 2012; 6 Byers, Raftery (CR10) 1998; 93 Biernacki, Celeux, Govaert (CR4) 2000; 22 Ieva, Paganoni, Pigoli, Vitelli (CR21) 2013; 62 Ramsay, Silverman (CR30) 2005 Jacques, Preda (CR22) 2013; 112 Basso, Lachos, Cabral, Ghosh (CR2) 2010; 54 Saporta (CR32) 1981; 37–38 Hennig, Coretto (CR19) 2007 Jacques, Preda (CR24) 2014; 71 Chen, Jiang (CR12) 2016; 27 Yamamoto, Hwang (CR40) 2017; 34 Bouveyron, Celeux, Murphy, Raftery (CR9) 2019 Schwarz (CR33) 1978; 6 Chiou, Li (CR14) 2007; 69 Yamamoto, Terada (CR39) 2014; 79 Bouveyron, Jacques (CR7) 2011; 5 Zambom, Collazos, Dias (CR41) 2019; 34 Ferraty, Vieu (CR16) 2003; 44 Birge, Massart (CR5) 2007; 138 Gallegos, Ritter (CR17) 2005; 33 CR29 CR27 Bouveyron, Come, Jacques (CR8) 2015; 9 Bongiorno, Goia (CR6) 2016; 99 Akaike (CR1) 1974; 9 Berrendero, Justel, Svarc (CR3) 2011; 55 Cattell (CR11) 1966; 1 Ieva, Paganoni (CR20) 2016; 25 Gallegos, Ritter (CR18) 2009; 3 Jacques, Preda (CR23) 2014; 8 Preda (CR28) 2007; 137 Kayano, Dozono, Konishi (CR26) 2010; 27 Chiou, Chen, Yang (CR13) 2014; 24 James, Sugar (CR25) 2003; 98 Singhal, Seborg (CR34) 2005; 19 Tarpey, Kinateder (CR35) 2003; 20 EG Bongiorno (958_CR6) 2016; 99 958_CR27 MT Gallegos (958_CR18) 2009; 3 JM Chiou (958_CR14) 2007; 69 L Birge (958_CR5) 2007; 138 C Bouveyron (958_CR9) 2019 M Kayano (958_CR26) 2010; 27 C Biernacki (958_CR4) 2000; 22 C Bouveyron (958_CR7) 2011; 5 C Bouveyron (958_CR8) 2015; 9 WM Rand (958_CR31) 1971; 66 S Byers (958_CR10) 1998; 93 958_CR29 A Dempster (958_CR15) 1977; 39 F Ieva (958_CR21) 2013; 62 J Jacques (958_CR22) 2013; 112 F Ieva (958_CR20) 2016; 25 J Jacques (958_CR23) 2014; 8 A Singhal (958_CR34) 2005; 19 OI Traore (958_CR37) 2019; 34 M Yamamoto (958_CR40) 2017; 34 C Hennig (958_CR19) 2007 RM Basso (958_CR2) 2010; 54 T Tarpey (958_CR35) 2003; 20 L Chen (958_CR12) 2016; 27 R Cattell (958_CR11) 1966; 1 F Ferraty (958_CR16) 2003; 44 G Saporta (958_CR32) 1981; 37–38 J Berrendero (958_CR3) 2011; 55 G Schwarz (958_CR33) 1978; 6 S Tokushige (958_CR36) 2007; 22 C Preda (958_CR28) 2007; 137 J Jacques (958_CR24) 2014; 71 JO Ramsay (958_CR30) 2005 MT Gallegos (958_CR17) 2005; 33 H Akaike (958_CR1) 1974; 9 M Yamamoto (958_CR39) 2014; 79 G James (958_CR25) 2003; 98 AZ Zambom (958_CR41) 2019; 34 J Chiou (958_CR13) 2014; 24 M Yamamoto (958_CR38) 2012; 6 |
References_xml | – volume: 62 start-page: 401 issue: 3 year: 2013 end-page: 418 ident: CR21 article-title: Multivariate functional clustering for the morphological analysis of ECG curves publication-title: J R Stat Soc Series C (Appl Stat) – volume: 6 start-page: 461 issue: 2 year: 1978 end-page: 464 ident: CR33 article-title: Estimating the dimension of a model publication-title: Ann Stat – volume: 69 start-page: 679 issue: 4 year: 2007 end-page: 699 ident: CR14 article-title: Functional clustering and identifying substructures of longitudinal data publication-title: J R Stat Soc Ser B Stat Methodol – volume: 138 start-page: 33 year: 2007 end-page: 73 ident: CR5 article-title: Minimal penalties for Gaussian model selection publication-title: Probab Theory Relat Fields – volume: 9 start-page: 1726 issue: 4 year: 2015 end-page: 1760 ident: CR8 article-title: The discriminative functional mixture model for the analysis of bike sharing systems publication-title: Ann Appl Stat – year: 2019 ident: CR9 publication-title: Model-based clustering and classification for data science: with applications in R – volume: 24 start-page: 1571 year: 2014 end-page: 1596 ident: CR13 article-title: Multivariate functional principal component analysis: a normalization approach publication-title: Stat Sin – volume: 37–38 start-page: 7 year: 1981 end-page: 194 ident: CR32 article-title: Méthodes exploratoires d’analyse de données temporelles publication-title: Cahiers du Bureau universitaire de recherche opérationnelle Série Recherche – volume: 19 start-page: 427 year: 2005 end-page: 438 ident: CR34 article-title: Clustering multivariate time-series data publication-title: J Chemom – volume: 33 start-page: 347 issue: 1 year: 2005 end-page: 380 ident: CR17 article-title: A robust method for cluster analysis publication-title: Ann Stat – volume: 34 start-page: 631 issue: 2 year: 2019 end-page: 652 ident: CR37 article-title: Clustering acoustic emission signals by mixing two stages dimension reduction and nonparametric approaches publication-title: Comput Stat – volume: 137 start-page: 829 year: 2007 end-page: 840 ident: CR28 article-title: Regression models for functional data by reproducing kernel hilbert spaces methods publication-title: J Stat Plan Inference – volume: 55 start-page: 2619 year: 2011 end-page: 263 ident: CR3 article-title: Principal components for multivariate functional data publication-title: Comput Stat Data Anal – volume: 93 start-page: 577 issue: 442 year: 1998 end-page: 584 ident: CR10 article-title: Nearest-neighbor clutter removal for estimating features in spatial point processes publication-title: J Am Stat Assoc – ident: CR29 – volume: 34 start-page: 294 year: 2017 end-page: 326 ident: CR40 article-title: Dimension-reduced clustering of functional data via subspace separation publication-title: J Classif – volume: 27 start-page: 211 year: 2010 end-page: 230 ident: CR26 article-title: Functional cluster analysis via orthonormalized Gaussian basis expansions and its application publication-title: J Classif – volume: 71 start-page: 92 year: 2014 end-page: 106 ident: CR24 article-title: Model based clustering for multivariate functional data publication-title: Comput Stat Data Anal – volume: 39 start-page: 1 issue: 1 year: 1977 end-page: 38 ident: CR15 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J R Stat Soc – ident: CR27 – volume: 6 start-page: 219 year: 2012 end-page: 247 ident: CR38 article-title: Clustering of functional data in a low-dimensional subspace publication-title: Adv Data Anal Classif – volume: 34 start-page: 527 issue: 2 year: 2019 end-page: 549 ident: CR41 article-title: Functional data clustering via hypothesis testing k-means publication-title: Comput Stat – year: 2005 ident: CR30 publication-title: Functional data analysis – start-page: 127 year: 2007 end-page: 138 ident: CR19 publication-title: The noise component in model-based cluster analysis – volume: 22 start-page: 719 year: 2000 end-page: 725 ident: CR4 article-title: Assessing a mixture model for clustering with the integrated completed likelihood publication-title: IEEE Trans PAMI – volume: 1 start-page: 245 issue: 2 year: 1966 end-page: 276 ident: CR11 article-title: The scree test for the number of factors publication-title: Multivar Behav Res – volume: 3 start-page: 135 year: 2009 end-page: 167 ident: CR18 article-title: Trimming algorithms for clustering contaminated grouped data and their robustness publication-title: Adv Data Anal Classif – volume: 8 start-page: 231 issue: 3 year: 2014 end-page: 255 ident: CR23 article-title: Functional data clustering: a survey publication-title: Adv Data Anal Classif – volume: 98 start-page: 397 issue: 462 year: 2003 end-page: 408 ident: CR25 article-title: Clustering for sparsely sampled functional data publication-title: J Am Stat Assoc – volume: 79 start-page: 133 year: 2014 end-page: 148 ident: CR39 article-title: Functional factorial k-means analysis publication-title: Comput Stat Data Anal – volume: 99 start-page: 204 issue: C year: 2016 end-page: 222 ident: CR6 article-title: Classification methods for hilbert data based on surrogate density publication-title: Comput Stat Data Anal – volume: 66 start-page: 846 issue: 336 year: 1971 end-page: 850 ident: CR31 article-title: Objective criteria for the evaluation of clustering methods publication-title: J Am Stat Assoc – volume: 25 start-page: 1648 year: 2016 end-page: 1660 ident: CR20 article-title: Risk prediction for myocardial infarction via generalized functional regression models publication-title: Stat Methods Med Res – volume: 54 start-page: 2926 issue: 12 year: 2010 end-page: 2941 ident: CR2 article-title: Robust mixture modeling based on scale mixtures of skew-normal distributions publication-title: Comput Stat Data Anal – volume: 20 start-page: 93 issue: 1 year: 2003 end-page: 114 ident: CR35 article-title: Clustering functional data publication-title: J Classif – volume: 112 start-page: 164 year: 2013 end-page: 171 ident: CR22 article-title: Funclust: a curves clustering method using functional random variable density approximation publication-title: Neurocomputing – volume: 27 start-page: 1181 year: 2016 end-page: 1192 ident: CR12 article-title: Multi-dimensional functional principal component analysis publication-title: Stat Comput – volume: 9 start-page: 716 year: 1974 end-page: 723 ident: CR1 article-title: A new look at the statistical model identification publication-title: IEEE Tran Autom Control – volume: 5 start-page: 281 issue: 4 year: 2011 end-page: 300 ident: CR7 article-title: Model-based clustering of time series in group-specific functional subspaces publication-title: Adv Data Anal Classif – volume: 22 start-page: 1 year: 2007 end-page: 16 ident: CR36 article-title: Crisp and fuzzy k-means clustering algorithms for multivariate functional data publication-title: Comput Stat – volume: 44 start-page: 161 year: 2003 end-page: 173 ident: CR16 article-title: Curves discrimination: a nonparametric approach publication-title: Comput Stat Data Anal – volume: 66 start-page: 846 issue: 336 year: 1971 ident: 958_CR31 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1971.10482356 – volume: 5 start-page: 281 issue: 4 year: 2011 ident: 958_CR7 publication-title: Adv Data Anal Classif doi: 10.1007/s11634-011-0095-6 – volume: 22 start-page: 1 year: 2007 ident: 958_CR36 publication-title: Comput Stat doi: 10.1007/s00180-006-0013-0 – volume: 9 start-page: 716 year: 1974 ident: 958_CR1 publication-title: IEEE Tran Autom Control doi: 10.1109/TAC.1974.1100705 – volume: 6 start-page: 461 issue: 2 year: 1978 ident: 958_CR33 publication-title: Ann Stat doi: 10.1214/aos/1176344136 – volume: 79 start-page: 133 year: 2014 ident: 958_CR39 publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2014.05.010 – volume: 99 start-page: 204 issue: C year: 2016 ident: 958_CR6 publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2016.01.019 – volume: 8 start-page: 231 issue: 3 year: 2014 ident: 958_CR23 publication-title: Adv Data Anal Classif doi: 10.1007/s11634-013-0158-y – volume: 27 start-page: 211 year: 2010 ident: 958_CR26 publication-title: J Classif doi: 10.1007/s00357-010-9054-8 – volume: 34 start-page: 527 issue: 2 year: 2019 ident: 958_CR41 publication-title: Comput Stat doi: 10.1007/s00180-018-0808-9 – volume: 24 start-page: 1571 year: 2014 ident: 958_CR13 publication-title: Stat Sin – volume: 69 start-page: 679 issue: 4 year: 2007 ident: 958_CR14 publication-title: J R Stat Soc Ser B Stat Methodol doi: 10.1111/j.1467-9868.2007.00605.x – volume: 33 start-page: 347 issue: 1 year: 2005 ident: 958_CR17 publication-title: Ann Stat doi: 10.1214/009053604000000940 – volume: 112 start-page: 164 year: 2013 ident: 958_CR22 publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.11.042 – volume: 55 start-page: 2619 year: 2011 ident: 958_CR3 publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2011.03.011 – volume: 27 start-page: 1181 year: 2016 ident: 958_CR12 publication-title: Stat Comput doi: 10.1007/s11222-016-9679-5 – volume: 44 start-page: 161 year: 2003 ident: 958_CR16 publication-title: Comput Stat Data Anal doi: 10.1016/S0167-9473(03)00032-X – volume: 19 start-page: 427 year: 2005 ident: 958_CR34 publication-title: J Chemom doi: 10.1002/cem.945 – volume: 138 start-page: 33 year: 2007 ident: 958_CR5 publication-title: Probab Theory Relat Fields doi: 10.1007/s00440-006-0011-8 – volume-title: Model-based clustering and classification for data science: with applications in R year: 2019 ident: 958_CR9 doi: 10.1017/9781108644181 – start-page: 127 volume-title: The noise component in model-based cluster analysis year: 2007 ident: 958_CR19 – volume: 37–38 start-page: 7 year: 1981 ident: 958_CR32 publication-title: Cahiers du Bureau universitaire de recherche opérationnelle Série Recherche – volume: 20 start-page: 93 issue: 1 year: 2003 ident: 958_CR35 publication-title: J Classif doi: 10.1007/s00357-003-0007-3 – volume: 98 start-page: 397 issue: 462 year: 2003 ident: 958_CR25 publication-title: J Am Stat Assoc doi: 10.1198/016214503000189 – ident: 958_CR29 – volume: 3 start-page: 135 year: 2009 ident: 958_CR18 publication-title: Adv Data Anal Classif doi: 10.1007/s11634-009-0044-9 – volume: 54 start-page: 2926 issue: 12 year: 2010 ident: 958_CR2 publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2009.09.031 – volume: 62 start-page: 401 issue: 3 year: 2013 ident: 958_CR21 publication-title: J R Stat Soc Series C (Appl Stat) doi: 10.1111/j.1467-9876.2012.01062.x – ident: 958_CR27 – volume: 25 start-page: 1648 year: 2016 ident: 958_CR20 publication-title: Stat Methods Med Res doi: 10.1177/0962280213495988 – volume: 93 start-page: 577 issue: 442 year: 1998 ident: 958_CR10 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1998.10473711 – volume: 34 start-page: 294 year: 2017 ident: 958_CR40 publication-title: J Classif doi: 10.1007/s00357-017-9232-z – volume: 137 start-page: 829 year: 2007 ident: 958_CR28 publication-title: J Stat Plan Inference doi: 10.1016/j.jspi.2006.06.011 – volume: 1 start-page: 245 issue: 2 year: 1966 ident: 958_CR11 publication-title: Multivar Behav Res doi: 10.1207/s15327906mbr0102_10 – volume: 22 start-page: 719 year: 2000 ident: 958_CR4 publication-title: IEEE Trans PAMI doi: 10.1109/34.865189 – volume: 39 start-page: 1 issue: 1 year: 1977 ident: 958_CR15 publication-title: J R Stat Soc doi: 10.1111/j.2517-6161.1977.tb01600.x – volume-title: Functional data analysis year: 2005 ident: 958_CR30 doi: 10.1007/b98888 – volume: 34 start-page: 631 issue: 2 year: 2019 ident: 958_CR37 publication-title: Comput Stat doi: 10.1007/s00180-018-00864-w – volume: 71 start-page: 92 year: 2014 ident: 958_CR24 publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2012.12.004 – volume: 6 start-page: 219 year: 2012 ident: 958_CR38 publication-title: Adv Data Anal Classif doi: 10.1007/s11634-012-0113-3 – volume: 9 start-page: 1726 issue: 4 year: 2015 ident: 958_CR8 publication-title: Ann Appl Stat doi: 10.1214/15-AOAS861 |
SSID | ssj0022721 |
Score | 2.436117 |
Snippet | With the emergence of numerical sensors in many aspects of everyday life, there is an increasing need in analyzing multivariate functional data. This work... With the emergence of numerical sensors in many aspects of every- day life, there is an increasing need in analyzing multivariate functional data. This work... |
SourceID | hal crossref springer |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 1101 |
SubjectTerms | Economic Theory/Quantitative Economics/Mathematical Methods Mathematics Mathematics and Statistics Original Paper Probability and Statistics in Computer Science Probability Theory and Stochastic Processes Statistics |
Title | Clustering multivariate functional data in group-specific functional subspaces |
URI | https://link.springer.com/article/10.1007/s00180-020-00958-4 https://inria.hal.science/hal-01652467 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB20vdSDaFWsHyWIN11INpukOdbSWvwoIhbqKWyyuyiUWEzb3-_MNg0qUvAUSCZ7mJ3svMm-NwtwiWGQKeVqpn1PM5GRWLkTpIzLwAt57JrYWJbvKByOxd0kmJSisGLNdl9vSdqVuhK70flxLqNyh3BBh4ltqAdUu2MUj3m3KrN4ZNVWRJnD6ijkpVTm7zF-pKPtNyJD_toRtYlmsAe7JUJ0uqsp3YctnTdh57Fqr1o0oUEQcdVh-QBGvemCuh3gYI6lBy6x_EUE6VDKWv3pc4gH6rznjtVwMFJXEkPou0WBC8iM6FmHMB70X3pDVp6SwDI_jOdMpSlmeRljZSQ7XEmVmdC40gQqk1kWBhpBmQy5kCp0IyOM52PaCoT2fc2lK6V_BLX8I9fH4OCDKJUiFkZi1YbYkKtIxVKaiCvhR7oF3tpZSVa2EKeTLKZJ1fzYOjhBByfWwYlowVX1zmzVQGOj9QXOQWVIva-H3YeE7pHuiuOyvvRbcL2eoqT84ooNY578z_wUGtwGCPHIzqA2_1zocwQe87QN9e7t630frzf90dNz28bdF6m30M8 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5sPagH0apYn0G86UKy2byOpViqtj210FvYZHdRKLXYx-93ZvNARQpek8keZjc73yTf9y3APS6DXClXM-17momcxMpxkDEuAy_kiWsSY1m-o7A_ES_TYFqKwpYV2736JWl36lrsRufHuYzaHcIFMRMN2EUwEBORa8I7dZvFI6u2IsocdkchL6Uyf4_xoxw13ogM-euPqC00vSM4LBGi0ymm9Bh29LwFB8PaXnXZgn2CiIXD8gmMurM1uR3gYI6lB26w_UUE6VDJKr70OcQDdd7njtVwMFJXEkPoe8QSN5AF0bNOYdJ7Gnf7rDwlgeV-mKyYyjKs8jLBzkjGXEmVm9C40gQql3keBhpBmQy5kCp0IyOM52PZCoT2fc2lK6V_Bs35x1yfg4M3okyKRBiJXRtiQ64ilUhpIq6EH-k2eFWy0ry0EKeTLGZpbX5sE5xiglOb4FS04aF-ZlEYaGyNvsM5qAPJ-7rfGaR0jXRXHLf1jd-Gx2qK0vKNW24Z8-J_4bew1x8PB-ngefR6CfvcLhbilF1Bc_W51tcIQlbZjV1zX4960JQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED7cBJkPolNx_izim4Z1adquj2M6ps7hg4O9lbRJUBh1uB9_v3dpV6bIwNf2mofLJXfXfN8XgBsMg1QpVzPttTQTKZGV237CuPRbAY9cExmL8h0G_ZF4GvvjNRa_RbuvjiRzTgOpNGXz5lSZZkl8o7vkXEatD9UIbSYqsI3bcYviesQ7ZcvFQ8u8IvgcdkoBL2gzf4_xIzVV3gkY-et01Cad3j7sFdWi08mn9wC2dFaH3ZdSanVWhxqVi7na8iEMu5MFKR_gYI6FCi6xFcZq0qH0lf_1cwgT6nxkjuVzMGJaElpo3WKGm8mUoFpHMOo9vHX7rLgxgaVeEM2ZShLM-DLCLkm2uZIqNYFxpfFVKtM08DUWaDLgQqrADY0w6DFc70J7nubSldI7hmr2mekTcPBFmEgRCSOxg8M6katQRVKakCvhhboBrZWz4rSQE6dbLSZxKYRsHRyjg2Pr4Fg04Lb8ZpqLaWy0vsY5KA1JB7vfGcT0jDhYHLf4pdeAu9UUxcXqm20Y8_R_5lew83rfiwePw-czqHEbKwQvO4fq_GuhL7AemSeXNuS-Ad5P1NA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clustering+multivariate+functional+data+in+group-specific+functional+subspaces&rft.jtitle=Computational+statistics&rft.au=Schmutz%2C+Amandine&rft.au=Jacques%2C+Julien&rft.au=Bouveyron%2C+Charles&rft.au=Ch%C3%A8ze%2C+Laurence&rft.date=2020-09-01&rft.issn=0943-4062&rft.eissn=1613-9658&rft.volume=35&rft.issue=3&rft.spage=1101&rft.epage=1131&rft_id=info:doi/10.1007%2Fs00180-020-00958-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00180_020_00958_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0943-4062&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0943-4062&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0943-4062&client=summon |