Numerical analysis of residual stress evolution of AlSi10Mg manufactured by selective laser melting
In selective laser melting (SLM) process, severe temperature gradients produce large residual stresses, which leading to part distortion and bad performance of alloy products. At present, numerical simulations are widely used to study temperature and residual stress filed within materials, neverthel...
Saved in:
Published in | Optik (Stuttgart) Vol. 137; pp. 65 - 78 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier GmbH
01.05.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In selective laser melting (SLM) process, severe temperature gradients produce large residual stresses, which leading to part distortion and bad performance of alloy products. At present, numerical simulations are widely used to study temperature and residual stress filed within materials, nevertheless, the residual stress prediction of alloys in the way of discontinuous laser scanning is rare to be carried out for SLM manufacturing. This study is aim to establish proper numerical models to investigate residual stress evolution of AlSi10Mg alloy in point exposure SLM process. Firstly, a concept of moving equivalent heat source has been developed to act on powder bed’s surfaces to simulate corresponding SLM process. Then, local temperature field within alloy parts are obtained by the built heat transfer model. In next, the derived temperature results are imported into the built solid mechanical model as a predefined field to analyze residual stress field of AlSi10Mg alloy parts. The consequence of numerical analysis is that, with laser exposure time increasing, the residual stress within alloy parts are gradually rising up. At last, residual stress of AlSi10Mg alloy parts are measured through experiments. The experimental data coincide with simulated results very well, which validates the reliability of established numerical models on residual stress evaluation of alloys during discontinuous laser scanning in SLM manufacture field. |
---|---|
AbstractList | In selective laser melting (SLM) process, severe temperature gradients produce large residual stresses, which leading to part distortion and bad performance of alloy products. At present, numerical simulations are widely used to study temperature and residual stress filed within materials, nevertheless, the residual stress prediction of alloys in the way of discontinuous laser scanning is rare to be carried out for SLM manufacturing. This study is aim to establish proper numerical models to investigate residual stress evolution of AlSi10Mg alloy in point exposure SLM process. Firstly, a concept of moving equivalent heat source has been developed to act on powder bed’s surfaces to simulate corresponding SLM process. Then, local temperature field within alloy parts are obtained by the built heat transfer model. In next, the derived temperature results are imported into the built solid mechanical model as a predefined field to analyze residual stress field of AlSi10Mg alloy parts. The consequence of numerical analysis is that, with laser exposure time increasing, the residual stress within alloy parts are gradually rising up. At last, residual stress of AlSi10Mg alloy parts are measured through experiments. The experimental data coincide with simulated results very well, which validates the reliability of established numerical models on residual stress evaluation of alloys during discontinuous laser scanning in SLM manufacture field. |
Author | Wang, Linzhi An, Xuguang Wu, Jiaojiao |
Author_xml | – sequence: 1 givenname: Jiaojiao surname: Wu fullname: Wu, Jiaojiao organization: Chongqing Key Laboratory of Additive Manufacturing Technology and Systems, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China – sequence: 2 givenname: Linzhi surname: Wang fullname: Wang, Linzhi email: wlz@cigit.ac.cn organization: Chongqing Key Laboratory of Additive Manufacturing Technology and Systems, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China – sequence: 3 givenname: Xuguang surname: An fullname: An, Xuguang organization: College of Material Science and Engineering, Sichuan University, Chengdu 610065, PR China |
BookMark | eNp9kMtOwzAQRS1UJNrCF7DxDySMH3XaBYuq4iUVWABry3HGlSMnQXYSqX9PSlmzmtFcndHMWZBZ27VIyC2DnAFTd3Xu64BdzoEVOfAcFFyQOVNsnTEh1IzMAQRkEri6IouUagAoCijmxL4NDUZvTaCmNeGYfKKdoxGTr4ZpmPqpTRTHLgy979pTuA0fnsHrgTamHZyx_RCxouWRJgxoez8iDSZhpA2G3reHa3LpTEh481eX5Ovx4XP3nO3fn152231mhdr0mZFWbZSUHDbAKibRikKKFWfS4cqIqhBO8rWtjOJrtrK2VKXjxtiSOydNYcWSiPNeG7uUIjr9HX1j4lEz0CdPuta_nvTJkwauJ08TdX-mcDpt9Bh1sh5bi5WP0ze66vy__A8Y1HXv |
CitedBy_id | crossref_primary_10_1016_j_optlastec_2020_106283 crossref_primary_10_1016_j_optlastec_2023_110500 crossref_primary_10_1108_RPJ_07_2019_0189 crossref_primary_10_2493_jjspe_86_562 crossref_primary_10_1016_j_vacuum_2017_11_024 crossref_primary_10_1016_j_mtcomm_2024_108539 crossref_primary_10_1016_j_matpr_2020_12_940 crossref_primary_10_1080_17452759_2023_2165122 crossref_primary_10_1002_adem_202300489 crossref_primary_10_1016_j_jmsy_2022_04_002 crossref_primary_10_1007_s11837_024_06699_9 crossref_primary_10_1007_s40516_023_00217_6 crossref_primary_10_1007_s12541_021_00506_0 crossref_primary_10_1007_s40430_020_02491_3 crossref_primary_10_1016_j_tsep_2022_101478 crossref_primary_10_1088_1361_651X_ab9733 crossref_primary_10_1007_s12540_022_01199_4 crossref_primary_10_3390_ma11122542 crossref_primary_10_3390_ma11091525 crossref_primary_10_1016_j_matpr_2022_09_100 crossref_primary_10_1016_j_jallcom_2018_04_298 crossref_primary_10_1016_j_ijheatmasstransfer_2019_05_003 crossref_primary_10_3390_ma14040876 crossref_primary_10_1007_s11665_024_09198_9 crossref_primary_10_1016_j_addma_2018_06_002 crossref_primary_10_1007_s40192_019_00144_5 crossref_primary_10_1016_j_addma_2023_103906 crossref_primary_10_3103_S1068798X24700965 crossref_primary_10_1007_s00170_023_12459_x crossref_primary_10_1007_s00170_022_09721_z crossref_primary_10_1080_02670836_2019_1705560 crossref_primary_10_1016_j_ceramint_2019_10_007 crossref_primary_10_1080_21663831_2023_2173028 crossref_primary_10_1080_17452759_2022_2048228 crossref_primary_10_1016_j_addma_2021_102187 crossref_primary_10_1016_j_addlet_2023_100132 crossref_primary_10_1016_j_addma_2020_101498 crossref_primary_10_1016_j_matdes_2021_109550 crossref_primary_10_1016_j_optlastec_2020_106782 crossref_primary_10_4028_www_scientific_net_MSF_976_156 crossref_primary_10_1007_s40964_019_00096_4 crossref_primary_10_1016_j_jmrt_2024_01_187 crossref_primary_10_1007_s11837_019_03338_6 crossref_primary_10_3390_technologies5020015 crossref_primary_10_1007_s40516_019_00103_0 crossref_primary_10_1016_j_rinp_2018_11_075 crossref_primary_10_1016_j_pmatsci_2023_101129 crossref_primary_10_1007_s11663_019_01670_5 crossref_primary_10_1177_09544089231169380 crossref_primary_10_1007_s00170_023_12278_0 crossref_primary_10_1016_j_ijleo_2018_05_081 crossref_primary_10_1155_2022_5211623 crossref_primary_10_1134_S102995992304001X crossref_primary_10_1016_j_mechmat_2022_104437 crossref_primary_10_1016_j_addma_2021_102278 crossref_primary_10_1007_s12008_023_01560_w crossref_primary_10_1016_j_msea_2022_144552 crossref_primary_10_3390_ma11050765 crossref_primary_10_2351_1_5104318 crossref_primary_10_1007_s40516_018_0070_6 crossref_primary_10_1016_j_cjmeam_2023_100102 crossref_primary_10_1016_j_optlastec_2020_106477 crossref_primary_10_1016_j_jmst_2019_08_049 crossref_primary_10_1016_j_addma_2018_06_024 crossref_primary_10_1016_j_jmst_2021_03_006 crossref_primary_10_1016_j_mtla_2023_101774 crossref_primary_10_3390_app13063460 crossref_primary_10_1016_j_matdes_2019_107920 crossref_primary_10_1177_09544062241245026 crossref_primary_10_1016_j_surfcoat_2024_130447 crossref_primary_10_1016_j_apsusc_2018_01_317 crossref_primary_10_1007_s40940_024_00257_0 crossref_primary_10_3390_ma16072757 crossref_primary_10_1002_adem_201901556 crossref_primary_10_1007_s40033_023_00613_4 crossref_primary_10_1016_j_mtcomm_2023_107254 crossref_primary_10_1007_s40516_019_00099_7 crossref_primary_10_2351_7_0001291 crossref_primary_10_3390_ma13173895 crossref_primary_10_1016_j_jmrt_2023_11_067 crossref_primary_10_3390_ma14154184 |
Cites_doi | 10.1023/A:1021153513925 10.1016/j.jmatprotec.2010.09.019 10.1016/j.actamat.2003.08.028 10.1088/0022-3727/40/2/039 10.1016/j.ijleo.2016.08.123 10.1016/j.optlaseng.2007.06.010 10.1016/j.actamat.2005.06.014 10.1016/S0007-8506(07)60677-5 10.1088/0022-3727/42/17/175504 10.1016/S0007-8506(07)63240-5 10.1088/0022-3727/37/14/003 10.1016/j.jallcom.2012.07.022 10.1016/j.addma.2014.09.001 10.1016/S0007-8506(07)60206-6 10.1016/j.jmatprotec.2015.10.022 10.1016/j.cirp.2007.10.004 10.1007/s00466-014-1024-2 10.1088/0022-3727/43/1/015502 10.1088/0022-3727/48/3/035303 10.1016/j.ijleo.2016.06.115 10.1016/j.commatsci.2016.01.044 10.1007/s11661-014-2549-x 10.1023/B:TRIL.0000044492.91991.f3 10.1016/j.matdes.2011.07.067 10.1016/j.phpro.2012.10.059 10.1088/0022-3727/41/10/105403 10.1007/BF02667333 |
ContentType | Journal Article |
Copyright | 2017 Elsevier GmbH |
Copyright_xml | – notice: 2017 Elsevier GmbH |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ijleo.2017.02.060 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1618-1336 |
EndPage | 78 |
ExternalDocumentID | 10_1016_j_ijleo_2017_02_060 S0030402617302036 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABLJU ABMAC ABNEU ABTAH ABXDB ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CAG COF CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SPD SSQ SST SSZ T5K TN5 VOH XOL ZY4 ~02 ~G- AAXKI AAYXX AFJKZ AKRWK CITATION |
ID | FETCH-LOGICAL-c369t-a4c6964420901d14ec37435214fe5a3d73f428cda62815ccb6bf2aacb2ff4a7c3 |
IEDL.DBID | AIKHN |
ISSN | 0030-4026 |
IngestDate | Thu Sep 26 18:29:03 EDT 2024 Fri Feb 23 02:30:02 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Numerical simulation Laser exposure time Selective laser melting AlSi10Mg alloy Residual stress |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c369t-a4c6964420901d14ec37435214fe5a3d73f428cda62815ccb6bf2aacb2ff4a7c3 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1016_j_ijleo_2017_02_060 elsevier_sciencedirect_doi_10_1016_j_ijleo_2017_02_060 |
PublicationCentury | 2000 |
PublicationDate | 2017-05-01 |
PublicationDateYYYYMMDD | 2017-05-01 |
PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Optik (Stuttgart) |
PublicationYear | 2017 |
Publisher | Elsevier GmbH |
Publisher_xml | – name: Elsevier GmbH |
References | Ding, Wang, Wang (bib0095) 2016; 127 Touloukian, DeWitt (bib0165) 1970; vol. 7 Gu, He (bib0110) 2016; 117 Safdar, Li, Sheikh (bib0015) 2007; 40 User subroutine to define non-uniform distributed flux in a heat transfer or mass diffusion analysis, Abaqus User Subroutines Reference Manual 1.1.3, pp. 1–3. Bey, Lore, Kruth, Humbeeck (bib0035) 2012; 541 Dai, Shaw (bib0050) 2004; 52 Hu, Ding, Wang (bib0105) 2016; 127 Alimardani, Toyserkani, Huissoon (bib0150) 2007; 45 Eleftherios, Peter, Christopher (bib0170) 2011; 211 Prasad, Asthana (bib0070) 2004; 17 Kempena, Thijsb, Van Humbeeckb, Kruth (bib0040) 2012; 39 Pinkerton, Li (bib0010) 2004; 37 Shiomi, Osakada, Nakamura, Yamashita, Abe (bib0025) 2004; 53 Element and contact pair removal and reactivation, Abaqus Analysis User’s Manual, Volume II: Analysis 11.2.1, pp. 1–2. Masubuchi (bib0160) 1996 Li, Fu, Guo, Fang (bib0060) 2016; 229 Ueda (bib0125) 1971; 2 Kumar, Bai, Rajasekharan (bib0080) 2008; 41 Goldak, Chakravarti, Bibby (bib0115) 1984; 15B Carslaw, Jaeger (bib0145) 1986 Li, Gu (bib0055) 2014; 1–4 Yuan, Gu (bib0100) 2015; 48 Labudovic, Hu, Kovacevic (bib0135) 2003; 38 Brandl, Heckenberger, Holzinger, Buchbinder (bib0030) 2012; 34 Wu, Brown, Kumar, Gallegos, King (bib0045) 2014; 45 Kruth, Leu, Nakagawa (bib0005) 1998; 47 Kumar, Bai, Rajkumar, Sharma, Jayakumar, Rajasekharan (bib0075) 2009; 42 Hodge, Ferencz, Solberg (bib0065) 2014; 54 Levy, Schindel, Kruth (bib0090) 2003; 52 He, Yu, Mazumder (bib0020) 2010; 43 Dai, Shaw (bib0155) 2005; 53 Kruth, Levy, Klocke (bib0085) 2007; 56 Sih, Barlow (bib0120) 1995; 397 Levy (10.1016/j.ijleo.2017.02.060_bib0090) 2003; 52 Brandl (10.1016/j.ijleo.2017.02.060_bib0030) 2012; 34 Pinkerton (10.1016/j.ijleo.2017.02.060_bib0010) 2004; 37 Hodge (10.1016/j.ijleo.2017.02.060_bib0065) 2014; 54 Kumar (10.1016/j.ijleo.2017.02.060_bib0080) 2008; 41 Yuan (10.1016/j.ijleo.2017.02.060_bib0100) 2015; 48 Carslaw (10.1016/j.ijleo.2017.02.060_bib0145) 1986 Masubuchi (10.1016/j.ijleo.2017.02.060_bib0160) 1996 Dai (10.1016/j.ijleo.2017.02.060_bib0050) 2004; 52 Kruth (10.1016/j.ijleo.2017.02.060_bib0005) 1998; 47 Hu (10.1016/j.ijleo.2017.02.060_bib0105) 2016; 127 Ueda (10.1016/j.ijleo.2017.02.060_bib0125) 1971; 2 Sih (10.1016/j.ijleo.2017.02.060_bib0120) 1995; 397 Dai (10.1016/j.ijleo.2017.02.060_bib0155) 2005; 53 Safdar (10.1016/j.ijleo.2017.02.060_bib0015) 2007; 40 10.1016/j.ijleo.2017.02.060_bib0140 Shiomi (10.1016/j.ijleo.2017.02.060_bib0025) 2004; 53 He (10.1016/j.ijleo.2017.02.060_bib0020) 2010; 43 Li (10.1016/j.ijleo.2017.02.060_bib0055) 2014; 1–4 Kruth (10.1016/j.ijleo.2017.02.060_bib0085) 2007; 56 Li (10.1016/j.ijleo.2017.02.060_bib0060) 2016; 229 Bey (10.1016/j.ijleo.2017.02.060_bib0035) 2012; 541 Gu (10.1016/j.ijleo.2017.02.060_bib0110) 2016; 117 Wu (10.1016/j.ijleo.2017.02.060_bib0045) 2014; 45 Alimardani (10.1016/j.ijleo.2017.02.060_bib0150) 2007; 45 Goldak (10.1016/j.ijleo.2017.02.060_bib0115) 1984; 15B Eleftherios (10.1016/j.ijleo.2017.02.060_bib0170) 2011; 211 Touloukian (10.1016/j.ijleo.2017.02.060_bib0165) 1970; vol. 7 Kumar (10.1016/j.ijleo.2017.02.060_bib0075) 2009; 42 Ding (10.1016/j.ijleo.2017.02.060_bib0095) 2016; 127 Labudovic (10.1016/j.ijleo.2017.02.060_bib0135) 2003; 38 Kempena (10.1016/j.ijleo.2017.02.060_bib0040) 2012; 39 Prasad (10.1016/j.ijleo.2017.02.060_bib0070) 2004; 17 10.1016/j.ijleo.2017.02.060_bib0130 |
References_xml | – volume: 52 start-page: 589 year: 2003 end-page: 609 ident: bib0090 article-title: Rapid manufacturing and rapid tooling with layer manufacturing (LM) technologies, state of the art and future perspectives publication-title: CIRP Ann. Manuf. Technol. contributor: fullname: Kruth – year: 1986 ident: bib0145 article-title: Conduction of Heat in Solids contributor: fullname: Jaeger – volume: 229 start-page: 703 year: 2016 end-page: 712 ident: bib0060 article-title: A multiscale modeling approach for fast prediction of part distortion in selective laser melting publication-title: J. Mater. Process. Technol. contributor: fullname: Fang – volume: 53 start-page: 4743 year: 2005 end-page: 4754 ident: bib0155 article-title: Finite element analysis of the effect of volume shrinkage during laser densification publication-title: Acta Mater. contributor: fullname: Shaw – volume: 38 start-page: 35 year: 2003 end-page: 49 ident: bib0135 article-title: A three dimensional model for direct laser metal powder deposition and rapid prototyping publication-title: J. Mater. Sci. contributor: fullname: Kovacevic – volume: 56 start-page: 730 year: 2007 end-page: 759 ident: bib0085 article-title: Childs T Consolidation phenomena in laser and powder-bed based layered manufacturing publication-title: CIRP Ann. Manuf. Technol. contributor: fullname: Klocke – volume: 54 start-page: 33 year: 2014 end-page: 51 ident: bib0065 article-title: Implementation of thermomechanical model for the simulation of selective laser melting publication-title: Comput. Mech. contributor: fullname: Solberg – volume: 45 start-page: 6260 year: 2014 end-page: 6270 ident: bib0045 article-title: An experimental investigation into additive manufacturing-induced residual stresses in 316L stainless steel publication-title: Metall. Mater. Trans. A contributor: fullname: King – volume: 541 start-page: 177 year: 2012 end-page: 185 ident: bib0035 article-title: Heat treatment of Ti6Al4V produced by selective laser melting: microstructure and mechanical properties publication-title: J. Alloys Compd. contributor: fullname: Humbeeck – volume: 2 start-page: 90 year: 1971 end-page: 100 ident: bib0125 article-title: Analysis of thermal elastic-plastic stress and strain during welding publication-title: Trans. Jpn. Weld. Soc. contributor: fullname: Ueda – volume: 397 start-page: 40 year: 1995 ident: bib0120 article-title: The prediction of the thermal conductivity of powders publication-title: Inc. SFF Symp. contributor: fullname: Barlow – volume: 53 start-page: 195 year: 2004 end-page: 198 ident: bib0025 article-title: Residual stress within metallic model made by selective laser melting process publication-title: CIRP Ann. Manuf. Technol. contributor: fullname: Abe – volume: 34 start-page: 159 year: 2012 end-page: 169 ident: bib0030 article-title: Additive manufactured AlSi10Mg samples using selective laser melting (SLM): microstructure, high cycle fatigue and fracture behavior publication-title: Mater. Des. contributor: fullname: Buchbinder – volume: vol. 7 year: 1970 ident: bib0165 publication-title: Thermophysical Properties of Matter, Thermal Radiative Properties: Metallic Elements and Alloys contributor: fullname: DeWitt – volume: 40 start-page: 593 year: 2007 end-page: 603 ident: bib0015 article-title: Numerical analysis of the effects of non-conventional laser beam geometries during laser melting of metallic materials publication-title: J. Phys. D: Appl. Phys. contributor: fullname: Sheikh – volume: 41 start-page: 105403 year: 2008 ident: bib0080 article-title: Aluminium matrix composites by pressure-less infiltration: the metallurgical and physical properties publication-title: J. Phys. D: Appl. Phys. contributor: fullname: Rajasekharan – volume: 39 start-page: 439 year: 2012 end-page: 446 ident: bib0040 article-title: Mechanical properties of AlSi10Mg produced by selective laser melting publication-title: Phys. Procedia contributor: fullname: Kruth – volume: 127 start-page: 8883 year: 2016 end-page: 8891 ident: bib0105 article-title: Numerical analysis of heat transfer during multi-layer selective laser melting of AlSi10Mg publication-title: Optik contributor: fullname: Wang – volume: 52 start-page: 9 year: 2004 end-page: 80 ident: bib0050 article-title: Thermal and mechanical finite element modeling of laser forming from metal and ceramic powders publication-title: Acta Mater. contributor: fullname: Shaw – volume: 48 start-page: 035303 year: 2015 ident: bib0100 article-title: Molten pool behaviour and its physical mechanism during selective laser melting of TiC/AlSi10Mg nanocomposites: simulation and experiments publication-title: J. Phys. D: Appl. Phys. contributor: fullname: Gu – volume: 1–4 start-page: 99 year: 2014 end-page: 109 ident: bib0055 article-title: Thermal behavior during selective laser melting of commercially pure titanium powder: numerical simulation and experimental study publication-title: Addit. Manuf. contributor: fullname: Gu – volume: 47 start-page: 525 year: 1998 end-page: 540 ident: bib0005 article-title: Progress in additive manufacturing and rapid prototyping publication-title: CIRP Ann. Manuf. Technol. contributor: fullname: Nakagawa – volume: 117 start-page: 221 year: 2016 end-page: 232 ident: bib0110 article-title: Finite element simulation and experimental investigation of residual stresses in selective laser melted Ti-Ni shape memory alloy publication-title: Comput. Mater. Sci. contributor: fullname: He – volume: 45 start-page: 1115 year: 2007 end-page: 1130 ident: bib0150 article-title: A 3D dynamic numerical approach for temperature and thermal stress distributions in multilayer laser solid freeform fabrication process publication-title: Opt. Lasers Eng. contributor: fullname: Huissoon – volume: 17 start-page: 445 year: 2004 end-page: 453 ident: bib0070 article-title: Aluminum metal-matrix composites for automotive applications: tribological considerations publication-title: Tribol. Lett. contributor: fullname: Asthana – volume: 37 start-page: 1885 year: 2004 end-page: 1895 ident: bib0010 article-title: Modelling the geometry of a moving laser melt pool and deposition track via energy and mass balances publication-title: Phys. D: Appl. Phys. contributor: fullname: Li – volume: 43 start-page: 015502 year: 2010 ident: bib0020 article-title: Temperature and composition profile during double-track laser cladding of H13 tool steel publication-title: J. Phys. D: Appl. Phys. contributor: fullname: Mazumder – volume: 42 start-page: 175504 year: 2009 ident: bib0075 article-title: Elastic modulus of Al-Si/SiC metal matrix composites as a function of volume fraction publication-title: J. Phys. D: Appl. Phys. contributor: fullname: Rajasekharan – volume: 211 start-page: 275 year: 2011 end-page: 284 ident: bib0170 article-title: Selective laser melting of aluminium components publication-title: J. Mater. Process. Technol. contributor: fullname: Christopher – start-page: 71 year: 1996 end-page: 88 ident: bib0160 article-title: Prediction and Control of Residual Stresses and Distortion in Welded Structures contributor: fullname: Masubuchi – volume: 127 start-page: 10898 year: 2016 end-page: 10907 ident: bib0095 article-title: Comparison study of numerical analysis for heat transfer and fluid flow under two different laser scan pattern during selective laser melting publication-title: Optik contributor: fullname: Wang – volume: 15B start-page: 299 year: 1984 end-page: 305 ident: bib0115 article-title: New finite element model for welding heat sources publication-title: Metall. Trans. B contributor: fullname: Bibby – volume: 38 start-page: 35 year: 2003 ident: 10.1016/j.ijleo.2017.02.060_bib0135 article-title: A three dimensional model for direct laser metal powder deposition and rapid prototyping publication-title: J. Mater. Sci. doi: 10.1023/A:1021153513925 contributor: fullname: Labudovic – volume: 211 start-page: 275 year: 2011 ident: 10.1016/j.ijleo.2017.02.060_bib0170 article-title: Selective laser melting of aluminium components publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2010.09.019 contributor: fullname: Eleftherios – volume: 52 start-page: 9 year: 2004 ident: 10.1016/j.ijleo.2017.02.060_bib0050 article-title: Thermal and mechanical finite element modeling of laser forming from metal and ceramic powders publication-title: Acta Mater. doi: 10.1016/j.actamat.2003.08.028 contributor: fullname: Dai – volume: 40 start-page: 593 year: 2007 ident: 10.1016/j.ijleo.2017.02.060_bib0015 article-title: Numerical analysis of the effects of non-conventional laser beam geometries during laser melting of metallic materials publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/40/2/039 contributor: fullname: Safdar – volume: 127 start-page: 10898 year: 2016 ident: 10.1016/j.ijleo.2017.02.060_bib0095 article-title: Comparison study of numerical analysis for heat transfer and fluid flow under two different laser scan pattern during selective laser melting publication-title: Optik doi: 10.1016/j.ijleo.2016.08.123 contributor: fullname: Ding – volume: vol. 7 year: 1970 ident: 10.1016/j.ijleo.2017.02.060_bib0165 contributor: fullname: Touloukian – volume: 45 start-page: 1115 year: 2007 ident: 10.1016/j.ijleo.2017.02.060_bib0150 article-title: A 3D dynamic numerical approach for temperature and thermal stress distributions in multilayer laser solid freeform fabrication process publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2007.06.010 contributor: fullname: Alimardani – volume: 53 start-page: 4743 year: 2005 ident: 10.1016/j.ijleo.2017.02.060_bib0155 article-title: Finite element analysis of the effect of volume shrinkage during laser densification publication-title: Acta Mater. doi: 10.1016/j.actamat.2005.06.014 contributor: fullname: Dai – volume: 397 start-page: 40 year: 1995 ident: 10.1016/j.ijleo.2017.02.060_bib0120 article-title: The prediction of the thermal conductivity of powders publication-title: Inc. SFF Symp. contributor: fullname: Sih – volume: 53 start-page: 195 year: 2004 ident: 10.1016/j.ijleo.2017.02.060_bib0025 article-title: Residual stress within metallic model made by selective laser melting process publication-title: CIRP Ann. Manuf. Technol. doi: 10.1016/S0007-8506(07)60677-5 contributor: fullname: Shiomi – volume: 42 start-page: 175504 year: 2009 ident: 10.1016/j.ijleo.2017.02.060_bib0075 article-title: Elastic modulus of Al-Si/SiC metal matrix composites as a function of volume fraction publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/42/17/175504 contributor: fullname: Kumar – volume: 2 start-page: 90 year: 1971 ident: 10.1016/j.ijleo.2017.02.060_bib0125 article-title: Analysis of thermal elastic-plastic stress and strain during welding publication-title: Trans. Jpn. Weld. Soc. contributor: fullname: Ueda – volume: 47 start-page: 525 year: 1998 ident: 10.1016/j.ijleo.2017.02.060_bib0005 article-title: Progress in additive manufacturing and rapid prototyping publication-title: CIRP Ann. Manuf. Technol. doi: 10.1016/S0007-8506(07)63240-5 contributor: fullname: Kruth – volume: 37 start-page: 1885 year: 2004 ident: 10.1016/j.ijleo.2017.02.060_bib0010 article-title: Modelling the geometry of a moving laser melt pool and deposition track via energy and mass balances publication-title: Phys. D: Appl. Phys. doi: 10.1088/0022-3727/37/14/003 contributor: fullname: Pinkerton – volume: 541 start-page: 177 year: 2012 ident: 10.1016/j.ijleo.2017.02.060_bib0035 article-title: Heat treatment of Ti6Al4V produced by selective laser melting: microstructure and mechanical properties publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2012.07.022 contributor: fullname: Bey – volume: 1–4 start-page: 99 year: 2014 ident: 10.1016/j.ijleo.2017.02.060_bib0055 article-title: Thermal behavior during selective laser melting of commercially pure titanium powder: numerical simulation and experimental study publication-title: Addit. Manuf. doi: 10.1016/j.addma.2014.09.001 contributor: fullname: Li – volume: 52 start-page: 589 year: 2003 ident: 10.1016/j.ijleo.2017.02.060_bib0090 article-title: Rapid manufacturing and rapid tooling with layer manufacturing (LM) technologies, state of the art and future perspectives publication-title: CIRP Ann. Manuf. Technol. doi: 10.1016/S0007-8506(07)60206-6 contributor: fullname: Levy – volume: 229 start-page: 703 year: 2016 ident: 10.1016/j.ijleo.2017.02.060_bib0060 article-title: A multiscale modeling approach for fast prediction of part distortion in selective laser melting publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2015.10.022 contributor: fullname: Li – ident: 10.1016/j.ijleo.2017.02.060_bib0140 – volume: 56 start-page: 730 year: 2007 ident: 10.1016/j.ijleo.2017.02.060_bib0085 article-title: Childs T Consolidation phenomena in laser and powder-bed based layered manufacturing publication-title: CIRP Ann. Manuf. Technol. doi: 10.1016/j.cirp.2007.10.004 contributor: fullname: Kruth – volume: 54 start-page: 33 year: 2014 ident: 10.1016/j.ijleo.2017.02.060_bib0065 article-title: Implementation of thermomechanical model for the simulation of selective laser melting publication-title: Comput. Mech. doi: 10.1007/s00466-014-1024-2 contributor: fullname: Hodge – volume: 43 start-page: 015502 year: 2010 ident: 10.1016/j.ijleo.2017.02.060_bib0020 article-title: Temperature and composition profile during double-track laser cladding of H13 tool steel publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/43/1/015502 contributor: fullname: He – volume: 48 start-page: 035303 year: 2015 ident: 10.1016/j.ijleo.2017.02.060_bib0100 article-title: Molten pool behaviour and its physical mechanism during selective laser melting of TiC/AlSi10Mg nanocomposites: simulation and experiments publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/48/3/035303 contributor: fullname: Yuan – ident: 10.1016/j.ijleo.2017.02.060_bib0130 – volume: 127 start-page: 8883 year: 2016 ident: 10.1016/j.ijleo.2017.02.060_bib0105 article-title: Numerical analysis of heat transfer during multi-layer selective laser melting of AlSi10Mg publication-title: Optik doi: 10.1016/j.ijleo.2016.06.115 contributor: fullname: Hu – volume: 117 start-page: 221 year: 2016 ident: 10.1016/j.ijleo.2017.02.060_bib0110 article-title: Finite element simulation and experimental investigation of residual stresses in selective laser melted Ti-Ni shape memory alloy publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2016.01.044 contributor: fullname: Gu – year: 1986 ident: 10.1016/j.ijleo.2017.02.060_bib0145 contributor: fullname: Carslaw – volume: 45 start-page: 6260 year: 2014 ident: 10.1016/j.ijleo.2017.02.060_bib0045 article-title: An experimental investigation into additive manufacturing-induced residual stresses in 316L stainless steel publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-014-2549-x contributor: fullname: Wu – volume: 17 start-page: 445 year: 2004 ident: 10.1016/j.ijleo.2017.02.060_bib0070 article-title: Aluminum metal-matrix composites for automotive applications: tribological considerations publication-title: Tribol. Lett. doi: 10.1023/B:TRIL.0000044492.91991.f3 contributor: fullname: Prasad – start-page: 71 year: 1996 ident: 10.1016/j.ijleo.2017.02.060_bib0160 contributor: fullname: Masubuchi – volume: 34 start-page: 159 year: 2012 ident: 10.1016/j.ijleo.2017.02.060_bib0030 article-title: Additive manufactured AlSi10Mg samples using selective laser melting (SLM): microstructure, high cycle fatigue and fracture behavior publication-title: Mater. Des. doi: 10.1016/j.matdes.2011.07.067 contributor: fullname: Brandl – volume: 39 start-page: 439 year: 2012 ident: 10.1016/j.ijleo.2017.02.060_bib0040 article-title: Mechanical properties of AlSi10Mg produced by selective laser melting publication-title: Phys. Procedia doi: 10.1016/j.phpro.2012.10.059 contributor: fullname: Kempena – volume: 41 start-page: 105403 year: 2008 ident: 10.1016/j.ijleo.2017.02.060_bib0080 article-title: Aluminium matrix composites by pressure-less infiltration: the metallurgical and physical properties publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/41/10/105403 contributor: fullname: Kumar – volume: 15B start-page: 299 issue: 7 year: 1984 ident: 10.1016/j.ijleo.2017.02.060_bib0115 article-title: New finite element model for welding heat sources publication-title: Metall. Trans. B doi: 10.1007/BF02667333 contributor: fullname: Goldak |
SSID | ssj0007707 |
Score | 2.4283562 |
Snippet | In selective laser melting (SLM) process, severe temperature gradients produce large residual stresses, which leading to part distortion and bad performance of... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 65 |
SubjectTerms | AlSi10Mg alloy Laser exposure time Numerical simulation Residual stress Selective laser melting |
Title | Numerical analysis of residual stress evolution of AlSi10Mg manufactured by selective laser melting |
URI | https://dx.doi.org/10.1016/j.ijleo.2017.02.060 |
Volume | 137 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB76QPAiPrE-yh48GpvHZrM9lmKpSnvRQm9hd7MrLX3Rh-DF3-7sJhEF8WBu2WQhfFnmm2HmmwG4kUiaEc-YF0gWe5RnwhOG-h4yMacxXqHLmA6GrD-ij-N4XIFuqYWxZZWF7c9turPWxUqrQLO1mkysxhdDcddRPHLptCrUkY5CXoN65-GpP_wyyEmSq6bxfRsusbL5kCvzmkxnTgQYJK53p2tV-QtBfSOd3iEcFN4i6eQfdAQVvTiGPVe1qTYnoIa7POEyI6JoLkKWhmAE7SRWJBeCEP1WnC_7sDN7ngT-4JXMxWJnZQ27tc6IfCcbNxEHjR9Bh1qvyVzPbEn0KYx69y_dvldMTfBUxNpbT1DF2ujlhD5SfRZQrSL0EpClqdGxiLIkMhhyqEywkAexUpJJEwqhZGgMFYmKzqC2WC70ORCZceYn2rQ549RwJlmgmR0z1OYZrtIG3JZQpau8OUZaVo1NU4dsapFN_TBFZBvASjjTH_84RfP918aL_268hH17lxcoXkFtu97pa3QitrIJ1buPoFkclU_k0sZS |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA61RfQiPrE-c_Do0n1ks9ljKZbWPi620FtIsolU-qIPwX_vJLsrCuLBPSYbWL5kv5kh880g9CDBaEYso14gaewRlglPGOJ7YIkZieEJ3Y3pYEg7Y_I8iScV1Cq1MDatsuD-nNMdWxcjjQLNxmo6tRpfCMVdRfHIXaftoRp4Ayn8nbVmt9cZfhFykuSqaXjfhku0LD7k0rymbzMnAgwSV7vTlar8xUB9MzrtY3RUeIu4mX_QCaroxSnad1mbanOG1HCXX7jMsCiKi-ClwRBBO4kVzoUgWL8X58tONmcv08AfvOK5WOysrGG31hmWH3jjOuIA-WFwqPUaz_XMpkSfo3H7adTqeEXXBE9FNN16giiagpcT-mDqs4BoFYGXAFaaGB2LKEsiAyGHygQNWRArJak0oRBKhsYQkajoAlUXy4W-RFhmjPqJNimjjBhGJQ00tW2GUpbBKKmjxxIqvsqLY_Aya-yNO2S5RZb7IQdk64iWcPIfe8yBvv9aePXfhffooDMa9Hm_O-xdo0M7kycr3qDqdr3Tt-BQbOVdcWA-AbXIyEY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+analysis+of+residual+stress+evolution+of+AlSi10Mg+manufactured+by+selective+laser+melting&rft.jtitle=Optik+%28Stuttgart%29&rft.au=Wu%2C+Jiaojiao&rft.au=Wang%2C+Linzhi&rft.au=An%2C+Xuguang&rft.date=2017-05-01&rft.issn=0030-4026&rft.volume=137&rft.spage=65&rft.epage=78&rft_id=info:doi/10.1016%2Fj.ijleo.2017.02.060&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijleo_2017_02_060 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-4026&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-4026&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-4026&client=summon |