Resampling methods for quality assessment of classifier performance and optimal number of features
We address two fundamental design issues of a classification system: the choice of the classifier and the dimensionality of the optimal feature subset. Resampling techniques are applied to estimate both the probability distribution of the misclassification rate (or any other figure of merit of a cla...
Saved in:
Published in | Signal processing Vol. 93; no. 11; pp. 2956 - 2968 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.11.2013
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We address two fundamental design issues of a classification system: the choice of the classifier and the dimensionality of the optimal feature subset. Resampling techniques are applied to estimate both the probability distribution of the misclassification rate (or any other figure of merit of a classifier) subject to the size of the feature set, and the probability distribution of the optimal dimensionality given a classification system and a misclassification rate. The latter allows for the estimation of confidence intervals for the optimal feature set size. Based on the former, a quality assessment for the classifier performance is proposed. Traditionally, the comparison of classification systems is accomplished for a fixed feature set. However, a different set may provide different results. The proposed method compares the classifiers independently of any pre-selected feature set. The algorithms are tested on 80 sets of synthetic examples and six standard databases of real data. The simulated data results are verified by an exhaustive search of the optimum and by two feature selection algorithms for the real data sets.
•Novel resampling based method.•Choice of the best classifier among set of candidates.•Estimation of the optimal feature set dimensionality.•Algorithm tested on synthetic and real data. |
---|---|
AbstractList | We address two fundamental design issues of a classification system: the choice of the classifier and the dimensionality of the optimal feature subset. Resampling techniques are applied to estimate both the probability distribution of the misclassification rate (or any other figure of merit of a classifier) subject to the size of the feature set, and the probability distribution of the optimal dimensionality given a classification system and a misclassification rate. The latter allows for the estimation of confidence intervals for the optimal feature set size. Based on the former, a quality assessment for the classifier performance is proposed. Traditionally, the comparison of classification systems is accomplished for a fixed feature set. However, a different set may provide different results. The proposed method compares the classifiers independently of any pre-selected feature set. The algorithms are tested on 80 sets of synthetic examples and six standard databases of real data. The simulated data results are verified by an exhaustive search of the optimum and by two feature selection algorithms for the real data sets. We address two fundamental design issues of a classification system: the choice of the classifier and the dimensionality of the optimal feature subset. Resampling techniques are applied to estimate both the probability distribution of the misclassification rate (or any other figure of merit of a classifier) subject to the size of the feature set, and the probability distribution of the optimal dimensionality given a classification system and a misclassification rate. The latter allows for the estimation of confidence intervals for the optimal feature set size. Based on the former, a quality assessment for the classifier performance is proposed. Traditionally, the comparison of classification systems is accomplished for a fixed feature set. However, a different set may provide different results. The proposed method compares the classifiers independently of any pre-selected feature set. The algorithms are tested on 80 sets of synthetic examples and six standard databases of real data. The simulated data results are verified by an exhaustive search of the optimum and by two feature selection algorithms for the real data sets. •Novel resampling based method.•Choice of the best classifier among set of candidates.•Estimation of the optimal feature set dimensionality.•Algorithm tested on synthetic and real data. |
Author | Zoubir, Abdelhak M. Fandos, Raquel Debes, Christian |
Author_xml | – sequence: 1 givenname: Raquel surname: Fandos fullname: Fandos, Raquel email: rfandos@spg.tu-darmstadt.de organization: Signal Processing Group, Institute of Telecommunications, Technische Universität Darmstadt, Merckstr. 25, 64283 Darmstadt, Germany – sequence: 2 givenname: Christian surname: Debes fullname: Debes, Christian email: cdebes@agtgermany.com organization: AGT Group (R&D) GmbH, 64295 Darmstadt, Germany – sequence: 3 givenname: Abdelhak M. surname: Zoubir fullname: Zoubir, Abdelhak M. email: zoubir@spg.tu-darmstadt.de organization: Signal Processing Group, Institute of Telecommunications, Technische Universität Darmstadt, Merckstr. 25, 64283 Darmstadt, Germany |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27579661$$DView record in Pascal Francis |
BookMark | eNqFkMFqFTEUQINU8LX1D1xkI7iZMXkzSd64EKRoFQqC6DrcSe7UPGaSaW5G6N835RUXXegqhJxzyT3n7CymiIy9kaKVQur3x5bC7ZpTuxeya4VqhehfsJ08mH1jlDJnbFcx1Uh96F-xc6KjEJXUYsfGH0iwrHOIt3zB8jt54lPK_G6DOZR7DkRItGAsPE3czfUepoCZr5grt0B0yCF6ntYSFph53JaxPld4QihbRrpkLyeYCV8_nRfs15fPP6--Njffr79dfbppXKeH0nhlEIXX9Y-9QnTQ-UPnBxjGYTygcqPpDHRgJPReOgTZ9b6Xg-5BDYBOdxfs3WluLXG3IRW7BHI4zxAxbWSlqooRWpqKvn1CgRzMU65rBLJrrivke7s3ygxay8r1J87lRJRx-otIYR_T26M9pbeP6a1Qtqav2odnmgsFSkixZAjz_-SPJxlrqz81tSUXsGb2IaMr1qfw7wEPVC-mlw |
CODEN | SPRODR |
CitedBy_id | crossref_primary_10_1109_TGRS_2013_2260863 crossref_primary_10_1109_JOE_2014_2303718 crossref_primary_10_1016_j_dsp_2013_12_001 crossref_primary_10_1109_JSTARS_2013_2295513 crossref_primary_10_1007_s10044_015_0504_0 |
Cites_doi | 10.1109/72.471357 10.1109/T-C.1971.223410 10.1109/36.406684 10.1109/TSMCB.2005.847745 10.1016/j.patcog.2005.03.026 10.1214/aoms/1177729694 10.1016/0031-3203(75)90024-2 10.1109/34.709601 10.1016/j.patcog.2008.08.001 10.1109/AIPR.2004.18 10.1111/1468-0262.00092 10.1007/978-1-4612-1554-7 10.1109/TIT.1968.1054102 10.1016/j.patcog.2008.05.030 10.1214/aoms/1177704472 10.1016/0031-3203(78)90008-0 10.1109/TSMC.1977.4309803 10.1109/TIP.2012.2211372 10.1007/978-3-642-01805-3_4 10.1016/0167-8655(94)90127-9 10.1016/j.csda.2010.03.004 10.1109/IGARSS.1990.689021 10.1109/34.574797 10.1214/009053604000001147 10.1016/j.patcog.2009.06.009 10.1109/TNN.2010.2047114 10.1016/j.patcog.2008.10.028 10.1109/TNN.2011.2128342 10.1007/BF00994018 10.1109/IJCNN.1999.833470 10.1109/MSP.2007.4286560 10.1109/TPAMI.2009.190 10.1109/34.824819 10.1080/00401706.1976.10489422 10.1109/TPAMI.1980.4767011 10.1016/j.patrec.2008.06.018 10.1515/9781400874668 10.1016/j.csda.2009.06.009 10.1016/j.eswa.2007.08.088 10.1109/TGRS.2013.2260863 10.1198/106186006X113430 10.1109/TITB.2008.2009440 10.1109/TPAMI.1987.4767957 10.1007/s00180-007-0103-7 10.1109/CIMA.2005.1662338 |
ContentType | Journal Article |
Copyright | 2013 Elsevier B.V. 2014 INIST-CNRS |
Copyright_xml | – notice: 2013 Elsevier B.V. – notice: 2014 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.sigpro.2013.05.004 |
DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1872-7557 |
EndPage | 2968 |
ExternalDocumentID | 27579661 10_1016_j_sigpro_2013_05_004 S0165168413001850 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K TAE TN5 WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c369t-d57ee0d668445eeca3d83d9a9b9b8e5cb737a3a71a4d1cea134d41964a59aec63 |
IEDL.DBID | .~1 |
ISSN | 0165-1684 |
IngestDate | Fri Jul 11 08:50:39 EDT 2025 Mon Jul 21 09:13:55 EDT 2025 Sun Jul 06 05:06:39 EDT 2025 Thu Apr 24 23:05:07 EDT 2025 Fri Feb 23 02:28:10 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Bootstrap Feature evaluation and selection Optimal dimensionality Pattern recognition Resampling Classifier design and evaluation Performance evaluation Automatic classification Dimensionality Probabilistic approach Probability distribution Algorithm Signal classification Confidence interval Bootstrapping Quality control Testing equipment Database Signal processing Feature extraction Resampling method Figure of merit |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c369t-d57ee0d668445eeca3d83d9a9b9b8e5cb737a3a71a4d1cea134d41964a59aec63 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 1513470617 |
PQPubID | 23500 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1513470617 pascalfrancis_primary_27579661 crossref_primary_10_1016_j_sigpro_2013_05_004 crossref_citationtrail_10_1016_j_sigpro_2013_05_004 elsevier_sciencedirect_doi_10_1016_j_sigpro_2013_05_004 |
PublicationCentury | 2000 |
PublicationDate | 2013-11-01 |
PublicationDateYYYYMMDD | 2013-11-01 |
PublicationDate_xml | – month: 11 year: 2013 text: 2013-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Signal processing |
PublicationYear | 2013 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Zeng, Cheung (bib46) 2009; 42 van Ness (bib33) 1979; 18 Lin, Ying, Chen, Lee (bib45) 2008; 35 Abramowitz, Stegun (bib27) 1972 Sun, Todorovic, Goodison (bib49) 2010; 32 C.C. Chang, C.J. Lin, LIBSVM: A Library for Support Vector Machines, 2001. Liu, Sun, Liu, Zhang (bib48) 2009; 42 Anderson (bib4) 2003 Raudys, Pikelis (bib35) 1980; PAMI-2 Bhattacharyya (bib36) 1943; 35 R. Fandos, A.M. Zoubir, K. Siantidis, Unified design of a feature based ADAC system for mine hunting using synthetic aperture sonar, IEEE Transactions on Geoscience and Remote Sensing, accepted for publication. Dias, Vermunt (bib18) 2008; 23 Bishop (bib2) 2006 N. Diaz-Diaz, J.S. Aguilar-Ruiz, J.A. Nepomuceno, J. Garcia, Feature selection based on bootstrapping, in: Congress on Computational Intelligence Methods and Applications, ICSC, 2005. Sima, Attoor, Brag-Neto, Lowey, Suh (bib52) 2005; 38 Zou, Hastie, Tibshirani (bib40) 2006; 15 Pudil, Novovičová, Kittler (bib39) 1994; 15 Jain, Dubes, Chen (bib15) 1987; 5 B. Kim, D.A. Landgrebe, Prediction of optimal number of features, in: Proceedings of the Annual International Geoscience and Remote Sensing Symposium, 1990, pp. 2393–2396. Breiman, Friedman, Olshen (bib5) 1984 Rao (bib30) 1949; 9 Xu, King, Lyu, Jin (bib47) 2010; 21 Cover, Van Campenhout (bib38) 1977; 7 Jain, Chandrasekaran (bib31) 1982; vol. 2 Jain, Duin, Jianchang (bib1) 2000; 22 Andrews, Buchinsky (bib24) 2000; 68 W.A. Yousef, R.F. Wagner, M.H. Loew, Comparison of non-parametric methods for assessing classifier performance in terms of ROC parameters, in: Proceedings of the Applied Imagery Pattern Recognition Workshop, 2004, pp. 190–195. J.-L. Yuan, Bootstrapping nonparametric feature selection algorithms for mining small data sets, in: International Joint Conference on Neural Networks, vol. 4, 1999, pp. 2526–2529. Chung, Han (bib17) 2009; 53 Ripley (bib3) 1996 Parzen (bib57) 1962; 33 Li, Tao (bib41) 2012; 21 Shao, Tu (bib25) 1995 Gheyas, Smith (bib44) 2010; 43 Isaksson, Wallman, Göransson, Gustafsson (bib19) 2008; 29 Hua, Tembe, Dougherty (bib43) 2009; 42 Hughes (bib29) 1968; 14 Weideman, Manry, Yau, Gong (bib10) 1995; 6 Zoubir, Iskander (bib23) 2007; 24 Tran, Toh, Srinivasan, Wong, Low (bib7) 2005; 35 Yang, Ong (bib50) 2011; 22 Ho (bib37) 1998; 20 Jain, Duber (bib34) 1978; 10 Whitney (bib28) 1971; 20 M. Verleysen, F. Rossi, D. François, Advances in feature selection with mutual information, Similarity-based Clustering, Springer-Verlag, Berlin, Heidelberg, 2009, pp. 52–69. Ishwaran, Rao (bib42) 2005; 33 Boullion, Odell, Duran (bib32) 1975; 7 Borra, Di Ciaccio (bib16) 2010; 54 Politis, Romano, Wolf (bib26) 1999 Paola, Schowengerdt (bib11) 1995; 33 Zoubir, Iskander (bib14) 2004 Kullback, Leibler (bib53) 1951; 22 Jain, Zongker (bib51) 1997; 19 Cortes, Vapnik (bib6) 1995; 20 A. Frank, A. Asuncion, UCI Machine Learning Repository, 2010. R.E. Bellman, Adaptive Control Processes, Princeton University Press, 1961 Sampat, Patel, Wang, Gupta, Kan, Bovik, Markey (bib8) 2009; 13 Sima (10.1016/j.sigpro.2013.05.004_bib52) 2005; 38 Xu (10.1016/j.sigpro.2013.05.004_bib47) 2010; 21 Tran (10.1016/j.sigpro.2013.05.004_bib7) 2005; 35 Liu (10.1016/j.sigpro.2013.05.004_bib48) 2009; 42 Weideman (10.1016/j.sigpro.2013.05.004_bib10) 1995; 6 Bishop (10.1016/j.sigpro.2013.05.004_bib2) 2006 Ho (10.1016/j.sigpro.2013.05.004_bib37) 1998; 20 Boullion (10.1016/j.sigpro.2013.05.004_bib32) 1975; 7 Lin (10.1016/j.sigpro.2013.05.004_bib45) 2008; 35 Jain (10.1016/j.sigpro.2013.05.004_bib34) 1978; 10 Politis (10.1016/j.sigpro.2013.05.004_bib26) 1999 Zou (10.1016/j.sigpro.2013.05.004_bib40) 2006; 15 Jain (10.1016/j.sigpro.2013.05.004_bib1) 2000; 22 Jain (10.1016/j.sigpro.2013.05.004_bib51) 1997; 19 Li (10.1016/j.sigpro.2013.05.004_bib41) 2012; 21 Andrews (10.1016/j.sigpro.2013.05.004_bib24) 2000; 68 Rao (10.1016/j.sigpro.2013.05.004_bib30) 1949; 9 Chung (10.1016/j.sigpro.2013.05.004_bib17) 2009; 53 10.1016/j.sigpro.2013.05.004_bib12 10.1016/j.sigpro.2013.05.004_bib56 10.1016/j.sigpro.2013.05.004_bib13 Borra (10.1016/j.sigpro.2013.05.004_bib16) 2010; 54 Anderson (10.1016/j.sigpro.2013.05.004_bib4) 2003 Sun (10.1016/j.sigpro.2013.05.004_bib49) 2010; 32 Jain (10.1016/j.sigpro.2013.05.004_bib15) 1987; 5 10.1016/j.sigpro.2013.05.004_bib54 10.1016/j.sigpro.2013.05.004_bib55 Zeng (10.1016/j.sigpro.2013.05.004_bib46) 2009; 42 Zoubir (10.1016/j.sigpro.2013.05.004_bib14) 2004 Hua (10.1016/j.sigpro.2013.05.004_bib43) 2009; 42 Pudil (10.1016/j.sigpro.2013.05.004_bib39) 1994; 15 Ishwaran (10.1016/j.sigpro.2013.05.004_bib42) 2005; 33 Hughes (10.1016/j.sigpro.2013.05.004_bib29) 1968; 14 Paola (10.1016/j.sigpro.2013.05.004_bib11) 1995; 33 Gheyas (10.1016/j.sigpro.2013.05.004_bib44) 2010; 43 van Ness (10.1016/j.sigpro.2013.05.004_bib33) 1979; 18 Cover (10.1016/j.sigpro.2013.05.004_bib38) 1977; 7 Sampat (10.1016/j.sigpro.2013.05.004_bib8) 2009; 13 10.1016/j.sigpro.2013.05.004_bib20 Bhattacharyya (10.1016/j.sigpro.2013.05.004_bib36) 1943; 35 10.1016/j.sigpro.2013.05.004_bib21 10.1016/j.sigpro.2013.05.004_bib22 Breiman (10.1016/j.sigpro.2013.05.004_bib5) 1984 Parzen (10.1016/j.sigpro.2013.05.004_bib57) 1962; 33 Cortes (10.1016/j.sigpro.2013.05.004_bib6) 1995; 20 Kullback (10.1016/j.sigpro.2013.05.004_bib53) 1951; 22 Whitney (10.1016/j.sigpro.2013.05.004_bib28) 1971; 20 Zoubir (10.1016/j.sigpro.2013.05.004_bib23) 2007; 24 Isaksson (10.1016/j.sigpro.2013.05.004_bib19) 2008; 29 Shao (10.1016/j.sigpro.2013.05.004_bib25) 1995 10.1016/j.sigpro.2013.05.004_bib9 Dias (10.1016/j.sigpro.2013.05.004_bib18) 2008; 23 Abramowitz (10.1016/j.sigpro.2013.05.004_bib27) 1972 Ripley (10.1016/j.sigpro.2013.05.004_bib3) 1996 Jain (10.1016/j.sigpro.2013.05.004_bib31) 1982; vol. 2 Yang (10.1016/j.sigpro.2013.05.004_bib50) 2011; 22 Raudys (10.1016/j.sigpro.2013.05.004_bib35) 1980; PAMI-2 |
References_xml | – volume: 6 start-page: 1524 year: 1995 end-page: 1530 ident: bib10 article-title: Comparisons of a neural network and a nearest-neighbor classifier via the numeric handprint recognition problem publication-title: IEEE Transactions on Neural Networks – reference: N. Diaz-Diaz, J.S. Aguilar-Ruiz, J.A. Nepomuceno, J. Garcia, Feature selection based on bootstrapping, in: Congress on Computational Intelligence Methods and Applications, ICSC, 2005. – volume: 35 start-page: 1079 year: 2005 end-page: 1091 ident: bib7 article-title: An empirical comparison of nine pattern classifiers publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B – reference: C.C. Chang, C.J. Lin, LIBSVM: A Library for Support Vector Machines, 2001. – volume: 35 start-page: 99 year: 1943 end-page: 109 ident: bib36 article-title: On a measure of divergence between two statistical populations defined by their probability distributions publication-title: Bulletin of the Calcutta Mathematical Society – volume: 68 start-page: 23 year: 2000 end-page: 51 ident: bib24 article-title: A three-step method for choosing the number of bootstrap repetitions publication-title: Econometrica – reference: B. Kim, D.A. Landgrebe, Prediction of optimal number of features, in: Proceedings of the Annual International Geoscience and Remote Sensing Symposium, 1990, pp. 2393–2396. – year: 1996 ident: bib3 article-title: Pattern Recognition and Neural Networks – volume: 23 start-page: 643 year: 2008 end-page: 659 ident: bib18 article-title: A bootstrap-based aggregate classifier for model-based clustering publication-title: Computational Statistics – volume: 14 start-page: 55 year: 1968 end-page: 63 ident: bib29 article-title: On the mean accuracy of statistical pattern recognizers publication-title: IEEE Transactions on Information Theory – year: 2006 ident: bib2 article-title: Pattern Recognition and Machine Learning (Information Science and Statistics) – volume: 9 start-page: 343 year: 1949 end-page: 366 ident: bib30 article-title: On some problems arising out of discrimination with multiple characters publication-title: Sankhya – volume: 33 start-page: 1065 year: 1962 end-page: 1076 ident: bib57 article-title: On estimation of a probability density function and mode publication-title: Annals of Mathematical Statistics – volume: 20 start-page: 1100 year: 1971 end-page: 1103 ident: bib28 article-title: A direct method of nonparametric measurement selection publication-title: IEEE Transactions on Computers – volume: 19 start-page: 153 year: 1997 end-page: 158 ident: bib51 article-title: Feature selection publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 35 start-page: 1817 year: 2008 end-page: 1824 ident: bib45 article-title: Particle swarm optimization for parameter determination and feature selection of support vector machines publication-title: Expert Systems with Applications – year: 1999 ident: bib26 article-title: Subsampling (Springer Series in Statistics) – volume: 42 start-page: 243 year: 2009 end-page: 250 ident: bib46 article-title: A new feature selection method for Gaussian mixture clustering publication-title: Pattern Recognition – volume: 20 start-page: 832 year: 1998 end-page: 844 ident: bib37 article-title: The random subspace method for constructing decision forests publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 33 start-page: 981 year: 1995 end-page: 996 ident: bib11 article-title: A detailed comparison of backpropagation neural network and maximum-likelihood classifiers for urban land use classification publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 43 start-page: 5 year: 2010 end-page: 13 ident: bib44 article-title: Feature subset selection in large dimensionality domains publication-title: Pattern Recognition – volume: PAMI-2 start-page: 242 year: 1980 end-page: 252 ident: bib35 article-title: On dimensionality, sample size, classification error, and complexity of classification algorithm in pattern recognition publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – reference: W.A. Yousef, R.F. Wagner, M.H. Loew, Comparison of non-parametric methods for assessing classifier performance in terms of ROC parameters, in: Proceedings of the Applied Imagery Pattern Recognition Workshop, 2004, pp. 190–195. – reference: A. Frank, A. Asuncion, UCI Machine Learning Repository, 2010. – volume: 53 start-page: 4358 year: 2009 end-page: 4369 ident: bib17 article-title: Conditional confidence intervals for classification error rate publication-title: Computational Statistics & Data Analysis – volume: 21 start-page: 1033 year: 2010 end-page: 1047 ident: bib47 article-title: Discriminative semi-supervised feature selection via manifold regularization publication-title: IEEE Transactions on Neural Networks – volume: 42 start-page: 1330 year: 2009 end-page: 1339 ident: bib48 article-title: Feature selection with dynamic mutual information publication-title: Pattern Recognition – year: 1984 ident: bib5 article-title: Classification and Regression Trees – year: 1972 ident: bib27 article-title: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables – year: 1995 ident: bib25 article-title: The Jackknife and Bootstrap – volume: 22 start-page: 79 year: 1951 end-page: 86 ident: bib53 article-title: On information and sufficiency publication-title: Annals of Mathematical Statistics – volume: 5 start-page: 628 year: 1987 end-page: 633 ident: bib15 article-title: Bootstrap techniques for error estimation publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 29 start-page: 1960 year: 2008 end-page: 1965 ident: bib19 article-title: Cross-validation and bootstrapping are unreliable in small sample classification publication-title: Pattern Recognition Letters – year: 2004 ident: bib14 article-title: Bootstrap Techniques for Signal Processing – volume: 21 start-page: 4830 year: 2012 end-page: 4843 ident: bib41 article-title: On preserving original variables in Bayesian pca with application to image analysis publication-title: IEEE Transactions on Image Processing – volume: 38 start-page: 2472 year: 2005 end-page: 2482 ident: bib52 article-title: Impact of error estimation on feature selection publication-title: Pattern Recognition – volume: 7 start-page: 657 year: 1977 end-page: 661 ident: bib38 article-title: On the possible orderings in the measurement selection problem publication-title: IEEE Transactions on Systems, Man and Cybernetics – volume: 22 start-page: 954 year: 2011 end-page: 962 ident: bib50 article-title: Feature selection using probabilistic prediction of support vector regression publication-title: IEEE Transactions on Neural Networks – reference: R. Fandos, A.M. Zoubir, K. Siantidis, Unified design of a feature based ADAC system for mine hunting using synthetic aperture sonar, IEEE Transactions on Geoscience and Remote Sensing, accepted for publication. – volume: 13 start-page: 300 year: 2009 end-page: 312 ident: bib8 article-title: Indexes for three-class classification performance assessment—an empirical comparison publication-title: IEEE Transactions on Information Technology in Biomedicine – volume: 15 start-page: 1119 year: 1994 end-page: 1125 ident: bib39 article-title: Floating search methods in feature selection publication-title: Pattern Recognition Letters – volume: 42 start-page: 409 year: 2009 end-page: 424 ident: bib43 article-title: Performance of feature-selection methods in the classification of high-dimension data publication-title: Pattern Recognition – volume: 22 start-page: 4 year: 2000 end-page: 37 ident: bib1 article-title: Statistical pattern recognition publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 7 start-page: 139 year: 1975 end-page: 145 ident: bib32 article-title: Estimating the probability of misclassification and variate selection publication-title: Pattern Recognition – volume: 15 start-page: 262 year: 2006 end-page: 286 ident: bib40 article-title: Sparse principal component analysis publication-title: Journal of Computational and Graphical Statistics – volume: vol. 2 start-page: 835 year: 1982 end-page: 855 ident: bib31 article-title: Dimensionality and sample size considerations in pattern recognition practice publication-title: Classification Pattern Recognition and Reduction of Dimensionality, Handbook of Statistics – volume: 54 start-page: 2976 year: 2010 end-page: 2989 ident: bib16 article-title: Measuring the prediction error. A comparison of cross-validation, bootstrap and covariance penalty methods publication-title: Computational Statistics & Data Analysis – volume: 32 start-page: 1610 year: 2010 end-page: 1626 ident: bib49 article-title: Local-learning-based feature selection for high-dimensional data analysis publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 10 start-page: 365 year: 1978 end-page: 374 ident: bib34 article-title: On the optimal number of features in the classification of multivariate Gaussian data publication-title: Pattern Recognition – reference: M. Verleysen, F. Rossi, D. François, Advances in feature selection with mutual information, Similarity-based Clustering, Springer-Verlag, Berlin, Heidelberg, 2009, pp. 52–69. – reference: R.E. Bellman, Adaptive Control Processes, Princeton University Press, 1961 – reference: J.-L. Yuan, Bootstrapping nonparametric feature selection algorithms for mining small data sets, in: International Joint Conference on Neural Networks, vol. 4, 1999, pp. 2526–2529. – year: 2003 ident: bib4 article-title: An Introduction to Multivariate Statistical Analysis – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: bib6 article-title: Support-vector networks publication-title: Machine Learning – volume: 18 start-page: 175 year: 1979 end-page: 187 ident: bib33 article-title: On the effects of dimension in discriminant analysis publication-title: Technometrics – volume: 24 start-page: 10 year: 2007 end-page: 19 ident: bib23 article-title: Bootstrap methods and applications publication-title: IEEE Signal Processing Magazine – volume: 33 start-page: 730 year: 2005 end-page: 773 ident: bib42 article-title: Spike and slab variable selection publication-title: The Annals of Statistics – year: 2006 ident: 10.1016/j.sigpro.2013.05.004_bib2 – volume: 6 start-page: 1524 issue: 6 year: 1995 ident: 10.1016/j.sigpro.2013.05.004_bib10 article-title: Comparisons of a neural network and a nearest-neighbor classifier via the numeric handprint recognition problem publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.471357 – volume: 20 start-page: 1100 year: 1971 ident: 10.1016/j.sigpro.2013.05.004_bib28 article-title: A direct method of nonparametric measurement selection publication-title: IEEE Transactions on Computers doi: 10.1109/T-C.1971.223410 – volume: 33 start-page: 981 issue: 4 year: 1995 ident: 10.1016/j.sigpro.2013.05.004_bib11 article-title: A detailed comparison of backpropagation neural network and maximum-likelihood classifiers for urban land use classification publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/36.406684 – volume: 35 start-page: 1079 issue: 5 year: 2005 ident: 10.1016/j.sigpro.2013.05.004_bib7 article-title: An empirical comparison of nine pattern classifiers publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B doi: 10.1109/TSMCB.2005.847745 – volume: 38 start-page: 2472 issue: 12 year: 2005 ident: 10.1016/j.sigpro.2013.05.004_bib52 article-title: Impact of error estimation on feature selection publication-title: Pattern Recognition doi: 10.1016/j.patcog.2005.03.026 – volume: 22 start-page: 79 year: 1951 ident: 10.1016/j.sigpro.2013.05.004_bib53 article-title: On information and sufficiency publication-title: Annals of Mathematical Statistics doi: 10.1214/aoms/1177729694 – volume: 7 start-page: 139 issue: 3 year: 1975 ident: 10.1016/j.sigpro.2013.05.004_bib32 article-title: Estimating the probability of misclassification and variate selection publication-title: Pattern Recognition doi: 10.1016/0031-3203(75)90024-2 – year: 1984 ident: 10.1016/j.sigpro.2013.05.004_bib5 – volume: 20 start-page: 832 issue: 8 year: 1998 ident: 10.1016/j.sigpro.2013.05.004_bib37 article-title: The random subspace method for constructing decision forests publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.709601 – volume: vol. 2 start-page: 835 year: 1982 ident: 10.1016/j.sigpro.2013.05.004_bib31 article-title: Dimensionality and sample size considerations in pattern recognition practice – volume: 42 start-page: 409 issue: 3 year: 2009 ident: 10.1016/j.sigpro.2013.05.004_bib43 article-title: Performance of feature-selection methods in the classification of high-dimension data publication-title: Pattern Recognition doi: 10.1016/j.patcog.2008.08.001 – ident: 10.1016/j.sigpro.2013.05.004_bib9 doi: 10.1109/AIPR.2004.18 – volume: 9 start-page: 343 issue: 4 year: 1949 ident: 10.1016/j.sigpro.2013.05.004_bib30 article-title: On some problems arising out of discrimination with multiple characters publication-title: Sankhya – volume: 68 start-page: 23 issue: 1 year: 2000 ident: 10.1016/j.sigpro.2013.05.004_bib24 article-title: A three-step method for choosing the number of bootstrap repetitions publication-title: Econometrica doi: 10.1111/1468-0262.00092 – year: 1996 ident: 10.1016/j.sigpro.2013.05.004_bib3 – year: 1999 ident: 10.1016/j.sigpro.2013.05.004_bib26 doi: 10.1007/978-1-4612-1554-7 – volume: 14 start-page: 55 issue: 1 year: 1968 ident: 10.1016/j.sigpro.2013.05.004_bib29 article-title: On the mean accuracy of statistical pattern recognizers publication-title: IEEE Transactions on Information Theory doi: 10.1109/TIT.1968.1054102 – volume: 42 start-page: 243 issue: 2 year: 2009 ident: 10.1016/j.sigpro.2013.05.004_bib46 article-title: A new feature selection method for Gaussian mixture clustering publication-title: Pattern Recognition doi: 10.1016/j.patcog.2008.05.030 – volume: 33 start-page: 1065 year: 1962 ident: 10.1016/j.sigpro.2013.05.004_bib57 article-title: On estimation of a probability density function and mode publication-title: Annals of Mathematical Statistics doi: 10.1214/aoms/1177704472 – volume: 10 start-page: 365 year: 1978 ident: 10.1016/j.sigpro.2013.05.004_bib34 article-title: On the optimal number of features in the classification of multivariate Gaussian data publication-title: Pattern Recognition doi: 10.1016/0031-3203(78)90008-0 – volume: 7 start-page: 657 issue: 9 year: 1977 ident: 10.1016/j.sigpro.2013.05.004_bib38 article-title: On the possible orderings in the measurement selection problem publication-title: IEEE Transactions on Systems, Man and Cybernetics doi: 10.1109/TSMC.1977.4309803 – ident: 10.1016/j.sigpro.2013.05.004_bib56 – volume: 35 start-page: 99 year: 1943 ident: 10.1016/j.sigpro.2013.05.004_bib36 article-title: On a measure of divergence between two statistical populations defined by their probability distributions publication-title: Bulletin of the Calcutta Mathematical Society – volume: 21 start-page: 4830 issue: 12 year: 2012 ident: 10.1016/j.sigpro.2013.05.004_bib41 article-title: On preserving original variables in Bayesian pca with application to image analysis publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2012.2211372 – ident: 10.1016/j.sigpro.2013.05.004_bib21 doi: 10.1007/978-3-642-01805-3_4 – volume: 15 start-page: 1119 year: 1994 ident: 10.1016/j.sigpro.2013.05.004_bib39 article-title: Floating search methods in feature selection publication-title: Pattern Recognition Letters doi: 10.1016/0167-8655(94)90127-9 – volume: 54 start-page: 2976 year: 2010 ident: 10.1016/j.sigpro.2013.05.004_bib16 article-title: Measuring the prediction error. A comparison of cross-validation, bootstrap and covariance penalty methods publication-title: Computational Statistics & Data Analysis doi: 10.1016/j.csda.2010.03.004 – ident: 10.1016/j.sigpro.2013.05.004_bib13 doi: 10.1109/IGARSS.1990.689021 – volume: 19 start-page: 153 issue: 2 year: 1997 ident: 10.1016/j.sigpro.2013.05.004_bib51 article-title: Feature selection publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.574797 – volume: 33 start-page: 730 issue: 2 year: 2005 ident: 10.1016/j.sigpro.2013.05.004_bib42 article-title: Spike and slab variable selection publication-title: The Annals of Statistics doi: 10.1214/009053604000001147 – volume: 43 start-page: 5 issue: 1 year: 2010 ident: 10.1016/j.sigpro.2013.05.004_bib44 article-title: Feature subset selection in large dimensionality domains publication-title: Pattern Recognition doi: 10.1016/j.patcog.2009.06.009 – volume: 21 start-page: 1033 issue: 7 year: 2010 ident: 10.1016/j.sigpro.2013.05.004_bib47 article-title: Discriminative semi-supervised feature selection via manifold regularization publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2010.2047114 – year: 1972 ident: 10.1016/j.sigpro.2013.05.004_bib27 – volume: 42 start-page: 1330 issue: 7 year: 2009 ident: 10.1016/j.sigpro.2013.05.004_bib48 article-title: Feature selection with dynamic mutual information publication-title: Pattern Recognition doi: 10.1016/j.patcog.2008.10.028 – volume: 22 start-page: 954 issue: 6 year: 2011 ident: 10.1016/j.sigpro.2013.05.004_bib50 article-title: Feature selection using probabilistic prediction of support vector regression publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2011.2128342 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 10.1016/j.sigpro.2013.05.004_bib6 article-title: Support-vector networks publication-title: Machine Learning doi: 10.1007/BF00994018 – ident: 10.1016/j.sigpro.2013.05.004_bib22 doi: 10.1109/IJCNN.1999.833470 – volume: 24 start-page: 10 issue: 4 year: 2007 ident: 10.1016/j.sigpro.2013.05.004_bib23 article-title: Bootstrap methods and applications publication-title: IEEE Signal Processing Magazine doi: 10.1109/MSP.2007.4286560 – volume: 32 start-page: 1610 issue: 9 year: 2010 ident: 10.1016/j.sigpro.2013.05.004_bib49 article-title: Local-learning-based feature selection for high-dimensional data analysis publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2009.190 – volume: 22 start-page: 4 issue: 1 year: 2000 ident: 10.1016/j.sigpro.2013.05.004_bib1 article-title: Statistical pattern recognition publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.824819 – volume: 18 start-page: 175 year: 1979 ident: 10.1016/j.sigpro.2013.05.004_bib33 article-title: On the effects of dimension in discriminant analysis publication-title: Technometrics doi: 10.1080/00401706.1976.10489422 – volume: PAMI-2 start-page: 242 issue: 3 year: 1980 ident: 10.1016/j.sigpro.2013.05.004_bib35 article-title: On dimensionality, sample size, classification error, and complexity of classification algorithm in pattern recognition publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.1980.4767011 – volume: 29 start-page: 1960 year: 2008 ident: 10.1016/j.sigpro.2013.05.004_bib19 article-title: Cross-validation and bootstrapping are unreliable in small sample classification publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2008.06.018 – ident: 10.1016/j.sigpro.2013.05.004_bib12 doi: 10.1515/9781400874668 – volume: 53 start-page: 4358 issue: 12 year: 2009 ident: 10.1016/j.sigpro.2013.05.004_bib17 article-title: Conditional confidence intervals for classification error rate publication-title: Computational Statistics & Data Analysis doi: 10.1016/j.csda.2009.06.009 – volume: 35 start-page: 1817 issue: 4 year: 2008 ident: 10.1016/j.sigpro.2013.05.004_bib45 article-title: Particle swarm optimization for parameter determination and feature selection of support vector machines publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2007.08.088 – ident: 10.1016/j.sigpro.2013.05.004_bib54 – year: 2003 ident: 10.1016/j.sigpro.2013.05.004_bib4 – ident: 10.1016/j.sigpro.2013.05.004_bib55 doi: 10.1109/TGRS.2013.2260863 – volume: 15 start-page: 262 year: 2006 ident: 10.1016/j.sigpro.2013.05.004_bib40 article-title: Sparse principal component analysis publication-title: Journal of Computational and Graphical Statistics doi: 10.1198/106186006X113430 – volume: 13 start-page: 300 issue: 3 year: 2009 ident: 10.1016/j.sigpro.2013.05.004_bib8 article-title: Indexes for three-class classification performance assessment—an empirical comparison publication-title: IEEE Transactions on Information Technology in Biomedicine doi: 10.1109/TITB.2008.2009440 – volume: 5 start-page: 628 year: 1987 ident: 10.1016/j.sigpro.2013.05.004_bib15 article-title: Bootstrap techniques for error estimation publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.1987.4767957 – year: 2004 ident: 10.1016/j.sigpro.2013.05.004_bib14 – year: 1995 ident: 10.1016/j.sigpro.2013.05.004_bib25 – volume: 23 start-page: 643 issue: 4 year: 2008 ident: 10.1016/j.sigpro.2013.05.004_bib18 article-title: A bootstrap-based aggregate classifier for model-based clustering publication-title: Computational Statistics doi: 10.1007/s00180-007-0103-7 – ident: 10.1016/j.sigpro.2013.05.004_bib20 doi: 10.1109/CIMA.2005.1662338 |
SSID | ssj0001360 |
Score | 2.086425 |
Snippet | We address two fundamental design issues of a classification system: the choice of the classifier and the dimensionality of the optimal feature subset.... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2956 |
SubjectTerms | Algorithms Applied sciences Bootstrap Classification Classifier design and evaluation Classifiers Confidence intervals Detection, estimation, filtering, equalization, prediction Exact sciences and technology Feature evaluation and selection Information, signal and communications theory Optimal dimensionality Optimization Pattern recognition Quality assessment Resampling Signal and communications theory Signal processing Signal representation. Spectral analysis Signal, noise Telecommunications and information theory |
Title | Resampling methods for quality assessment of classifier performance and optimal number of features |
URI | https://dx.doi.org/10.1016/j.sigpro.2013.05.004 https://www.proquest.com/docview/1513470617 |
Volume | 93 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nq9NAEF9KvSgifmJ9WlbwujbpbnaTYymWqtiDWuht2exHqfjS8tIe3uX97W8mm7QWhYLHhFl2-c1kZpbMb4aQD2ASyoPlsMQpx0SwgpWFCow7aZ3krkgahve3hZwvxZdVtuqRaceFwbLK1vdHn9546_bNqEVztNtsRj-QiJPKHL1wAlEH7-1CKLTyj3enMo-UN0xhFGYo3dHnmhqverMGP4UFXrzp39mOa_tHeHq8MzWAFuK0i78cdxONZk_JkzaNpJN40mek56vn5NEfzQVfkPK7rw3Wi1drGudE1xQyVBpplLfUHHty0m2gFrPoTYBT0N2JS0BN5egWvMo1bBaHh6Bw8E070PolWc4-_ZzOWTtRgVkuiz1zmfI-cRJwEJn31nCXgz5MURZl7jNbKq4MNyo1wqXWm5QLJ7Bll8kK463kr0i_2lb-NaHWOTvOM-MwwBUZL1xwQUqfmjyM4Ro2ILwDUtu23ThOvfitu7qyXzrCrxF-nWQa4B8Qdly1i-02LsirTkf6zGw0RIQLK4dnKj1uN1ZIz5XpgLzvdKzhk8P_KKby20OtIUniQmHu9-a_t78iD_Epshrfkv7-5uDfQXqzL4eN_Q7Jg8nnr_PFPeMr_T4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoAKIZ7q8ihGgqPZJHbs5MABAdWWPg7QSr0Zx3aqRW12RbZCvfRP9Q8yEydbKpAqIfWaeOLRzHhmrMw3A_AGTUIHtByeeO25rJ3kValrLrxyXglfJh3Ce3dPTQ7kl8P8cAUuBiwMlVX2vj_69M5b90_GvTTH8-l0_I2AOKkqyAsnGHWSvrJyO5z9wntb-37rEyr5bZZtft7_OOH9aAHuhCoX3Oc6hMQrJJd5CM4KXyBjtqzKqgi5q7TQVlidWulTF2wqpJfUu8rmpQ1OCfzuLbgt0V3Q2IR355d1JanooMnEHSf2BrxeV1TWTo_QMVJFmegahvbz4f4RD-_NbYtaquN4jb8iRRf-Nh_A_T5vZR-iaB7CSmgewdof3QwfQ_U1tJYK1JsjFgdTtwxTYhZxm2fMLpuAslnNHKXt0xq5YPNL8AKzjWczdGMnuFmcVkKL69D1H22fwMGNyPkprDazJqwDc967rMitp4ha5qL0ta-VCqkt6gzvfSMQgyCN6_ub05iNYzMUsv0wUfyGxG-S3KD4R8CXVPPY3-Oa9XrQkblipwZD0DWUG1dUutwu04QHVukIXg86NnjG6ceNbcLstDWYlQmpKdl89t_bv4I7k_3dHbOztbf9HO7SmwipfAGri5-n4SXmVotqo7NlBt9v-vD8BrotOk8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resampling+methods+for+quality+assessment+of+classifier+performance+and+optimal+number+of+features&rft.jtitle=Signal+processing&rft.au=Fandos%2C+Raquel&rft.au=Debes%2C+Christian&rft.au=Zoubir%2C+Abdelhak+M.&rft.date=2013-11-01&rft.issn=0165-1684&rft.volume=93&rft.issue=11&rft.spage=2956&rft.epage=2968&rft_id=info:doi/10.1016%2Fj.sigpro.2013.05.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_sigpro_2013_05_004 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1684&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1684&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1684&client=summon |