Flame spray pyrolysis synthesis and H2S sensing properties of CuO-doped SnO2 nanoparticles

In this work, CuO-doped SnO2 (CuO/SnO2) nanoparticles with different CuO mass fractions (0–1.0 wt%) are synthesized by a flame spray pyrolysis (FSP) route and applied to fabricate thin-film gas sensors for H2S detecting. The nanoparticles are characterized by X-ray diffraction (XRD), N2-physisorptio...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the Combustion Institute Vol. 38; no. 4; pp. 6743 - 6751
Main Authors Chen, Zhicheng, Xu, Zuwei, Zhao, Haibo
Format Journal Article
LanguageEnglish
Published Elsevier Inc 2021
Subjects
Online AccessGet full text
ISSN1540-7489
1873-2704
DOI10.1016/j.proci.2020.06.315

Cover

Loading…
Abstract In this work, CuO-doped SnO2 (CuO/SnO2) nanoparticles with different CuO mass fractions (0–1.0 wt%) are synthesized by a flame spray pyrolysis (FSP) route and applied to fabricate thin-film gas sensors for H2S detecting. The nanoparticles are characterized by X-ray diffraction (XRD), N2-physisorption isotherms, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Within the 0–1.0 wt% CuO-doping concentrations, all of the nanoparticles predominantly exhibit a spherical structure with a diameter of 5–15 nm, and possess a quite large specific surface area (110–125 m2/g). These textural characterizations suggest that Cu atoms form substitution doping in polycrystalline SnO2 nanoparticles at low CuO levels (< 0.5 wt%), and they are segregated as CuO nanoclusters at high CuO concentrations (0.5–1.0 wt%). From gas-sensing measurements, the CuO doping significantly improves the H2S sensing performance of SnO2 nanoparticles, especially at the optimal CuO-doping mass fraction of 0.5 wt%. The optimal CuO-doped SnO2 gas sensor exhibits a highest response (Ra/Rg = 1056) under a condition of 10 ppm H2S atmosphere at 125 °C. This is probably because a large number of highly dispersed small CuO nanoclusters are supported on the surface of the nanoparticle for 0.5 wt% doping, forming abundant p-n junctions with SnO2. When the CuO/SnO2 composite is exposed to H2S, semiconducting CuO is converted to metallic-like CuS, thereby increasing electrical conductivity and resulting in a high response. In addition, the optimal sensor displays good cycle performance and high H2S selectivity against other toxic and flammable gases including NH3, H2 and CO. Therefore, the gas sensor of 0.5 wt% CuO-doped SnO2 made by the FSP shows a large potential for H2S detecting in practical industrial application.
AbstractList In this work, CuO-doped SnO2 (CuO/SnO2) nanoparticles with different CuO mass fractions (0–1.0 wt%) are synthesized by a flame spray pyrolysis (FSP) route and applied to fabricate thin-film gas sensors for H2S detecting. The nanoparticles are characterized by X-ray diffraction (XRD), N2-physisorption isotherms, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Within the 0–1.0 wt% CuO-doping concentrations, all of the nanoparticles predominantly exhibit a spherical structure with a diameter of 5–15 nm, and possess a quite large specific surface area (110–125 m2/g). These textural characterizations suggest that Cu atoms form substitution doping in polycrystalline SnO2 nanoparticles at low CuO levels (< 0.5 wt%), and they are segregated as CuO nanoclusters at high CuO concentrations (0.5–1.0 wt%). From gas-sensing measurements, the CuO doping significantly improves the H2S sensing performance of SnO2 nanoparticles, especially at the optimal CuO-doping mass fraction of 0.5 wt%. The optimal CuO-doped SnO2 gas sensor exhibits a highest response (Ra/Rg = 1056) under a condition of 10 ppm H2S atmosphere at 125 °C. This is probably because a large number of highly dispersed small CuO nanoclusters are supported on the surface of the nanoparticle for 0.5 wt% doping, forming abundant p-n junctions with SnO2. When the CuO/SnO2 composite is exposed to H2S, semiconducting CuO is converted to metallic-like CuS, thereby increasing electrical conductivity and resulting in a high response. In addition, the optimal sensor displays good cycle performance and high H2S selectivity against other toxic and flammable gases including NH3, H2 and CO. Therefore, the gas sensor of 0.5 wt% CuO-doped SnO2 made by the FSP shows a large potential for H2S detecting in practical industrial application.
Author Chen, Zhicheng
Zhao, Haibo
Xu, Zuwei
Author_xml – sequence: 1
  givenname: Zhicheng
  surname: Chen
  fullname: Chen, Zhicheng
– sequence: 2
  givenname: Zuwei
  surname: Xu
  fullname: Xu, Zuwei
– sequence: 3
  givenname: Haibo
  orcidid: 0000-0001-5141-704X
  surname: Zhao
  fullname: Zhao, Haibo
  email: hzhao@mail.hust.edu.cn
BookMark eNqFkLFOwzAQhi1UJNrCE7D4BRLOsWOnAwOqKEWq1KGwsFjGscFVakd2QMrb41ImBpju152-O903QxMfvEHomkBJgPCbfdnHoF1ZQQUl8JKS-gxNSSNoUQlgk5xrBoVgzeICzVLaA1ABtJ6il1WnDganPqoR92MM3Zhcwmn0w7s5JuVbvK52OBmfnH_D-VBv4uBMwsHi5ce2aHOjxTu_rbBXPvQqT3Vn0iU6t6pL5uqnztHz6v5puS4224fH5d2m0JQvhqIxlioumG2q2gqmWkW41g1jpHmtOSNghdVEc9YIUKQhuXLLWqCGVlZQoHO0OO3VMaQUjZXaDWpwwQ9RuU4SkEdJci-_JcmjJAlcZkmZpb_YPrqDiuM_1O2JMvmtT2eiTNoZr03rotGDbIP7k_8Cw7WEqw
CitedBy_id crossref_primary_10_1627_jpi_64_261
crossref_primary_10_1149_1945_7111_ac857f
crossref_primary_10_2139_ssrn_4020735
crossref_primary_10_2139_ssrn_4048779
crossref_primary_10_1002_adtp_202300049
crossref_primary_10_1016_j_jallcom_2022_165431
crossref_primary_10_1007_s11630_023_1873_0
crossref_primary_10_1140_epjb_s10051_024_00842_w
crossref_primary_10_1016_j_ces_2023_119678
crossref_primary_10_2139_ssrn_3981400
crossref_primary_10_1016_j_ceramint_2022_10_353
crossref_primary_10_20517_energymater_2024_33
crossref_primary_10_1002_aic_18123
crossref_primary_10_1016_j_fuproc_2023_107763
crossref_primary_10_1016_j_jaap_2022_105527
crossref_primary_10_3390_sym14101970
crossref_primary_10_1088_2053_1591_ad1d87
crossref_primary_10_1007_s11664_024_11555_2
crossref_primary_10_1016_j_apsusc_2021_150536
crossref_primary_10_1016_j_chemosphere_2022_135067
crossref_primary_10_1016_j_proci_2022_07_061
crossref_primary_10_2139_ssrn_4167045
Cites_doi 10.1063/1.1490154
10.1021/acsami.7b13020
10.1007/s12540-010-1012-9
10.1039/b711652g
10.1039/c0nr00017e
10.1002/aic.15495
10.1021/am502671s
10.1016/j.jcat.2016.01.009
10.1016/j.proci.2018.05.102
10.1016/j.snb.2017.05.161
10.3390/s17051011
10.1088/0957-4484/24/44/442001
10.1007/s11051-005-9029-6
10.3390/s100302088
10.1007/s10853-008-2486-4
10.1021/acs.jpcc.8b04253
10.1016/j.snb.2018.06.098
10.1016/j.snb.2007.09.088
10.1016/j.snb.2012.09.035
10.1021/acssensors.6b00008
10.1016/j.snb.2018.04.161
10.1016/j.snb.2016.05.129
ContentType Journal Article
Copyright 2020 The Combustion Institute
Copyright_xml – notice: 2020 The Combustion Institute
DBID AAYXX
CITATION
DOI 10.1016/j.proci.2020.06.315
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2704
EndPage 6751
ExternalDocumentID 10_1016_j_proci_2020_06_315
S1540748920304089
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c369t-8ef3a674f825f74ada16cc84418b56410f7fc1c64870a1814876f4d03e32f7303
IEDL.DBID .~1
ISSN 1540-7489
IngestDate Tue Jul 01 02:36:24 EDT 2025
Thu Apr 24 23:06:04 EDT 2025
Fri Feb 23 02:39:46 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords p-n junctions
H2S
Flame spray pyrolysis
Gas sensor
Doped SnO2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c369t-8ef3a674f825f74ada16cc84418b56410f7fc1c64870a1814876f4d03e32f7303
ORCID 0000-0001-5141-704X
PageCount 9
ParticipantIDs crossref_citationtrail_10_1016_j_proci_2020_06_315
crossref_primary_10_1016_j_proci_2020_06_315
elsevier_sciencedirect_doi_10_1016_j_proci_2020_06_315
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021
2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021
PublicationDecade 2020
PublicationTitle Proceedings of the Combustion Institute
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Chowdhuri, Sharma, Gupta, Sreenivas, Rao (bib0008) 2002; 92
Yoon, Kim (bib0007) 2010; 16
Chen, Xu, Yang, Zhao (bib0012) 2019; 37
Li, Chen, Lou, Li, Huang, Song, Chen, Shen (bib0004) 2017; 252
Zhang, Zhang, Wang, Ma, Zhong, Sun (bib0005) 2014; 6
Guntner, Koren, Chikkadi, Righettoni, Pratsinis (bib0015) 2016; 1
Zou, Ji, Li, Zhang, Jin, Jia, Guo, Zhong, Su (bib0021) 2016; 337
Korotcenkov, Brinzari, Boris (bib0018) 2008; 43
Strobel, Pratsinis (bib0009) 2007; 17
Teoh, Amal, Mädler (bib0010) 2010; 2
Fujiwara, Pratsinis (bib0013) 2017; 63
Gao, Yu, Zhang, Wang, Sun, Lu, Liu, Yan, Liu, Liang, Gao, Lu (bib0019) 2018; 269
Zhu, Xu, Yan, Zhao, Zhang (bib0014) 2017; 9
Choi, Katoch, Zhang, Kim (bib0006) 2013; 176
Kemmler, Pokhrel, Madler, Weimar, Barsan (bib0011) 2013; 24
Van Hieu, Thuy, Chien (bib0003) 2008; 129
Kabcum, Tammanoon, Wisitsoraat, Tuantranont, Phanichphant, Liewhiran (bib0016) 2016; 235
Tangirala, Gomez-Pozos, Rodriguez-Lugo, Olvera (bib0020) 2017; 17
Wang, Yin, Zhang, Xiang, Gao (bib0002) 2010; 10
Eom, Cho, Song, Go, Lee, Choa (bib0001) 2018; 273
Mädler, Sahm, Gurlo, Grunwaldt, Barsan, Weimar, Pratsinis (bib0017) 2006; 8
Zhao, Gui, Cao, Zheng (bib0022) 2018; 122
Zou (10.1016/j.proci.2020.06.315_bib0021) 2016; 337
Fujiwara (10.1016/j.proci.2020.06.315_bib0013) 2017; 63
Teoh (10.1016/j.proci.2020.06.315_bib0010) 2010; 2
Tangirala (10.1016/j.proci.2020.06.315_bib0020) 2017; 17
Guntner (10.1016/j.proci.2020.06.315_bib0015) 2016; 1
Chowdhuri (10.1016/j.proci.2020.06.315_bib0008) 2002; 92
Kemmler (10.1016/j.proci.2020.06.315_bib0011) 2013; 24
Chen (10.1016/j.proci.2020.06.315_bib0012) 2019; 37
Zhao (10.1016/j.proci.2020.06.315_bib0022) 2018; 122
Van Hieu (10.1016/j.proci.2020.06.315_bib0003) 2008; 129
Mädler (10.1016/j.proci.2020.06.315_bib0017) 2006; 8
Zhu (10.1016/j.proci.2020.06.315_bib0014) 2017; 9
Korotcenkov (10.1016/j.proci.2020.06.315_bib0018) 2008; 43
Strobel (10.1016/j.proci.2020.06.315_bib0009) 2007; 17
Choi (10.1016/j.proci.2020.06.315_bib0006) 2013; 176
Gao (10.1016/j.proci.2020.06.315_bib0019) 2018; 269
Kabcum (10.1016/j.proci.2020.06.315_bib0016) 2016; 235
Li (10.1016/j.proci.2020.06.315_bib0004) 2017; 252
Yoon (10.1016/j.proci.2020.06.315_bib0007) 2010; 16
Zhang (10.1016/j.proci.2020.06.315_bib0005) 2014; 6
Eom (10.1016/j.proci.2020.06.315_bib0001) 2018; 273
Wang (10.1016/j.proci.2020.06.315_bib0002) 2010; 10
References_xml – volume: 9
  start-page: 40452
  year: 2017
  end-page: 40460
  ident: bib0014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 17
  start-page: 1011
  year: 2017
  ident: bib0020
  publication-title: Sensors
– volume: 176
  start-page: 585
  year: 2013
  end-page: 591
  ident: bib0006
  publication-title: Sens. Actuators B
– volume: 2
  start-page: 1324
  year: 2010
  ident: bib0010
  publication-title: Nanoscale
– volume: 63
  start-page: 139
  year: 2017
  end-page: 146
  ident: bib0013
  publication-title: AIChE J.
– volume: 37
  start-page: 5499
  year: 2019
  end-page: 5506
  ident: bib0012
  publication-title: Proc. Combust. Inst.
– volume: 10
  start-page: 2088
  year: 2010
  end-page: 2106
  ident: bib0002
  publication-title: Sensors
– volume: 43
  start-page: 2761
  year: 2008
  end-page: 2770
  ident: bib0018
  publication-title: J. Mater. Sci.
– volume: 92
  start-page: 2172
  year: 2002
  end-page: 2180
  ident: bib0008
  publication-title: J. Appl. Phys.
– volume: 269
  start-page: 210
  year: 2018
  end-page: 222
  ident: bib0019
  publication-title: Sens. Actuators B
– volume: 1
  start-page: 528
  year: 2016
  end-page: 535
  ident: bib0015
  publication-title: ACS Sens.
– volume: 122
  start-page: 25595
  year: 2018
  end-page: 25605
  ident: bib0022
  publication-title: J. Phys. Chem. C
– volume: 235
  start-page: 678
  year: 2016
  end-page: 690
  ident: bib0016
  publication-title: Sens. Actuators B
– volume: 129
  start-page: 888
  year: 2008
  end-page: 895
  ident: bib0003
  publication-title: Sens. Actuators B
– volume: 337
  start-page: 1
  year: 2016
  end-page: 13
  ident: bib0021
  publication-title: J. Catal.
– volume: 273
  start-page: 1054
  year: 2018
  end-page: 1061
  ident: bib0001
  publication-title: Sens. Actuators B
– volume: 252
  start-page: 79
  year: 2017
  end-page: 85
  ident: bib0004
  publication-title: Sens. Actuators B
– volume: 16
  start-page: 773
  year: 2010
  end-page: 777
  ident: bib0007
  publication-title: Met. Mater. Int.
– volume: 24
  year: 2013
  ident: bib0011
  publication-title: Nanotechnology
– volume: 8
  start-page: 783
  year: 2006
  end-page: 796
  ident: bib0017
  publication-title: J. Nanopart. Res.
– volume: 6
  start-page: 14975
  year: 2014
  end-page: 14980
  ident: bib0005
  publication-title: ACS Appl. Mater. Interfaces
– volume: 17
  start-page: 4743
  year: 2007
  ident: bib0009
  publication-title: J. Mater. Chem.
– volume: 92
  start-page: 2172
  issue: 4
  year: 2002
  ident: 10.1016/j.proci.2020.06.315_bib0008
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1490154
– volume: 9
  start-page: 40452
  issue: 46
  year: 2017
  ident: 10.1016/j.proci.2020.06.315_bib0014
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b13020
– volume: 16
  start-page: 773
  issue: 5
  year: 2010
  ident: 10.1016/j.proci.2020.06.315_bib0007
  publication-title: Met. Mater. Int.
  doi: 10.1007/s12540-010-1012-9
– volume: 17
  start-page: 4743
  issue: 45
  year: 2007
  ident: 10.1016/j.proci.2020.06.315_bib0009
  publication-title: J. Mater. Chem.
  doi: 10.1039/b711652g
– volume: 2
  start-page: 1324
  issue: 8
  year: 2010
  ident: 10.1016/j.proci.2020.06.315_bib0010
  publication-title: Nanoscale
  doi: 10.1039/c0nr00017e
– volume: 63
  start-page: 139
  issue: 1
  year: 2017
  ident: 10.1016/j.proci.2020.06.315_bib0013
  publication-title: AIChE J.
  doi: 10.1002/aic.15495
– volume: 6
  start-page: 14975
  issue: 17
  year: 2014
  ident: 10.1016/j.proci.2020.06.315_bib0005
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am502671s
– volume: 337
  start-page: 1
  year: 2016
  ident: 10.1016/j.proci.2020.06.315_bib0021
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2016.01.009
– volume: 37
  start-page: 5499
  issue: 4
  year: 2019
  ident: 10.1016/j.proci.2020.06.315_bib0012
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2018.05.102
– volume: 252
  start-page: 79
  year: 2017
  ident: 10.1016/j.proci.2020.06.315_bib0004
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2017.05.161
– volume: 17
  start-page: 1011
  issue: 5
  year: 2017
  ident: 10.1016/j.proci.2020.06.315_bib0020
  publication-title: Sensors
  doi: 10.3390/s17051011
– volume: 24
  issue: 44
  year: 2013
  ident: 10.1016/j.proci.2020.06.315_bib0011
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/24/44/442001
– volume: 8
  start-page: 783
  issue: 6
  year: 2006
  ident: 10.1016/j.proci.2020.06.315_bib0017
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-005-9029-6
– volume: 10
  start-page: 2088
  issue: 3
  year: 2010
  ident: 10.1016/j.proci.2020.06.315_bib0002
  publication-title: Sensors
  doi: 10.3390/s100302088
– volume: 43
  start-page: 2761
  issue: 8
  year: 2008
  ident: 10.1016/j.proci.2020.06.315_bib0018
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-008-2486-4
– volume: 122
  start-page: 25595
  issue: 44
  year: 2018
  ident: 10.1016/j.proci.2020.06.315_bib0022
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b04253
– volume: 273
  start-page: 1054
  year: 2018
  ident: 10.1016/j.proci.2020.06.315_bib0001
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2018.06.098
– volume: 129
  start-page: 888
  issue: 2
  year: 2008
  ident: 10.1016/j.proci.2020.06.315_bib0003
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2007.09.088
– volume: 176
  start-page: 585
  year: 2013
  ident: 10.1016/j.proci.2020.06.315_bib0006
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2012.09.035
– volume: 1
  start-page: 528
  issue: 5
  year: 2016
  ident: 10.1016/j.proci.2020.06.315_bib0015
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.6b00008
– volume: 269
  start-page: 210
  year: 2018
  ident: 10.1016/j.proci.2020.06.315_bib0019
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2018.04.161
– volume: 235
  start-page: 678
  year: 2016
  ident: 10.1016/j.proci.2020.06.315_bib0016
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2016.05.129
SSID ssj0037035
Score 2.4266782
Snippet In this work, CuO-doped SnO2 (CuO/SnO2) nanoparticles with different CuO mass fractions (0–1.0 wt%) are synthesized by a flame spray pyrolysis (FSP) route and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 6743
SubjectTerms Doped SnO2
Flame spray pyrolysis
Gas sensor
H2S
p-n junctions
Title Flame spray pyrolysis synthesis and H2S sensing properties of CuO-doped SnO2 nanoparticles
URI https://dx.doi.org/10.1016/j.proci.2020.06.315
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfuL8GDl4tK4faZYex3BUxe0wB8NLSZNGJpKVbjvs4t_ue10rE2QHTy0hgfLy-t77Jb_8QsgtuEGaidB1IA4ohzGjHcjrxpHdSGQsUq7ieN75ZcjjCXuahtMG6ddnYZBWWcX-TUwvo3XV0qms2clns87YQ-04JiIfd_dcgYf4UL0OfPr-64fmEYBHh6VmKjLnoHetPFRyvDBJzAAk-i6KeAZ4N-5f2Wkr4wyOyGFVKtLe5muOSSOzJ-RgS0DwlLwNYEIzusgLuab5upiXAiN0sbZQ1-GbtJrG_pgukKdu32mOa-8FiqjSuaH91cjR0KDp2I58aqUFCF0x5c7IZPDw2o-d6rYERwU8WjoiM4HkXWYA85kuk1p6XCkB5Y5IQ84813SN8hQHhOJKyOvw5IZpN8gC38B_HpyTpp3b7ILQUHIhANloJlLAX1qkWMUAWtOpD3MetYhfWylRlZQ43mjxmdScsY-kNG2Cpk1cnoBpW-TuZ1C-UdLY3Z3X5k9-OUQCsX7XwMv_Drwi-z4SVsr1lWvSXBar7AYqjmXaLl2qTfZ6j8_x8BvqztU0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGYAB8RRvPDASNU0c1xlRRRVeZShIiMVy7BgVITdqy9B_z12aIJAQA1MiKydF58vdfc7nzwDnGAZ5IZMwwDxgAs6dDbCuu0B3U1nw1IRG0H7n-4HInvjNc_K8BL1mLwzRKuvcv8jpVbauR9q1N9vlaNQedkg7jss0or97oUyXYYXUqXgLVi6vb7NBk5BjDOqkkk0l8hwaNOJDFc2L6sQIcWIUko5nTMfj_lagvhWd_iZs1N0iu1y80BYsFX4b1r9pCO7ASx_ntGDTcqLnrJxPxpXGCJvOPbZ2dKe9ZVk0ZFOiqvtXVtLy-4R0VNnYsd7HQ2BxwLKhf4iY1x5RdE2W24Wn_tVjLwvqAxMCE4t0FsjCxVp0uUPY57pcW90RxkjseGSeCN4JXdeZjhEIUkKNpR2vwnEbxkUcOfzU4z1o-bEv9oElWkiJ4MZymSMEszKnRgYBm80jnPb0AKLGS8rUauJ0qMW7amhjb6pyrSLXqlAodO0BXHwZlQsxjb8fF4371Y-YUJju_zI8_K_hGaxmj_d36u56cHsEaxHxV6rllmNozSYfxQk2ILP8tA6wT0mL1-U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flame+spray+pyrolysis+synthesis+and+H2S+sensing+properties+of+CuO-doped+SnO2+nanoparticles&rft.jtitle=Proceedings+of+the+Combustion+Institute&rft.au=Chen%2C+Zhicheng&rft.au=Xu%2C+Zuwei&rft.au=Zhao%2C+Haibo&rft.date=2021&rft.issn=1540-7489&rft.volume=38&rft.issue=4&rft.spage=6743&rft.epage=6751&rft_id=info:doi/10.1016%2Fj.proci.2020.06.315&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_proci_2020_06_315
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1540-7489&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1540-7489&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1540-7489&client=summon