The dynamics of a simple, risk-structured HIV model

Many diseases, such as HIV, are heterogeneous for risk. In this paper, we study an infectious-disease model for a population with demography, mass-action incidence, an arbitrary number of risk classes, and separable mixing. We complement our general analyses with two specific examples. In the first...

Full description

Saved in:
Bibliographic Details
Published inMathematical biosciences and engineering : MBE Vol. 17; no. 4; pp. 4184 - 4209
Main Authors Kot, Mark, Dimitrov, Dobromir T.
Format Journal Article
LanguageEnglish
Published AIMS Press 15.06.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Many diseases, such as HIV, are heterogeneous for risk. In this paper, we study an infectious-disease model for a population with demography, mass-action incidence, an arbitrary number of risk classes, and separable mixing. We complement our general analyses with two specific examples. In the first example, the mean of the components of the transmission coefficients decreases as we add more risk classes. In the second example, the mean stays constant but the variance decreases. For each example, we determine the disease-free equilibrium, the basic reproduction number, and the endemic equilibrium. We also characterize the spectrum of eigenvalues that determine the stability of the endemic equilibrium. For both examples, the basic reproduction number decreases as we add more risk classes. The endemic equilibrium, when present, is asymptotically stable. Our analyses suggest that risk structure must be modeled correctly, since different risk structures, with similar mean properties, can produce different dynamics.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1551-0018
1551-0018
DOI:10.3934/mbe.2020232