VERA Core Simulator Methodology for Pressurized Water Reactor Cycle Depletion

This paper describes the methodology developed and implemented in the Virtual Environment for Reactor Applications Core Simulator (VERA-CS) to perform high-fidelity, pressurized water reactor (PWR), multicycle, core physics calculations. Depletion of the core with pin-resolved power and nuclide deta...

Full description

Saved in:
Bibliographic Details
Published inNuclear science and engineering Vol. 185; no. 1; pp. 217 - 231
Main Authors Kochunas, Brendan, Collins, Benjamin, Stimpson, Shane, Salko, Robert, Jabaay, Daniel, Graham, Aaron, Liu, Yuxuan, Kim, Kang Seog, Wieselquist, William, Godfrey, Andrew, Clarno, Kevin, Palmtag, Scott, Downar, Thomas, Gehin, Jess
Format Journal Article
LanguageEnglish
Published United States Taylor & Francis 01.01.2017
American Nuclear Society
Subjects
Online AccessGet full text
ISSN0029-5639
1943-748X
DOI10.13182/NSE16-39

Cover

Abstract This paper describes the methodology developed and implemented in the Virtual Environment for Reactor Applications Core Simulator (VERA-CS) to perform high-fidelity, pressurized water reactor (PWR), multicycle, core physics calculations. Depletion of the core with pin-resolved power and nuclide detail is a significant advance in the state of the art for reactor analysis, providing the level of detail necessary to address the problems of the U.S. Department of Energy Nuclear Reactor Simulation Hub, the Consortium for Advanced Simulation of Light Water Reactors (CASL). VERA-CS has three main components: the neutronics solver MPACT, the thermal-hydraulic (T-H) solver COBRA-TF (CTF), and the nuclide transmutation solver ORIGEN. This paper focuses on MPACT and provides an overview of the resonance self-shielding methods, macroscopic-cross-section calculation, two-dimensional/one-dimensional (2-D/1-D) transport, nuclide depletion, T-H feedback, and other supporting methods representing a minimal set of the capabilities needed to simulate high-fidelity models of a commercial nuclear reactor. Results are presented from the simulation of a model of the first cycle of Watts Bar Unit 1. The simulation is within 16 parts per million boron (ppmB) reactivity for all state points compared to cycle measurements, with an average reactivity bias of <5 ppmB for the entire cycle. Comparisons to cycle 1 flux map data are also provided, and the average 2-D root-mean-square (rms) error during cycle 1 is 1.07%. To demonstrate the multicycle capability, a state point at beginning of cycle (BOC) 2 was also simulated and compared to plant data. The comparison of the cycle 2 BOC state has a reactivity difference of +3 ppmB from measurement, and the 2-D rms of the comparison in the flux maps is 1.77%. These results provide confidence in VERA-CS's capability to perform high-fidelity calculations for practical PWR reactor problems.
AbstractList This paper describes the methodology developed and implemented in the Virtual Environment for Reactor Applications Core Simulator (VERA-CS) to perform high-fidelity, pressurized water reactor (PWR), multicycle, core physics calculations. Depletion of the core with pin-resolved power and nuclide detail is a significant advance in the state of the art for reactor analysis, providing the level of detail necessary to address the problems of the U.S. Department of Energy Nuclear Reactor Simulation Hub, the Consortium for Advanced Simulation of Light Water Reactors (CASL). VERA-CS has three main components: the neutronics solver MPACT, the thermal-hydraulic (T-H) solver COBRA-TF (CTF), and the nuclide transmutation solver ORIGEN. This paper focuses on MPACT and provides an overview of the resonance self-shielding methods, macroscopic-cross-section calculation, two-dimensional/one-dimensional (2-D/1-D) transport, nuclide depletion, T-H feedback, and other supporting methods representing a minimal set of the capabilities needed to simulate high-fidelity models of a commercial nuclear reactor. Results are presented from the simulation of a model of the first cycle of Watts Bar Unit 1. The simulation is within 16 parts per million boron (ppmB) reactivity for all state points compared to cycle measurements, with an average reactivity bias of <5 ppmB for the entire cycle. Comparisons to cycle 1 flux map data are also provided, and the average 2-D root-mean-square (rms) error during cycle 1 is 1.07%. To demonstrate the multicycle capability, a state point at beginning of cycle (BOC) 2 was also simulated and compared to plant data. The comparison of the cycle 2 BOC state has a reactivity difference of +3 ppmB from measurement, and the 2-D rms of the comparison in the flux maps is 1.77%. These results provide confidence in VERA-CS's capability to perform high-fidelity calculations for practical PWR reactor problems.
This paper describes the methodology developed and implemented in the Virtual Environment for Reactor Applications Core Simulator (VERA-CS) to perform high-fidelity, pressurized water reactor (PWR), multicycle, core physics calculations. Depletion of the core with pin-resolved power and nuclide detail is a significant advance in the state of the art for reactor analysis, providing the level of detail necessary to address the problems of the U.S. Department of Energy Nuclear Reactor Simulation Hub, the Consortium for Advanced Simulation of Light Water Reactors (CASL). VERA-CS has three main components: the neutronics solver MPACT, the thermal-hydraulic (T-H) solver COBRA-TF (CTF), and the nuclide transmutation solver ORIGEN. This paper focuses on MPACT and provides an overview of the resonance self-shielding methods, macroscopic-cross-section calculation, two-dimensional/one-dimensional (2-D/1-D) transport, nuclide depletion, T-H feedback, and other supporting methods representing a minimal set of the capabilities needed to simulate high-fidelity models of a commercial nuclear reactor.
This paper describes the methodology developed and implemented in the Virtual Environment for Reactor Applications Core Simulator (VERA-CS) to perform high-fidelity, pressurized water reactor (PWR), multicycle, core physics calculations. Depletion of the core with pin-resolved power and nuclide detail is a significant advance in the state of the art for reactor analysis, providing the level of detail necessary to address the problems of the U.S. Department of Energy Nuclear Reactor Simulation Hub, the Consortium for Advanced Simulation of Light Water Reactors (CASL). VERA-CS has three main components: the neutronics solver MPACT, the thermal-hydraulic (T-H) solver COBRA-TF (CTF), and the nuclide transmutation solver ORIGEN. This paper focuses on MPACT and provides an overview of the resonance self-shielding methods, macroscopic-cross-section calculation, two-dimensional/one-dimensional (2-D/1-D) transport, nuclide depletion, T-H feedback, and other supporting methods representing a minimal set of the capabilities needed to simulate high-fidelity models of a commercial nuclear reactor. Results are presented from the simulation of a model of the first cycle of Watts Bar Unit 1. The simulation is within 16 parts per million boron (ppmB) reactivity for all state points compared to cycle measurements, with an average reactivity bias of <5 ppmB for the entire cycle. Comparisons to cycle 1 flux map data are also provided, and the average 2-D root-mean-square (rms) error during cycle 1 is 1.07%. To demonstrate the multicycle capability, a state point at beginning of cycle (BOC) 2 was also simulated and compared to plant data. The comparison of the cycle 2 BOC state has a reactivity difference of +3 ppmB from measurement, and the 2-D rms of the comparison in the flux maps is 1.77%. Lastly, these results provide confidence in VERA-CS’s capability to perform high-fidelity calculations for practical PWR reactor problems.
Author Palmtag, Scott
Stimpson, Shane
Gehin, Jess
Jabaay, Daniel
Collins, Benjamin
Kim, Kang Seog
Wieselquist, William
Salko, Robert
Graham, Aaron
Clarno, Kevin
Kochunas, Brendan
Downar, Thomas
Godfrey, Andrew
Liu, Yuxuan
Author_xml – sequence: 1
  givenname: Brendan
  surname: Kochunas
  fullname: Kochunas, Brendan
  email: bkochuna@umich.edu
  organization: University of Michigan, Department of Nuclear Engineering and Radiological Sciences
– sequence: 2
  givenname: Benjamin
  surname: Collins
  fullname: Collins, Benjamin
  organization: Oak Ridge National Laboratory
– sequence: 3
  givenname: Shane
  surname: Stimpson
  fullname: Stimpson, Shane
  organization: Oak Ridge National Laboratory
– sequence: 4
  givenname: Robert
  surname: Salko
  fullname: Salko, Robert
  organization: Oak Ridge National Laboratory
– sequence: 5
  givenname: Daniel
  surname: Jabaay
  fullname: Jabaay, Daniel
  organization: University of Michigan, Department of Nuclear Engineering and Radiological Sciences
– sequence: 6
  givenname: Aaron
  surname: Graham
  fullname: Graham, Aaron
  organization: University of Michigan, Department of Nuclear Engineering and Radiological Sciences
– sequence: 7
  givenname: Yuxuan
  surname: Liu
  fullname: Liu, Yuxuan
  organization: University of Michigan, Department of Nuclear Engineering and Radiological Sciences
– sequence: 8
  givenname: Kang Seog
  surname: Kim
  fullname: Kim, Kang Seog
  organization: Oak Ridge National Laboratory
– sequence: 9
  givenname: William
  surname: Wieselquist
  fullname: Wieselquist, William
  organization: Oak Ridge National Laboratory
– sequence: 10
  givenname: Andrew
  surname: Godfrey
  fullname: Godfrey, Andrew
  organization: Oak Ridge National Laboratory
– sequence: 11
  givenname: Kevin
  surname: Clarno
  fullname: Clarno, Kevin
  organization: Oak Ridge National Laboratory
– sequence: 12
  givenname: Scott
  surname: Palmtag
  fullname: Palmtag, Scott
  organization: Core Physics, Inc
– sequence: 13
  givenname: Thomas
  surname: Downar
  fullname: Downar, Thomas
  organization: University of Michigan, Department of Nuclear Engineering and Radiological Sciences
– sequence: 14
  givenname: Jess
  surname: Gehin
  fullname: Gehin, Jess
  organization: Oak Ridge National Laboratory
BackLink https://www.osti.gov/servlets/purl/1344991$$D View this record in Osti.gov
BookMark eNptkMtOwzAQRS0EEqWw4A8iVrAIjWMnsZeolIfUAuK9s6bOBIzcuNiuUPl6UsoKWI2udM6M5u6Qzda1SMg-zY4poyIfXN2NaJkyuUF6VHKWVlw8b5JeluUyLUomt8lOCG9dLLksemTyOLo9SYbOY3JnZgsL0flkgvHV1c66l2XSdPnGYwgLbz6xTp4gok9uEfSKHC61xeQU5xajce0u2WrABtz7mX3ycDa6H16k4-vzy-HJONWslDEFKXIKVVUW07qCCmBa6VIWU0kbTrXQmEnNGlEiCF6jzEHUQtYZ8ikgz6BifXKw3utCNCpoE1G_ate2qKOijHMpaQcdrqG5d-8LDFHNTNBoLbToFkFRITjNi4qVHXq0RrV3IXhs1NybGfilopn67lV996qY7NjBL7Y7D6vvowdj_zX42jBt1-YMPpy3tYqwtM43HlptgmJ_tS-N4I3V
CitedBy_id crossref_primary_10_1016_j_nucengdes_2019_04_006
crossref_primary_10_1016_j_anucene_2019_107096
crossref_primary_10_1016_j_anucene_2020_107988
crossref_primary_10_1080_00295450_2023_2216973
crossref_primary_10_1016_j_anucene_2024_110917
crossref_primary_10_1016_j_cpc_2021_107915
crossref_primary_10_2139_ssrn_4103229
crossref_primary_10_3390_eng3040036
crossref_primary_10_1080_00295639_2023_2224234
crossref_primary_10_1080_00295639_2024_2409582
crossref_primary_10_1016_j_net_2021_08_005
crossref_primary_10_1051_epjconf_202124715014
crossref_primary_10_1016_j_net_2019_09_007
crossref_primary_10_1016_j_nucengdes_2022_111927
crossref_primary_10_1016_j_pnucene_2020_103562
crossref_primary_10_1016_j_nucengdes_2023_112217
crossref_primary_10_1016_j_nucengdes_2024_113449
crossref_primary_10_1016_j_anucene_2021_108666
crossref_primary_10_1051_epjconf_202124720003
crossref_primary_10_1016_j_anucene_2020_107999
crossref_primary_10_1016_j_jnucmat_2021_153194
crossref_primary_10_1016_j_nucengdes_2024_113685
crossref_primary_10_3390_jne2040026
crossref_primary_10_1016_j_anucene_2019_106988
crossref_primary_10_1016_j_anucene_2020_108042
crossref_primary_10_1016_j_anucene_2023_109952
crossref_primary_10_1016_j_anucene_2024_110848
crossref_primary_10_1016_j_anucene_2019_04_053
crossref_primary_10_1051_epjconf_202124710014
crossref_primary_10_1016_j_anucene_2022_109141
crossref_primary_10_1002_er_7702
crossref_primary_10_1016_j_pnucene_2018_03_015
crossref_primary_10_1016_j_cpc_2022_108340
crossref_primary_10_1016_j_pnucene_2024_105230
crossref_primary_10_1080_00295639_2022_2159276
crossref_primary_10_1080_00295639_2021_1901000
crossref_primary_10_3389_fenrg_2021_747148
crossref_primary_10_1080_00295639_2024_2421095
crossref_primary_10_3390_en15145226
crossref_primary_10_1088_1742_6596_2828_1_012020
crossref_primary_10_1016_j_anucene_2020_107602
crossref_primary_10_1080_00295450_2024_2369476
crossref_primary_10_1016_j_anucene_2022_109147
crossref_primary_10_1080_00295450_2019_1585734
crossref_primary_10_1016_j_anucene_2021_108773
crossref_primary_10_1016_j_nucengdes_2021_111194
crossref_primary_10_1051_epjconf_202124712008
crossref_primary_10_1016_j_anucene_2023_110011
crossref_primary_10_1016_j_anucene_2023_110330
crossref_primary_10_3390_en15134843
crossref_primary_10_1080_00295639_2018_1442059
crossref_primary_10_1016_j_anucene_2023_110016
crossref_primary_10_2139_ssrn_4167910
crossref_primary_10_2139_ssrn_4192349
crossref_primary_10_1080_00295450_2020_1843348
crossref_primary_10_1016_j_pnucene_2024_105285
crossref_primary_10_3390_en14144235
crossref_primary_10_1016_j_pnucene_2017_10_012
crossref_primary_10_1016_j_anucene_2021_108889
crossref_primary_10_3389_fenrg_2022_1046506
crossref_primary_10_3390_jne5030017
crossref_primary_10_3390_jne5030018
crossref_primary_10_1016_j_anucene_2023_109777
crossref_primary_10_1016_j_jcp_2017_08_026
crossref_primary_10_1016_j_nucengdes_2017_12_015
crossref_primary_10_1016_j_nucengdes_2024_113387
crossref_primary_10_1080_00295639_2021_1906585
crossref_primary_10_1016_j_net_2019_04_002
crossref_primary_10_1080_00295639_2021_1906586
crossref_primary_10_1051_epjconf_202124702018
crossref_primary_10_1016_j_anucene_2020_107892
crossref_primary_10_1016_j_anucene_2022_109431
crossref_primary_10_1016_j_nucengdes_2020_110621
crossref_primary_10_1080_00295639_2023_2270740
Cites_doi 10.2172/1337852
10.1016/j.anucene.2013.06.031
10.13182/NSE62-1
10.1016/j.nucengdes.2009.05.021
10.1016/j.anucene.2010.08.022
10.13182/NT11-3
10.1016/j.jnucmat.2012.01.012
10.13182/NSE14-65
10.1016/j.jcp.2016.08.022
ContentType Journal Article
Copyright Copyright American Nuclear Society
Copyright_xml – notice: Copyright American Nuclear Society
CorporateAuthor Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Consortium for Advanced Simulation of LWRs (CASL)
CorporateAuthor_xml – name: Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Consortium for Advanced Simulation of LWRs (CASL)
DBID AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
OIOZB
OTOTI
DOI 10.13182/NSE16-39
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1943-748X
EndPage 231
ExternalDocumentID 1344991
10_13182_NSE16_39
1271248
Genre Article
GroupedDBID -~X
0BK
123
30N
85S
8WZ
A6W
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABEFU
ABJNI
ABLIJ
ABPAQ
ABXUL
ABXYU
ACBEA
ACNCT
ACTIO
ADGTB
AEISY
AENEX
AEYOC
AGDLA
AHDZW
AIJEM
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AWYRJ
BLEHA
CCCUG
DGEBU
EBS
EJD
F5P
H13
IPNFZ
KYCEM
M4Z
O9-
RBQ
RIG
RNANH
ROSJB
RTWRZ
TBQAZ
TCY
TDBHL
TEN
TEX
TFL
TFT
TFW
TTHFI
TUROJ
ZGOLN
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
TASJS
0R~
ABBKH
ABJVF
ABQHQ
AEGYZ
AFWLO
AIRXU
DWNMW
OIOZB
OTOTI
ID FETCH-LOGICAL-c369t-a9821a7765bd7a7aab7c695b91f41c8ce09c3f86ea84de92a8d89d0e4bae40a73
ISSN 0029-5639
IngestDate Fri May 19 01:58:49 EDT 2023
Tue Aug 05 10:12:49 EDT 2025
Thu Apr 24 23:08:54 EDT 2025
Tue Jul 01 04:06:07 EDT 2025
Wed Dec 25 09:02:40 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c369t-a9821a7765bd7a7aab7c695b91f41c8ce09c3f86ea84de92a8d89d0e4bae40a73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE
AC05-00OR22725
OpenAccessLink https://www.osti.gov/servlets/purl/1344991
PQID 1884125736
PQPubID 23500
PageCount 15
ParticipantIDs crossref_primary_10_13182_NSE16_39
crossref_citationtrail_10_13182_NSE16_39
informaworld_taylorfrancis_310_13182_NSE16_39
osti_scitechconnect_1344991
proquest_miscellaneous_1884125736
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-01-01
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Nuclear science and engineering
PublicationYear 2017
Publisher Taylor & Francis
American Nuclear Society
Publisher_xml – name: Taylor & Francis
– name: American Nuclear Society
References b32
HONG S. G. (b25) 2011; 38
b22
b36
CHO N. Z. (b9) 2002; 86
b13
b24
b35
TABUCHI M. (b33) 2005; 93
b17
b28
WILLIAMSON R. (b37) 2012; 423
b39
GAULD I. C. (b4) 2011; 174
FINNEMANN H. (b16) 1977; 30
b2
b3
WEMPLE C. A. (b30) 2007; 96
JUNG Y. S. (b12) 2013; 62
LIU Y. (b27) 2015; 180
COLLINS B. (b7) 2016; 326
GASTON D. (b38) 2009; 239
References_xml – ident: b39
– ident: b22
– ident: b2
– ident: b3
– ident: b35
  doi: 10.2172/1337852
– volume: 96
  start-page: 657
  year: 2007
  ident: b30
  publication-title: Trans. Am. Nucl. Soc.
– ident: b24
– volume: 62
  start-page: 357
  year: 2013
  ident: b12
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/j.anucene.2013.06.031
– ident: b28
  doi: 10.13182/NSE62-1
– volume: 239
  start-page: 1768
  year: 2009
  ident: b38
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2009.05.021
– volume: 93
  start-page: 506
  year: 2005
  ident: b33
  publication-title: Trans. Am. Nucl. Soc.
– volume: 38
  start-page: 32
  year: 2011
  ident: b25
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/j.anucene.2010.08.022
– volume: 174
  start-page: 169
  year: 2011
  ident: b4
  publication-title: Nucl. Technol.
  doi: 10.13182/NT11-3
– volume: 423
  start-page: 149
  year: 2012
  ident: b37
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2012.01.012
– volume: 30
  start-page: 123
  year: 1977
  ident: b16
  publication-title: Atomkernenergie
– volume: 180
  start-page: 247
  year: 2015
  ident: b27
  publication-title: Nucl. Sci. Eng.
  doi: 10.13182/NSE14-65
– ident: b36
– volume: 326
  start-page: 612
  year: 2016
  ident: b7
  publication-title: J. Comp. Phys.
  doi: 10.1016/j.jcp.2016.08.022
– volume: 86
  start-page: 322
  year: 2002
  ident: b9
  publication-title: Trans. Am. Nucl. Soc.
– ident: b17
– ident: b32
– ident: b13
SSID ssj0026495
Score 2.4104407
Snippet This paper describes the methodology developed and implemented in the Virtual Environment for Reactor Applications Core Simulator (VERA-CS) to perform...
SourceID osti
proquest
crossref
informaworld
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 217
SubjectTerms CASL
Depletion
Mathematical models
MATHEMATICS AND COMPUTING
Methodology
MPACT
Nuclear reactors
Nuclides
Pressurized water reactors
Simulation
Solvers
SPECIFIC NUCLEAR REACTORS AND ASSOCIATED PLANTS
VERA
Title VERA Core Simulator Methodology for Pressurized Water Reactor Cycle Depletion
URI https://www.tandfonline.com/doi/abs/10.13182/NSE16-39
https://www.proquest.com/docview/1884125736
https://www.osti.gov/servlets/purl/1344991
Volume 185
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FVkhcEE8RWtCCOCBFLrG93sexhKAIqT00LY24WOvdtUhp7Sp1Du2B386MX3FIDoWLldj7SDzfzs7uznxDyAfJjHK-SzwuU1igOB15klvm8cjKlKHTEMNo5KNjPjlj32bRrNf73Y0uKZIDc7c1ruR_pAr3QK4YJfsPkm0bhRvwGeQLV5AwXO8l4-_jE4wqX7jBdH6FebhyJOXBlNAVsxK6EFbxf4v5HViW5xopEU9cmWNnMLqF5kDhXCP_di2diyYa12A6iUET9IO7627FXNhq6dz8XGZVSNhndK5dQW1Ukn1XT1x2oa_m7aNpMa99UEbIF70615_qy1_5yt27uyHhi86GRBMgoLyIVxxFB67Sq4qFSFs6W1e80QbCGjUqOjNyUM0TG8oe1BGyxx5Pxz73mu66hNp_TXSt-2F5igeV47JqHKoHZDcQAo_5dw8nX36ct0t2zlTUOAnhX6q5qbDyp6bfNYtmje8WpvkcFPXGNF_aLqdPyON60UEPKwQ9JT2XPSMPS-dfc_OcHCGOKOKItjiiHRxR6It2cERLHNEaR7TEEW1x9IKcfR2fjiZenWbDMyFXhaeVDHwtBI8SK7TQOhGGqyhRfsp8I40bKhOmkjstmXUq0NJKZYeOJdqxoRbhS7KT5Zl7RaivwX4FNW_B0GU2ENpZ-BYOlbXQoBB98rF5VbGpOegxFcplvCGSPnnfFr2uiFe2FfK67zsuyl2utEpJE4dbyu-hQGIYPUiRbNCXzBRQiMHC3--Td42cYlCyeHIGYyBf3sS-lAxWAiLkr-_zs_bIo9XA2Cc7xWLp3oDtWiRva4D9AQIum7Q
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4BVQWXvgB1Sx-m6qGXQLJ2_Dii7aJty-6BR-FmObYjIUqCQvZQfn3HzgaxLReOkSZObM_Y34zH3wB8kcwqn_ki4bJEB8WbPJHcsYTnTpYsJA2xcBt5OuOTM_bjIr9YAd7fhQlplcGHLjuiiLhWB-MOweiuTAMC4v3ZyTjjCVWr8CxHvB40m6aze0eLM5X3qR05bsELRqGlV5f2oSWWUlycazSv_xbnuOMcvoTz_l-7RJOrvXlb7Nm7f2gcn96ZV_BiAULJQac1r2HFV2_geUwGtbebMP01Pj4go7rx5OTyOtT3qhsyjaWmYxCeYC9Id6-wubzzjpwjYG3IsY-1e8joDzZKvvmbwOtdV1twdjg-HU2SRdmFxFKu2sQoOcyMEDwvnDDCmEJYrvJCZSXLrLQ-VZaWknsjmfNqaKSTyqWeFcaz1Ai6DWtVXfm3QDKDeAbN3iHwYW4ojHf4RFPlHDYoxAC-9pOg7YKTPJTG-K3jQRuOjo6jo6kawOd70ZuOiOMxoeThTOo2Rj3KrkSJpo_I74Sp1og2AmWuDblFtkUhho5gNoDdXgM0Gl04STGVr-e3OpOSITIUlL974hc_wfrkdHqkj77Pfu7AxjCAhBjQeQ9rbTP3HxDitMXHqM9_AeFZ92w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RUCsupU-xBVq36qGXQLJ2_DiiZVfQdlcVFMrNcmxHQm2TVcgeyq_v2NkgtuXCMdLEiR9jf2OPvw_go2RW-cwXCZclBije5InkjiU8d7JkIWmIhdvI0xk_PmefL_PLNcj7uzAhrTLE0GVHFBHn6uDcc1d2Kg2Ihw9mZ-OMJ1Q9gg2OkCRk8tF0dhtncabyPrMjxxV4SSi08urKMrRCUopzc43e9d_cHBecyRZc9L_a5Zn83F-0xb69-YfF8cF1eQZPlxCUHHZj5jms-eoFPI6poPb6JUwvxqeHZFQ3npxd_Q7qXnVDplFoOm7BE6wE6W4VNlc33pEfCFcbcuqjcg8Z_cFCyZGfB1bvunoF55Px99FxshRdSCzlqk2MksPMCMHzwgkjjCmE5SovVFayzErrU2VpKbk3kjmvhkY6qVzqWWE8S42gr2G9qiu_DSQziGbQ6R3CHuaGwniHTzRVzmGBQgzgU98H2i4ZyYMwxi8dj9mwdXRsHU3VAD7cms47Go77jJK7HanbuOdRdgIlmt5jvxN6WiPWCIS5NmQW2RaNGIaB2QDe9wNAo8uFcxRT-XpxrTMpGeJCQfmbB37xHTz5djTRX09mX3ZgcxgQQtzN2YX1tln4PcQ3bfE2jua_61n2EA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=VERA+Core+Simulator+Methodology+for+Pressurized+Water+Reactor+Cycle+Depletion&rft.jtitle=Nuclear+science+and+engineering&rft.au=Kochunas%2C+Brendan&rft.au=Collins%2C+Benjamin&rft.au=Stimpson%2C+Shane&rft.au=Salko%2C+Robert&rft.date=2017-01-01&rft.issn=0029-5639&rft.eissn=1943-748X&rft.volume=185&rft.issue=1&rft.spage=217&rft.epage=231&rft_id=info:doi/10.13182%2FNSE16-39&rft.externalDBID=n%2Fa&rft.externalDocID=10_13182_NSE16_39
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5639&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5639&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5639&client=summon