Unpaired image translation to mitigate domain shift in liquid argon time projection chamber detector responses
Deep learning algorithms often are developed and trained on a training dataset and deployed on test datasets. Any systematic difference between the training and a test dataset may severely degrade the final algorithm performance on the test dataset—what is known as the domain shift problem . This is...
Saved in:
Published in | Machine learning: science and technology Vol. 5; no. 4; pp. 45021 - 45035 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Bristol
IOP Publishing
01.12.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2632-2153 2632-2153 |
DOI | 10.1088/2632-2153/ad849c |
Cover
Loading…
Abstract | Deep learning algorithms often are developed and trained on a training dataset and deployed on test datasets. Any systematic difference between the training and a test dataset may severely degrade the final algorithm performance on the test dataset—what is known as the
domain shift problem
. This issue is prevalent in many scientific domains where algorithms are trained on simulated data but applied to real-world datasets. Typically, the domain shift problem is solved through various domain adaptation (DA) methods. However, these methods are often tailored for a specific downstream task, such as classification or semantic segmentation, and may not easily generalize to different tasks. This work explores the feasibility of using an alternative way to solve the domain shift problem that is not specific to any downstream algorithm. The proposed approach relies on modern Unpaired Image-to-Image (UI2I) translation techniques, designed to find translations between different image domains in a fully unsupervised fashion. In this study, the approach is applied to a domain shift problem commonly encountered in Liquid Argon Time Projection Chamber (LArTPC) detector research when seeking a way to translate samples between two differently distributed LArTPC detector datasets deterministically. This translation allows for mapping real-world data into the simulated data domain where the downstream algorithms can be run with much less domain-shift-related performance degradation. Conversely, using the translation from the simulated data to a real-world domain can increase the realism of the simulated dataset and reduce the magnitude of any systematic uncertainties. To evaluate the quality of the translations, we use both pixel-wise metrics and a downstream task to measure the effectiveness of UI2I methods for mitigating the domain shift problem. We adapted several popular UI2I translation algorithms to work on scientific data and demonstrated the viability of these techniques for solving the domain shift problem with LArTPC detector data. To facilitate further development of DA techniques for scientific datasets, the ‘Simple Liquid-Argon Track Samples’ dataset used in this study is also published. |
---|---|
AbstractList | Deep learning algorithms often are developed and trained on a training dataset and deployed on test datasets. Any systematic difference between the training and a test dataset may severely degrade the final algorithm performance on the test dataset—what is known as the domain shift problem. This issue is prevalent in many scientific domains where algorithms are trained on simulated data but applied to real-world datasets. Typically, the domain shift problem is solved through various domain adaptation (DA) methods. However, these methods are often tailored for a specific downstream task, such as classification or semantic segmentation, and may not easily generalize to different tasks. This work explores the feasibility of using an alternative way to solve the domain shift problem that is not specific to any downstream algorithm. The proposed approach relies on modern Unpaired Image-to-Image (UI2I) translation techniques, designed to find translations between different image domains in a fully unsupervised fashion. In this study, the approach is applied to a domain shift problem commonly encountered in Liquid Argon Time Projection Chamber (LArTPC) detector research when seeking a way to translate samples between two differently distributed LArTPC detector datasets deterministically. This translation allows for mapping real-world data into the simulated data domain where the downstream algorithms can be run with much less domain-shift-related performance degradation. Conversely, using the translation from the simulated data to a real-world domain can increase the realism of the simulated dataset and reduce the magnitude of any systematic uncertainties. To evaluate the quality of the translations, we use both pixel-wise metrics and a downstream task to measure the effectiveness of UI2I methods for mitigating the domain shift problem. We adapted several popular UI2I translation algorithms to work on scientific data and demonstrated the viability of these techniques for solving the domain shift problem with LArTPC detector data. To facilitate further development of DA techniques for scientific datasets, the ‘Simple Liquid-Argon Track Samples’ dataset used in this study is also published. Deep learning algorithms often are developed and trained on a training dataset and deployed on test datasets. Any systematic difference between the training and a test dataset may severely degrade the final algorithm performance on the test dataset—what is known as the domain shift problem . This issue is prevalent in many scientific domains where algorithms are trained on simulated data but applied to real-world datasets. Typically, the domain shift problem is solved through various domain adaptation (DA) methods. However, these methods are often tailored for a specific downstream task, such as classification or semantic segmentation, and may not easily generalize to different tasks. This work explores the feasibility of using an alternative way to solve the domain shift problem that is not specific to any downstream algorithm. The proposed approach relies on modern Unpaired Image-to-Image (UI2I) translation techniques, designed to find translations between different image domains in a fully unsupervised fashion. In this study, the approach is applied to a domain shift problem commonly encountered in Liquid Argon Time Projection Chamber (LArTPC) detector research when seeking a way to translate samples between two differently distributed LArTPC detector datasets deterministically. This translation allows for mapping real-world data into the simulated data domain where the downstream algorithms can be run with much less domain-shift-related performance degradation. Conversely, using the translation from the simulated data to a real-world domain can increase the realism of the simulated dataset and reduce the magnitude of any systematic uncertainties. To evaluate the quality of the translations, we use both pixel-wise metrics and a downstream task to measure the effectiveness of UI2I methods for mitigating the domain shift problem. We adapted several popular UI2I translation algorithms to work on scientific data and demonstrated the viability of these techniques for solving the domain shift problem with LArTPC detector data. To facilitate further development of DA techniques for scientific datasets, the ‘Simple Liquid-Argon Track Samples’ dataset used in this study is also published. |
Author | Ren, Yihui Yu, Haiwang Huang, Jin Lin, Meifeng Huang, Yi Viren, Brett Torbunov, Dmitrii |
Author_xml | – sequence: 1 givenname: Yi orcidid: 0000-0002-7024-7469 surname: Huang fullname: Huang, Yi organization: Brookhaven National Laboratory , Upton, NY, United States of America – sequence: 2 givenname: Dmitrii orcidid: 0000-0003-0132-5344 surname: Torbunov fullname: Torbunov, Dmitrii organization: Brookhaven National Laboratory , Upton, NY, United States of America – sequence: 3 givenname: Brett surname: Viren fullname: Viren, Brett organization: Brookhaven National Laboratory , Upton, NY, United States of America – sequence: 4 givenname: Haiwang orcidid: 0000-0002-2973-4580 surname: Yu fullname: Yu, Haiwang organization: Brookhaven National Laboratory , Upton, NY, United States of America – sequence: 5 givenname: Jin orcidid: 0000-0002-6261-6172 surname: Huang fullname: Huang, Jin organization: Brookhaven National Laboratory , Upton, NY, United States of America – sequence: 6 givenname: Meifeng orcidid: 0000-0003-3010-0857 surname: Lin fullname: Lin, Meifeng organization: Brookhaven National Laboratory , Upton, NY, United States of America – sequence: 7 givenname: Yihui orcidid: 0000-0002-5750-6964 surname: Ren fullname: Ren, Yihui organization: Brookhaven National Laboratory , Upton, NY, United States of America |
BookMark | eNp1UT1vFDEQtVCQCCE9pSVajvhj194tUcRHpEg0pLbG9vji0629sX0F_x5fFgUaqhm9ee_NjN5bcpFyQkLec_aJs2m6EUqKneCjvAE_DbN7RS5foIt_-jfkutYDY0yMXI6CXZL0kFaIBT2NC-yRtgKpHqHFnGjLdIkt7qEh9XmBmGh9jKHR3hzj0yl6CmV_JsYF6VryAd2z0D3CYrFQj60judCCdc2pYn1HXgc4Vrz-U6_Iw9cvP2-_7-5_fLu7_Xy_c1LNbWet40GFcfZKM4mT8IPWHvnk_KRGNWnhLJ_6FNSAIXDmpNBaKs_soKy38orcbb4-w8GspT9XfpkM0TwDuewNlBbdEY3WKEB5P3o_DHZGq-wgMagZOUAA370-bF79w6cT1mYO-VRSP99ILhiTs9Kis9jGciXXWjC8bOXMnEMy5xTMOQWzhdQlHzdJzOtfz__SfwPJLJbN |
CODEN | MLSTCK |
Cites_doi | 10.1145/3400066 10.1103/PhysRevD.105.112005 10.1145/3422622 10.1088/1748-0221/13/07/P07006 10.1016/j.neucom.2018.05.083 10.1016/0029-554X(74)90039-1 10.1093/bib/bbx044 10.1088/1748-0221/15/12/P12004 10.1038/s41467-022-29268-7 10.1093/bib/bbw068 10.2172/1366526 10.1109/MCI.2020.2998231 10.1109/ICCV48922.2021.01410 10.1088/1748-0221/12/02/P02017 10.1007/s11263-015-0816-y 10.2172/1529363 10.1109/WACV56688.2023.00077 10.1007/978-3-319-58347-1_1 |
ContentType | Journal Article |
Copyright | 2024 The Author(s). Published by IOP Publishing Ltd 2024 The Author(s). Published by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Author(s). Published by IOP Publishing Ltd – notice: 2024 The Author(s). Published by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | O3W TSCCA AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- M2P P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U DOA |
DOI | 10.1088/2632-2153/ad849c |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Science Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2632-2153 |
ExternalDocumentID | oai_doaj_org_article_77e2a6dd5dd44b9eb6b43ef69e1aafad 10_1088_2632_2153_ad849c mlstad849c |
GrantInformation_xml | – fundername: U.S. Department of Energy, Office of Science grantid: DE-SC0012704 |
GroupedDBID | 88I ABHWH ABUWG ACHIP AFKRA AKPSB ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BGLVJ CCPQU CJUJL DWQXO EBS GNUQQ GROUPED_DOAJ HCIFZ IOP K7- M2P M~E N5L O3W OK1 PIMPY TSCCA AAYXX CITATION PHGZM PHGZT 3V. 7XB 8FE 8FG 8FK JQ2 P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U AEINN PUEGO |
ID | FETCH-LOGICAL-c369t-bbc1f6f59d6703e82d477de18cd8656872cb189d6a64eff10c327736d0b46bdb3 |
IEDL.DBID | DOA |
ISSN | 2632-2153 |
IngestDate | Wed Aug 27 01:27:41 EDT 2025 Sat Jul 26 00:42:33 EDT 2025 Tue Jul 01 01:08:58 EDT 2025 Wed Oct 30 03:04:24 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c369t-bbc1f6f59d6703e82d477de18cd8656872cb189d6a64eff10c327736d0b46bdb3 |
Notes | MLST-101958.R2 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6261-6172 0000-0003-3010-0857 0000-0002-7024-7469 0000-0002-2973-4580 0000-0003-0132-5344 0000-0002-5750-6964 |
OpenAccessLink | https://doaj.org/article/77e2a6dd5dd44b9eb6b43ef69e1aafad |
PQID | 3120039672 |
PQPubID | 4916454 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_77e2a6dd5dd44b9eb6b43ef69e1aafad crossref_primary_10_1088_2632_2153_ad849c iop_journals_10_1088_2632_2153_ad849c proquest_journals_3120039672 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Bristol |
PublicationPlace_xml | – name: Bristol |
PublicationTitle | Machine learning: science and technology |
PublicationTitleAbbrev | MLST |
PublicationTitleAlternate | Mach. Learn.: Sci. Technol |
PublicationYear | 2024 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Ramo (mlstad849cbib27) 1939; vol 27 Takahashi (mlstad849cbib6) 2020; 15 Torbunov (mlstad849cbib21) 2023 Adams (mlstad849cbib36) 2018; 13 Abi (mlstad849cbib12) 2017 Kim (mlstad849cbib23) 2019 Dosovitskiy (mlstad849cbib30) 2020 Heusel (mlstad849cbib40) 2017; vol Guan (mlstad849cbib16) 2023 Zhao (mlstad849cbib22) 2020 Miotto (mlstad849cbib2) 2017; 19 Goodfellow (mlstad849cbib28) 2020; 63 Choi (mlstad849cbib35) 2021 Nizan (mlstad849cbib32) 2020 Liu (mlstad849cbib19) 2017; vol Acciarri (mlstad849cbib11) 2017; 12 Krizhevsky (mlstad849cbib37) 2012; vol 25 Szegedy (mlstad849cbib42) 2015 Zhao (mlstad849cbib34) 2021 Rubbia (mlstad849cbib8) 1977 Zhao (mlstad849cbib24) 2022 Abi (mlstad849cbib13) 2018 Anokhin (mlstad849cbib31) 2021 Lee (mlstad849cbib38) 2018 Russakovsky (mlstad849cbib43) 2015; 115 Sapoval (mlstad849cbib4) 2022; 13 Quionero-Candela (mlstad849cbib5) 2009 Abi (mlstad849cbib26) 2020; 15 Wang (mlstad849cbib1) 2018; 312 Abratenko (mlstad849cbib44) 2022; 105 Zhu (mlstad849cbib20) 2017 Willis (mlstad849cbib9) 1974; 120 Hoyer (mlstad849cbib17) 2023 Abi (mlstad849cbib25) 2017 Zhu (mlstad849cbib39) 2017; vol Bińkowski (mlstad849cbib41) 2018 Min (mlstad849cbib3) 2017; 18 Fang (mlstad849cbib7) 2022 Nygren (mlstad849cbib10) 1974; vol C740805 French (mlstad849cbib18) 2017 Park (mlstad849cbib33) 2020 Wilson (mlstad849cbib15) 2020; 11 Ronneberger (mlstad849cbib29) 2015 Csurka (mlstad849cbib14) 2017 |
References_xml | – volume: 11 start-page: 1 year: 2020 ident: mlstad849cbib15 article-title: A survey of unsupervised deep domain adaptation publication-title: ACM Trans. Intell. Syst. Technol. doi: 10.1145/3400066 – start-page: pp 35 year: 2018 ident: mlstad849cbib38 article-title: Diverse image-to-image translation via disentangled representations – volume: 105 year: 2022 ident: mlstad849cbib44 article-title: Search for an anomalous excess of inclusive charged-current ν e interactions in the microboone experiment using wire-cell reconstruction publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.105.112005 – year: 2009 ident: mlstad849cbib5 – volume: 63 start-page: 139 year: 2020 ident: mlstad849cbib28 article-title: Generative adversarial networks publication-title: Commun. ACM doi: 10.1145/3422622 – year: 2022 ident: mlstad849cbib24 article-title: Egsde: unpaired image-to-image translation via energy-guided stochastic differential equations – volume: 13 start-page: 07006 year: 2018 ident: mlstad849cbib36 article-title: Ionization electron signal processing in single phase LArTPCs. Part I. Algorithm description and quantitative evaluation with MicroBooNE simulation publication-title: J. Instrum. doi: 10.1088/1748-0221/13/07/P07006 – volume: 312 start-page: 135 year: 2018 ident: mlstad849cbib1 article-title: Deep visual domain adaptation: a survey publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.05.083 – volume: 120 start-page: 221 year: 1974 ident: mlstad849cbib9 article-title: Liquid-argon ionization chambers as total-absorption detectors publication-title: Nucl. Instrum. Methods doi: 10.1016/0029-554X(74)90039-1 – start-page: pp 16418 year: 2021 ident: mlstad849cbib34 article-title: Unpaired image-to-image translation via latent energy transport – volume: 19 start-page: 1236 year: 2017 ident: mlstad849cbib2 article-title: Deep learning for healthcare: review, opportunities and challenges publication-title: Brief. Bioinform. doi: 10.1093/bib/bbx044 – volume: vol start-page: 30 year: 2017 ident: mlstad849cbib39 article-title: Toward multimodal image-to-image translation – start-page: pp 234 year: 2015 ident: mlstad849cbib29 article-title: U-net: convolutional networks for biomedical image segmentation – start-page: pp 11721 year: 2023 ident: mlstad849cbib17 article-title: Mic: masked image consistency for context-enhanced domain adaptation – volume: 15 year: 2020 ident: mlstad849cbib26 article-title: First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform publication-title: J. Instrum. doi: 10.1088/1748-0221/15/12/P12004 – volume: 13 start-page: 1728 year: 2022 ident: mlstad849cbib4 article-title: Current progress and open challenges for applying deep learning across the biosciences publication-title: Nat. Commun. doi: 10.1038/s41467-022-29268-7 – volume: 18 start-page: 851 year: 2017 ident: mlstad849cbib3 article-title: Deep learning in bioinformatics publication-title: Brief. bioinform. doi: 10.1093/bib/bbw068 – year: 1977 ident: mlstad849cbib8 article-title: The liquid-argon time projection chamber: a new concept for neutrino detectors – year: 2019 ident: mlstad849cbib23 article-title: U-gat-it: unsupervised generative attentional networks with adaptive layer-instance normalization for image-to-image translation – year: 2017 ident: mlstad849cbib25 article-title: The single-phase protodune technical design report doi: 10.2172/1366526 – year: 2020 ident: mlstad849cbib30 article-title: An image is worth 16x16 words: transformers for image recognition at scale – start-page: pp 2223 year: 2017 ident: mlstad849cbib20 article-title: Unpaired image-to-image translation using cycle-consistent adversarial networks – volume: 15 start-page: 16 year: 2020 ident: mlstad849cbib6 article-title: A review of off-line mode dataset shifts publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2020.2998231 – year: 2017 ident: mlstad849cbib18 article-title: Self-ensembling for visual domain adaptation – start-page: pp 319 year: 2020 ident: mlstad849cbib33 article-title: Contrastive learning for unpaired image-to-image translation – year: 2021 ident: mlstad849cbib35 article-title: Ilvr: conditioning method for denoising diffusion probabilistic models doi: 10.1109/ICCV48922.2021.01410 – year: 2017 ident: mlstad849cbib12 article-title: The single-phase protodune technical design report doi: 10.2172/1366526 – start-page: pp 7860 year: 2020 ident: mlstad849cbib32 article-title: Breaking the cycle-colleagues are all you need – year: 2022 ident: mlstad849cbib7 article-title: Source-free unsupervised domain adaptation: a survey – volume: vol C740805 start-page: p 58 year: 1974 ident: mlstad849cbib10 article-title: The time projection chamber: a new 4 pi detector for charged particles publication-title: eConf – volume: 12 year: 2017 ident: mlstad849cbib11 article-title: Design and construction of the microboone detector publication-title: J. Instrum. doi: 10.1088/1748-0221/12/02/P02017 – year: 2018 ident: mlstad849cbib41 article-title: Demystifying mmd gans – volume: 115 start-page: 211 year: 2015 ident: mlstad849cbib43 article-title: Imagenet large scale visual recognition challenge publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-015-0816-y – year: 2023 ident: mlstad849cbib16 article-title: Iterative loop learning combining self-training and active learning for domain adaptive semantic segmentation – volume: vol 25 year: 2012 ident: mlstad849cbib37 article-title: Imagenet classification with deep convolutional neural networks – year: 2018 ident: mlstad849cbib13 article-title: The dune far detector interim design report volume 1: physics, technology and strategies doi: 10.2172/1529363 – year: 2015 ident: mlstad849cbib42 article-title: Rethinking the inception architecture for computer vision – start-page: pp 800 year: 2020 ident: mlstad849cbib22 article-title: Unpaired image-to-image translation using adversarial consistency loss – volume: vol start-page: 30 year: 2017 ident: mlstad849cbib40 article-title: Gans trained by a two time-scale update rule converge to a local nash equilibrium – start-page: pp 14278 year: 2021 ident: mlstad849cbib31 article-title: Image generators with conditionally-independent pixel synthesis – volume: vol 27 start-page: pp 584 year: 1939 ident: mlstad849cbib27 article-title: Currents induced by electron motion – year: 2023 ident: mlstad849cbib21 article-title: Uvcgan: unet vision transformer cycle-consistent gan for unpaired image-to-image translation doi: 10.1109/WACV56688.2023.00077 – volume: vol start-page: 30 year: 2017 ident: mlstad849cbib19 article-title: Unsupervised image-to-image translation networks – year: 2017 ident: mlstad849cbib14 article-title: Domain adaptation for visual applications: a comprehensive survey doi: 10.1007/978-3-319-58347-1_1 |
SSID | ssj0002513520 |
Score | 2.2756357 |
Snippet | Deep learning algorithms often are developed and trained on a training dataset and deployed on test datasets. Any systematic difference between the training... |
SourceID | doaj proquest crossref iop |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 45021 |
SubjectTerms | Algorithms Argon Chambers Datasets deep neural network detector response domain adaptation Image degradation Image segmentation liquid argon time projection chamber Machine learning neutrino experiment Performance degradation Radiation counters Semantic segmentation Sensors Translations unpaired image translation |
SummonAdditionalLinks | – databaseName: Institute of Physics Open Access Journal Titles dbid: O3W link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVKe-HCV4vYUpAPcOCQdh177bE4AaKqkCgXVu0tsuMxjdTNbnfT_8849i5CIMTNSuw4msnMPNuTN4y9saiEr1tfqZmIlXIxVuDBVlbRqsc4jJln--ulvpirL9ez6z32fvcvzHJVXP8pNTNRcBZhSYiDs8QwXlGkkmcugLLtA3YgQUNaeX2TV7sNFgrcBC6m5WjybwN_C0UjYz8FGJr1D7c8xprzJ-xRAYn8Q36lp2wP-2fs8bYAAy_2eMj6eb9y5LMC7xbkF_iQAk9ObuPDki-6kUADeVguXNfzzU0XB06N2-7uvgvcrX-kjt0CedmQSQPbG5eKhPCAw7ijz9c5jRY3R2x-_vn7p4uqFFCoWqntUHnfiqjjzAZNho1QB2VMQAFtAMJxYEhJAuiu0wpjFNNW1sZIHaZeaR-8fM72-2WPLxj3oCMAhtr4qGqFCVcRElDSCTcFpyfs3VaWzSrzZDTj-TZAk-TeJLk3We4T9jEJe9cvMVyPF0jbTdF2YwzWTocwC0Epb9FrryRGbVE4F12YsLekqqZY3OYfk51slfmrsxQpJ89qUx__52Nesoc1wZmcyHLC9of1Pb4iODL41-Nn9xNCy9vd priority: 102 providerName: IOP Publishing – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Na9wwEBVtcsmlaZqEbpoGHdpDD2JXtlYfp9KUhFBoKKULuRnJM0oMXXuz6_z_jGxtQinkZiwZw4xm5mlmeMPYJ4dKhqIOQs1lFMrHKGywTjhFtx7jMY482z-v9dVC_biZ3-SE2ya3VW594uCooatTjnxaytRG5bQpvq7uRZoalaqreYTGa7ZLLtjS5Wv3_OL61--nLAtFb0IYs1yfJIuaJn5yQXGunHqwytX_xKOBtp-iTNOt_vPNQ8C5fMveZKTIv42qPWCvsH3H9rdTGHg2ykPWLtqVJ8cFvFmSc-B9ij5jhxvvO75sBhYN5NAtfdPyzV0Te04Pf5v7hwa4X9-mjc0Sec7KpA_rO58mhXDAfkjr8_XYS4ubI7a4vPjz_UrkKQqiLrXrRQi1jDrOHWiybrQFKGMApa3BEpizhjQlLa16rTBGOavLwphSwywoHSCUx2yn7Vp8z3iwOlqLUJgQVaEwgSuCA6r00s-s1xP2ZSvLajWSZVRDkdvaKsm9SnKvRrlP2HkS9tO-RHM9vOjWt1W2msoYLLwGmAMoFRwGHVSJUTuU3kcPE_aZVFVls9u88LPTrTKfNz-fqJOXlz-wvYKgzNjEcsp2-vUDfiQo0oezfN4eAemR3vY priority: 102 providerName: ProQuest |
Title | Unpaired image translation to mitigate domain shift in liquid argon time projection chamber detector responses |
URI | https://iopscience.iop.org/article/10.1088/2632-2153/ad849c https://www.proquest.com/docview/3120039672 https://doaj.org/article/77e2a6dd5dd44b9eb6b43ef69e1aafad |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZguXDhjSgslQ9w4BC1jl0_jixqWZD2IUTF3iI7M2YjbdPSZq_8dsZxCouQ4MLFihJHsWYy831jj2YYe-VQiVDWoVAzEQvlYyxssK5wiqIe4zHmOtsnp_p4qT5ezC5utPpKOWG5PHAW3MQYLL0GmAEoFRwGHZTEqB0K76OH5H0J824EU8kHE2oTs5gO55JkSZNUl7wgfJMTD1a5-jcc6sv1E7o0680fPrkHmsUDdm9giPxtXtlDdgvbR-z-vvsCH4zxMWuX7caTwwLerMgp8C6hTs5s492ar5q-egZyWK8o-ue7yyZ2nC6umm_XDXC__ZomNivkw25MerG-9KlDCAfs-u18vs05tLh7wpaL-ed3x8XQPaGopXZdEUItoo4zB5qsGm0JyhhAYWuwROKsIQ0JS0-9VhijmNayNEZqmAalAwT5lB206xafMR6sjtYilCZEVSpMpIpogJJe-Kn1esTe7GVZbXKRjKo_3La2SnKvktyrLPcRO0rC_jkvlbfub5DSq0Hp1b-UPmKvSVXVYG67v3zscK_MX5OlSAl5Tpvy-f9Yywt2tySik1NcDtlBt73Gl0RUujBmt-3i_ZjdOZqfnn8a938ojR_Ozmk8-T6n8Ux--QHxZe45 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOcCFN-pCAR_ogUO0G9vrxwEhXsuWPk5dqTdjx-M2Eptsd1Mh_hS_kXEerRBSb71F8TixxuOZz57xDCFvDYjcs8JnYprHTLgYM-21yYzAXY9yELs820fHcr4Q30-np1vkz3AXJoVVDjqxVdShLtIZ-ZjnKYzKSMU-rC6yVDUqeVeHEhqdWBzA71-4Zdu83_-C87vH2Ozryed51lcVyAouTZN5X-RRxqkJEqUdNAtCqQC5LoJGcKMVjjzX2OqkgBjzScGZUlyGiRfSB8_xu3fIXcFxMOlm-uzb1ZkOYgXEM5PeG4rrd5yyoWdoVfnYBS1M8Y_1a4sEoE0r69V_lqA1b7NH5EGPS-nHTpAeky2onpCHQ80H2quAp6RaVCuHajLQcomqiDbJ1nXxdLSp6bJsc3YADfXSlRXdnJexofjws7y4LAN167NEWC6B9mdAqWNx7lJdEhqgaZ0IdN1F7sLmGVncCnefk-2qrmCHUK9l1BoCUz4KJiBBOQQfgrvcTbSTI_Ju4KVddak5bOtS19omvtvEd9vxfUQ-JWZf0aWk2u2Len1m-zVqlQLmZAjTEITwBrz0gkOUBnLnogsjsodTZftFvrnhZ7vDZF4TX8vvi5ub35B785OjQ3u4f3zwktxnCKK68Jldst2sL-EVgqDGv24lj5Ifty3qfwGTwxrf |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagSIgLlJdYaMEHOHAIu44dP47QsiqvwoEVvVl2xm4jsdllN_3_jGNvEQIhblYyjqOZeOazPfmGkOcmCObr1leiYbESLsZKe20qI3DVo1yImWf706k8WYj3Z81ZqXM6_guzWhfX_wqbmSg4q7AkxOlpYhivMFLxqQMtTDtdQ7xObjRcylS74TP_drXJgsEbAcasHE_-rfNv4Whk7ccggyP_4ZrHeDPfJ7cLUKSv82vdJddCf4_c2RVhoGVO3if9ol879FtAuyX6Bjqk4JMT3OiwostuJNEIFFZL1_V0e9HFgWLje_fjsgPqNudJsFsGWjZlUsf2wqVCIRTCMO7q001OpQ3bB2Qxf_v16KQqRRSqlkszVN63LMrYGJA4uYOuQSgFgekWNGI5rdBQTONdJ0WIkc1aXivFJcy8kB48f0j2-lUfHhHqtYxaB6iVj6IWIWErRAOCO-Zm2skJebnTpV1nrgw7nnFrbZPebdK7zXqfkDdJ2VdyieV6vIAWt8XiVqlQOwnQAAjhTfDSCx6iNIE5Fx1MyAs0lS2zbvuPwQ52xvwlzFnKyzNS1Y__8zHPyM0vx3P78d3phyfkVo3oJue1HJC9YXMZDhGdDP7p-AX-BNiM38w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unpaired+image+translation+to+mitigate+domain+shift+in+liquid+argon+time+projection+chamber+detector+responses&rft.jtitle=Machine+learning%3A+science+and+technology&rft.au=Yi+Huang&rft.au=Dmitrii+Torbunov&rft.au=Brett+Viren&rft.au=Haiwang+Yu&rft.date=2024-12-01&rft.pub=IOP+Publishing&rft.eissn=2632-2153&rft.volume=5&rft.issue=4&rft.spage=045021&rft_id=info:doi/10.1088%2F2632-2153%2Fad849c&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_77e2a6dd5dd44b9eb6b43ef69e1aafad |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2632-2153&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2632-2153&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2632-2153&client=summon |