Impaired hepatic glycogen synthesis in glucokinase-deficient (MODY-2) subjects
All glucokinase gene mutations identified to date have been localized to exons that are common to the pancreatic and hepatic isoforms of the enzyme. While impaired insulin secretion has been observed in glucokinase-deficient subjects the consequences of this mutation on hepatic glucose metabolism re...
Saved in:
Published in | The Journal of clinical investigation Vol. 98; no. 8; pp. 1755 - 1761 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
15.10.1996
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | All glucokinase gene mutations identified to date have been localized to exons that are common to the pancreatic and hepatic isoforms of the enzyme. While impaired insulin secretion has been observed in glucokinase-deficient subjects the consequences of this mutation on hepatic glucose metabolism remain unknown. To examine this question hepatic glycogen concentration was measured in seven glucokinase-deficient subjects with normal glycosylated hemoglobin and 12 control subjects using 13C nuclear magnetic spectroscopy during a day in which three isocaloric mixed meals were ingested. The relative fluxes of the direct and indirect pathways of hepatic glycogen synthesis were also assessed using [1-13C]glucose in combination with acetaminophen to noninvasively sample the hepatic UDP-glucose pool. Average fasting hepatic glycogen content was similar in glucokinase-deficient and control subjects (279+/-20 vs 284+/-14 mM; mean+/-SEM), and increased in both groups after the meals with a continuous pattern throughout the day. However, the net increment in hepatic glycogen content after each meal was 30-60% lower in glucokinase-deficient than in the control subjects (breakfast, 46% lower, P < 0.02; lunch, 62% lower, P = 0.002; dinner; 30% lower, P = 0.04). The net increment over basal values 4 h after dinner was 105 +/-18 mM in glucokinase-deficient and 148+/-11 mM in control subjects (P = 0.04). In the 4 h after breakfast, flux through the gluconeogenic pathway relative to the direct pathway of hepatic glycogen synthesis was higher in glucokinase-deficient than in control subjects (50+/-2% vs 34+/-5%; P = 0.038). In conclusion glucokinase-deficient subjects have decreased net accumulation of hepatic glycogen and relatively augmented hepatic gluconeogenesis after meals. These results suggest that in addition to the altered beta cell function, abnormalities in liver glycogen metabolism play an important role in the pathogenesis of hyperglycemia in patients with glucokinase-deficient maturity onset diabetes of young. |
---|---|
AbstractList | All glucokinase gene mutations identified to date have been localized to exons that are common to the pancreatic and hepatic isoforms of the enzyme. While impaired insulin secretion has been observed in glucokinase-deficient subjects the consequences of this mutation on hepatic glucose metabolism remain unknown. To examine this question hepatic glycogen concentration was measured in seven glucokinase-deficient subjects with normal glycosylated hemoglobin and 12 control subjects using 13C nuclear magnetic spectroscopy during a day in which three isocaloric mixed meals were ingested. The relative fluxes of the direct and indirect pathways of hepatic glycogen synthesis were also assessed using [1-13C]glucose in combination with acetaminophen to noninvasively sample the hepatic UDP-glucose pool. Average fasting hepatic glycogen content was similar in glucokinase-deficient and control subjects (279+/-20 vs 284+/-14 mM; mean+/-SEM), and increased in both groups after the meals with a continuous pattern throughout the day. However, the net increment in hepatic glycogen content after each meal was 30-60% lower in glucokinase-deficient than in the control subjects (breakfast, 46% lower, P < 0.02; lunch, 62% lower, P = 0.002; dinner; 30% lower, P = 0.04). The net increment over basal values 4 h after dinner was 105 +/-18 mM in glucokinase-deficient and 148+/-11 mM in control subjects (P = 0.04). In the 4 h after breakfast, flux through the gluconeogenic pathway relative to the direct pathway of hepatic glycogen synthesis was higher in glucokinase-deficient than in control subjects (50+/-2% vs 34+/-5%; P = 0.038). In conclusion glucokinase-deficient subjects have decreased net accumulation of hepatic glycogen and relatively augmented hepatic gluconeogenesis after meals. These results suggest that in addition to the altered beta cell function, abnormalities in liver glycogen metabolism play an important role in the pathogenesis of hyperglycemia in patients with glucokinase-deficient maturity onset diabetes of young. All glucokinase gene mutations identified to date have been localized to exons that are common to the pancreatic and hepatic isoforms of the enzyme. While impaired insulin secretion has been observed in glucokinase-deficient subjects the consequences of this mutation on hepatic glucose metabolism remain unknown. To examine this question hepatic glycogen concentration was measured in seven glucokinase-deficient subjects with normal glycosylated hemoglobin and 12 control subjects using 13C nuclear magnetic spectroscopy during a day in which three isocaloric mixed meals were ingested. The relative fluxes of the direct and indirect pathways of hepatic glycogen synthesis were also assessed using [1-13C]glucose in combination with acetaminophen to noninvasively sample the hepatic UDP-glucose pool. Average fasting hepatic glycogen content was similar in glucokinase-deficient and control subjects (279+/-20 vs 284+/-14 mM; mean+/-SEM), and increased in both groups after the meals with a continuous pattern throughout the day. However, the net increment in hepatic glycogen content after each meal was 30-60% lower in glucokinase-deficient than in the control subjects (breakfast, 46% lower, P < 0.02; lunch, 62% lower, P = 0.002; dinner; 30% lower, P = 0.04). The net increment over basal values 4 h after dinner was 105 +/-18 mM in glucokinase-deficient and 148+/-11 mM in control subjects (P = 0.04). In the 4 h after breakfast, flux through the gluconeogenic pathway relative to the direct pathway of hepatic glycogen synthesis was higher in glucokinase-deficient than in control subjects (50+/-2% vs 34+/-5%; P = 0.038). In conclusion glucokinase-deficient subjects have decreased net accumulation of hepatic glycogen and relatively augmented hepatic gluconeogenesis after meals. These results suggest that in addition to the altered beta cell function, abnormalities in liver glycogen metabolism play an important role in the pathogenesis of hyperglycemia in patients with glucokinase-deficient maturity onset diabetes of young.All glucokinase gene mutations identified to date have been localized to exons that are common to the pancreatic and hepatic isoforms of the enzyme. While impaired insulin secretion has been observed in glucokinase-deficient subjects the consequences of this mutation on hepatic glucose metabolism remain unknown. To examine this question hepatic glycogen concentration was measured in seven glucokinase-deficient subjects with normal glycosylated hemoglobin and 12 control subjects using 13C nuclear magnetic spectroscopy during a day in which three isocaloric mixed meals were ingested. The relative fluxes of the direct and indirect pathways of hepatic glycogen synthesis were also assessed using [1-13C]glucose in combination with acetaminophen to noninvasively sample the hepatic UDP-glucose pool. Average fasting hepatic glycogen content was similar in glucokinase-deficient and control subjects (279+/-20 vs 284+/-14 mM; mean+/-SEM), and increased in both groups after the meals with a continuous pattern throughout the day. However, the net increment in hepatic glycogen content after each meal was 30-60% lower in glucokinase-deficient than in the control subjects (breakfast, 46% lower, P < 0.02; lunch, 62% lower, P = 0.002; dinner; 30% lower, P = 0.04). The net increment over basal values 4 h after dinner was 105 +/-18 mM in glucokinase-deficient and 148+/-11 mM in control subjects (P = 0.04). In the 4 h after breakfast, flux through the gluconeogenic pathway relative to the direct pathway of hepatic glycogen synthesis was higher in glucokinase-deficient than in control subjects (50+/-2% vs 34+/-5%; P = 0.038). In conclusion glucokinase-deficient subjects have decreased net accumulation of hepatic glycogen and relatively augmented hepatic gluconeogenesis after meals. These results suggest that in addition to the altered beta cell function, abnormalities in liver glycogen metabolism play an important role in the pathogenesis of hyperglycemia in patients with glucokinase-deficient maturity onset diabetes of young. |
Author | Pueyo, M E Shulman, G I Rothman, D L Petersen, K F Perseghin, G Hwang, J H Cline, G W Velho, G Froguel, P |
AuthorAffiliation | INSERM U358, Hôpital Saint-Louis, Paris, France |
AuthorAffiliation_xml | – name: INSERM U358, Hôpital Saint-Louis, Paris, France |
Author_xml | – sequence: 1 givenname: G surname: Velho fullname: Velho, G – sequence: 2 givenname: K F surname: Petersen fullname: Petersen, K F – sequence: 3 givenname: G surname: Perseghin fullname: Perseghin, G – sequence: 4 givenname: J H surname: Hwang fullname: Hwang, J H – sequence: 5 givenname: D L surname: Rothman fullname: Rothman, D L – sequence: 6 givenname: M E surname: Pueyo fullname: Pueyo, M E – sequence: 7 givenname: G W surname: Cline fullname: Cline, G W – sequence: 8 givenname: P surname: Froguel fullname: Froguel, P – sequence: 9 givenname: G I surname: Shulman fullname: Shulman, G I |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/8878425$$D View this record in MEDLINE/PubMed |
BookMark | eNptUU1PAjEU7AGDgB78ASZ7MnJYafer7cGDwS8MykUPnprSvoXibovbXRP-vUsgRI2nl7yZeW8y00cd6ywgdEbwFSE0Gj2NJ4QwTpMO6mEckZDTmB2jvvcrjEmSpEkXdRmjLInSHnqZlGtpKtDBEtayNipYFBvlFmADv7H1ErzxgbHttlHuw1jpIdSQG2XA1sHl8-z2PYyGgW_mK1C1P0FHuSw8nO7nAL3d372OH8Pp7GEyvpmGKs54HfJ5lKRZTImMpdaSUJ5rnmnKWaQZaImp5lwRoIRBqlKNIdNKyQQg0XkW63iArnd31828BK1aM5UsxLoypaw2wkkjfiPWLMXCfYkU04zErf5ir6_cZwO-FqXxCopCWnCNF206NOYZbYnnPx8dPuwDbPHhDleV876C_MAgWGz7EIc-Wu7oD1eZus3cbS2a4h_FN6sTkEk |
CitedBy_id | crossref_primary_10_1016_j_ymben_2010_08_002 crossref_primary_10_1371_journal_pone_0079933 crossref_primary_10_2337_diabetes_53_12_3048 crossref_primary_10_1507_endocrj_EJ21_0526 crossref_primary_10_1016_j_molmet_2014_12_007 crossref_primary_10_1002_humu_10277 crossref_primary_10_1002_dmrr_217 crossref_primary_10_1007_s13300_019_0647_x crossref_primary_10_1007_s00018_008_8322_9 crossref_primary_10_3389_fphys_2022_817542 crossref_primary_10_2337_diabetes_50_6_1351 crossref_primary_10_1172_JCI8673 crossref_primary_10_1016_j_molmet_2015_10_001 crossref_primary_10_1021_acs_analchem_5b01296 crossref_primary_10_2165_00024677_200403040_00007 crossref_primary_10_1016_j_tem_2022_12_007 crossref_primary_10_1016_j_trsl_2010_12_006 crossref_primary_10_1016_j_bbrc_2015_03_097 crossref_primary_10_1038_ncomms6190 crossref_primary_10_1152_ajpendo_1997_273_4_E743 crossref_primary_10_2337_db12_0827 crossref_primary_10_1097_00075197_199903000_00012 crossref_primary_10_1016_S1262_3636_07_70081_2 crossref_primary_10_3390_ijms232112910 crossref_primary_10_1016_j_ejphar_2013_06_014 crossref_primary_10_1016_j_molmet_2015_06_006 crossref_primary_10_1016_j_molmet_2024_101942 crossref_primary_10_1097_00060793_200008000_00005 crossref_primary_10_1080_ann_34_3_207_217 crossref_primary_10_2337_diabetes_51_7_2179 crossref_primary_10_1186_s11658_024_00640_3 crossref_primary_10_1016_j_tibs_2024_12_007 crossref_primary_10_1038_sj_bjp_0706848 crossref_primary_10_1590_S0100_879X1999000400008 crossref_primary_10_1016_j_cmet_2013_08_010 crossref_primary_10_1111_j_1463_1326_2007_00819_x crossref_primary_10_2337_dc07_2017 crossref_primary_10_2337_dc14_2769 crossref_primary_10_1517_13543784_17_2_145 crossref_primary_10_1002_humu_21110 crossref_primary_10_1152_ajpendo_00530_2002 crossref_primary_10_2174_1573399816666191230114352 crossref_primary_10_1016_S0065_2571_97_00001_0 crossref_primary_10_1016_S1155_1941_06_41115_X crossref_primary_10_1074_jbc_274_1_305 crossref_primary_10_1016_j_biopha_2012_07_002 crossref_primary_10_2337_diabetes_53_suppl_3_S48 crossref_primary_10_1016_j_diabres_2009_11_013 crossref_primary_10_1016_j_jbc_2021_100498 crossref_primary_10_3390_metabo12121223 crossref_primary_10_1042_BST0330371 crossref_primary_10_1016_S0889_8529_05_70101_8 crossref_primary_10_1002_pdi_108 crossref_primary_10_1074_jbc_275_14_10597 crossref_primary_10_1111_j_1463_1326_2004_00399_x crossref_primary_10_7717_peerj_11929 crossref_primary_10_1038_876 crossref_primary_10_1016_j_molcel_2019_05_019 crossref_primary_10_1016_S1521_690X_03_00031_9 crossref_primary_10_1016_j_jep_2010_06_015 crossref_primary_10_1089_dia_2015_0333 crossref_primary_10_1074_jbc_M009525200 crossref_primary_10_1007_s00125_011_2238_x crossref_primary_10_1007_s00125_008_1183_9 crossref_primary_10_1073_pnas_1921694117 crossref_primary_10_2337_diabetes_53_8_2042 crossref_primary_10_2165_00024677_200504010_00002 crossref_primary_10_1016_j_annfar_2009_02_031 crossref_primary_10_1016_j_metabol_2018_09_004 crossref_primary_10_1016_j_gene_2012_12_036 crossref_primary_10_1111_j_1365_2265_2008_03184_x crossref_primary_10_1111_j_1651_2227_1998_tb01550_x crossref_primary_10_1054_mehy_1997_0682 crossref_primary_10_2337_db10_1663 crossref_primary_10_1074_jbc_M213112200 crossref_primary_10_1080_14786419_2021_1931187 crossref_primary_10_1210_jc_2013_3248 crossref_primary_10_1039_C7FO01035D crossref_primary_10_1039_C7FO00190H crossref_primary_10_2337_db06_1660 crossref_primary_10_1074_jbc_M107001200 crossref_primary_10_2337_db10_1032 crossref_primary_10_1152_physrev_00019_2009 crossref_primary_10_14341_DM12819 crossref_primary_10_1590_S0004_27302002000200012 crossref_primary_10_1126_scitranslmed_abh1316 crossref_primary_10_1016_j_bbacli_2016_02_001 crossref_primary_10_3390_life13040946 crossref_primary_10_1016_j_diabres_2018_10_004 crossref_primary_10_1073_pnas_96_25_14511 crossref_primary_10_2337_diabetes_50_2_392 crossref_primary_10_3390_cancers12082101 crossref_primary_10_1051_medsci_20031989854 crossref_primary_10_1152_physrev_00022_2003 crossref_primary_10_1038_nrendo_2017_80 crossref_primary_10_2337_diabetes_50_3_622 crossref_primary_10_1172_JCI17975 crossref_primary_10_1074_jbc_M002427200 crossref_primary_10_1016_j_jff_2023_105534 crossref_primary_10_1053_beem_2001_0148 crossref_primary_10_1016_j_mam_2015_09_002 crossref_primary_10_1074_jbc_M107744200 crossref_primary_10_1042_BJ20080595 crossref_primary_10_1146_annurev_nutr_071715_051145 crossref_primary_10_3390_ijms22020918 crossref_primary_10_1152_physiologyonline_2000_15_4_198 crossref_primary_10_1016_j_beem_2011_12_001 crossref_primary_10_1042_BSR20160385 crossref_primary_10_2337_diabetes_51_10_3043 crossref_primary_10_1126_science_1084073 crossref_primary_10_1056_NEJMra002168 crossref_primary_10_1152_ajpendo_2000_278_1_E65 crossref_primary_10_2337_diabetes_51_1_49 crossref_primary_10_1007_s11892_002_0071_9 crossref_primary_10_1292_jvms_70_1239 crossref_primary_10_1679_aohc_63_243 crossref_primary_10_1371_journal_pone_0097139 crossref_primary_10_1016_j_pcl_2005_07_005 crossref_primary_10_1177_0004563213483458 crossref_primary_10_1073_pnas_96_22_12737 crossref_primary_10_1016_j_cmet_2013_12_001 crossref_primary_10_1016_j_ecl_2006_02_009 crossref_primary_10_2337_db11_1462 crossref_primary_10_2337_diacare_26_7_2069 crossref_primary_10_1038_nbt0302_243 crossref_primary_10_1038_953 crossref_primary_10_3181_0904_RM_126 crossref_primary_10_1016_S1043_2760_98_00134_9 crossref_primary_10_1111_1755_0998_13397 crossref_primary_10_14814_phy2_13661 crossref_primary_10_3390_ijerph19105980 crossref_primary_10_1016_j_beem_2007_07_010 crossref_primary_10_1210_er_2007_0024 crossref_primary_10_1515_JPEM_1999_12_4_487 crossref_primary_10_1016_j_diabres_2022_109779 crossref_primary_10_3389_fendo_2021_802423 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1172/JCI118974 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EndPage | 1761 |
ExternalDocumentID | PMC507613 8878425 10_1172_JCI118974 |
Genre | Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S Journal Article |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: R01 DK-49230 – fundername: NCRR NIH HHS grantid: M01 RR-00123 – fundername: NIDDK NIH HHS grantid: P01 DK-45735 |
GroupedDBID | --- -~X .55 .GJ .XZ 08P 29K 2WC 354 3O- 53G 5GY 5RE 5RS 8F7 AAWTL AAYOK AAYXX ABOCM ABPMR ACGFO ACIHN ACNCT ACPRK ADBBV AEAQA AENEX AFCHL AFFNX AHMBA AI. ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ASPBG AVWKF AZFZN BAWUL CITATION CS3 D-I DIK DU5 E3Z EBS EJD EMB F5P FRP GROUPED_DOAJ GX1 HYE H~9 IAO IEA IHR INH IOF IPO J5H KQ8 L7B M1P M5~ MVM N4W OBH OCB ODZKP OFXIZ OGEVE OHH OK1 OVD OVIDX OVT P2P P6G RPM TEORI TR2 TVE UHU VH1 VVN W2D WH7 WOQ WOW X7M XSB YFH YHG YKV YOC ZGI ZXP ZY1 ~H1 CGR CUY CVF ECM EIF INR NPM PKN 7X8 5PM |
ID | FETCH-LOGICAL-c369t-9b2456371a3adda179fd96d7982d8eda07d99c1e718e5c5d0e6dcca4ee4df63d3 |
ISSN | 0021-9738 |
IngestDate | Thu Aug 21 14:35:36 EDT 2025 Fri Jul 11 01:04:49 EDT 2025 Wed Feb 19 01:14:37 EST 2025 Tue Jul 01 00:54:02 EDT 2025 Thu Apr 24 22:54:07 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c369t-9b2456371a3adda179fd96d7982d8eda07d99c1e718e5c5d0e6dcca4ee4df63d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://www.jci.org/articles/view/118974/files/pdf |
PMID | 8878425 |
PQID | 78473967 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_507613 proquest_miscellaneous_78473967 pubmed_primary_8878425 crossref_primary_10_1172_JCI118974 crossref_citationtrail_10_1172_JCI118974 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 1900 |
PublicationDate | 1996-10-15 1996-Oct-15 19961015 |
PublicationDateYYYYMMDD | 1996-10-15 |
PublicationDate_xml | – month: 10 year: 1996 text: 1996-10-15 day: 15 |
PublicationDecade | 1990 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of clinical investigation |
PublicationTitleAlternate | J Clin Invest |
PublicationYear | 1996 |
References | 1401068 - J Clin Invest. 1992 Oct;90(4):1323-7 2065850 - Diabetologia. 1991 Feb;34(2):67-73 8376578 - J Clin Invest. 1993 Sep;92(3):1174-80 1864968 - J Clin Invest. 1991 Aug;88(2):578-87 8325892 - J Biol Chem. 1993 Jul 15;268(20):15200-4 8446612 - Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1932-6 2682629 - Proc Natl Acad Sci U S A. 1989 Oct;86(20):7838-42 8227324 - J Clin Invest. 1993 Nov;92(5):2092-8 1532777 - Diabetes Care. 1992 Mar;15(3):318-68 8132752 - J Clin Invest. 1994 Mar;93(3):1120-30 8433729 - N Engl J Med. 1993 Mar 11;328(10):697-702 7553875 - Cell. 1995 Oct 6;83(1):69-78 8530440 - J Biol Chem. 1995 Dec 22;270(51):30253-6 2205106 - Am J Physiol. 1990 Sep;259(3 Pt 1):E335-41 1948033 - Science. 1991 Oct 25;254(5031):573-6 7665557 - J Biol Chem. 1995 Sep 15;270(37):21464-7 1502186 - Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7698-702 6472448 - Nature. 1984 Aug 23-29;310(5979):681-3 1354782 - Lancet. 1992 Aug 22;340(8817):444-8 2404717 - Diabetes Care. 1990 Jan;13(1):49-64 8203517 - Am J Physiol. 1994 May;266(5 Pt 1):E796-803 8609218 - J Clin Invest. 1996 Feb 1;97(3):642-8 8720607 - Diabetologia. 1996 Jan;39(1):82-90 2550428 - J Biol Chem. 1989 Sep 25;264(27):15936-42 1570017 - Nature. 1992 Apr 23;356(6371):721-2 2189759 - Diabetes. 1990 Jun;39(6):647-52 8349034 - Diabetes. 1993 Sep;42(9):1238-45 7860761 - J Clin Invest. 1995 Feb;95(2):783-7 8168650 - Diabetes. 1994 May;43(5):718-23 8168652 - Diabetes. 1994 May;43(5):730-3 |
References_xml | – reference: 1354782 - Lancet. 1992 Aug 22;340(8817):444-8 – reference: 8203517 - Am J Physiol. 1994 May;266(5 Pt 1):E796-803 – reference: 1401068 - J Clin Invest. 1992 Oct;90(4):1323-7 – reference: 8227324 - J Clin Invest. 1993 Nov;92(5):2092-8 – reference: 7860761 - J Clin Invest. 1995 Feb;95(2):783-7 – reference: 2404717 - Diabetes Care. 1990 Jan;13(1):49-64 – reference: 1532777 - Diabetes Care. 1992 Mar;15(3):318-68 – reference: 2682629 - Proc Natl Acad Sci U S A. 1989 Oct;86(20):7838-42 – reference: 2189759 - Diabetes. 1990 Jun;39(6):647-52 – reference: 1570017 - Nature. 1992 Apr 23;356(6371):721-2 – reference: 1864968 - J Clin Invest. 1991 Aug;88(2):578-87 – reference: 8132752 - J Clin Invest. 1994 Mar;93(3):1120-30 – reference: 8609218 - J Clin Invest. 1996 Feb 1;97(3):642-8 – reference: 2205106 - Am J Physiol. 1990 Sep;259(3 Pt 1):E335-41 – reference: 8433729 - N Engl J Med. 1993 Mar 11;328(10):697-702 – reference: 8446612 - Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1932-6 – reference: 8530440 - J Biol Chem. 1995 Dec 22;270(51):30253-6 – reference: 8349034 - Diabetes. 1993 Sep;42(9):1238-45 – reference: 8376578 - J Clin Invest. 1993 Sep;92(3):1174-80 – reference: 1948033 - Science. 1991 Oct 25;254(5031):573-6 – reference: 7553875 - Cell. 1995 Oct 6;83(1):69-78 – reference: 8168650 - Diabetes. 1994 May;43(5):718-23 – reference: 2065850 - Diabetologia. 1991 Feb;34(2):67-73 – reference: 1502186 - Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7698-702 – reference: 6472448 - Nature. 1984 Aug 23-29;310(5979):681-3 – reference: 8168652 - Diabetes. 1994 May;43(5):730-3 – reference: 2550428 - J Biol Chem. 1989 Sep 25;264(27):15936-42 – reference: 8720607 - Diabetologia. 1996 Jan;39(1):82-90 – reference: 7665557 - J Biol Chem. 1995 Sep 15;270(37):21464-7 – reference: 8325892 - J Biol Chem. 1993 Jul 15;268(20):15200-4 |
SSID | ssj0014454 |
Score | 1.9701353 |
Snippet | All glucokinase gene mutations identified to date have been localized to exons that are common to the pancreatic and hepatic isoforms of the enzyme. While... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1755 |
SubjectTerms | Adult Diabetes Mellitus, Type 2 - metabolism Glucokinase - deficiency Glucokinase - genetics Gluconeogenesis Humans Insulin - blood Liver Glycogen - biosynthesis Male Middle Aged |
Title | Impaired hepatic glycogen synthesis in glucokinase-deficient (MODY-2) subjects |
URI | https://www.ncbi.nlm.nih.gov/pubmed/8878425 https://www.proquest.com/docview/78473967 https://pubmed.ncbi.nlm.nih.gov/PMC507613 |
Volume | 98 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgCLQXxG2i4xYhHoaQIY1jJ35EA9R26njZ0HiK4kvWiJJWaysEv57jS5wUigS8RFVsOZW_LyfH9jnfQegFpwkrRcVxWuUSpzQmWAxVgmUaK8U1F5Ut5zM9ZaPzdHJBL7qarTa7ZC1eyx8780r-B1W4B7iaLNl_QDYMCjfgN-ALV0AYrn-F8Rje5doEkM_00iqvXs6_ywV0N0IE4NkZsZG6eWXD0r_UDXywsNJGMsLrjE4_vvuME7MxsNoIsyGz6vuqXdaY9VdDDmXdSXN0Z_if9Hxmd137tbrAtXRW7aQLIDYh9_py5qQLQufRN79vPfHZEspn5jFjwV0qZkgMGGKeObGW1rjyvEeivGcpwW2hu014ZiRhJ8djWPpwV8GnB-Xyq8USTKM5P-w-YiG00LdcRzcSWDjYRfb4JJwrpSn1utzur3qtKXjmm_DEfXTTD7Ltq_y2APk1jrbnmJzdQbc9QtFbR4-76Jpu7qFbUx8zcR-dtiyJPEuiliVRYElUN9FOlkRHjiMvo5YhD9D5h_dnxyPsq2hgSRhfYy7M2TbJhiWBb1kJBrhSnKmM54nKtSrjTHEuhxqcFE0lVbFmCl7rVOtUVYwocoD2mkWjH6KIER0nUjNeKpoSkZSESSoEJWVeSZqXA3TUzlchvcS8qXQyL-xSM0uKMMkD9Dx0XTpdlV2dnrWTXoDVM0dZZaMXm1UB8GSEs2yADhwEYRAP3QCxLWxCu5FT325p6pmVVadmS48c_mnER2i_Y_1jtLe-2ugn4JCuxVPLsZ-4mIv0 |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impaired+hepatic+glycogen+synthesis+in+glucokinase-deficient+%28MODY-2%29+subjects&rft.jtitle=The+Journal+of+clinical+investigation&rft.au=Velho%2C+G&rft.au=Petersen%2C+K+F&rft.au=Perseghin%2C+G&rft.au=Hwang%2C+J+H&rft.date=1996-10-15&rft.issn=0021-9738&rft.volume=98&rft.issue=8&rft.spage=1755&rft_id=info:doi/10.1172%2FJCI118974&rft_id=info%3Apmid%2F8878425&rft.externalDocID=8878425 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9738&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9738&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9738&client=summon |