A low-temperature multi-effect desalination system powered by the cooling water of a diesel engine
This paper introduces a medium-size low-temperature multi-effect desalination (LT-MED) system. Powered by the cooling water of a 1000kW diesel power generator set, the system can produce 60tons of fresh water per day. First, the thermodynamic and heat transfer model of the LT-MED system is derived....
Saved in:
Published in | Desalination Vol. 404; pp. 112 - 120 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
17.02.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper introduces a medium-size low-temperature multi-effect desalination (LT-MED) system. Powered by the cooling water of a 1000kW diesel power generator set, the system can produce 60tons of fresh water per day. First, the thermodynamic and heat transfer model of the LT-MED system is derived. Second, an integrated four-effect tower distiller is designed and built. The system is installed in the Guishan Island, Zhuhai, Guangdong, China, and tested comprehensively. In the operation, the evaporation temperature of each effect is linearly proportional to the heat load of the power generator. Additionally, the evaporation temperature in each effect distiller rose linearly when the heat load was gradually increased. The variation of evaporation pressure was consistent with the evaporation temperature. When the heat load of the power generator increases from 300kW to 530kW, the fresh water production rate increases from 1.26m3/h to 2.30m3/h. The conductivity of the fresh water is usually <100μS/cm. Because of electricity and freshwater co-production, the system is environmental friendly and is particularly useful for islands and offshore platforms.
•A 60 T/d LT-MED desalination system powered by diesel engine waste heat was designed.•A compact and integrated four-effect tower distiller was proposed and built.•The desalination plant was operated successfully and tested comprehensively.•Electricity and water co-production can provide for islands and offshore platforms. |
---|---|
AbstractList | This paper introduces a medium-size low-temperature multi-effect desalination (LT-MED) system. Powered by the cooling water of a 1000kW diesel power generator set, the system can produce 60tons of fresh water per day. First, the thermodynamic and heat transfer model of the LT-MED system is derived. Second, an integrated four-effect tower distiller is designed and built. The system is installed in the Guishan Island, Zhuhai, Guangdong, China, and tested comprehensively. In the operation, the evaporation temperature of each effect is linearly proportional to the heat load of the power generator. Additionally, the evaporation temperature in each effect distiller rose linearly when the heat load was gradually increased. The variation of evaporation pressure was consistent with the evaporation temperature. When the heat load of the power generator increases from 300kW to 530kW, the fresh water production rate increases from 1.26m3/h to 2.30m3/h. The conductivity of the fresh water is usually <100μS/cm. Because of electricity and freshwater co-production, the system is environmental friendly and is particularly useful for islands and offshore platforms.
•A 60 T/d LT-MED desalination system powered by diesel engine waste heat was designed.•A compact and integrated four-effect tower distiller was proposed and built.•The desalination plant was operated successfully and tested comprehensively.•Electricity and water co-production can provide for islands and offshore platforms. This paper introduces a medium-size low-temperature multi-effect desalination (LT-MED) system. Powered by the cooling water of a 1000kW diesel power generator set, the system can produce 60tons of fresh water per day. First, the thermodynamic and heat transfer model of the LT-MED system is derived. Second, an integrated four-effect tower distiller is designed and built. The system is installed in the Guishan Island, Zhuhai, Guangdong, China, and tested comprehensively. In the operation, the evaporation temperature of each effect is linearly proportional to the heat load of the power generator. Additionally, the evaporation temperature in each effect distiller rose linearly when the heat load was gradually increased. The variation of evaporation pressure was consistent with the evaporation temperature. When the heat load of the power generator increases from 300kW to 530kW, the fresh water production rate increases from 1.26m3/h to 2.30m3/h. The conductivity of the fresh water is usually <100 mu S/cm. Because of electricity and freshwater co-production, the system is environmental friendly and is particularly useful for islands and offshore platforms. |
Author | Chen, Shunquan Feng, Dongdong Xu, Shiming Zhang, Fengming Su, Chuangjian Du, Ruxu Shen, Boya |
Author_xml | – sequence: 1 givenname: Fengming surname: Zhang fullname: Zhang, Fengming email: fm.zhang@giat.ac.cn organization: Guangzhou Institutes of Advanced Technology, Chinese Academy of Sciences, 511458 Guangzhou, China – sequence: 2 givenname: Shiming surname: Xu fullname: Xu, Shiming organization: School of Energy and Power Engineering, Dalian University of Technology, 116024, Dalian, China – sequence: 3 givenname: Dongdong surname: Feng fullname: Feng, Dongdong organization: School of Energy and Power Engineering, Dalian University of Technology, 116024, Dalian, China – sequence: 4 givenname: Shunquan surname: Chen fullname: Chen, Shunquan organization: Guangzhou Institutes of Advanced Technology, Chinese Academy of Sciences, 511458 Guangzhou, China – sequence: 5 givenname: Ruxu surname: Du fullname: Du, Ruxu organization: Institute of Precision Engineering, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong SAR, China – sequence: 6 givenname: Chuangjian surname: Su fullname: Su, Chuangjian organization: Guangzhou Institutes of Advanced Technology, Chinese Academy of Sciences, 511458 Guangzhou, China – sequence: 7 givenname: Boya surname: Shen fullname: Shen, Boya organization: Guangzhou Institutes of Advanced Technology, Chinese Academy of Sciences, 511458 Guangzhou, China |
BookMark | eNqNkblOAzEQQC0EEuH4AhqXNLt41t6roECIS0Kigdry2mNwtFkH2yHK32MSKgqgGo303hRvjsj-5Cck5AxYCQyai3lpMKqxrPJSApSMNXtkBl3LCyEasU9mjAEUPTTikBzFOM9r1XM-I8MVHf26SLhYYlBpFZAuVmNyBVqLOtHtXTep5PxE4yZmkC79GgMaOmxoekOqvc_EK12rhIF6SxU1DiOOFKdXN-EJObBqjHj6PY_Jy-3N8_V98fh093B99Vho3vSpGEQ7MFsZaFreW6gFq40FBFW1pm-s4Iq11nA9KDYgx85Ai1U1CK6VrpXo-TE5391dBv--wpjkwkWN46gm9KsooesY45xX1T_Quq9zMegyyneoDj7GgFYug1uosJHA5Fd8OZfbSPIrvgSQOX62-h-WdmkbMQXlxj_cy52LOdaHwyCjdjhpNC7kl0jj3a_-JzMipDU |
CitedBy_id | crossref_primary_10_1016_j_ijheatmasstransfer_2021_122231 crossref_primary_10_5004_dwt_2022_28392 crossref_primary_10_1007_s11356_022_19147_5 crossref_primary_10_1016_j_apenergy_2019_04_190 crossref_primary_10_1016_j_enconman_2019_112337 crossref_primary_10_1016_j_enconman_2020_113639 crossref_primary_10_1016_j_psep_2023_09_046 crossref_primary_10_1016_j_desal_2018_03_016 crossref_primary_10_1007_s11708_019_0608_0 crossref_primary_10_1016_j_desal_2019_04_022 crossref_primary_10_1080_01496395_2024_2330677 crossref_primary_10_1016_j_enconman_2018_05_019 crossref_primary_10_1007_s10853_018_2240_5 crossref_primary_10_1016_j_energy_2018_06_099 crossref_primary_10_1016_j_energy_2021_120406 crossref_primary_10_1007_s12678_022_00712_y crossref_primary_10_1016_j_envres_2022_114064 crossref_primary_10_1016_j_applthermaleng_2018_05_129 crossref_primary_10_1016_j_enconman_2019_112448 crossref_primary_10_1016_j_desal_2019_03_005 crossref_primary_10_1016_j_apenergy_2019_114086 crossref_primary_10_1016_j_jclepro_2019_118333 crossref_primary_10_1016_j_desal_2019_06_023 crossref_primary_10_17159_2413_3051_2022_v33i1a5434 crossref_primary_10_1016_j_applthermaleng_2018_05_092 crossref_primary_10_1016_j_desal_2018_06_001 crossref_primary_10_1016_j_desal_2024_117613 crossref_primary_10_1016_j_micromeso_2020_110360 crossref_primary_10_1016_j_rser_2020_109817 crossref_primary_10_1016_j_est_2020_101555 crossref_primary_10_1016_j_desal_2021_115258 crossref_primary_10_1016_j_seppur_2022_121731 crossref_primary_10_3390_en17215362 crossref_primary_10_1016_j_jtice_2022_104262 crossref_primary_10_1115_1_4056270 crossref_primary_10_1016_j_cles_2023_100083 crossref_primary_10_1016_j_tsep_2020_100485 crossref_primary_10_1016_j_jclepro_2020_123289 crossref_primary_10_1016_j_rser_2024_114787 crossref_primary_10_1016_j_jece_2022_108855 crossref_primary_10_1016_j_tsep_2024_102784 crossref_primary_10_3390_jmse11010222 crossref_primary_10_1002_adfm_202304936 crossref_primary_10_1002_htj_22592 crossref_primary_10_1016_j_hazadv_2022_100217 crossref_primary_10_1007_s13369_023_08443_y crossref_primary_10_1016_j_desal_2024_118054 crossref_primary_10_1007_s00231_022_03185_3 crossref_primary_10_1016_j_ecmx_2023_100521 crossref_primary_10_1002_htj_22126 crossref_primary_10_1080_09593330_2023_2284688 crossref_primary_10_5004_dwt_2018_22594 crossref_primary_10_3390_pr9071120 crossref_primary_10_1016_j_desal_2024_117837 crossref_primary_10_1016_j_ecmx_2023_100485 crossref_primary_10_1080_15567036_2023_2200737 crossref_primary_10_1016_j_seppur_2023_125067 crossref_primary_10_1016_j_ijheatmasstransfer_2021_122407 crossref_primary_10_1088_1755_1315_208_1_012063 |
Cites_doi | 10.1016/j.applthermaleng.2014.09.025 10.1016/j.desal.2012.10.015 10.1016/0307-904X(94)90358-1 10.1016/j.applthermaleng.2015.10.103 10.1016/j.energy.2006.07.037 10.1016/j.desal.2014.12.023 10.1016/j.enconman.2015.06.035 10.1016/j.applthermaleng.2012.05.012 10.1016/j.enconman.2015.06.051 10.1016/j.desal.2010.02.012 10.1016/j.ces.2008.08.013 10.1016/j.desal.2007.01.067 10.1016/j.rser.2010.06.008 10.1016/j.renene.2014.07.032 10.1016/j.ijheatmasstransfer.2011.07.041 10.1016/j.ijrefrig.2010.07.011 10.1016/j.energy.2016.04.062 10.1126/science.1200488 10.1016/j.rser.2012.12.064 10.1016/j.desal.2014.10.012 10.1016/j.desal.2004.06.077 10.1016/j.desal.2016.02.030 10.1016/j.apenergy.2014.03.033 10.1016/j.enconman.2015.05.060 10.1016/j.desal.2006.03.558 10.1016/j.desal.2015.01.041 10.1016/j.applthermaleng.2016.02.090 10.1016/j.desal.2010.09.001 |
ContentType | Journal Article |
Copyright | 2016 Elsevier B.V. |
Copyright_xml | – notice: 2016 Elsevier B.V. |
DBID | AAYXX CITATION 7QH 7ST 7TN 7UA C1K F1W H96 L.G SOI 8FD FR3 KR7 |
DOI | 10.1016/j.desal.2016.11.006 |
DatabaseName | CrossRef Aqualine Environment Abstracts Oceanic Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aqualine Environment Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Technology Research Database Civil Engineering Abstracts Engineering Research Database |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-4464 |
EndPage | 120 |
ExternalDocumentID | 10_1016_j_desal_2016_11_006 S001191641630933X |
GeographicLocations | China, People's Rep |
GeographicLocations_xml | – name: China, People's Rep |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABLST ABMAC ABNUV ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KCYFY KOM LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSJ SST SSZ T5K ~02 ~G- 29F 6TJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- SCE SEW SSH WUQ ZY4 ~KM 7QH 7ST 7TN 7UA C1K F1W H96 L.G SOI 8FD FR3 KR7 |
ID | FETCH-LOGICAL-c369t-b47b0f2d16739f15405df1e1a27d96f43a07fd3cba0be3e8d17e22b43cac5a493 |
IEDL.DBID | .~1 |
ISSN | 0011-9164 |
IngestDate | Thu Jul 10 19:35:52 EDT 2025 Fri Jul 11 12:04:02 EDT 2025 Thu Apr 24 22:53:54 EDT 2025 Tue Jul 01 04:13:41 EDT 2025 Fri Feb 23 02:28:25 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Diesel engine Waste heat recovery Electricity and freshwater co-generation Low-temperature multi-effect distillation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c369t-b47b0f2d16739f15405df1e1a27d96f43a07fd3cba0be3e8d17e22b43cac5a493 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1859501118 |
PQPubID | 23462 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1880033322 proquest_miscellaneous_1859501118 crossref_primary_10_1016_j_desal_2016_11_006 crossref_citationtrail_10_1016_j_desal_2016_11_006 elsevier_sciencedirect_doi_10_1016_j_desal_2016_11_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-02-17 |
PublicationDateYYYYMMDD | 2017-02-17 |
PublicationDate_xml | – month: 02 year: 2017 text: 2017-02-17 day: 17 |
PublicationDecade | 2010 |
PublicationTitle | Desalination |
PublicationYear | 2017 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Ibrahim, Dincer (bb0055) 2015; 101 Gong, Shen, Liu, Xingsen, Xue (bb0130) 2015; 357 Ammar, Li, Walsh, Thornley, Sharifi, Roskilly (bb0090) 2012; 48 Fiorini, Sciubba (bb0100) 2007; 32 Khawaji, Kutubkhanah, Wie (bb0005) 2008; 142 Chiou, Yang, Chen (bb0150) 1994; 18 Shi, Wang (bb0160) 2003 Galletti, Brunazzi, Tognotti (bb0180) 2008; 63 Cipollina, Micale, Rizzuti (bb0020) 2009 Elimelech, Phillip (bb0015) 2011; 333 Al-Nory, El-Beltagy (bb0070) 2014; 72 Wang, Christ, Regenauer-Lieb, Hooman, Chua (bb0095) 2011; 54 Standards for Drinking Water Quality (bb0165) 2006 Ghaffour, Missimer, Amy (bb0010) 2013; 309 Reddy, Ghaffour (bb0065) 2007; 205 Khawaji, Kutubkhanah, Wie (bb0040) 2008; 221 Elminshawy, Siddiqui, Sultan (bb0075) 2015; 103 Zhao, Ji, Jin, Tao (bb0135) 2016; 103 Kwon, Park, Kim, Kim (bb0080) 2015; 103 Ibrahim, Al-Mutaz (bb0140) 2014; 73 Wang, Xu (bb0120) 2014; 32 Maheswari, Kalidasa Murugavel, Esakkimuthu (bb0115) 2015; 358 Burn, Hoang, Zarzo, Olewniak, Campos, Bolto, Barron (bb0025) 2015; 364 Al-Karaghouli, Kazmersk (bb0060) 2013; 24 Kazemian, Behzadmehr, Sarvari, Kazemian, Behzadmehr (bb0105) 2010; 257 Jia, Sufi, Wang Chin (bb0185) 2007; 15 Elminshawy, Siddiqui, Sultan (bb0125) 2015; 103 Yang, Wang (bb0170) 2011; 34 Shu, Zhao, Tian, Wei, Liang, Huo, Zhu (bb0110) 2016; 107 Gordon, Tong (bb0045) 2016; 386 Law, Harvey, Reay (bb0085) 2016; 94 Ren (bb0155) 2008 Gude, Nirmalakhandan, Deng (bb0050) 2013; 14 Xu, Ge, Wang, Wang (bb0175) 2004; 166 El-Dessouky, Ettouney (bb0145) 2002 Ghaffour, Lattemann, Missimer, Ng, Sinha, Amy (bb0030) 2014; 136 Malaeb, Ayoub (bb0035) 2011; 267 Ibrahim (10.1016/j.desal.2016.11.006_bb0140) 2014; 73 Elimelech (10.1016/j.desal.2016.11.006_bb0015) 2011; 333 Al-Karaghouli (10.1016/j.desal.2016.11.006_bb0060) 2013; 24 Ren (10.1016/j.desal.2016.11.006_bb0155) 2008 Shu (10.1016/j.desal.2016.11.006_bb0110) 2016; 107 Wang (10.1016/j.desal.2016.11.006_bb0095) 2011; 54 Kwon (10.1016/j.desal.2016.11.006_bb0080) 2015; 103 Fiorini (10.1016/j.desal.2016.11.006_bb0100) 2007; 32 Burn (10.1016/j.desal.2016.11.006_bb0025) 2015; 364 Law (10.1016/j.desal.2016.11.006_bb0085) 2016; 94 Chiou (10.1016/j.desal.2016.11.006_bb0150) 1994; 18 Yang (10.1016/j.desal.2016.11.006_bb0170) 2011; 34 Gude (10.1016/j.desal.2016.11.006_bb0050) 2013; 14 Zhao (10.1016/j.desal.2016.11.006_bb0135) 2016; 103 Cipollina (10.1016/j.desal.2016.11.006_bb0020) 2009 Shi (10.1016/j.desal.2016.11.006_bb0160) 2003 El-Dessouky (10.1016/j.desal.2016.11.006_bb0145) 2002 Al-Nory (10.1016/j.desal.2016.11.006_bb0070) 2014; 72 Maheswari (10.1016/j.desal.2016.11.006_bb0115) 2015; 358 Reddy (10.1016/j.desal.2016.11.006_bb0065) 2007; 205 Khawaji (10.1016/j.desal.2016.11.006_bb0005) 2008; 142 Jia (10.1016/j.desal.2016.11.006_bb0185) 2007; 15 Khawaji (10.1016/j.desal.2016.11.006_bb0040) 2008; 221 Kazemian (10.1016/j.desal.2016.11.006_bb0105) 2010; 257 Xu (10.1016/j.desal.2016.11.006_bb0175) 2004; 166 Gordon (10.1016/j.desal.2016.11.006_bb0045) 2016; 386 Elminshawy (10.1016/j.desal.2016.11.006_bb0075) 2015; 103 Elminshawy (10.1016/j.desal.2016.11.006_bb0125) 2015; 103 Ghaffour (10.1016/j.desal.2016.11.006_bb0030) 2014; 136 Ammar (10.1016/j.desal.2016.11.006_bb0090) 2012; 48 Wang (10.1016/j.desal.2016.11.006_bb0120) 2014; 32 Ghaffour (10.1016/j.desal.2016.11.006_bb0010) 2013; 309 Ibrahim (10.1016/j.desal.2016.11.006_bb0055) 2015; 101 Malaeb (10.1016/j.desal.2016.11.006_bb0035) 2011; 267 Galletti (10.1016/j.desal.2016.11.006_bb0180) 2008; 63 Gong (10.1016/j.desal.2016.11.006_bb0130) 2015; 357 Standards for Drinking Water Quality (10.1016/j.desal.2016.11.006_bb0165) 2006 |
References_xml | – volume: 14 start-page: 2641 year: 2013 end-page: 2654 ident: bb0050 article-title: Renewable and sustainable approaches for desalination publication-title: Renew. Sustain. Energy Rev. – volume: 54 start-page: 5497 year: 2011 end-page: 5503 ident: bb0095 article-title: Low grade heat driven multi-effect distillation technology publication-title: Int. J. Heat Mass Transf. – volume: 357 start-page: 104 year: 2015 end-page: 116 ident: bb0130 article-title: Three-dimensional heat transfer coefficient distributions in a large horizontal-tube falling film evaporator publication-title: Desalination – volume: 94 start-page: 590 year: 2016 end-page: 599 ident: bb0085 article-title: A knowledge-based system for low-grade waste heat recovery in the process industries publication-title: Appl. Therm. Eng. – volume: 358 start-page: 94 year: 2015 end-page: 100 ident: bb0115 article-title: Thermal desalination using diesel engine exhaust waste heat–An experimental analysis publication-title: Desalination – volume: 73 start-page: 1194 year: 2014 end-page: 1203 ident: bb0140 article-title: Comparative performance evaluation of conventional multi-effect evaporation desalination processes publication-title: Appl. Therm. Eng. – volume: 333 start-page: 712 year: 2011 end-page: 717 ident: bb0015 article-title: The future of seawater desalination: energy, technology, and the environment publication-title: Science – volume: 386 start-page: 13 year: 2016 end-page: 18 ident: bb0045 article-title: Thermodynamic perspective for the specific energy consumption of seawater desalination publication-title: Desalination – volume: 103 start-page: 28 year: 2015 end-page: 35 ident: bb0075 article-title: Development of a desalination system driven by solar energy and low grade waste heat publication-title: Energy Convers. Manag. – volume: 32 start-page: 459 year: 2007 end-page: 466 ident: bb0100 article-title: Modular simulation and thermoeconomic analysis of a multi-effect distillation desalination plant publication-title: Energy – volume: 103 start-page: 104 year: 2015 end-page: 110 ident: bb0080 article-title: Parametric study of reverse electrodialysis using ammonium bicarbonate solution for low-grade waste heat recovery publication-title: Energy Convers. Manag. – volume: 257 start-page: 195 year: 2010 end-page: 205 ident: bb0105 article-title: Thermodynamic optimization of multi-effect desalination plant using the DoE method publication-title: Desalination – volume: 63 start-page: 5639 year: 2008 end-page: 5652 ident: bb0180 article-title: A numerical model for gas flow and droplet motion in wave-plate mist eliminators with drainage channels publication-title: Chem. Eng. Sci. – volume: 221 start-page: 47 year: 2008 end-page: 69 ident: bb0040 article-title: Advances in seawater desalination technologies publication-title: Desalination – volume: 48 start-page: 446 year: 2012 end-page: 457 ident: bb0090 article-title: Desalination using low grade heat in the process industry: challenges and perspectives publication-title: Appl. Therm. Eng. – year: 2009 ident: bb0020 article-title: Seawater Desalination: Conventional and Renewable Energy Processes – volume: 205 start-page: 340 year: 2007 end-page: 353 ident: bb0065 article-title: Overview of the cost of desalinated water and costing methodologies publication-title: Desalination – volume: 309 start-page: 197 year: 2013 end-page: 207 ident: bb0010 article-title: Technical review and evaluation of the economics of water desalination: current and future challenges for better water supply sustainability publication-title: Desalination – volume: 142 start-page: 47 year: 2008 end-page: 69 ident: bb0005 article-title: Advances in seawater desalination technologies publication-title: Desalination – volume: 72 start-page: 377 year: 2014 end-page: 385 ident: bb0070 article-title: An energy management approach for renewable energy integration with power generation and water desalination publication-title: Renew. Energy – volume: 364 start-page: 2 year: 2015 end-page: 16 ident: bb0025 article-title: Desalination techniques—a review of the opportunities for desalination in agriculture publication-title: Desalination – volume: 103 start-page: 177 year: 2016 end-page: 186 ident: bb0135 article-title: Heat transfer correlation of the falling film evaporation on a single horizontal smooth tube publication-title: Appl. Therm. Eng. – volume: 18 start-page: 340 year: 1994 end-page: 346 ident: bb0150 article-title: Laminar film condensation inside a horizontal elliptical tube publication-title: Appl. Math. Model. – volume: 136 start-page: 1155 year: 2014 end-page: 1165 ident: bb0030 article-title: Renewable energy driven innovative energy-efficient desalination technologies publication-title: Appl. Energy – start-page: 49 year: 2008 end-page: 53 ident: bb0155 article-title: Experimental Investigation on Heat Transfer Coefficients of Horizontal Tube Falling Film Evaporation – volume: 107 start-page: 693 year: 2016 end-page: 706 ident: bb0110 article-title: Experimental investigation on thermal OS/ORC (Oil Storage/Organic Rankine Cycle) system for waste heat recovery from diesel engine publication-title: Energy – volume: 166 start-page: 223 year: 2004 end-page: 230 ident: bb0175 article-title: Heat-transfer film coefficients of falling film horizontal tube evaporators publication-title: Desalination – volume: 34 start-page: 303 year: 2011 end-page: 316 ident: bb0170 article-title: The heat transfer performance of horizontal tube bundles in large falling film evaporators publication-title: Int. J. Refrig. – start-page: 587 year: 2002 ident: bb0145 article-title: Fundamentals of Salt Water Desalination – year: 2006 ident: bb0165 article-title: GB 5749 – volume: 24 start-page: 343 year: 2013 end-page: 356 ident: bb0060 article-title: Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes publication-title: Renew. Sust. Energ. Rev. – start-page: 65 year: 2003 end-page: 68 ident: bb0160 article-title: Principle and Design of the Heat Exchanger – volume: 15 start-page: 492 year: 2007 end-page: 498 ident: bb0185 article-title: Numerical study of steam-water separators with wave-type vanes publication-title: J. Chem. Eng. – volume: 32 start-page: 455 year: 2014 end-page: 460 ident: bb0120 article-title: Analysis of desalination system powered by waste heat from diesel generating set publication-title: Energy Conserv. Technol. – volume: 103 start-page: 28 year: 2015 end-page: 35 ident: bb0125 article-title: Development of a desalination system driven by solar energy and low grade waste heat publication-title: Energy Convers. Manag. – volume: 101 start-page: 379 year: 2015 end-page: 392 ident: bb0055 article-title: A solar desalination system: exergetic performance assessment publication-title: Energy Convers. Manag. – volume: 267 start-page: 1 year: 2011 end-page: 8 ident: bb0035 article-title: Reverse osmosis technology for water treatment: state of the art review publication-title: Desalination – volume: 73 start-page: 1194 year: 2014 ident: 10.1016/j.desal.2016.11.006_bb0140 article-title: Comparative performance evaluation of conventional multi-effect evaporation desalination processes publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2014.09.025 – volume: 309 start-page: 197 year: 2013 ident: 10.1016/j.desal.2016.11.006_bb0010 article-title: Technical review and evaluation of the economics of water desalination: current and future challenges for better water supply sustainability publication-title: Desalination doi: 10.1016/j.desal.2012.10.015 – volume: 18 start-page: 340 year: 1994 ident: 10.1016/j.desal.2016.11.006_bb0150 article-title: Laminar film condensation inside a horizontal elliptical tube publication-title: Appl. Math. Model. doi: 10.1016/0307-904X(94)90358-1 – volume: 94 start-page: 590 year: 2016 ident: 10.1016/j.desal.2016.11.006_bb0085 article-title: A knowledge-based system for low-grade waste heat recovery in the process industries publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.10.103 – volume: 32 start-page: 459 year: 2007 ident: 10.1016/j.desal.2016.11.006_bb0100 article-title: Modular simulation and thermoeconomic analysis of a multi-effect distillation desalination plant publication-title: Energy doi: 10.1016/j.energy.2006.07.037 – volume: 358 start-page: 94 year: 2015 ident: 10.1016/j.desal.2016.11.006_bb0115 article-title: Thermal desalination using diesel engine exhaust waste heat–An experimental analysis publication-title: Desalination doi: 10.1016/j.desal.2014.12.023 – volume: 103 start-page: 28 year: 2015 ident: 10.1016/j.desal.2016.11.006_bb0075 article-title: Development of a desalination system driven by solar energy and low grade waste heat publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2015.06.035 – volume: 48 start-page: 446 year: 2012 ident: 10.1016/j.desal.2016.11.006_bb0090 article-title: Desalination using low grade heat in the process industry: challenges and perspectives publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2012.05.012 – volume: 103 start-page: 104 year: 2015 ident: 10.1016/j.desal.2016.11.006_bb0080 article-title: Parametric study of reverse electrodialysis using ammonium bicarbonate solution for low-grade waste heat recovery publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2015.06.051 – volume: 257 start-page: 195 year: 2010 ident: 10.1016/j.desal.2016.11.006_bb0105 article-title: Thermodynamic optimization of multi-effect desalination plant using the DoE method publication-title: Desalination doi: 10.1016/j.desal.2010.02.012 – volume: 32 start-page: 455 year: 2014 ident: 10.1016/j.desal.2016.11.006_bb0120 article-title: Analysis of desalination system powered by waste heat from diesel generating set publication-title: Energy Conserv. Technol. – volume: 15 start-page: 492 year: 2007 ident: 10.1016/j.desal.2016.11.006_bb0185 article-title: Numerical study of steam-water separators with wave-type vanes publication-title: J. Chem. Eng. – volume: 63 start-page: 5639 year: 2008 ident: 10.1016/j.desal.2016.11.006_bb0180 article-title: A numerical model for gas flow and droplet motion in wave-plate mist eliminators with drainage channels publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2008.08.013 – volume: 103 start-page: 28 year: 2015 ident: 10.1016/j.desal.2016.11.006_bb0125 article-title: Development of a desalination system driven by solar energy and low grade waste heat publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2015.06.035 – start-page: 587 year: 2002 ident: 10.1016/j.desal.2016.11.006_bb0145 – volume: 142 start-page: 47 year: 2008 ident: 10.1016/j.desal.2016.11.006_bb0005 article-title: Advances in seawater desalination technologies publication-title: Desalination doi: 10.1016/j.desal.2007.01.067 – volume: 14 start-page: 2641 year: 2013 ident: 10.1016/j.desal.2016.11.006_bb0050 article-title: Renewable and sustainable approaches for desalination publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2010.06.008 – volume: 72 start-page: 377 year: 2014 ident: 10.1016/j.desal.2016.11.006_bb0070 article-title: An energy management approach for renewable energy integration with power generation and water desalination publication-title: Renew. Energy doi: 10.1016/j.renene.2014.07.032 – volume: 54 start-page: 5497 issue: 25–26 year: 2011 ident: 10.1016/j.desal.2016.11.006_bb0095 article-title: Low grade heat driven multi-effect distillation technology publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2011.07.041 – volume: 34 start-page: 303 year: 2011 ident: 10.1016/j.desal.2016.11.006_bb0170 article-title: The heat transfer performance of horizontal tube bundles in large falling film evaporators publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2010.07.011 – volume: 107 start-page: 693 year: 2016 ident: 10.1016/j.desal.2016.11.006_bb0110 article-title: Experimental investigation on thermal OS/ORC (Oil Storage/Organic Rankine Cycle) system for waste heat recovery from diesel engine publication-title: Energy doi: 10.1016/j.energy.2016.04.062 – volume: 333 start-page: 712 year: 2011 ident: 10.1016/j.desal.2016.11.006_bb0015 article-title: The future of seawater desalination: energy, technology, and the environment publication-title: Science doi: 10.1126/science.1200488 – volume: 24 start-page: 343 year: 2013 ident: 10.1016/j.desal.2016.11.006_bb0060 article-title: Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2012.12.064 – volume: 357 start-page: 104 year: 2015 ident: 10.1016/j.desal.2016.11.006_bb0130 article-title: Three-dimensional heat transfer coefficient distributions in a large horizontal-tube falling film evaporator publication-title: Desalination doi: 10.1016/j.desal.2014.10.012 – start-page: 65 year: 2003 ident: 10.1016/j.desal.2016.11.006_bb0160 – volume: 221 start-page: 47 year: 2008 ident: 10.1016/j.desal.2016.11.006_bb0040 article-title: Advances in seawater desalination technologies publication-title: Desalination doi: 10.1016/j.desal.2007.01.067 – volume: 166 start-page: 223 year: 2004 ident: 10.1016/j.desal.2016.11.006_bb0175 article-title: Heat-transfer film coefficients of falling film horizontal tube evaporators publication-title: Desalination doi: 10.1016/j.desal.2004.06.077 – volume: 386 start-page: 13 year: 2016 ident: 10.1016/j.desal.2016.11.006_bb0045 article-title: Thermodynamic perspective for the specific energy consumption of seawater desalination publication-title: Desalination doi: 10.1016/j.desal.2016.02.030 – year: 2006 ident: 10.1016/j.desal.2016.11.006_bb0165 – volume: 136 start-page: 1155 year: 2014 ident: 10.1016/j.desal.2016.11.006_bb0030 article-title: Renewable energy driven innovative energy-efficient desalination technologies publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.03.033 – volume: 101 start-page: 379 year: 2015 ident: 10.1016/j.desal.2016.11.006_bb0055 article-title: A solar desalination system: exergetic performance assessment publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2015.05.060 – volume: 205 start-page: 340 year: 2007 ident: 10.1016/j.desal.2016.11.006_bb0065 article-title: Overview of the cost of desalinated water and costing methodologies publication-title: Desalination doi: 10.1016/j.desal.2006.03.558 – start-page: 49 year: 2008 ident: 10.1016/j.desal.2016.11.006_bb0155 – year: 2009 ident: 10.1016/j.desal.2016.11.006_bb0020 – volume: 364 start-page: 2 year: 2015 ident: 10.1016/j.desal.2016.11.006_bb0025 article-title: Desalination techniques—a review of the opportunities for desalination in agriculture publication-title: Desalination doi: 10.1016/j.desal.2015.01.041 – volume: 103 start-page: 177 year: 2016 ident: 10.1016/j.desal.2016.11.006_bb0135 article-title: Heat transfer correlation of the falling film evaporation on a single horizontal smooth tube publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.02.090 – volume: 267 start-page: 1 year: 2011 ident: 10.1016/j.desal.2016.11.006_bb0035 article-title: Reverse osmosis technology for water treatment: state of the art review publication-title: Desalination doi: 10.1016/j.desal.2010.09.001 |
SSID | ssj0012933 |
Score | 2.4431918 |
Snippet | This paper introduces a medium-size low-temperature multi-effect desalination (LT-MED) system. Powered by the cooling water of a 1000kW diesel power generator... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 112 |
SubjectTerms | Cooling systems Desalination Diesel engine Diesel engines Electric power generation Electricity and freshwater co-generation Evaporation Fresh water Generators Islands Low-temperature multi-effect distillation Waste heat recovery |
Title | A low-temperature multi-effect desalination system powered by the cooling water of a diesel engine |
URI | https://dx.doi.org/10.1016/j.desal.2016.11.006 https://www.proquest.com/docview/1859501118 https://www.proquest.com/docview/1880033322 |
Volume | 404 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6iFz2IT3wTwaPR5tHs5lhEqYo9Wegt5CmV0i19IF787Wb2ISrSg9cly2YnszOTzTffh9CF4IZ5JSIR7YwT4SQnNjJDciE4pDvF29CN_NST3b54GLQHK-im6YUBWGUd-6uYXkbr-sp1bc3ryXAIPb5ATiahooBt-QA62EUGXn718QXzgHRWnTJTSmB0wzxUYrx8mBk4f6DyCqg8Qfbo7-z0K06XyeduC23WVSPuVBPbRithvIM2vnEJ7iLbwaPijQDVVM2TjEuwIKkQG7icxLD694cr_mY8AYm04LF9x6kOxK4ABZ8X_JbqzykuIjYYMIZhhEP5pD3Uv7t9vumSWkCBOC7VnFiR2VZknsqMq0ihOPORBmpY5pWMaZ1aWfTcWdOygYfc0ywwZgV3xrWNUHwfrY6LcThAWOUyZ05EZVtGOBVt9Io6pryPlirHDhFrDKddzS4OIhcj3cDIXnX5ohqsnfYdOln7EF1-3TSpyDWWD5fNiugfPqJT-F9-43mzfjp9PXAkYsahWMw0BXq35Bo0XzYmB8W7FPmO_juBY7TOoBwAIZnsBK3Op4twmoqZuT0rvfUMrXXuH7u9T9T-9OI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEB5S59D2UNIXTR-pCj1WjfVY7epoQoPz8ikB34SexcF4TeIQ-u-r2dWGthQfcl0kVjujnfkkjb4P4KsUlgctE5VVLaj0SlCXuKWNlALTnRYV3ka-mKnplTydV_MdOBruwmBZZYn9fUzvonV5clisebheLPCOL5KTKUQUuCyfP4FdZKeqRrA7OTmbzh4OE3hRlMfdQOwwkA91ZV4h3lo8gmDqO7J5ovLR_xPUP6G6yz_He_CiAEcy6cf2Enbi6hU8_4NO8DW4CVm29xTZpgpVMunqBWlftEG6QSz67T_SUziTNaqkxUDcL5KhIPEtivj8JPcZgt6QNhFLsMwwLkns3vQGro5_XB5NadFQoF4ovaFO1m6ceGCqFjoxxGchscgsr4NWKbtqXKcgvLNjF0VsAqsj504Kb31lpRZvYbRqV_EdEN2ohnuZtBtb6XVyKWjmuQ4hOaY93wc-GM74QjCOOhdLM1SSXZvuQw1aOy89TLb2Pnx76LTu-TW2N1eDR8xf08TkDLC945fBfyb_QHgqYlexvbs1DBne8tRgzbY2DYre5eD3_rED-AxPp5cX5-b8ZHb2AZ5xRAeoK1N_hNHm5i5-ythm4w7K3P0NNMn3kw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+low-temperature+multi-effect+desalination+system+powered+by+the+cooling+water+of+a+diesel+engine&rft.jtitle=Desalination&rft.au=Zhang%2C+Fengming&rft.au=Xu%2C+Shiming&rft.au=Feng%2C+Dongdong&rft.au=Chen%2C+Shunquan&rft.date=2017-02-17&rft.issn=0011-9164&rft.volume=404&rft.spage=112&rft.epage=120&rft_id=info:doi/10.1016%2Fj.desal.2016.11.006&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0011-9164&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0011-9164&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0011-9164&client=summon |