VERA Core Simulator Methodology for Pressurized Water Reactor Cycle Depletion
This paper describes the methodology developed and implemented in the Virtual Environment for Reactor Applications Core Simulator (VERA-CS) to perform high-fidelity, pressurized water reactor (PWR), multicycle, core physics calculations. Depletion of the core with pin-resolved power and nuclide deta...
Saved in:
Published in | Nuclear science and engineering Vol. 185; no. 1; pp. 217 - 231 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Taylor & Francis
01.01.2017
American Nuclear Society |
Subjects | |
Online Access | Get full text |
ISSN | 0029-5639 1943-748X |
DOI | 10.13182/NSE16-39 |
Cover
Abstract | This paper describes the methodology developed and implemented in the Virtual Environment for Reactor Applications Core Simulator (VERA-CS) to perform high-fidelity, pressurized water reactor (PWR), multicycle, core physics calculations. Depletion of the core with pin-resolved power and nuclide detail is a significant advance in the state of the art for reactor analysis, providing the level of detail necessary to address the problems of the U.S. Department of Energy Nuclear Reactor Simulation Hub, the Consortium for Advanced Simulation of Light Water Reactors (CASL). VERA-CS has three main components: the neutronics solver MPACT, the thermal-hydraulic (T-H) solver COBRA-TF (CTF), and the nuclide transmutation solver ORIGEN. This paper focuses on MPACT and provides an overview of the resonance self-shielding methods, macroscopic-cross-section calculation, two-dimensional/one-dimensional (2-D/1-D) transport, nuclide depletion, T-H feedback, and other supporting methods representing a minimal set of the capabilities needed to simulate high-fidelity models of a commercial nuclear reactor. Results are presented from the simulation of a model of the first cycle of Watts Bar Unit 1. The simulation is within 16 parts per million boron (ppmB) reactivity for all state points compared to cycle measurements, with an average reactivity bias of <5 ppmB for the entire cycle. Comparisons to cycle 1 flux map data are also provided, and the average 2-D root-mean-square (rms) error during cycle 1 is 1.07%. To demonstrate the multicycle capability, a state point at beginning of cycle (BOC) 2 was also simulated and compared to plant data. The comparison of the cycle 2 BOC state has a reactivity difference of +3 ppmB from measurement, and the 2-D rms of the comparison in the flux maps is 1.77%. These results provide confidence in VERA-CS's capability to perform high-fidelity calculations for practical PWR reactor problems. |
---|---|
AbstractList | This paper describes the methodology developed and implemented in the Virtual Environment for Reactor Applications Core Simulator (VERA-CS) to perform high-fidelity, pressurized water reactor (PWR), multicycle, core physics calculations. Depletion of the core with pin-resolved power and nuclide detail is a significant advance in the state of the art for reactor analysis, providing the level of detail necessary to address the problems of the U.S. Department of Energy Nuclear Reactor Simulation Hub, the Consortium for Advanced Simulation of Light Water Reactors (CASL). VERA-CS has three main components: the neutronics solver MPACT, the thermal-hydraulic (T-H) solver COBRA-TF (CTF), and the nuclide transmutation solver ORIGEN. This paper focuses on MPACT and provides an overview of the resonance self-shielding methods, macroscopic-cross-section calculation, two-dimensional/one-dimensional (2-D/1-D) transport, nuclide depletion, T-H feedback, and other supporting methods representing a minimal set of the capabilities needed to simulate high-fidelity models of a commercial nuclear reactor. Results are presented from the simulation of a model of the first cycle of Watts Bar Unit 1. The simulation is within 16 parts per million boron (ppmB) reactivity for all state points compared to cycle measurements, with an average reactivity bias of <5 ppmB for the entire cycle. Comparisons to cycle 1 flux map data are also provided, and the average 2-D root-mean-square (rms) error during cycle 1 is 1.07%. To demonstrate the multicycle capability, a state point at beginning of cycle (BOC) 2 was also simulated and compared to plant data. The comparison of the cycle 2 BOC state has a reactivity difference of +3 ppmB from measurement, and the 2-D rms of the comparison in the flux maps is 1.77%. These results provide confidence in VERA-CS's capability to perform high-fidelity calculations for practical PWR reactor problems. This paper describes the methodology developed and implemented in the Virtual Environment for Reactor Applications Core Simulator (VERA-CS) to perform high-fidelity, pressurized water reactor (PWR), multicycle, core physics calculations. Depletion of the core with pin-resolved power and nuclide detail is a significant advance in the state of the art for reactor analysis, providing the level of detail necessary to address the problems of the U.S. Department of Energy Nuclear Reactor Simulation Hub, the Consortium for Advanced Simulation of Light Water Reactors (CASL). VERA-CS has three main components: the neutronics solver MPACT, the thermal-hydraulic (T-H) solver COBRA-TF (CTF), and the nuclide transmutation solver ORIGEN. This paper focuses on MPACT and provides an overview of the resonance self-shielding methods, macroscopic-cross-section calculation, two-dimensional/one-dimensional (2-D/1-D) transport, nuclide depletion, T-H feedback, and other supporting methods representing a minimal set of the capabilities needed to simulate high-fidelity models of a commercial nuclear reactor. This paper describes the methodology developed and implemented in the Virtual Environment for Reactor Applications Core Simulator (VERA-CS) to perform high-fidelity, pressurized water reactor (PWR), multicycle, core physics calculations. Depletion of the core with pin-resolved power and nuclide detail is a significant advance in the state of the art for reactor analysis, providing the level of detail necessary to address the problems of the U.S. Department of Energy Nuclear Reactor Simulation Hub, the Consortium for Advanced Simulation of Light Water Reactors (CASL). VERA-CS has three main components: the neutronics solver MPACT, the thermal-hydraulic (T-H) solver COBRA-TF (CTF), and the nuclide transmutation solver ORIGEN. This paper focuses on MPACT and provides an overview of the resonance self-shielding methods, macroscopic-cross-section calculation, two-dimensional/one-dimensional (2-D/1-D) transport, nuclide depletion, T-H feedback, and other supporting methods representing a minimal set of the capabilities needed to simulate high-fidelity models of a commercial nuclear reactor. Results are presented from the simulation of a model of the first cycle of Watts Bar Unit 1. The simulation is within 16 parts per million boron (ppmB) reactivity for all state points compared to cycle measurements, with an average reactivity bias of <5 ppmB for the entire cycle. Comparisons to cycle 1 flux map data are also provided, and the average 2-D root-mean-square (rms) error during cycle 1 is 1.07%. To demonstrate the multicycle capability, a state point at beginning of cycle (BOC) 2 was also simulated and compared to plant data. The comparison of the cycle 2 BOC state has a reactivity difference of +3 ppmB from measurement, and the 2-D rms of the comparison in the flux maps is 1.77%. Lastly, these results provide confidence in VERA-CS’s capability to perform high-fidelity calculations for practical PWR reactor problems. |
Author | Palmtag, Scott Stimpson, Shane Gehin, Jess Jabaay, Daniel Collins, Benjamin Kim, Kang Seog Wieselquist, William Salko, Robert Graham, Aaron Clarno, Kevin Kochunas, Brendan Downar, Thomas Godfrey, Andrew Liu, Yuxuan |
Author_xml | – sequence: 1 givenname: Brendan surname: Kochunas fullname: Kochunas, Brendan email: bkochuna@umich.edu organization: University of Michigan, Department of Nuclear Engineering and Radiological Sciences – sequence: 2 givenname: Benjamin surname: Collins fullname: Collins, Benjamin organization: Oak Ridge National Laboratory – sequence: 3 givenname: Shane surname: Stimpson fullname: Stimpson, Shane organization: Oak Ridge National Laboratory – sequence: 4 givenname: Robert surname: Salko fullname: Salko, Robert organization: Oak Ridge National Laboratory – sequence: 5 givenname: Daniel surname: Jabaay fullname: Jabaay, Daniel organization: University of Michigan, Department of Nuclear Engineering and Radiological Sciences – sequence: 6 givenname: Aaron surname: Graham fullname: Graham, Aaron organization: University of Michigan, Department of Nuclear Engineering and Radiological Sciences – sequence: 7 givenname: Yuxuan surname: Liu fullname: Liu, Yuxuan organization: University of Michigan, Department of Nuclear Engineering and Radiological Sciences – sequence: 8 givenname: Kang Seog surname: Kim fullname: Kim, Kang Seog organization: Oak Ridge National Laboratory – sequence: 9 givenname: William surname: Wieselquist fullname: Wieselquist, William organization: Oak Ridge National Laboratory – sequence: 10 givenname: Andrew surname: Godfrey fullname: Godfrey, Andrew organization: Oak Ridge National Laboratory – sequence: 11 givenname: Kevin surname: Clarno fullname: Clarno, Kevin organization: Oak Ridge National Laboratory – sequence: 12 givenname: Scott surname: Palmtag fullname: Palmtag, Scott organization: Core Physics, Inc – sequence: 13 givenname: Thomas surname: Downar fullname: Downar, Thomas organization: University of Michigan, Department of Nuclear Engineering and Radiological Sciences – sequence: 14 givenname: Jess surname: Gehin fullname: Gehin, Jess organization: Oak Ridge National Laboratory |
BackLink | https://www.osti.gov/servlets/purl/1344991$$D View this record in Osti.gov |
BookMark | eNptkMtOwzAQRS0EEqWw4A8iVrAIjWMnsZeolIfUAuK9s6bOBIzcuNiuUPl6UsoKWI2udM6M5u6Qzda1SMg-zY4poyIfXN2NaJkyuUF6VHKWVlw8b5JeluUyLUomt8lOCG9dLLksemTyOLo9SYbOY3JnZgsL0flkgvHV1c66l2XSdPnGYwgLbz6xTp4gok9uEfSKHC61xeQU5xajce0u2WrABtz7mX3ycDa6H16k4-vzy-HJONWslDEFKXIKVVUW07qCCmBa6VIWU0kbTrXQmEnNGlEiCF6jzEHUQtYZ8ikgz6BifXKw3utCNCpoE1G_ate2qKOijHMpaQcdrqG5d-8LDFHNTNBoLbToFkFRITjNi4qVHXq0RrV3IXhs1NybGfilopn67lV996qY7NjBL7Y7D6vvowdj_zX42jBt1-YMPpy3tYqwtM43HlptgmJ_tS-N4I3V |
CitedBy_id | crossref_primary_10_1016_j_nucengdes_2019_04_006 crossref_primary_10_1016_j_anucene_2019_107096 crossref_primary_10_1016_j_anucene_2020_107988 crossref_primary_10_1080_00295450_2023_2216973 crossref_primary_10_1016_j_anucene_2024_110917 crossref_primary_10_1016_j_cpc_2021_107915 crossref_primary_10_2139_ssrn_4103229 crossref_primary_10_3390_eng3040036 crossref_primary_10_1080_00295639_2023_2224234 crossref_primary_10_1080_00295639_2024_2409582 crossref_primary_10_1016_j_net_2021_08_005 crossref_primary_10_1051_epjconf_202124715014 crossref_primary_10_1016_j_net_2019_09_007 crossref_primary_10_1016_j_nucengdes_2022_111927 crossref_primary_10_1016_j_pnucene_2020_103562 crossref_primary_10_1016_j_nucengdes_2023_112217 crossref_primary_10_1016_j_nucengdes_2024_113449 crossref_primary_10_1016_j_anucene_2021_108666 crossref_primary_10_1051_epjconf_202124720003 crossref_primary_10_1016_j_anucene_2020_107999 crossref_primary_10_1016_j_jnucmat_2021_153194 crossref_primary_10_1016_j_nucengdes_2024_113685 crossref_primary_10_3390_jne2040026 crossref_primary_10_1016_j_anucene_2019_106988 crossref_primary_10_1016_j_anucene_2020_108042 crossref_primary_10_1016_j_anucene_2023_109952 crossref_primary_10_1016_j_anucene_2024_110848 crossref_primary_10_1016_j_anucene_2019_04_053 crossref_primary_10_1051_epjconf_202124710014 crossref_primary_10_1016_j_anucene_2022_109141 crossref_primary_10_1002_er_7702 crossref_primary_10_1016_j_pnucene_2018_03_015 crossref_primary_10_1016_j_cpc_2022_108340 crossref_primary_10_1016_j_pnucene_2024_105230 crossref_primary_10_1080_00295639_2022_2159276 crossref_primary_10_1080_00295639_2021_1901000 crossref_primary_10_3389_fenrg_2021_747148 crossref_primary_10_1080_00295639_2024_2421095 crossref_primary_10_3390_en15145226 crossref_primary_10_1088_1742_6596_2828_1_012020 crossref_primary_10_1016_j_anucene_2020_107602 crossref_primary_10_1080_00295450_2024_2369476 crossref_primary_10_1016_j_anucene_2022_109147 crossref_primary_10_1080_00295450_2019_1585734 crossref_primary_10_1016_j_anucene_2021_108773 crossref_primary_10_1016_j_nucengdes_2021_111194 crossref_primary_10_1051_epjconf_202124712008 crossref_primary_10_1016_j_anucene_2023_110011 crossref_primary_10_1016_j_anucene_2023_110330 crossref_primary_10_3390_en15134843 crossref_primary_10_1080_00295639_2018_1442059 crossref_primary_10_1016_j_anucene_2023_110016 crossref_primary_10_2139_ssrn_4167910 crossref_primary_10_2139_ssrn_4192349 crossref_primary_10_1080_00295450_2020_1843348 crossref_primary_10_1016_j_pnucene_2024_105285 crossref_primary_10_3390_en14144235 crossref_primary_10_1016_j_pnucene_2017_10_012 crossref_primary_10_1016_j_anucene_2021_108889 crossref_primary_10_3389_fenrg_2022_1046506 crossref_primary_10_3390_jne5030017 crossref_primary_10_3390_jne5030018 crossref_primary_10_1016_j_anucene_2023_109777 crossref_primary_10_1016_j_jcp_2017_08_026 crossref_primary_10_1016_j_nucengdes_2017_12_015 crossref_primary_10_1016_j_nucengdes_2024_113387 crossref_primary_10_1080_00295639_2021_1906585 crossref_primary_10_1016_j_net_2019_04_002 crossref_primary_10_1080_00295639_2021_1906586 crossref_primary_10_1051_epjconf_202124702018 crossref_primary_10_1016_j_anucene_2020_107892 crossref_primary_10_1016_j_anucene_2022_109431 crossref_primary_10_1016_j_nucengdes_2020_110621 crossref_primary_10_1080_00295639_2023_2270740 |
Cites_doi | 10.2172/1337852 10.1016/j.anucene.2013.06.031 10.13182/NSE62-1 10.1016/j.nucengdes.2009.05.021 10.1016/j.anucene.2010.08.022 10.13182/NT11-3 10.1016/j.jnucmat.2012.01.012 10.13182/NSE14-65 10.1016/j.jcp.2016.08.022 |
ContentType | Journal Article |
Copyright | Copyright American Nuclear Society |
Copyright_xml | – notice: Copyright American Nuclear Society |
CorporateAuthor | Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Consortium for Advanced Simulation of LWRs (CASL) |
CorporateAuthor_xml | – name: Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Consortium for Advanced Simulation of LWRs (CASL) |
DBID | AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M OIOZB OTOTI |
DOI | 10.13182/NSE16-39 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1943-748X |
EndPage | 231 |
ExternalDocumentID | 1344991 10_13182_NSE16_39 1271248 |
Genre | Article |
GroupedDBID | -~X 0BK 123 30N 85S 8WZ A6W AAJMT AALDU AAMIU AAPUL AAQRR ABEFU ABJNI ABLIJ ABPAQ ABXUL ABXYU ACBEA ACNCT ACTIO ADGTB AEISY AENEX AEYOC AGDLA AHDZW AIJEM AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AWYRJ BLEHA CCCUG DGEBU EBS EJD F5P H13 IPNFZ KYCEM M4Z O9- RBQ RIG RNANH ROSJB RTWRZ TBQAZ TCY TDBHL TEN TEX TFL TFT TFW TTHFI TUROJ ZGOLN AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV CITATION 7SP 7TB 8FD FR3 KR7 L7M TASJS 0R~ ABBKH ABJVF ABQHQ AEGYZ AFWLO AIRXU DWNMW OIOZB OTOTI |
ID | FETCH-LOGICAL-c369t-a9821a7765bd7a7aab7c695b91f41c8ce09c3f86ea84de92a8d89d0e4bae40a73 |
ISSN | 0029-5639 |
IngestDate | Fri May 19 01:58:49 EDT 2023 Tue Aug 05 10:12:49 EDT 2025 Thu Apr 24 23:08:54 EDT 2025 Tue Jul 01 04:06:07 EDT 2025 Wed Dec 25 09:02:40 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c369t-a9821a7765bd7a7aab7c695b91f41c8ce09c3f86ea84de92a8d89d0e4bae40a73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE AC05-00OR22725 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1344991 |
PQID | 1884125736 |
PQPubID | 23500 |
PageCount | 15 |
ParticipantIDs | crossref_primary_10_13182_NSE16_39 crossref_citationtrail_10_13182_NSE16_39 informaworld_taylorfrancis_310_13182_NSE16_39 osti_scitechconnect_1344991 proquest_miscellaneous_1884125736 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-01-01 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Nuclear science and engineering |
PublicationYear | 2017 |
Publisher | Taylor & Francis American Nuclear Society |
Publisher_xml | – name: Taylor & Francis – name: American Nuclear Society |
References | b32 HONG S. G. (b25) 2011; 38 b22 b36 CHO N. Z. (b9) 2002; 86 b13 b24 b35 TABUCHI M. (b33) 2005; 93 b17 b28 WILLIAMSON R. (b37) 2012; 423 b39 GAULD I. C. (b4) 2011; 174 FINNEMANN H. (b16) 1977; 30 b2 b3 WEMPLE C. A. (b30) 2007; 96 JUNG Y. S. (b12) 2013; 62 LIU Y. (b27) 2015; 180 COLLINS B. (b7) 2016; 326 GASTON D. (b38) 2009; 239 |
References_xml | – ident: b39 – ident: b22 – ident: b2 – ident: b3 – ident: b35 doi: 10.2172/1337852 – volume: 96 start-page: 657 year: 2007 ident: b30 publication-title: Trans. Am. Nucl. Soc. – ident: b24 – volume: 62 start-page: 357 year: 2013 ident: b12 publication-title: Ann. Nucl. Energy doi: 10.1016/j.anucene.2013.06.031 – ident: b28 doi: 10.13182/NSE62-1 – volume: 239 start-page: 1768 year: 2009 ident: b38 publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2009.05.021 – volume: 93 start-page: 506 year: 2005 ident: b33 publication-title: Trans. Am. Nucl. Soc. – volume: 38 start-page: 32 year: 2011 ident: b25 publication-title: Ann. Nucl. Energy doi: 10.1016/j.anucene.2010.08.022 – volume: 174 start-page: 169 year: 2011 ident: b4 publication-title: Nucl. Technol. doi: 10.13182/NT11-3 – volume: 423 start-page: 149 year: 2012 ident: b37 publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2012.01.012 – volume: 30 start-page: 123 year: 1977 ident: b16 publication-title: Atomkernenergie – volume: 180 start-page: 247 year: 2015 ident: b27 publication-title: Nucl. Sci. Eng. doi: 10.13182/NSE14-65 – ident: b36 – volume: 326 start-page: 612 year: 2016 ident: b7 publication-title: J. Comp. Phys. doi: 10.1016/j.jcp.2016.08.022 – volume: 86 start-page: 322 year: 2002 ident: b9 publication-title: Trans. Am. Nucl. Soc. – ident: b17 – ident: b32 – ident: b13 |
SSID | ssj0026495 |
Score | 2.4104407 |
Snippet | This paper describes the methodology developed and implemented in the Virtual Environment for Reactor Applications Core Simulator (VERA-CS) to perform... |
SourceID | osti proquest crossref informaworld |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 217 |
SubjectTerms | CASL Depletion Mathematical models MATHEMATICS AND COMPUTING Methodology MPACT Nuclear reactors Nuclides Pressurized water reactors Simulation Solvers SPECIFIC NUCLEAR REACTORS AND ASSOCIATED PLANTS VERA |
Title | VERA Core Simulator Methodology for Pressurized Water Reactor Cycle Depletion |
URI | https://www.tandfonline.com/doi/abs/10.13182/NSE16-39 https://www.proquest.com/docview/1884125736 https://www.osti.gov/servlets/purl/1344991 |
Volume | 185 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FVkhcEE8RWtCCOCBFLrG93sexhKAIqT00LY24WOvdtUhp7Sp1Du2B386MX3FIDoWLldj7SDzfzs7uznxDyAfJjHK-SzwuU1igOB15klvm8cjKlKHTEMNo5KNjPjlj32bRrNf73Y0uKZIDc7c1ruR_pAr3QK4YJfsPkm0bhRvwGeQLV5AwXO8l4-_jE4wqX7jBdH6FebhyJOXBlNAVsxK6EFbxf4v5HViW5xopEU9cmWNnMLqF5kDhXCP_di2diyYa12A6iUET9IO7627FXNhq6dz8XGZVSNhndK5dQW1Ukn1XT1x2oa_m7aNpMa99UEbIF70615_qy1_5yt27uyHhi86GRBMgoLyIVxxFB67Sq4qFSFs6W1e80QbCGjUqOjNyUM0TG8oe1BGyxx5Pxz73mu66hNp_TXSt-2F5igeV47JqHKoHZDcQAo_5dw8nX36ct0t2zlTUOAnhX6q5qbDyp6bfNYtmje8WpvkcFPXGNF_aLqdPyON60UEPKwQ9JT2XPSMPS-dfc_OcHCGOKOKItjiiHRxR6It2cERLHNEaR7TEEW1x9IKcfR2fjiZenWbDMyFXhaeVDHwtBI8SK7TQOhGGqyhRfsp8I40bKhOmkjstmXUq0NJKZYeOJdqxoRbhS7KT5Zl7RaivwX4FNW_B0GU2ENpZ-BYOlbXQoBB98rF5VbGpOegxFcplvCGSPnnfFr2uiFe2FfK67zsuyl2utEpJE4dbyu-hQGIYPUiRbNCXzBRQiMHC3--Td42cYlCyeHIGYyBf3sS-lAxWAiLkr-_zs_bIo9XA2Cc7xWLp3oDtWiRva4D9AQIum7Q |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4BVQWXvgB1Sx-m6qGXQLJ2_Dii7aJty-6BR-FmObYjIUqCQvZQfn3HzgaxLReOkSZObM_Y34zH3wB8kcwqn_ki4bJEB8WbPJHcsYTnTpYsJA2xcBt5OuOTM_bjIr9YAd7fhQlplcGHLjuiiLhWB-MOweiuTAMC4v3ZyTjjCVWr8CxHvB40m6aze0eLM5X3qR05bsELRqGlV5f2oSWWUlycazSv_xbnuOMcvoTz_l-7RJOrvXlb7Nm7f2gcn96ZV_BiAULJQac1r2HFV2_geUwGtbebMP01Pj4go7rx5OTyOtT3qhsyjaWmYxCeYC9Id6-wubzzjpwjYG3IsY-1e8joDzZKvvmbwOtdV1twdjg-HU2SRdmFxFKu2sQoOcyMEDwvnDDCmEJYrvJCZSXLrLQ-VZaWknsjmfNqaKSTyqWeFcaz1Ai6DWtVXfm3QDKDeAbN3iHwYW4ojHf4RFPlHDYoxAC-9pOg7YKTPJTG-K3jQRuOjo6jo6kawOd70ZuOiOMxoeThTOo2Rj3KrkSJpo_I74Sp1og2AmWuDblFtkUhho5gNoDdXgM0Gl04STGVr-e3OpOSITIUlL974hc_wfrkdHqkj77Pfu7AxjCAhBjQeQ9rbTP3HxDitMXHqM9_AeFZ92w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RUCsupU-xBVq36qGXQLJ2_DiiZVfQdlcVFMrNcmxHQm2TVcgeyq_v2NkgtuXCMdLEiR9jf2OPvw_go2RW-cwXCZclBije5InkjiU8d7JkIWmIhdvI0xk_PmefL_PLNcj7uzAhrTLE0GVHFBHn6uDcc1d2Kg2Ihw9mZ-OMJ1Q9gg2OkCRk8tF0dhtncabyPrMjxxV4SSi08urKMrRCUopzc43e9d_cHBecyRZc9L_a5Zn83F-0xb69-YfF8cF1eQZPlxCUHHZj5jms-eoFPI6poPb6JUwvxqeHZFQ3npxd_Q7qXnVDplFoOm7BE6wE6W4VNlc33pEfCFcbcuqjcg8Z_cFCyZGfB1bvunoF55Px99FxshRdSCzlqk2MksPMCMHzwgkjjCmE5SovVFayzErrU2VpKbk3kjmvhkY6qVzqWWE8S42gr2G9qiu_DSQziGbQ6R3CHuaGwniHTzRVzmGBQgzgU98H2i4ZyYMwxi8dj9mwdXRsHU3VAD7cms47Go77jJK7HanbuOdRdgIlmt5jvxN6WiPWCIS5NmQW2RaNGIaB2QDe9wNAo8uFcxRT-XpxrTMpGeJCQfmbB37xHTz5djTRX09mX3ZgcxgQQtzN2YX1tln4PcQ3bfE2jua_61n2EA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=VERA+Core+Simulator+Methodology+for+Pressurized+Water+Reactor+Cycle+Depletion&rft.jtitle=Nuclear+science+and+engineering&rft.au=Kochunas%2C+Brendan&rft.au=Collins%2C+Benjamin&rft.au=Stimpson%2C+Shane&rft.au=Salko%2C+Robert&rft.date=2017-01-01&rft.issn=0029-5639&rft.eissn=1943-748X&rft.volume=185&rft.issue=1&rft.spage=217&rft.epage=231&rft_id=info:doi/10.13182%2FNSE16-39&rft.externalDBID=n%2Fa&rft.externalDocID=10_13182_NSE16_39 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5639&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5639&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5639&client=summon |