Shadow Sequences of Integers: From Fibonacci to Markov and Back
When Sophie Morier-Genoud and I took over the editorship of the Gems and Curiosities column from Sergei Tabachnikov a year ago, we understood that there was a long tradition of very large shoes to fill. In particular, in its previous incarnation under the name Mathematical Entertainments, this colum...
Saved in:
Published in | The Mathematical intelligencer Vol. 45; no. 1; pp. 50 - 54 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.03.2023
Springer Verlag |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | When Sophie Morier-Genoud and I took over the editorship of the Gems and Curiosities column from Sergei Tabachnikov a year ago, we understood that there was a long tradition of very large shoes to fill. In particular, in its previous incarnation under the name Mathematical Entertainments, this column enjoyed its golden years under the watch of David Gale. For an account, see the amazing book [4]. Integer sequences was one of the main subjects discussed in the column at that time [3]. The sequences now called Gale-Robinson and Somos sequences first appeared in the column. Gale's "riddles" about integer sequences strongly influenced combinatorics; see for instance the powerful and now classical reference [2], in which Gale's riddles were solved. Although any attempt to come up to the high bar set by David Gale on the subject of integer sequences is doomed to fail, I will discuss here a large class of integer sequences. The following general idea looks crazy. What if another integer sequence follows each integer sequence like a shadow ? I will demonstrate that this is indeed the case, perhaps not for every integer sequence (this unfortunately I don't know), but for many of them. Does this mean that the number 341962 of known and registered sequences (cf. [6]) will double? The answer is "no" for two reasons: shadows of known sequences can also be known, and one sequence can have several shadows. |
---|---|
AbstractList | When Sophie Morier-Genoud and I took over the editorship of the Gems and Curiosities column from Sergei Tabachnikov a year ago, we understood that there was a long tradition of very large shoes to fill. In particular, in its previous incarnation under the name Mathematical Entertainments, this column enjoyed its golden years under the watch of David Gale. For an account, see the amazing book [4]. Integer sequences was one of the main subjects discussed in the column at that time [3]. The sequences now called Gale-Robinson and Somos sequences first appeared in the column. Gale's "riddles" about integer sequences strongly influenced combinatorics; see for instance the powerful and now classical reference [2], in which Gale's riddles were solved. Although any attempt to come up to the high bar set by David Gale on the subject of integer sequences is doomed to fail, I will discuss here a large class of integer sequences. The following general idea looks crazy. What if another integer sequence follows each integer sequence like a shadow ? I will demonstrate that this is indeed the case, perhaps not for every integer sequence (this unfortunately I don't know), but for many of them. Does this mean that the number 341962 of known and registered sequences (cf. [6]) will double? The answer is "no" for two reasons: shadows of known sequences can also be known, and one sequence can have several shadows. |
Author | Ovsienko, Valentin |
Author_xml | – sequence: 1 givenname: Valentin orcidid: 0000-0003-0146-1573 surname: Ovsienko fullname: Ovsienko, Valentin email: valentin.ovsienko@univ-reims.fr organization: Centre National de la Recherche Scientifique, Laboratoire de Mathématiques de Reims, UMR9008 CNRS, Université de Reims Champagne-Ardenne |
BackLink | https://hal.science/hal-03550367$$DView record in HAL |
BookMark | eNp9kMtOAjEUhhuDiYC-gKtuXVR7mRk6bgwSERKMC3TddHqR4dJqOyC-vcXRjQvO5iQn_3f-5OuBjvPOAHBJ8DXBeHATMaacIUwJIpjkGdqfgC7hRYEGGck6oItZxlBRluwM9GJc4jRZUXTB3Xwhtf-Ec_OxNU6ZCL2FU9eYNxPiLRwHv4HjuvJOKlXDxsMnGVZ-B6XT8F6q1Tk4tXIdzcXv7oPX8cPLaIJmz4_T0XCGFCvKBnFDBzw14oqZkuOq0ibPtc2oppmRlbRW2RznpSS0ooYyzgy1JK-41KXWVrI-uGr_LuRavId6I8OX8LIWk-FMHG6Y5TlmxWBHUpa3WRV8jMFYoepGNrV3TZD1WhAsDtJEK00kaeJHmtgnlP5D_7qOQqyFYgq7JE4s_Ta4pOMY9Q1kFYD4 |
CitedBy_id | crossref_primary_10_1088_1751_8121_ad978b crossref_primary_10_1007_s00283_022_10261_3 crossref_primary_10_1016_j_geomphys_2023_104866 |
Cites_doi | 10.1007/BF02086269 10.1007/978-1-4612-2192-0 10.1006/aama.2001.0770 10.1070/IM1989v032n01ABEH000738 10.1007/BF03028343 10.1007/s10468-018-9779-3 10.1007/978-3-319-00888-2 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 1XC VOOES |
DOI | 10.1007/s00283-021-10154-x |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1866-7414 |
EndPage | 54 |
ExternalDocumentID | oai_HAL_hal_03550367v1 10_1007_s00283_021_10154_x |
GroupedDBID | --Z -52 -5D -5G -BR -DZ -EM -Y2 -~C -~X 00M 06D 0R~ 0VY 0WA 123 199 1N0 2.D 203 29M 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 3-Y 30V 3V. 4.4 406 408 409 40D 40E 41~ 5GY 5VS 67Z 6NX 6TJ 78A 88I 8FE 8FG 8G5 8TC 8UJ 95- 95. 95~ 96X 97F 9M8 AAAVM AABHQ AACDK AAGAY AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABLJU ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEGXH AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGNAY AGQEE AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIDAL AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJUXI AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BAPOH BBWZM BDATZ BENPR BGLVJ BGNMA BKOMP BPHCQ BSONS CAG CCPQU COF CSCUP D0L DDRTE DNIVK DO4 DPUIP DU5 DWQXO EAD EAP EAS EAU EBLON EBS EIOEI EJD EMF EMH EMI EMK EPL ESBYG ESE ESN EST ESX FA8 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KOV L6V LLZTM M1Q M2O M2P M4Y M7S MA- MQGED N2Q N9A NB0 NDZJH NEJ NF0 NHB NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OHT P19 P2P P62 P9R PF- PM3 PQQKQ PROAC PT4 PT5 PTHSS QF4 QM9 QN7 QO4 QOK QOS R89 R9I RHV RIG RNI ROL RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TN5 TSG TSV TUC TUS U2A UG4 UKR UMD UOJIU UQL UTJUX UZXMN VC2 VFIZW VOH VQA W23 W48 WH7 WK8 XIH XJT XOL YCJ YIF YIN YLTOR YNT YQT YR5 YYP YYQ Z45 Z5O Z7R Z7U Z7X Z7Z Z81 Z83 Z88 Z8M Z8R Z8T Z8U Z8W Z92 ZCA ZHY ZKB ZMTXR ZWQNP ZY4 ~8M ~G0 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADXHL AETEA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT 1XC UMC VOOES |
ID | FETCH-LOGICAL-c369t-8e2780460b3e980bbde55df42d24eabaffcf5059a12b2e2383e2f15b8ad9ddfa3 |
IEDL.DBID | U2A |
ISSN | 0343-6993 |
IngestDate | Fri May 09 12:20:55 EDT 2025 Tue Jul 01 03:14:59 EDT 2025 Thu Apr 24 22:59:33 EDT 2025 Fri Feb 21 02:45:17 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c369t-8e2780460b3e980bbde55df42d24eabaffcf5059a12b2e2383e2f15b8ad9ddfa3 |
ORCID | 0000-0003-0146-1573 |
OpenAccessLink | https://hal.science/hal-03550367 |
PageCount | 5 |
ParticipantIDs | hal_primary_oai_HAL_hal_03550367v1 crossref_citationtrail_10_1007_s00283_021_10154_x crossref_primary_10_1007_s00283_021_10154_x springer_journals_10_1007_s00283_021_10154_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-01 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | The Mathematical intelligencer |
PublicationTitleAbbrev | Math Intelligencer |
PublicationYear | 2023 |
Publisher | Springer US Springer Verlag |
Publisher_xml | – name: Springer US – name: Springer Verlag |
References | FominSZelevinskyAThe Laurent phenomenonAdv. in Appl. Math.200228119144188884010.1006/aama.2001.07701012.05012 M. Aigner. Markov’s Theorem and 100 Years of the Uniqueness Conjecture: A Mathematical Journey from Irrational Numbers to Perfect Matchings. Springer, 2013. RudakovANMarkov numbers and exceptional bundles on P2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{P}^2$$\end{document}.Math. USSR-Izv.1989329911293652510.1070/IM1989v032n01ABEH0007380661.14017 D. Gale. Tracking the Automatic Ant and Other Mathematical Explorations. Springer, 1998. MarkoffASur les formes quadratiques binaires indéfiniesMathematische Annalen18791538140610.1007/BF0208626911.0147.01 V. Ovsienko. A step towards cluster superalgebras. arXiv:1503.01894, 2015. The On-Line Encyclopedia of Integer Sequences. Available at https://oeis.org. GaleDThe strange and surprising saga of the Somos sequencesMath. Intell.19911340423618527 OvsienkoVTabachnikovSDual numbers, weighted quivers, and extended Somos and Gale–Robinson sequences.Algebr. Represent. Theory201821511191132385567610.1007/s10468-018-9779-31423.11031 10154_CR6 V Ovsienko (10154_CR8) 2018; 21 10154_CR7 10154_CR1 S Fomin (10154_CR2) 2002; 28 D Gale (10154_CR3) 1991; 13 AN Rudakov (10154_CR9) 1989; 32 10154_CR4 A Markoff (10154_CR5) 1879; 15 |
References_xml | – reference: D. Gale. Tracking the Automatic Ant and Other Mathematical Explorations. Springer, 1998. – reference: MarkoffASur les formes quadratiques binaires indéfiniesMathematische Annalen18791538140610.1007/BF0208626911.0147.01 – reference: M. Aigner. Markov’s Theorem and 100 Years of the Uniqueness Conjecture: A Mathematical Journey from Irrational Numbers to Perfect Matchings. Springer, 2013. – reference: RudakovANMarkov numbers and exceptional bundles on P2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{P}^2$$\end{document}.Math. USSR-Izv.1989329911293652510.1070/IM1989v032n01ABEH0007380661.14017 – reference: FominSZelevinskyAThe Laurent phenomenonAdv. in Appl. Math.200228119144188884010.1006/aama.2001.07701012.05012 – reference: OvsienkoVTabachnikovSDual numbers, weighted quivers, and extended Somos and Gale–Robinson sequences.Algebr. Represent. Theory201821511191132385567610.1007/s10468-018-9779-31423.11031 – reference: V. Ovsienko. A step towards cluster superalgebras. arXiv:1503.01894, 2015. – reference: GaleDThe strange and surprising saga of the Somos sequencesMath. Intell.19911340423618527 – reference: The On-Line Encyclopedia of Integer Sequences. Available at https://oeis.org. – volume: 15 start-page: 381 year: 1879 ident: 10154_CR5 publication-title: Mathematische Annalen doi: 10.1007/BF02086269 – ident: 10154_CR4 doi: 10.1007/978-1-4612-2192-0 – volume: 28 start-page: 119 year: 2002 ident: 10154_CR2 publication-title: Adv. in Appl. Math. doi: 10.1006/aama.2001.0770 – ident: 10154_CR6 – ident: 10154_CR7 – volume: 32 start-page: 99 year: 1989 ident: 10154_CR9 publication-title: Math. USSR-Izv. doi: 10.1070/IM1989v032n01ABEH000738 – volume: 13 start-page: 40 year: 1991 ident: 10154_CR3 publication-title: Math. Intell. doi: 10.1007/BF03028343 – volume: 21 start-page: 1119 issue: 5 year: 2018 ident: 10154_CR8 publication-title: Algebr. Represent. Theory doi: 10.1007/s10468-018-9779-3 – ident: 10154_CR1 doi: 10.1007/978-3-319-00888-2 |
SSID | ssj0000466 |
Score | 2.3012323 |
Snippet | When Sophie Morier-Genoud and I took over the editorship of the Gems and Curiosities column from Sergei Tabachnikov a year ago, we understood that there was a... |
SourceID | hal crossref springer |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 50 |
SubjectTerms | Mathematical and Computational Engineering Mathematical and Computational Physics Mathematical Gems and Curiosities Mathematical Methods in Physics Mathematics Mathematics and Statistics Numerical and Computational Physics Simulation Theoretical |
Title | Shadow Sequences of Integers: From Fibonacci to Markov and Back |
URI | https://link.springer.com/article/10.1007/s00283-021-10154-x https://hal.science/hal-03550367 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA-6XfQgfuL8GEG8aaBN2q711unqUOdFB_NUkjRhQ11lrdM_35eurSgy8FQo6Tu8l-T3e31fCJ1qFriCJwHxeIcRRzuaCMotElBXCwf8Z7sY3za49_pD52bkjsqisKzKdq9CksVNXRe7FWN1iEkpsA3wE2COTdf47rCLhzT8vn-rCKXDiAfwW5bK_C3jBxytjk0y5K-IaAE00SbaKBkiDhcm3UIrarqN1gd1e9VsBxj2mCfpB36o8qBxqrH5twfisgsczdJXHE0EkGwpJzhPsanISeeYTxPc5fJ5Fw2j3uNln5STEIhkXpATX1HTKMizBFOBbwmRKNdNtEMT6iguuNZSA5UJuE0FVYDCTFFtu8IHKySJ5mwPNabpVO0j3PEcKQAYlQoYYBF4CzKQHgM_i3LP8lUL2ZVCYlm2CTfTKl7iusFxocQYlBgXSow_W-is_uZt0SRj6eoT0HO90PS37od3sXlnAfsBSO3M7RY6r8wQl6cqWyLz4H_LD9GaGRu_yCU7Qo189q6OgVzkoo2aYfeqG5nn9dNtr13srS-VDsZR |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT4NAEN5oPagH4zPW58Z4001gFyh4q0aC2vZim_RGdpfdtFHBFKz-fGcpYDTGxCsZ5jDD7vcN80LoXLPAFTwJiMc7jDja0URQbpGAulo4ED_b5fq2_sCLRs792B1XTWF5Xe1epyTLm7ppdivX6hBTUmAb4CfAHFeADPimkGtEu1_3b52hdBjxAH6rVpnfdXyDo-WJKYb8kREtgSbcRBsVQ8TdhUu30JJKt9F6vxmvmu8Aw57wJHvHj3UdNM40Nv_2QF1-hcNZ9oLDqQCSLeUUFxk2HTnZHPM0wddcPu2iUXg7vIlItQmBSOYFBfEVNYOCPEswFfiWEIly3UQ7NKGO4oJrLTVQmYDbVFAFNmGKatsVPnghSTRne6iVZqnaR7jjOVIAMCoVMMAiiBZkID0GcRblnuWrNrJrg8SyGhNutlU8x82A49KIMRgxLo0Yf7TRRfPO62JIxp_SZ2DnRtDMt466vdg8s4D9AKR25nYbXdZuiKtTlf-h8-B_4qdoNRr2e3HvbvBwiNbMCvlFXdkRahWzN3UMRKMQJ-V39QmlqMY- |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEA4eIPognrieQXzTYJu03da39SjrtQi64FvJyS5qK249fr6TXh7Igq9lOg-TpN83zcw3CO0ZFvmCq4gEvM2IZzxDBOUOiahvhAf5s1uMb7vuBd2-d3Hv33_r4i-q3esrybKnwao0pfnhszKHTeNbMWKH2PIC15IAAixyGty6dl_3aefrW1zfVnqMBADFVdvM3z5-QNPkwBZG_rodLUAnXkDzFVvEnXJ5F9GETpfQ3HUjtTpaBrY94Cp7x7d1TTTODLb_-cDd6AjHL9kTjocCCLeUQ5xn2HbnZG-Ypwofc_mwgvrx2d1Jl1RTEYhkQZSTUFMrGhQ4gukodIRQ2veV8aiinuaCGyMN0JqIu1RQDYjMNDWuL0JYEaUMZ6toKs1SvYZwO_CkAJDUOmKAS5A5yEgGDHIuygMn1C3k1gFJZCUZbidXPCaN2HERxASCmBRBTD5aaL9557kUzBhrvQtxbgyt1nW3c5XYZw4wIYDX9pvbQgf1MiTVCRuN8bn-P_MdNHNzGidX573LDTRrp8mXJWabaCp_edVbwDlysV1sq09-DMp6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shadow+Sequences+of+Integers%3A+From+Fibonacci+to+Markov+and+Back&rft.jtitle=The+Mathematical+intelligencer&rft.au=Ovsienko%2C+Valentin&rft.date=2023-03-01&rft.pub=Springer+US&rft.issn=0343-6993&rft.eissn=1866-7414&rft.volume=45&rft.issue=1&rft.spage=50&rft.epage=54&rft_id=info:doi/10.1007%2Fs00283-021-10154-x&rft.externalDocID=10_1007_s00283_021_10154_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0343-6993&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0343-6993&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0343-6993&client=summon |