Flame spray pyrolysis synthesis and H2S sensing properties of CuO-doped SnO2 nanoparticles
In this work, CuO-doped SnO2 (CuO/SnO2) nanoparticles with different CuO mass fractions (0–1.0 wt%) are synthesized by a flame spray pyrolysis (FSP) route and applied to fabricate thin-film gas sensors for H2S detecting. The nanoparticles are characterized by X-ray diffraction (XRD), N2-physisorptio...
Saved in:
Published in | Proceedings of the Combustion Institute Vol. 38; no. 4; pp. 6743 - 6751 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1540-7489 1873-2704 |
DOI | 10.1016/j.proci.2020.06.315 |
Cover
Loading…
Abstract | In this work, CuO-doped SnO2 (CuO/SnO2) nanoparticles with different CuO mass fractions (0–1.0 wt%) are synthesized by a flame spray pyrolysis (FSP) route and applied to fabricate thin-film gas sensors for H2S detecting. The nanoparticles are characterized by X-ray diffraction (XRD), N2-physisorption isotherms, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Within the 0–1.0 wt% CuO-doping concentrations, all of the nanoparticles predominantly exhibit a spherical structure with a diameter of 5–15 nm, and possess a quite large specific surface area (110–125 m2/g). These textural characterizations suggest that Cu atoms form substitution doping in polycrystalline SnO2 nanoparticles at low CuO levels (< 0.5 wt%), and they are segregated as CuO nanoclusters at high CuO concentrations (0.5–1.0 wt%). From gas-sensing measurements, the CuO doping significantly improves the H2S sensing performance of SnO2 nanoparticles, especially at the optimal CuO-doping mass fraction of 0.5 wt%. The optimal CuO-doped SnO2 gas sensor exhibits a highest response (Ra/Rg = 1056) under a condition of 10 ppm H2S atmosphere at 125 °C. This is probably because a large number of highly dispersed small CuO nanoclusters are supported on the surface of the nanoparticle for 0.5 wt% doping, forming abundant p-n junctions with SnO2. When the CuO/SnO2 composite is exposed to H2S, semiconducting CuO is converted to metallic-like CuS, thereby increasing electrical conductivity and resulting in a high response. In addition, the optimal sensor displays good cycle performance and high H2S selectivity against other toxic and flammable gases including NH3, H2 and CO. Therefore, the gas sensor of 0.5 wt% CuO-doped SnO2 made by the FSP shows a large potential for H2S detecting in practical industrial application. |
---|---|
AbstractList | In this work, CuO-doped SnO2 (CuO/SnO2) nanoparticles with different CuO mass fractions (0–1.0 wt%) are synthesized by a flame spray pyrolysis (FSP) route and applied to fabricate thin-film gas sensors for H2S detecting. The nanoparticles are characterized by X-ray diffraction (XRD), N2-physisorption isotherms, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Within the 0–1.0 wt% CuO-doping concentrations, all of the nanoparticles predominantly exhibit a spherical structure with a diameter of 5–15 nm, and possess a quite large specific surface area (110–125 m2/g). These textural characterizations suggest that Cu atoms form substitution doping in polycrystalline SnO2 nanoparticles at low CuO levels (< 0.5 wt%), and they are segregated as CuO nanoclusters at high CuO concentrations (0.5–1.0 wt%). From gas-sensing measurements, the CuO doping significantly improves the H2S sensing performance of SnO2 nanoparticles, especially at the optimal CuO-doping mass fraction of 0.5 wt%. The optimal CuO-doped SnO2 gas sensor exhibits a highest response (Ra/Rg = 1056) under a condition of 10 ppm H2S atmosphere at 125 °C. This is probably because a large number of highly dispersed small CuO nanoclusters are supported on the surface of the nanoparticle for 0.5 wt% doping, forming abundant p-n junctions with SnO2. When the CuO/SnO2 composite is exposed to H2S, semiconducting CuO is converted to metallic-like CuS, thereby increasing electrical conductivity and resulting in a high response. In addition, the optimal sensor displays good cycle performance and high H2S selectivity against other toxic and flammable gases including NH3, H2 and CO. Therefore, the gas sensor of 0.5 wt% CuO-doped SnO2 made by the FSP shows a large potential for H2S detecting in practical industrial application. |
Author | Chen, Zhicheng Zhao, Haibo Xu, Zuwei |
Author_xml | – sequence: 1 givenname: Zhicheng surname: Chen fullname: Chen, Zhicheng – sequence: 2 givenname: Zuwei surname: Xu fullname: Xu, Zuwei – sequence: 3 givenname: Haibo orcidid: 0000-0001-5141-704X surname: Zhao fullname: Zhao, Haibo email: hzhao@mail.hust.edu.cn |
BookMark | eNqFkLFOwzAQhi1UJNrCE7D4BRLOsWOnAwOqKEWq1KGwsFjGscFVakd2QMrb41ImBpju152-O903QxMfvEHomkBJgPCbfdnHoF1ZQQUl8JKS-gxNSSNoUQlgk5xrBoVgzeICzVLaA1ABtJ6il1WnDganPqoR92MM3Zhcwmn0w7s5JuVbvK52OBmfnH_D-VBv4uBMwsHi5ce2aHOjxTu_rbBXPvQqT3Vn0iU6t6pL5uqnztHz6v5puS4224fH5d2m0JQvhqIxlioumG2q2gqmWkW41g1jpHmtOSNghdVEc9YIUKQhuXLLWqCGVlZQoHO0OO3VMaQUjZXaDWpwwQ9RuU4SkEdJci-_JcmjJAlcZkmZpb_YPrqDiuM_1O2JMvmtT2eiTNoZr03rotGDbIP7k_8Cw7WEqw |
CitedBy_id | crossref_primary_10_1627_jpi_64_261 crossref_primary_10_1149_1945_7111_ac857f crossref_primary_10_2139_ssrn_4020735 crossref_primary_10_2139_ssrn_4048779 crossref_primary_10_1002_adtp_202300049 crossref_primary_10_1016_j_jallcom_2022_165431 crossref_primary_10_1007_s11630_023_1873_0 crossref_primary_10_1140_epjb_s10051_024_00842_w crossref_primary_10_1016_j_ces_2023_119678 crossref_primary_10_2139_ssrn_3981400 crossref_primary_10_1016_j_ceramint_2022_10_353 crossref_primary_10_20517_energymater_2024_33 crossref_primary_10_1002_aic_18123 crossref_primary_10_1016_j_fuproc_2023_107763 crossref_primary_10_1016_j_jaap_2022_105527 crossref_primary_10_3390_sym14101970 crossref_primary_10_1088_2053_1591_ad1d87 crossref_primary_10_1007_s11664_024_11555_2 crossref_primary_10_1016_j_apsusc_2021_150536 crossref_primary_10_1016_j_chemosphere_2022_135067 crossref_primary_10_1016_j_proci_2022_07_061 crossref_primary_10_2139_ssrn_4167045 |
Cites_doi | 10.1063/1.1490154 10.1021/acsami.7b13020 10.1007/s12540-010-1012-9 10.1039/b711652g 10.1039/c0nr00017e 10.1002/aic.15495 10.1021/am502671s 10.1016/j.jcat.2016.01.009 10.1016/j.proci.2018.05.102 10.1016/j.snb.2017.05.161 10.3390/s17051011 10.1088/0957-4484/24/44/442001 10.1007/s11051-005-9029-6 10.3390/s100302088 10.1007/s10853-008-2486-4 10.1021/acs.jpcc.8b04253 10.1016/j.snb.2018.06.098 10.1016/j.snb.2007.09.088 10.1016/j.snb.2012.09.035 10.1021/acssensors.6b00008 10.1016/j.snb.2018.04.161 10.1016/j.snb.2016.05.129 |
ContentType | Journal Article |
Copyright | 2020 The Combustion Institute |
Copyright_xml | – notice: 2020 The Combustion Institute |
DBID | AAYXX CITATION |
DOI | 10.1016/j.proci.2020.06.315 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-2704 |
EndPage | 6751 |
ExternalDocumentID | 10_1016_j_proci_2020_06_315 S1540748920304089 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SSG SSR SST SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c369t-8ef3a674f825f74ada16cc84418b56410f7fc1c64870a1814876f4d03e32f7303 |
IEDL.DBID | .~1 |
ISSN | 1540-7489 |
IngestDate | Tue Jul 01 02:36:24 EDT 2025 Thu Apr 24 23:06:04 EDT 2025 Fri Feb 23 02:39:46 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | p-n junctions H2S Flame spray pyrolysis Gas sensor Doped SnO2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c369t-8ef3a674f825f74ada16cc84418b56410f7fc1c64870a1814876f4d03e32f7303 |
ORCID | 0000-0001-5141-704X |
PageCount | 9 |
ParticipantIDs | crossref_citationtrail_10_1016_j_proci_2020_06_315 crossref_primary_10_1016_j_proci_2020_06_315 elsevier_sciencedirect_doi_10_1016_j_proci_2020_06_315 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021 2021-00-00 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 2021 |
PublicationDecade | 2020 |
PublicationTitle | Proceedings of the Combustion Institute |
PublicationYear | 2021 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Chowdhuri, Sharma, Gupta, Sreenivas, Rao (bib0008) 2002; 92 Yoon, Kim (bib0007) 2010; 16 Chen, Xu, Yang, Zhao (bib0012) 2019; 37 Li, Chen, Lou, Li, Huang, Song, Chen, Shen (bib0004) 2017; 252 Zhang, Zhang, Wang, Ma, Zhong, Sun (bib0005) 2014; 6 Guntner, Koren, Chikkadi, Righettoni, Pratsinis (bib0015) 2016; 1 Zou, Ji, Li, Zhang, Jin, Jia, Guo, Zhong, Su (bib0021) 2016; 337 Korotcenkov, Brinzari, Boris (bib0018) 2008; 43 Strobel, Pratsinis (bib0009) 2007; 17 Teoh, Amal, Mädler (bib0010) 2010; 2 Fujiwara, Pratsinis (bib0013) 2017; 63 Gao, Yu, Zhang, Wang, Sun, Lu, Liu, Yan, Liu, Liang, Gao, Lu (bib0019) 2018; 269 Zhu, Xu, Yan, Zhao, Zhang (bib0014) 2017; 9 Choi, Katoch, Zhang, Kim (bib0006) 2013; 176 Kemmler, Pokhrel, Madler, Weimar, Barsan (bib0011) 2013; 24 Van Hieu, Thuy, Chien (bib0003) 2008; 129 Kabcum, Tammanoon, Wisitsoraat, Tuantranont, Phanichphant, Liewhiran (bib0016) 2016; 235 Tangirala, Gomez-Pozos, Rodriguez-Lugo, Olvera (bib0020) 2017; 17 Wang, Yin, Zhang, Xiang, Gao (bib0002) 2010; 10 Eom, Cho, Song, Go, Lee, Choa (bib0001) 2018; 273 Mädler, Sahm, Gurlo, Grunwaldt, Barsan, Weimar, Pratsinis (bib0017) 2006; 8 Zhao, Gui, Cao, Zheng (bib0022) 2018; 122 Zou (10.1016/j.proci.2020.06.315_bib0021) 2016; 337 Fujiwara (10.1016/j.proci.2020.06.315_bib0013) 2017; 63 Teoh (10.1016/j.proci.2020.06.315_bib0010) 2010; 2 Tangirala (10.1016/j.proci.2020.06.315_bib0020) 2017; 17 Guntner (10.1016/j.proci.2020.06.315_bib0015) 2016; 1 Chowdhuri (10.1016/j.proci.2020.06.315_bib0008) 2002; 92 Kemmler (10.1016/j.proci.2020.06.315_bib0011) 2013; 24 Chen (10.1016/j.proci.2020.06.315_bib0012) 2019; 37 Zhao (10.1016/j.proci.2020.06.315_bib0022) 2018; 122 Van Hieu (10.1016/j.proci.2020.06.315_bib0003) 2008; 129 Mädler (10.1016/j.proci.2020.06.315_bib0017) 2006; 8 Zhu (10.1016/j.proci.2020.06.315_bib0014) 2017; 9 Korotcenkov (10.1016/j.proci.2020.06.315_bib0018) 2008; 43 Strobel (10.1016/j.proci.2020.06.315_bib0009) 2007; 17 Choi (10.1016/j.proci.2020.06.315_bib0006) 2013; 176 Gao (10.1016/j.proci.2020.06.315_bib0019) 2018; 269 Kabcum (10.1016/j.proci.2020.06.315_bib0016) 2016; 235 Li (10.1016/j.proci.2020.06.315_bib0004) 2017; 252 Yoon (10.1016/j.proci.2020.06.315_bib0007) 2010; 16 Zhang (10.1016/j.proci.2020.06.315_bib0005) 2014; 6 Eom (10.1016/j.proci.2020.06.315_bib0001) 2018; 273 Wang (10.1016/j.proci.2020.06.315_bib0002) 2010; 10 |
References_xml | – volume: 9 start-page: 40452 year: 2017 end-page: 40460 ident: bib0014 publication-title: ACS Appl. Mater. Interfaces – volume: 17 start-page: 1011 year: 2017 ident: bib0020 publication-title: Sensors – volume: 176 start-page: 585 year: 2013 end-page: 591 ident: bib0006 publication-title: Sens. Actuators B – volume: 2 start-page: 1324 year: 2010 ident: bib0010 publication-title: Nanoscale – volume: 63 start-page: 139 year: 2017 end-page: 146 ident: bib0013 publication-title: AIChE J. – volume: 37 start-page: 5499 year: 2019 end-page: 5506 ident: bib0012 publication-title: Proc. Combust. Inst. – volume: 10 start-page: 2088 year: 2010 end-page: 2106 ident: bib0002 publication-title: Sensors – volume: 43 start-page: 2761 year: 2008 end-page: 2770 ident: bib0018 publication-title: J. Mater. Sci. – volume: 92 start-page: 2172 year: 2002 end-page: 2180 ident: bib0008 publication-title: J. Appl. Phys. – volume: 269 start-page: 210 year: 2018 end-page: 222 ident: bib0019 publication-title: Sens. Actuators B – volume: 1 start-page: 528 year: 2016 end-page: 535 ident: bib0015 publication-title: ACS Sens. – volume: 122 start-page: 25595 year: 2018 end-page: 25605 ident: bib0022 publication-title: J. Phys. Chem. C – volume: 235 start-page: 678 year: 2016 end-page: 690 ident: bib0016 publication-title: Sens. Actuators B – volume: 129 start-page: 888 year: 2008 end-page: 895 ident: bib0003 publication-title: Sens. Actuators B – volume: 337 start-page: 1 year: 2016 end-page: 13 ident: bib0021 publication-title: J. Catal. – volume: 273 start-page: 1054 year: 2018 end-page: 1061 ident: bib0001 publication-title: Sens. Actuators B – volume: 252 start-page: 79 year: 2017 end-page: 85 ident: bib0004 publication-title: Sens. Actuators B – volume: 16 start-page: 773 year: 2010 end-page: 777 ident: bib0007 publication-title: Met. Mater. Int. – volume: 24 year: 2013 ident: bib0011 publication-title: Nanotechnology – volume: 8 start-page: 783 year: 2006 end-page: 796 ident: bib0017 publication-title: J. Nanopart. Res. – volume: 6 start-page: 14975 year: 2014 end-page: 14980 ident: bib0005 publication-title: ACS Appl. Mater. Interfaces – volume: 17 start-page: 4743 year: 2007 ident: bib0009 publication-title: J. Mater. Chem. – volume: 92 start-page: 2172 issue: 4 year: 2002 ident: 10.1016/j.proci.2020.06.315_bib0008 publication-title: J. Appl. Phys. doi: 10.1063/1.1490154 – volume: 9 start-page: 40452 issue: 46 year: 2017 ident: 10.1016/j.proci.2020.06.315_bib0014 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b13020 – volume: 16 start-page: 773 issue: 5 year: 2010 ident: 10.1016/j.proci.2020.06.315_bib0007 publication-title: Met. Mater. Int. doi: 10.1007/s12540-010-1012-9 – volume: 17 start-page: 4743 issue: 45 year: 2007 ident: 10.1016/j.proci.2020.06.315_bib0009 publication-title: J. Mater. Chem. doi: 10.1039/b711652g – volume: 2 start-page: 1324 issue: 8 year: 2010 ident: 10.1016/j.proci.2020.06.315_bib0010 publication-title: Nanoscale doi: 10.1039/c0nr00017e – volume: 63 start-page: 139 issue: 1 year: 2017 ident: 10.1016/j.proci.2020.06.315_bib0013 publication-title: AIChE J. doi: 10.1002/aic.15495 – volume: 6 start-page: 14975 issue: 17 year: 2014 ident: 10.1016/j.proci.2020.06.315_bib0005 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am502671s – volume: 337 start-page: 1 year: 2016 ident: 10.1016/j.proci.2020.06.315_bib0021 publication-title: J. Catal. doi: 10.1016/j.jcat.2016.01.009 – volume: 37 start-page: 5499 issue: 4 year: 2019 ident: 10.1016/j.proci.2020.06.315_bib0012 publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2018.05.102 – volume: 252 start-page: 79 year: 2017 ident: 10.1016/j.proci.2020.06.315_bib0004 publication-title: Sens. Actuators B doi: 10.1016/j.snb.2017.05.161 – volume: 17 start-page: 1011 issue: 5 year: 2017 ident: 10.1016/j.proci.2020.06.315_bib0020 publication-title: Sensors doi: 10.3390/s17051011 – volume: 24 issue: 44 year: 2013 ident: 10.1016/j.proci.2020.06.315_bib0011 publication-title: Nanotechnology doi: 10.1088/0957-4484/24/44/442001 – volume: 8 start-page: 783 issue: 6 year: 2006 ident: 10.1016/j.proci.2020.06.315_bib0017 publication-title: J. Nanopart. Res. doi: 10.1007/s11051-005-9029-6 – volume: 10 start-page: 2088 issue: 3 year: 2010 ident: 10.1016/j.proci.2020.06.315_bib0002 publication-title: Sensors doi: 10.3390/s100302088 – volume: 43 start-page: 2761 issue: 8 year: 2008 ident: 10.1016/j.proci.2020.06.315_bib0018 publication-title: J. Mater. Sci. doi: 10.1007/s10853-008-2486-4 – volume: 122 start-page: 25595 issue: 44 year: 2018 ident: 10.1016/j.proci.2020.06.315_bib0022 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b04253 – volume: 273 start-page: 1054 year: 2018 ident: 10.1016/j.proci.2020.06.315_bib0001 publication-title: Sens. Actuators B doi: 10.1016/j.snb.2018.06.098 – volume: 129 start-page: 888 issue: 2 year: 2008 ident: 10.1016/j.proci.2020.06.315_bib0003 publication-title: Sens. Actuators B doi: 10.1016/j.snb.2007.09.088 – volume: 176 start-page: 585 year: 2013 ident: 10.1016/j.proci.2020.06.315_bib0006 publication-title: Sens. Actuators B doi: 10.1016/j.snb.2012.09.035 – volume: 1 start-page: 528 issue: 5 year: 2016 ident: 10.1016/j.proci.2020.06.315_bib0015 publication-title: ACS Sens. doi: 10.1021/acssensors.6b00008 – volume: 269 start-page: 210 year: 2018 ident: 10.1016/j.proci.2020.06.315_bib0019 publication-title: Sens. Actuators B doi: 10.1016/j.snb.2018.04.161 – volume: 235 start-page: 678 year: 2016 ident: 10.1016/j.proci.2020.06.315_bib0016 publication-title: Sens. Actuators B doi: 10.1016/j.snb.2016.05.129 |
SSID | ssj0037035 |
Score | 2.4266782 |
Snippet | In this work, CuO-doped SnO2 (CuO/SnO2) nanoparticles with different CuO mass fractions (0–1.0 wt%) are synthesized by a flame spray pyrolysis (FSP) route and... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 6743 |
SubjectTerms | Doped SnO2 Flame spray pyrolysis Gas sensor H2S p-n junctions |
Title | Flame spray pyrolysis synthesis and H2S sensing properties of CuO-doped SnO2 nanoparticles |
URI | https://dx.doi.org/10.1016/j.proci.2020.06.315 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfuL8GDl4tK4faZYex3BUxe0wB8NLSZNGJpKVbjvs4t_ue10rE2QHTy0hgfLy-t77Jb_8QsgtuEGaidB1IA4ohzGjHcjrxpHdSGQsUq7ieN75ZcjjCXuahtMG6ddnYZBWWcX-TUwvo3XV0qms2clns87YQ-04JiIfd_dcgYf4UL0OfPr-64fmEYBHh6VmKjLnoHetPFRyvDBJzAAk-i6KeAZ4N-5f2Wkr4wyOyGFVKtLe5muOSSOzJ-RgS0DwlLwNYEIzusgLuab5upiXAiN0sbZQ1-GbtJrG_pgukKdu32mOa-8FiqjSuaH91cjR0KDp2I58aqUFCF0x5c7IZPDw2o-d6rYERwU8WjoiM4HkXWYA85kuk1p6XCkB5Y5IQ84813SN8hQHhOJKyOvw5IZpN8gC38B_HpyTpp3b7ILQUHIhANloJlLAX1qkWMUAWtOpD3MetYhfWylRlZQ43mjxmdScsY-kNG2Cpk1cnoBpW-TuZ1C-UdLY3Z3X5k9-OUQCsX7XwMv_Drwi-z4SVsr1lWvSXBar7AYqjmXaLl2qTfZ6j8_x8BvqztU0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGYAB8RRvPDASNU0c1xlRRRVeZShIiMVy7BgVITdqy9B_z12aIJAQA1MiKydF58vdfc7nzwDnGAZ5IZMwwDxgAs6dDbCuu0B3U1nw1IRG0H7n-4HInvjNc_K8BL1mLwzRKuvcv8jpVbauR9q1N9vlaNQedkg7jss0or97oUyXYYXUqXgLVi6vb7NBk5BjDOqkkk0l8hwaNOJDFc2L6sQIcWIUko5nTMfj_lagvhWd_iZs1N0iu1y80BYsFX4b1r9pCO7ASx_ntGDTcqLnrJxPxpXGCJvOPbZ2dKe9ZVk0ZFOiqvtXVtLy-4R0VNnYsd7HQ2BxwLKhf4iY1x5RdE2W24Wn_tVjLwvqAxMCE4t0FsjCxVp0uUPY57pcW90RxkjseGSeCN4JXdeZjhEIUkKNpR2vwnEbxkUcOfzU4z1o-bEv9oElWkiJ4MZymSMEszKnRgYBm80jnPb0AKLGS8rUauJ0qMW7amhjb6pyrSLXqlAodO0BXHwZlQsxjb8fF4371Y-YUJju_zI8_K_hGaxmj_d36u56cHsEaxHxV6rllmNozSYfxQk2ILP8tA6wT0mL1-U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flame+spray+pyrolysis+synthesis+and+H2S+sensing+properties+of+CuO-doped+SnO2+nanoparticles&rft.jtitle=Proceedings+of+the+Combustion+Institute&rft.au=Chen%2C+Zhicheng&rft.au=Xu%2C+Zuwei&rft.au=Zhao%2C+Haibo&rft.date=2021&rft.issn=1540-7489&rft.volume=38&rft.issue=4&rft.spage=6743&rft.epage=6751&rft_id=info:doi/10.1016%2Fj.proci.2020.06.315&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_proci_2020_06_315 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1540-7489&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1540-7489&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1540-7489&client=summon |