Unpaired image translation to mitigate domain shift in liquid argon time projection chamber detector responses

Deep learning algorithms often are developed and trained on a training dataset and deployed on test datasets. Any systematic difference between the training and a test dataset may severely degrade the final algorithm performance on the test dataset—what is known as the domain shift problem . This is...

Full description

Saved in:
Bibliographic Details
Published inMachine learning: science and technology Vol. 5; no. 4; pp. 45021 - 45035
Main Authors Huang, Yi, Torbunov, Dmitrii, Viren, Brett, Yu, Haiwang, Huang, Jin, Lin, Meifeng, Ren, Yihui
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.12.2024
Subjects
Online AccessGet full text
ISSN2632-2153
2632-2153
DOI10.1088/2632-2153/ad849c

Cover

Loading…
Abstract Deep learning algorithms often are developed and trained on a training dataset and deployed on test datasets. Any systematic difference between the training and a test dataset may severely degrade the final algorithm performance on the test dataset—what is known as the domain shift problem . This issue is prevalent in many scientific domains where algorithms are trained on simulated data but applied to real-world datasets. Typically, the domain shift problem is solved through various domain adaptation (DA) methods. However, these methods are often tailored for a specific downstream task, such as classification or semantic segmentation, and may not easily generalize to different tasks. This work explores the feasibility of using an alternative way to solve the domain shift problem that is not specific to any downstream algorithm. The proposed approach relies on modern Unpaired Image-to-Image (UI2I) translation techniques, designed to find translations between different image domains in a fully unsupervised fashion. In this study, the approach is applied to a domain shift problem commonly encountered in Liquid Argon Time Projection Chamber (LArTPC) detector research when seeking a way to translate samples between two differently distributed LArTPC detector datasets deterministically. This translation allows for mapping real-world data into the simulated data domain where the downstream algorithms can be run with much less domain-shift-related performance degradation. Conversely, using the translation from the simulated data to a real-world domain can increase the realism of the simulated dataset and reduce the magnitude of any systematic uncertainties. To evaluate the quality of the translations, we use both pixel-wise metrics and a downstream task to measure the effectiveness of UI2I methods for mitigating the domain shift problem. We adapted several popular UI2I translation algorithms to work on scientific data and demonstrated the viability of these techniques for solving the domain shift problem with LArTPC detector data. To facilitate further development of DA techniques for scientific datasets, the ‘Simple Liquid-Argon Track Samples’ dataset used in this study is also published.
AbstractList Deep learning algorithms often are developed and trained on a training dataset and deployed on test datasets. Any systematic difference between the training and a test dataset may severely degrade the final algorithm performance on the test dataset—what is known as the domain shift problem. This issue is prevalent in many scientific domains where algorithms are trained on simulated data but applied to real-world datasets. Typically, the domain shift problem is solved through various domain adaptation (DA) methods. However, these methods are often tailored for a specific downstream task, such as classification or semantic segmentation, and may not easily generalize to different tasks. This work explores the feasibility of using an alternative way to solve the domain shift problem that is not specific to any downstream algorithm. The proposed approach relies on modern Unpaired Image-to-Image (UI2I) translation techniques, designed to find translations between different image domains in a fully unsupervised fashion. In this study, the approach is applied to a domain shift problem commonly encountered in Liquid Argon Time Projection Chamber (LArTPC) detector research when seeking a way to translate samples between two differently distributed LArTPC detector datasets deterministically. This translation allows for mapping real-world data into the simulated data domain where the downstream algorithms can be run with much less domain-shift-related performance degradation. Conversely, using the translation from the simulated data to a real-world domain can increase the realism of the simulated dataset and reduce the magnitude of any systematic uncertainties. To evaluate the quality of the translations, we use both pixel-wise metrics and a downstream task to measure the effectiveness of UI2I methods for mitigating the domain shift problem. We adapted several popular UI2I translation algorithms to work on scientific data and demonstrated the viability of these techniques for solving the domain shift problem with LArTPC detector data. To facilitate further development of DA techniques for scientific datasets, the ‘Simple Liquid-Argon Track Samples’ dataset used in this study is also published.
Deep learning algorithms often are developed and trained on a training dataset and deployed on test datasets. Any systematic difference between the training and a test dataset may severely degrade the final algorithm performance on the test dataset—what is known as the domain shift problem . This issue is prevalent in many scientific domains where algorithms are trained on simulated data but applied to real-world datasets. Typically, the domain shift problem is solved through various domain adaptation (DA) methods. However, these methods are often tailored for a specific downstream task, such as classification or semantic segmentation, and may not easily generalize to different tasks. This work explores the feasibility of using an alternative way to solve the domain shift problem that is not specific to any downstream algorithm. The proposed approach relies on modern Unpaired Image-to-Image (UI2I) translation techniques, designed to find translations between different image domains in a fully unsupervised fashion. In this study, the approach is applied to a domain shift problem commonly encountered in Liquid Argon Time Projection Chamber (LArTPC) detector research when seeking a way to translate samples between two differently distributed LArTPC detector datasets deterministically. This translation allows for mapping real-world data into the simulated data domain where the downstream algorithms can be run with much less domain-shift-related performance degradation. Conversely, using the translation from the simulated data to a real-world domain can increase the realism of the simulated dataset and reduce the magnitude of any systematic uncertainties. To evaluate the quality of the translations, we use both pixel-wise metrics and a downstream task to measure the effectiveness of UI2I methods for mitigating the domain shift problem. We adapted several popular UI2I translation algorithms to work on scientific data and demonstrated the viability of these techniques for solving the domain shift problem with LArTPC detector data. To facilitate further development of DA techniques for scientific datasets, the ‘Simple Liquid-Argon Track Samples’ dataset used in this study is also published.
Author Ren, Yihui
Yu, Haiwang
Huang, Jin
Lin, Meifeng
Huang, Yi
Viren, Brett
Torbunov, Dmitrii
Author_xml – sequence: 1
  givenname: Yi
  orcidid: 0000-0002-7024-7469
  surname: Huang
  fullname: Huang, Yi
  organization: Brookhaven National Laboratory , Upton, NY, United States of America
– sequence: 2
  givenname: Dmitrii
  orcidid: 0000-0003-0132-5344
  surname: Torbunov
  fullname: Torbunov, Dmitrii
  organization: Brookhaven National Laboratory , Upton, NY, United States of America
– sequence: 3
  givenname: Brett
  surname: Viren
  fullname: Viren, Brett
  organization: Brookhaven National Laboratory , Upton, NY, United States of America
– sequence: 4
  givenname: Haiwang
  orcidid: 0000-0002-2973-4580
  surname: Yu
  fullname: Yu, Haiwang
  organization: Brookhaven National Laboratory , Upton, NY, United States of America
– sequence: 5
  givenname: Jin
  orcidid: 0000-0002-6261-6172
  surname: Huang
  fullname: Huang, Jin
  organization: Brookhaven National Laboratory , Upton, NY, United States of America
– sequence: 6
  givenname: Meifeng
  orcidid: 0000-0003-3010-0857
  surname: Lin
  fullname: Lin, Meifeng
  organization: Brookhaven National Laboratory , Upton, NY, United States of America
– sequence: 7
  givenname: Yihui
  orcidid: 0000-0002-5750-6964
  surname: Ren
  fullname: Ren, Yihui
  organization: Brookhaven National Laboratory , Upton, NY, United States of America
BookMark eNp1UT1vFDEQtVCQCCE9pSVajvhj194tUcRHpEg0pLbG9vji0629sX0F_x5fFgUaqhm9ee_NjN5bcpFyQkLec_aJs2m6EUqKneCjvAE_DbN7RS5foIt_-jfkutYDY0yMXI6CXZL0kFaIBT2NC-yRtgKpHqHFnGjLdIkt7qEh9XmBmGh9jKHR3hzj0yl6CmV_JsYF6VryAd2z0D3CYrFQj60judCCdc2pYn1HXgc4Vrz-U6_Iw9cvP2-_7-5_fLu7_Xy_c1LNbWet40GFcfZKM4mT8IPWHvnk_KRGNWnhLJ_6FNSAIXDmpNBaKs_soKy38orcbb4-w8GspT9XfpkM0TwDuewNlBbdEY3WKEB5P3o_DHZGq-wgMagZOUAA370-bF79w6cT1mYO-VRSP99ILhiTs9Kis9jGciXXWjC8bOXMnEMy5xTMOQWzhdQlHzdJzOtfz__SfwPJLJbN
CODEN MLSTCK
Cites_doi 10.1145/3400066
10.1103/PhysRevD.105.112005
10.1145/3422622
10.1088/1748-0221/13/07/P07006
10.1016/j.neucom.2018.05.083
10.1016/0029-554X(74)90039-1
10.1093/bib/bbx044
10.1088/1748-0221/15/12/P12004
10.1038/s41467-022-29268-7
10.1093/bib/bbw068
10.2172/1366526
10.1109/MCI.2020.2998231
10.1109/ICCV48922.2021.01410
10.1088/1748-0221/12/02/P02017
10.1007/s11263-015-0816-y
10.2172/1529363
10.1109/WACV56688.2023.00077
10.1007/978-3-319-58347-1_1
ContentType Journal Article
Copyright 2024 The Author(s). Published by IOP Publishing Ltd
2024 The Author(s). Published by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). Published by IOP Publishing Ltd
– notice: 2024 The Author(s). Published by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
M2P
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.1088/2632-2153/ad849c
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Science Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2632-2153
ExternalDocumentID oai_doaj_org_article_77e2a6dd5dd44b9eb6b43ef69e1aafad
10_1088_2632_2153_ad849c
mlstad849c
GrantInformation_xml – fundername: U.S. Department of Energy, Office of Science
  grantid: DE-SC0012704
GroupedDBID 88I
ABHWH
ABUWG
ACHIP
AFKRA
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CJUJL
DWQXO
EBS
GNUQQ
GROUPED_DOAJ
HCIFZ
IOP
K7-
M2P
M~E
N5L
O3W
OK1
PIMPY
TSCCA
AAYXX
CITATION
PHGZM
PHGZT
3V.
7XB
8FE
8FG
8FK
JQ2
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
AEINN
PUEGO
ID FETCH-LOGICAL-c369t-bbc1f6f59d6703e82d477de18cd8656872cb189d6a64eff10c327736d0b46bdb3
IEDL.DBID DOA
ISSN 2632-2153
IngestDate Wed Aug 27 01:27:41 EDT 2025
Sat Jul 26 00:42:33 EDT 2025
Tue Jul 01 01:08:58 EDT 2025
Wed Oct 30 03:04:24 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c369t-bbc1f6f59d6703e82d477de18cd8656872cb189d6a64eff10c327736d0b46bdb3
Notes MLST-101958.R2
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6261-6172
0000-0003-3010-0857
0000-0002-7024-7469
0000-0002-2973-4580
0000-0003-0132-5344
0000-0002-5750-6964
OpenAccessLink https://doaj.org/article/77e2a6dd5dd44b9eb6b43ef69e1aafad
PQID 3120039672
PQPubID 4916454
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_77e2a6dd5dd44b9eb6b43ef69e1aafad
crossref_primary_10_1088_2632_2153_ad849c
iop_journals_10_1088_2632_2153_ad849c
proquest_journals_3120039672
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Machine learning: science and technology
PublicationTitleAbbrev MLST
PublicationTitleAlternate Mach. Learn.: Sci. Technol
PublicationYear 2024
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Ramo (mlstad849cbib27) 1939; vol 27
Takahashi (mlstad849cbib6) 2020; 15
Torbunov (mlstad849cbib21) 2023
Adams (mlstad849cbib36) 2018; 13
Abi (mlstad849cbib12) 2017
Kim (mlstad849cbib23) 2019
Dosovitskiy (mlstad849cbib30) 2020
Heusel (mlstad849cbib40) 2017; vol
Guan (mlstad849cbib16) 2023
Zhao (mlstad849cbib22) 2020
Miotto (mlstad849cbib2) 2017; 19
Goodfellow (mlstad849cbib28) 2020; 63
Choi (mlstad849cbib35) 2021
Nizan (mlstad849cbib32) 2020
Liu (mlstad849cbib19) 2017; vol
Acciarri (mlstad849cbib11) 2017; 12
Krizhevsky (mlstad849cbib37) 2012; vol 25
Szegedy (mlstad849cbib42) 2015
Zhao (mlstad849cbib34) 2021
Rubbia (mlstad849cbib8) 1977
Zhao (mlstad849cbib24) 2022
Abi (mlstad849cbib13) 2018
Anokhin (mlstad849cbib31) 2021
Lee (mlstad849cbib38) 2018
Russakovsky (mlstad849cbib43) 2015; 115
Sapoval (mlstad849cbib4) 2022; 13
Quionero-Candela (mlstad849cbib5) 2009
Abi (mlstad849cbib26) 2020; 15
Wang (mlstad849cbib1) 2018; 312
Abratenko (mlstad849cbib44) 2022; 105
Zhu (mlstad849cbib20) 2017
Willis (mlstad849cbib9) 1974; 120
Hoyer (mlstad849cbib17) 2023
Abi (mlstad849cbib25) 2017
Zhu (mlstad849cbib39) 2017; vol
Bińkowski (mlstad849cbib41) 2018
Min (mlstad849cbib3) 2017; 18
Fang (mlstad849cbib7) 2022
Nygren (mlstad849cbib10) 1974; vol C740805
French (mlstad849cbib18) 2017
Park (mlstad849cbib33) 2020
Wilson (mlstad849cbib15) 2020; 11
Ronneberger (mlstad849cbib29) 2015
Csurka (mlstad849cbib14) 2017
References_xml – volume: 11
  start-page: 1
  year: 2020
  ident: mlstad849cbib15
  article-title: A survey of unsupervised deep domain adaptation
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/3400066
– start-page: pp 35
  year: 2018
  ident: mlstad849cbib38
  article-title: Diverse image-to-image translation via disentangled representations
– volume: 105
  year: 2022
  ident: mlstad849cbib44
  article-title: Search for an anomalous excess of inclusive charged-current ν e interactions in the microboone experiment using wire-cell reconstruction
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.105.112005
– year: 2009
  ident: mlstad849cbib5
– volume: 63
  start-page: 139
  year: 2020
  ident: mlstad849cbib28
  article-title: Generative adversarial networks
  publication-title: Commun. ACM
  doi: 10.1145/3422622
– year: 2022
  ident: mlstad849cbib24
  article-title: Egsde: unpaired image-to-image translation via energy-guided stochastic differential equations
– volume: 13
  start-page: 07006
  year: 2018
  ident: mlstad849cbib36
  article-title: Ionization electron signal processing in single phase LArTPCs. Part I. Algorithm description and quantitative evaluation with MicroBooNE simulation
  publication-title: J. Instrum.
  doi: 10.1088/1748-0221/13/07/P07006
– volume: 312
  start-page: 135
  year: 2018
  ident: mlstad849cbib1
  article-title: Deep visual domain adaptation: a survey
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.05.083
– volume: 120
  start-page: 221
  year: 1974
  ident: mlstad849cbib9
  article-title: Liquid-argon ionization chambers as total-absorption detectors
  publication-title: Nucl. Instrum. Methods
  doi: 10.1016/0029-554X(74)90039-1
– start-page: pp 16418
  year: 2021
  ident: mlstad849cbib34
  article-title: Unpaired image-to-image translation via latent energy transport
– volume: 19
  start-page: 1236
  year: 2017
  ident: mlstad849cbib2
  article-title: Deep learning for healthcare: review, opportunities and challenges
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbx044
– volume: vol
  start-page: 30
  year: 2017
  ident: mlstad849cbib39
  article-title: Toward multimodal image-to-image translation
– start-page: pp 234
  year: 2015
  ident: mlstad849cbib29
  article-title: U-net: convolutional networks for biomedical image segmentation
– start-page: pp 11721
  year: 2023
  ident: mlstad849cbib17
  article-title: Mic: masked image consistency for context-enhanced domain adaptation
– volume: 15
  year: 2020
  ident: mlstad849cbib26
  article-title: First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform
  publication-title: J. Instrum.
  doi: 10.1088/1748-0221/15/12/P12004
– volume: 13
  start-page: 1728
  year: 2022
  ident: mlstad849cbib4
  article-title: Current progress and open challenges for applying deep learning across the biosciences
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29268-7
– volume: 18
  start-page: 851
  year: 2017
  ident: mlstad849cbib3
  article-title: Deep learning in bioinformatics
  publication-title: Brief. bioinform.
  doi: 10.1093/bib/bbw068
– year: 1977
  ident: mlstad849cbib8
  article-title: The liquid-argon time projection chamber: a new concept for neutrino detectors
– year: 2019
  ident: mlstad849cbib23
  article-title: U-gat-it: unsupervised generative attentional networks with adaptive layer-instance normalization for image-to-image translation
– year: 2017
  ident: mlstad849cbib25
  article-title: The single-phase protodune technical design report
  doi: 10.2172/1366526
– year: 2020
  ident: mlstad849cbib30
  article-title: An image is worth 16x16 words: transformers for image recognition at scale
– start-page: pp 2223
  year: 2017
  ident: mlstad849cbib20
  article-title: Unpaired image-to-image translation using cycle-consistent adversarial networks
– volume: 15
  start-page: 16
  year: 2020
  ident: mlstad849cbib6
  article-title: A review of off-line mode dataset shifts
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2020.2998231
– year: 2017
  ident: mlstad849cbib18
  article-title: Self-ensembling for visual domain adaptation
– start-page: pp 319
  year: 2020
  ident: mlstad849cbib33
  article-title: Contrastive learning for unpaired image-to-image translation
– year: 2021
  ident: mlstad849cbib35
  article-title: Ilvr: conditioning method for denoising diffusion probabilistic models
  doi: 10.1109/ICCV48922.2021.01410
– year: 2017
  ident: mlstad849cbib12
  article-title: The single-phase protodune technical design report
  doi: 10.2172/1366526
– start-page: pp 7860
  year: 2020
  ident: mlstad849cbib32
  article-title: Breaking the cycle-colleagues are all you need
– year: 2022
  ident: mlstad849cbib7
  article-title: Source-free unsupervised domain adaptation: a survey
– volume: vol C740805
  start-page: p 58
  year: 1974
  ident: mlstad849cbib10
  article-title: The time projection chamber: a new 4 pi detector for charged particles
  publication-title: eConf
– volume: 12
  year: 2017
  ident: mlstad849cbib11
  article-title: Design and construction of the microboone detector
  publication-title: J. Instrum.
  doi: 10.1088/1748-0221/12/02/P02017
– year: 2018
  ident: mlstad849cbib41
  article-title: Demystifying mmd gans
– volume: 115
  start-page: 211
  year: 2015
  ident: mlstad849cbib43
  article-title: Imagenet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-015-0816-y
– year: 2023
  ident: mlstad849cbib16
  article-title: Iterative loop learning combining self-training and active learning for domain adaptive semantic segmentation
– volume: vol 25
  year: 2012
  ident: mlstad849cbib37
  article-title: Imagenet classification with deep convolutional neural networks
– year: 2018
  ident: mlstad849cbib13
  article-title: The dune far detector interim design report volume 1: physics, technology and strategies
  doi: 10.2172/1529363
– year: 2015
  ident: mlstad849cbib42
  article-title: Rethinking the inception architecture for computer vision
– start-page: pp 800
  year: 2020
  ident: mlstad849cbib22
  article-title: Unpaired image-to-image translation using adversarial consistency loss
– volume: vol
  start-page: 30
  year: 2017
  ident: mlstad849cbib40
  article-title: Gans trained by a two time-scale update rule converge to a local nash equilibrium
– start-page: pp 14278
  year: 2021
  ident: mlstad849cbib31
  article-title: Image generators with conditionally-independent pixel synthesis
– volume: vol 27
  start-page: pp 584
  year: 1939
  ident: mlstad849cbib27
  article-title: Currents induced by electron motion
– year: 2023
  ident: mlstad849cbib21
  article-title: Uvcgan: unet vision transformer cycle-consistent gan for unpaired image-to-image translation
  doi: 10.1109/WACV56688.2023.00077
– volume: vol
  start-page: 30
  year: 2017
  ident: mlstad849cbib19
  article-title: Unsupervised image-to-image translation networks
– year: 2017
  ident: mlstad849cbib14
  article-title: Domain adaptation for visual applications: a comprehensive survey
  doi: 10.1007/978-3-319-58347-1_1
SSID ssj0002513520
Score 2.2756357
Snippet Deep learning algorithms often are developed and trained on a training dataset and deployed on test datasets. Any systematic difference between the training...
SourceID doaj
proquest
crossref
iop
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 45021
SubjectTerms Algorithms
Argon
Chambers
Datasets
deep neural network
detector response
domain adaptation
Image degradation
Image segmentation
liquid argon time projection chamber
Machine learning
neutrino experiment
Performance degradation
Radiation counters
Semantic segmentation
Sensors
Translations
unpaired image translation
SummonAdditionalLinks – databaseName: Institute of Physics Open Access Journal Titles
  dbid: O3W
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVKe-HCV4vYUpAPcOCQdh177bE4AaKqkCgXVu0tsuMxjdTNbnfT_8849i5CIMTNSuw4msnMPNuTN4y9saiEr1tfqZmIlXIxVuDBVlbRqsc4jJln--ulvpirL9ez6z32fvcvzHJVXP8pNTNRcBZhSYiDs8QwXlGkkmcugLLtA3YgQUNaeX2TV7sNFgrcBC6m5WjybwN_C0UjYz8FGJr1D7c8xprzJ-xRAYn8Q36lp2wP-2fs8bYAAy_2eMj6eb9y5LMC7xbkF_iQAk9ObuPDki-6kUADeVguXNfzzU0XB06N2-7uvgvcrX-kjt0CedmQSQPbG5eKhPCAw7ijz9c5jRY3R2x-_vn7p4uqFFCoWqntUHnfiqjjzAZNho1QB2VMQAFtAMJxYEhJAuiu0wpjFNNW1sZIHaZeaR-8fM72-2WPLxj3oCMAhtr4qGqFCVcRElDSCTcFpyfs3VaWzSrzZDTj-TZAk-TeJLk3We4T9jEJe9cvMVyPF0jbTdF2YwzWTocwC0Epb9FrryRGbVE4F12YsLekqqZY3OYfk51slfmrsxQpJ89qUx__52Nesoc1wZmcyHLC9of1Pb4iODL41-Nn9xNCy9vd
  priority: 102
  providerName: IOP Publishing
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Na9wwEBVtcsmlaZqEbpoGHdpDD2JXtlYfp9KUhFBoKKULuRnJM0oMXXuz6_z_jGxtQinkZiwZw4xm5mlmeMPYJ4dKhqIOQs1lFMrHKGywTjhFtx7jMY482z-v9dVC_biZ3-SE2ya3VW594uCooatTjnxaytRG5bQpvq7uRZoalaqreYTGa7ZLLtjS5Wv3_OL61--nLAtFb0IYs1yfJIuaJn5yQXGunHqwytX_xKOBtp-iTNOt_vPNQ8C5fMveZKTIv42qPWCvsH3H9rdTGHg2ykPWLtqVJ8cFvFmSc-B9ij5jhxvvO75sBhYN5NAtfdPyzV0Te04Pf5v7hwa4X9-mjc0Sec7KpA_rO58mhXDAfkjr8_XYS4ubI7a4vPjz_UrkKQqiLrXrRQi1jDrOHWiybrQFKGMApa3BEpizhjQlLa16rTBGOavLwphSwywoHSCUx2yn7Vp8z3iwOlqLUJgQVaEwgSuCA6r00s-s1xP2ZSvLajWSZVRDkdvaKsm9SnKvRrlP2HkS9tO-RHM9vOjWt1W2msoYLLwGmAMoFRwGHVSJUTuU3kcPE_aZVFVls9u88LPTrTKfNz-fqJOXlz-wvYKgzNjEcsp2-vUDfiQo0oezfN4eAemR3vY
  priority: 102
  providerName: ProQuest
Title Unpaired image translation to mitigate domain shift in liquid argon time projection chamber detector responses
URI https://iopscience.iop.org/article/10.1088/2632-2153/ad849c
https://www.proquest.com/docview/3120039672
https://doaj.org/article/77e2a6dd5dd44b9eb6b43ef69e1aafad
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZguXDhjSgslQ9w4BC1jl0_jixqWZD2IUTF3iI7M2YjbdPSZq_8dsZxCouQ4MLFihJHsWYy831jj2YYe-VQiVDWoVAzEQvlYyxssK5wiqIe4zHmOtsnp_p4qT5ezC5utPpKOWG5PHAW3MQYLL0GmAEoFRwGHZTEqB0K76OH5H0J824EU8kHE2oTs5gO55JkSZNUl7wgfJMTD1a5-jcc6sv1E7o0680fPrkHmsUDdm9giPxtXtlDdgvbR-z-vvsCH4zxMWuX7caTwwLerMgp8C6hTs5s492ar5q-egZyWK8o-ue7yyZ2nC6umm_XDXC__ZomNivkw25MerG-9KlDCAfs-u18vs05tLh7wpaL-ed3x8XQPaGopXZdEUItoo4zB5qsGm0JyhhAYWuwROKsIQ0JS0-9VhijmNayNEZqmAalAwT5lB206xafMR6sjtYilCZEVSpMpIpogJJe-Kn1esTe7GVZbXKRjKo_3La2SnKvktyrLPcRO0rC_jkvlbfub5DSq0Hp1b-UPmKvSVXVYG67v3zscK_MX5OlSAl5Tpvy-f9Yywt2tySik1NcDtlBt73Gl0RUujBmt-3i_ZjdOZqfnn8a938ojR_Ozmk8-T6n8Ux--QHxZe45
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOcCFN-pCAR_ogUO0G9vrxwEhXsuWPk5dqTdjx-M2Eptsd1Mh_hS_kXEerRBSb71F8TixxuOZz57xDCFvDYjcs8JnYprHTLgYM-21yYzAXY9yELs820fHcr4Q30-np1vkz3AXJoVVDjqxVdShLtIZ-ZjnKYzKSMU-rC6yVDUqeVeHEhqdWBzA71-4Zdu83_-C87vH2Ozryed51lcVyAouTZN5X-RRxqkJEqUdNAtCqQC5LoJGcKMVjjzX2OqkgBjzScGZUlyGiRfSB8_xu3fIXcFxMOlm-uzb1ZkOYgXEM5PeG4rrd5yyoWdoVfnYBS1M8Y_1a4sEoE0r69V_lqA1b7NH5EGPS-nHTpAeky2onpCHQ80H2quAp6RaVCuHajLQcomqiDbJ1nXxdLSp6bJsc3YADfXSlRXdnJexofjws7y4LAN167NEWC6B9mdAqWNx7lJdEhqgaZ0IdN1F7sLmGVncCnefk-2qrmCHUK9l1BoCUz4KJiBBOQQfgrvcTbSTI_Ju4KVddak5bOtS19omvtvEd9vxfUQ-JWZf0aWk2u2Len1m-zVqlQLmZAjTEITwBrz0gkOUBnLnogsjsodTZftFvrnhZ7vDZF4TX8vvi5ub35B785OjQ3u4f3zwktxnCKK68Jldst2sL-EVgqDGv24lj5Ifty3qfwGTwxrf
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagSIgLlJdYaMEHOHAIu44dP47QsiqvwoEVvVl2xm4jsdllN_3_jGNvEQIhblYyjqOZeOazPfmGkOcmCObr1leiYbESLsZKe20qI3DVo1yImWf706k8WYj3Z81ZqXM6_guzWhfX_wqbmSg4q7AkxOlpYhivMFLxqQMtTDtdQ7xObjRcylS74TP_drXJgsEbAcasHE_-rfNv4Whk7ccggyP_4ZrHeDPfJ7cLUKSv82vdJddCf4_c2RVhoGVO3if9ol879FtAuyX6Bjqk4JMT3OiwostuJNEIFFZL1_V0e9HFgWLje_fjsgPqNudJsFsGWjZlUsf2wqVCIRTCMO7q001OpQ3bB2Qxf_v16KQqRRSqlkszVN63LMrYGJA4uYOuQSgFgekWNGI5rdBQTONdJ0WIkc1aXivFJcy8kB48f0j2-lUfHhHqtYxaB6iVj6IWIWErRAOCO-Zm2skJebnTpV1nrgw7nnFrbZPebdK7zXqfkDdJ2VdyieV6vIAWt8XiVqlQOwnQAAjhTfDSCx6iNIE5Fx1MyAs0lS2zbvuPwQ52xvwlzFnKyzNS1Y__8zHPyM0vx3P78d3phyfkVo3oJue1HJC9YXMZDhGdDP7p-AX-BNiM38w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unpaired+image+translation+to+mitigate+domain+shift+in+liquid+argon+time+projection+chamber+detector+responses&rft.jtitle=Machine+learning%3A+science+and+technology&rft.au=Yi+Huang&rft.au=Dmitrii+Torbunov&rft.au=Brett+Viren&rft.au=Haiwang+Yu&rft.date=2024-12-01&rft.pub=IOP+Publishing&rft.eissn=2632-2153&rft.volume=5&rft.issue=4&rft.spage=045021&rft_id=info:doi/10.1088%2F2632-2153%2Fad849c&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_77e2a6dd5dd44b9eb6b43ef69e1aafad
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2632-2153&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2632-2153&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2632-2153&client=summon