Molten pool behavior and effect of fluid flow on solidification conditions in selective electron beam melting (SEBM) of a biomedical Co-Cr-Mo alloy

Selective electron beam melting (SEBM) is a type of additive manufacturing (AM) that involves multiple physical processes. Because of its unique process conditions compared to other AM processes, a detailed investigation into the molten pool behavior and dominant physics of SEBM is required. Fluid c...

Full description

Saved in:
Bibliographic Details
Published inAdditive manufacturing Vol. 26; pp. 202 - 214
Main Authors Zhao, Yufan, Koizumi, Yuichiro, Aoyagi, Kenta, Wei, Daixiu, Yamanaka, Kenta, Chiba, Akihiko
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Selective electron beam melting (SEBM) is a type of additive manufacturing (AM) that involves multiple physical processes. Because of its unique process conditions compared to other AM processes, a detailed investigation into the molten pool behavior and dominant physics of SEBM is required. Fluid convection involves mass and heat transfer; therefore, fluid flow can have a profound effect on solidification conditions. In this study, computational thermal-fluid dynamics simulations with multi-physical modeling and proof-of-concept experiments were used to analyze the molten pool behavior and resultant thermal conditions related to solidification. The Marangoni effect of molten metal primarily determines fluid behavior and is a critical factor affecting the molten pool instability in SEBM of the Co–Cr–Mo alloy. The solidification parameters calculated from simulated data, especially the solidification rate, are sensitive to the local fluid flow at the solidification front. Combined with experimental analysis, the results presented herein indicate that active fluid convection at the solidification front increase the probability of new grain formation, which suppresses the epitaxial growth of columnar grains.
AbstractList Selective electron beam melting (SEBM) is a type of additive manufacturing (AM) that involves multiple physical processes. Because of its unique process conditions compared to other AM processes, a detailed investigation into the molten pool behavior and dominant physics of SEBM is required. Fluid convection involves mass and heat transfer; therefore, fluid flow can have a profound effect on solidification conditions. In this study, computational thermal-fluid dynamics simulations with multi-physical modeling and proof-of-concept experiments were used to analyze the molten pool behavior and resultant thermal conditions related to solidification. The Marangoni effect of molten metal primarily determines fluid behavior and is a critical factor affecting the molten pool instability in SEBM of the Co–Cr–Mo alloy. The solidification parameters calculated from simulated data, especially the solidification rate, are sensitive to the local fluid flow at the solidification front. Combined with experimental analysis, the results presented herein indicate that active fluid convection at the solidification front increase the probability of new grain formation, which suppresses the epitaxial growth of columnar grains.
Author Zhao, Yufan
Koizumi, Yuichiro
Aoyagi, Kenta
Yamanaka, Kenta
Chiba, Akihiko
Wei, Daixiu
Author_xml – sequence: 1
  givenname: Yufan
  orcidid: 0000-0002-6211-6207
  surname: Zhao
  fullname: Zhao, Yufan
  organization: Department of Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
– sequence: 2
  givenname: Yuichiro
  surname: Koizumi
  fullname: Koizumi, Yuichiro
  email: ykoizumi@mat.eng.osaka-u.ac.jp
  organization: Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
– sequence: 3
  givenname: Kenta
  surname: Aoyagi
  fullname: Aoyagi, Kenta
  organization: Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
– sequence: 4
  givenname: Daixiu
  orcidid: 0000-0003-0264-462X
  surname: Wei
  fullname: Wei, Daixiu
  organization: Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
– sequence: 5
  givenname: Kenta
  orcidid: 0000-0003-1675-4731
  surname: Yamanaka
  fullname: Yamanaka, Kenta
  organization: Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
– sequence: 6
  givenname: Akihiko
  surname: Chiba
  fullname: Chiba, Akihiko
  organization: Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
BookMark eNqFkL1OwzAUhS1UJErpE7B4hCHBTtI0HhggKj9SKwZgthz7Bm7lxJUTivocvDBO6cQAi33utc-RzndKRq1rgZBzzmLOeH61jpUxjYoTxouYJzFjyREZJwnPonnB2eigi5xlJ2TadWvGGJ-lc1EkY_K1craHlm6cs7SCd7VF56lqDYW6Bt1TV9PafqAJp_ukrqWds2iwRq16DKN2rcFBdRTDI9hgwi3QvfDhQwWqoQ3YHts3evG8uF1dDqGKVugaMCHH0tJFpY9Wjipr3e6MHNfKdjA93BPyerd4KR-i5dP9Y3mzjHSaiz4UqorUCKEUnzOdGT6vWGVELjgonhVQpyLRReiazVKoIBMqNywsh43JqyydkPQnV3vXdR5qufHYKL-TnMkBrVzLPVo5oJU8kQFtcIlfLo39nkXvFdp_vNc_Xgi1tghedhqh1QGDD7ikcfin_xunSJjL
CitedBy_id crossref_primary_10_1016_j_addma_2019_100908
crossref_primary_10_1016_j_msea_2019_138826
crossref_primary_10_1007_s11665_024_10422_9
crossref_primary_10_7791_jspmee_10_214
crossref_primary_10_2497_jjspm_15B_T6_08
crossref_primary_10_7791_jspmee_12_188
crossref_primary_10_1016_j_matdes_2022_110927
crossref_primary_10_1007_s00170_024_13979_w
crossref_primary_10_1080_10407782_2020_1777795
crossref_primary_10_1108_RPJ_05_2024_0218
crossref_primary_10_1088_2053_1591_aca508
crossref_primary_10_7791_jspmee_8_132
crossref_primary_10_1007_s00170_023_10897_1
crossref_primary_10_2320_materia_63_533
crossref_primary_10_2464_jilm_72_178
crossref_primary_10_1007_s00231_022_03318_8
crossref_primary_10_1016_j_partic_2022_07_001
crossref_primary_10_5104_jiep_23_446
crossref_primary_10_1002_adem_202301157
crossref_primary_10_1080_17452759_2023_2219665
crossref_primary_10_1080_09506608_2023_2169501
crossref_primary_10_7791_jspmee_10_208
crossref_primary_10_2497_jjspm_69_417
crossref_primary_10_2139_ssrn_3866407
crossref_primary_10_1007_s00170_022_09366_y
crossref_primary_10_1016_j_optlastec_2021_107443
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124521
crossref_primary_10_3389_fmats_2023_1211648
crossref_primary_10_1007_s42114_021_00327_9
crossref_primary_10_2355_isijinternational_ISIJINT_2022_184
crossref_primary_10_26599_MAS_2025_9580002
crossref_primary_10_1063_5_0248530
crossref_primary_10_1016_j_matlet_2019_07_078
crossref_primary_10_1080_00325899_2022_2116405
crossref_primary_10_1016_j_tca_2021_179119
crossref_primary_10_2464_jilm_72_164
crossref_primary_10_1016_j_jcrysgro_2019_05_027
crossref_primary_10_2207_jjws_93_440
crossref_primary_10_1016_j_addma_2019_100982
Cites_doi 10.1080/10407780600710391
10.2351/1.4817788
10.1016/j.actamat.2016.06.022
10.1088/0022-3727/42/17/175502
10.1016/j.addma.2017.10.017
10.13182/NSE62-A28099
10.1016/S1359-6454(99)00287-6
10.1007/978-3-540-85056-4_2
10.1016/S0168-583X(97)00111-0
10.1016/0021-9991(81)90145-5
10.1016/j.matdes.2015.08.086
10.1016/j.jct.2013.09.034
10.1016/j.jmatprotec.2017.04.016
10.1016/0025-5416(84)90201-5
10.1179/1743284714Y.0000000697
10.1016/j.actamat.2016.02.014
10.1016/j.actamat.2016.03.063
10.1016/0001-6160(86)90056-8
10.1016/j.msea.2009.02.019
10.1016/j.jmatprotec.2014.05.002
10.1016/S1359-6454(99)00413-9
10.1016/j.matdes.2017.12.031
10.2351/1.4906302
10.1016/j.cirp.2007.10.004
10.1016/j.addma.2016.05.003
ContentType Journal Article
Copyright 2018
Copyright_xml – notice: 2018
DBID AAYXX
CITATION
DOI 10.1016/j.addma.2018.12.002
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2214-7810
EndPage 214
ExternalDocumentID 10_1016_j_addma_2018_12_002
S2214860418306195
GroupedDBID --M
.~1
0R~
1~.
4.4
457
4G.
7-5
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
GBLVA
KOM
M41
O9-
OAUVE
PC.
ROL
SPC
SPCBC
SSM
SST
SSZ
T5K
~G-
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c369t-86b83d99aa170c4d17b0bd9691ea148ef392c8001453ebe49a6d0f390014d6b43
IEDL.DBID .~1
ISSN 2214-8604
IngestDate Tue Jul 01 01:46:58 EDT 2025
Thu Apr 24 23:07:09 EDT 2025
Fri Feb 23 02:48:47 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Selective electron beam melting
Computational thermal-fluid dynamics
Molten pool behavior
Solidification conditions
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c369t-86b83d99aa170c4d17b0bd9691ea148ef392c8001453ebe49a6d0f390014d6b43
ORCID 0000-0002-6211-6207
0000-0003-0264-462X
0000-0003-1675-4731
PageCount 13
ParticipantIDs crossref_primary_10_1016_j_addma_2018_12_002
crossref_citationtrail_10_1016_j_addma_2018_12_002
elsevier_sciencedirect_doi_10_1016_j_addma_2018_12_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2019
2019-03-00
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: March 2019
PublicationDecade 2010
PublicationTitle Additive manufacturing
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Plotkowski, Kirka, Babu (bib0200) 2017; 18
Klassen, Forster, Juechter, Körner (bib0035) 2017; 247
Kruth, Levy, Klocke, Childs (bib0140) 2007; 56
Chalmers (bib0050) 1964
Tenner, Berg, Brock, Klämpfl, Schmidt (bib0160) 2015; 27
Dehoff, Kirka, List, Unocic, Sames (bib0055) 2015; 31
Bontha, Klingbeil, Kobryn, Fraser (bib0205) 2009; 513–514
Kumar, Dutta, Sundarraj, Walker (bib0195) 2007; 51
Lippold (bib0060) 2014
Valencia (bib0080) 2008
Khairallah, Anderson, Rubenchik, King (bib0130) 2016; 108
Liu, Yang, Mai, Wang, Song (bib0135) 2015; 87
Schou, Risø (bib0085) 1997; 124
Takatani, Gandin, Rappaz (bib0175) 2000; 48
Bauereiß, Scharowsky, Körner (bib0030) 2014; 214
Jamshidinia, Kong, Kovacevic (bib0025) 2012; vol. 7
Hull Jagadish, Osgood, Parisi, Wang, Warlimont (bib0010) 2017
Raghavan, Wei, Palmer, DebRoy (bib0165) 2013; 25
Yan, Ge, Smith, Lin, Kafka, Lin, Liu (bib0040) 2016; 115
Cho, Farson, Milewski, Hollis (bib0095) 2009; 42
Carpenter, CarTech® BioDur® CCM® Alloy, (n.d.).
Bhavar, Kattire, Pawar, Khot, Gujar, Singh (bib0005) 2014
(accessed January 17, 2018).
Costa, Delsante, Borzone, Zivkovic, Novakovic (bib0115) 2014; 69
Yan, Qian, Ge, Lin, Liu, Lin, Wagner (bib0045) 2018; 141
Boettinger, Coriell, Greer, Karma, Kurz, Rappaz, Trivedi (bib0020) 2000; 48
Hirt, Nichols (bib0070) 1981; 39
FlowScience (bib0125) 2015
Lee, Zhang (bib0150) 2016; 12
Strauss (bib0120) 1962; 12
Matweb (bib0100) 2017
Hunt (bib0180) 1984; 65
Jonathan Dantzig (bib0190) 2016
Kurz, Giovanola, Trivedi (bib0185) 1986; 34
FlowScience (bib0075) 2015
Valencia, Quested (bib0105) 2008; Vol.15
Messler (bib0090) 1999
Galati, Iuliano (bib0015) 2018; 19
Anderson (bib0065) 2009
Mills (bib0145) 2002
T. Lienert, T. Siewert, S. Babu, V. Acoff, S.W.P. Specifications, ASM Handbook, Volume 6A, Welding Fundamentals and Processes, System. 286 (2011) 287.
Raghavan, Dehoff, Pannala, Simunovic, Kirka, Turner, Carlson, Babu (bib0170) 2016; 112
Hunt (10.1016/j.addma.2018.12.002_bib0180) 1984; 65
Costa (10.1016/j.addma.2018.12.002_bib0115) 2014; 69
Strauss (10.1016/j.addma.2018.12.002_bib0120) 1962; 12
Raghavan (10.1016/j.addma.2018.12.002_bib0170) 2016; 112
Hull Jagadish (10.1016/j.addma.2018.12.002_bib0010) 2017
FlowScience (10.1016/j.addma.2018.12.002_bib0075) 2015
Jonathan Dantzig (10.1016/j.addma.2018.12.002_bib0190) 2016
Messler (10.1016/j.addma.2018.12.002_bib0090) 1999
Bauereiß (10.1016/j.addma.2018.12.002_bib0030) 2014; 214
Dehoff (10.1016/j.addma.2018.12.002_bib0055) 2015; 31
Mills (10.1016/j.addma.2018.12.002_bib0145) 2002
Yan (10.1016/j.addma.2018.12.002_bib0040) 2016; 115
Bhavar (10.1016/j.addma.2018.12.002_bib0005) 2014
Plotkowski (10.1016/j.addma.2018.12.002_bib0200) 2017; 18
10.1016/j.addma.2018.12.002_bib0155
10.1016/j.addma.2018.12.002_bib0110
Lee (10.1016/j.addma.2018.12.002_bib0150) 2016; 12
Kurz (10.1016/j.addma.2018.12.002_bib0185) 1986; 34
Chalmers (10.1016/j.addma.2018.12.002_bib0050) 1964
Matweb (10.1016/j.addma.2018.12.002_bib0100) 2017
Valencia (10.1016/j.addma.2018.12.002_bib0080) 2008
Anderson (10.1016/j.addma.2018.12.002_bib0065) 2009
Raghavan (10.1016/j.addma.2018.12.002_bib0165) 2013; 25
Klassen (10.1016/j.addma.2018.12.002_bib0035) 2017; 247
Lippold (10.1016/j.addma.2018.12.002_bib0060) 2014
Takatani (10.1016/j.addma.2018.12.002_bib0175) 2000; 48
Kumar (10.1016/j.addma.2018.12.002_bib0195) 2007; 51
Yan (10.1016/j.addma.2018.12.002_bib0045) 2018; 141
Jamshidinia (10.1016/j.addma.2018.12.002_bib0025) 2012; vol. 7
Valencia (10.1016/j.addma.2018.12.002_bib0105) 2008; Vol.15
Khairallah (10.1016/j.addma.2018.12.002_bib0130) 2016; 108
FlowScience (10.1016/j.addma.2018.12.002_bib0125) 2015
Liu (10.1016/j.addma.2018.12.002_bib0135) 2015; 87
Boettinger (10.1016/j.addma.2018.12.002_bib0020) 2000; 48
Tenner (10.1016/j.addma.2018.12.002_bib0160) 2015; 27
Galati (10.1016/j.addma.2018.12.002_bib0015) 2018; 19
Schou (10.1016/j.addma.2018.12.002_bib0085) 1997; 124
Cho (10.1016/j.addma.2018.12.002_bib0095) 2009; 42
Kruth (10.1016/j.addma.2018.12.002_bib0140) 2007; 56
Bontha (10.1016/j.addma.2018.12.002_bib0205) 2009; 513–514
Hirt (10.1016/j.addma.2018.12.002_bib0070) 1981; 39
References_xml – volume: 31
  start-page: 939
  year: 2015
  end-page: 944
  ident: bib0055
  article-title: Crystallographic texture engineering through novel melt strategies via electron beam melting: inconel 718
  publication-title: Mater. Sci. Technol.
– year: 2015
  ident: bib0075
  article-title: FLOW-3D | Highly-Accurate CFD Software, Free Surface Transient Flows
– reference: T. Lienert, T. Siewert, S. Babu, V. Acoff, S.W.P. Specifications, ASM Handbook, Volume 6A, Welding Fundamentals and Processes, System. 286 (2011) 287.
– volume: 247
  start-page: 280
  year: 2017
  end-page: 288
  ident: bib0035
  article-title: Numerical simulation of multi-component evaporation during selective electron beam melting of TiAl
  publication-title: J. Mater. Process. Technol.
– start-page: 15
  year: 2009
  end-page: 51
  ident: bib0065
  article-title: Governing equations of fluid dynamics
  publication-title: Prog. Comput. Fluid Dyn. Int. J.
– volume: 48
  start-page: 43
  year: 2000
  end-page: 70
  ident: bib0020
  article-title: Solidification microstructures: recent developments, future directions
  publication-title: Acta Mater.
– year: 1999
  ident: bib0090
  article-title: Principles of Welding: Processes, Physics, Chemistry, and Metallurgy
– year: 2008
  ident: bib0080
  article-title: Thermophysical Properties Sources and Availability of Reliable Data
– volume: 112
  start-page: 303
  year: 2016
  end-page: 314
  ident: bib0170
  article-title: Numerical modeling of heat-transfer and the influence of process parameters on tailoring the grain morphology of IN718 in electron beam additive manufacturing
  publication-title: Acta Mater.
– volume: 141
  start-page: 210
  year: 2018
  end-page: 219
  ident: bib0045
  article-title: Meso-scale modeling of multiple-layer fabrication process in Selective Electron beam Melting: Inter-layer/track voids formation
  publication-title: Mater. Des.
– volume: Vol.15
  start-page: 468
  year: 2008
  end-page: 481
  ident: bib0105
  publication-title: Thermophysical Properties, ASM Handbook: Casting
– year: 2016
  ident: bib0190
  article-title: Solidification
– volume: 12
  start-page: 178
  year: 2016
  end-page: 188
  ident: bib0150
  article-title: Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion
  publication-title: Addit. Manuf.
– volume: 513–514
  start-page: 311
  year: 2009
  end-page: 318
  ident: bib0205
  article-title: Effects of process variables and size-scale on solidification microstructure in beam-based fabrication of bulky 3D structures
  publication-title: Mater. Sci. Eng. A
– reference: (accessed January 17, 2018).
– year: 1964
  ident: bib0050
  article-title: Principles of Solidification
– year: 2002
  ident: bib0145
  article-title: Recommended Values of Thermophysical Properties for Selected Commercial Alloys
– volume: 27
  year: 2015
  ident: bib0160
  article-title: Experimental approach for quantification of fluid dynamics in laser metal welding
  publication-title: J. Laser Appl.
– volume: 51
  start-page: 59
  year: 2007
  end-page: 83
  ident: bib0195
  article-title: Remelting of solid and its effect on macrosegregation during solidification
  publication-title: Numer. Heat Transfer Part A: Appl.
– year: 2017
  ident: bib0100
  article-title: Carpenter BioDur
– volume: 108
  start-page: 36
  year: 2016
  end-page: 45
  ident: bib0130
  article-title: Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones
  publication-title: Acta Mater.
– volume: 34
  start-page: 823
  year: 1986
  end-page: 830
  ident: bib0185
  article-title: Theory of microstructural development during rapid solidification
  publication-title: Acta Metall.
– volume: 124
  start-page: 647
  year: 1997
  end-page: 648
  ident: bib0085
  article-title: Laser-beam interactions with materials: physical principles and applications
  publication-title: Nucl. Instrum. Methods Phys. Res. B
– volume: 115
  start-page: 403
  year: 2016
  end-page: 412
  ident: bib0040
  article-title: Multi-scale modeling of electron beam melting of functionally graded materials
  publication-title: Acta Mater.
– volume: 69
  start-page: 73
  year: 2014
  end-page: 84
  ident: bib0115
  article-title: Thermodynamic and surface properties of liquid Co-Cr-Ni alloys
  publication-title: J. Chem. Thermodyn.
– volume: 18
  start-page: 256
  year: 2017
  end-page: 268
  ident: bib0200
  article-title: Verification and validation of a rapid heat transfer calculation methodology for transient melt pool solidification conditions in powder bed metal additive manufacturing
  publication-title: Addit. Manuf.
– volume: 214
  start-page: 2522
  year: 2014
  end-page: 2528
  ident: bib0030
  article-title: Defect generation and propagation mechanism during additive manufacturing by selective beam melting
  publication-title: J. Mater. Process. Technol.
– volume: 42
  year: 2009
  ident: bib0095
  article-title: Weld pool flows during initial stages of keyhole formation in laser welding
  publication-title: J. Phys. D Appl. Phys.
– volume: 25
  year: 2013
  ident: bib0165
  article-title: Heat transfer and fluid flow in additive manufacturing
  publication-title: J. Laser Appl.
– volume: 48
  start-page: 675
  year: 2000
  end-page: 688
  ident: bib0175
  article-title: EBSD characterisation and modelling of columnar dendritic grains growing in the presence of fluid flow
  publication-title: Acta Mater.
– volume: vol. 7
  start-page: 3089
  year: 2012
  ident: bib0025
  article-title: Temperature distribution and fluid flow modeling of electron beam melting® (EBM)
  publication-title: Fluids and Heat Transfer, Parts A, B, C, and D, ASME
– year: 2015
  ident: bib0125
  article-title: Flow3D: Version 11.1
– year: 2014
  ident: bib0060
  article-title: Welding Metallurgy and Weldability
– volume: 12
  start-page: 436
  year: 1962
  end-page: 439
  ident: bib0120
  article-title: The temperature dependence of the viscosity of liquid metals
  publication-title: Nucl. Sci. Eng.
– volume: 87
  start-page: 797
  year: 2015
  end-page: 806
  ident: bib0135
  article-title: Investigation into spatter behavior during selective laser melting of AISI 316L stainless steel powder
  publication-title: Mater. Des.
– volume: 65
  start-page: 75
  year: 1984
  end-page: 83
  ident: bib0180
  article-title: Steady state columnar and equiaxed growth of dendrites and eutectic
  publication-title: Mater. Sci. Eng.
– year: 2014
  ident: bib0005
  article-title: A review on powder bed fusion technology of additive manufacturing
  publication-title: Processes, Applications, and Performance of Materials in Additive Manufacturing
– reference: Carpenter, CarTech® BioDur® CCM® Alloy, (n.d.).
– volume: 56
  start-page: 730
  year: 2007
  end-page: 759
  ident: bib0140
  article-title: Consolidation phenomena in laser and powder-bed based layered manufacturing
  publication-title: CIRP Ann. Manuf. Technol.
– volume: 39
  start-page: 201
  year: 1981
  end-page: 225
  ident: bib0070
  article-title: Volume of fluid (VOF) method for the dynamics of free boundaries
  publication-title: J. Comput. Phys.
– year: 2017
  ident: bib0010
  article-title: Additive Manufacturing of Metals - From Fundamental Technology to Rocket Nozzles, Medial Implants, and Custom Jewelry
– volume: 19
  start-page: 1
  year: 2018
  end-page: 20
  ident: bib0015
  article-title: A literature review of powder-based electron beam melting focusing on numerical simulations
  publication-title: Addit. Manuf.
– year: 2017
  ident: 10.1016/j.addma.2018.12.002_bib0100
– year: 2015
  ident: 10.1016/j.addma.2018.12.002_bib0125
– volume: 51
  start-page: 59
  year: 2007
  ident: 10.1016/j.addma.2018.12.002_bib0195
  article-title: Remelting of solid and its effect on macrosegregation during solidification
  publication-title: Numer. Heat Transfer Part A: Appl.
  doi: 10.1080/10407780600710391
– volume: 25
  year: 2013
  ident: 10.1016/j.addma.2018.12.002_bib0165
  article-title: Heat transfer and fluid flow in additive manufacturing
  publication-title: J. Laser Appl.
  doi: 10.2351/1.4817788
– volume: 115
  start-page: 403
  year: 2016
  ident: 10.1016/j.addma.2018.12.002_bib0040
  article-title: Multi-scale modeling of electron beam melting of functionally graded materials
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.06.022
– volume: 42
  year: 2009
  ident: 10.1016/j.addma.2018.12.002_bib0095
  article-title: Weld pool flows during initial stages of keyhole formation in laser welding
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/0022-3727/42/17/175502
– volume: 18
  start-page: 256
  year: 2017
  ident: 10.1016/j.addma.2018.12.002_bib0200
  article-title: Verification and validation of a rapid heat transfer calculation methodology for transient melt pool solidification conditions in powder bed metal additive manufacturing
  publication-title: Addit. Manuf.
  doi: 10.1016/j.addma.2017.10.017
– volume: 12
  start-page: 436
  year: 1962
  ident: 10.1016/j.addma.2018.12.002_bib0120
  article-title: The temperature dependence of the viscosity of liquid metals
  publication-title: Nucl. Sci. Eng.
  doi: 10.13182/NSE62-A28099
– volume: 48
  start-page: 43
  year: 2000
  ident: 10.1016/j.addma.2018.12.002_bib0020
  article-title: Solidification microstructures: recent developments, future directions
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(99)00287-6
– start-page: 15
  year: 2009
  ident: 10.1016/j.addma.2018.12.002_bib0065
  article-title: Governing equations of fluid dynamics
  publication-title: Prog. Comput. Fluid Dyn. Int. J.
  doi: 10.1007/978-3-540-85056-4_2
– volume: 124
  start-page: 647
  year: 1997
  ident: 10.1016/j.addma.2018.12.002_bib0085
  article-title: Laser-beam interactions with materials: physical principles and applications
  publication-title: Nucl. Instrum. Methods Phys. Res. B
  doi: 10.1016/S0168-583X(97)00111-0
– year: 2014
  ident: 10.1016/j.addma.2018.12.002_bib0005
  article-title: A review on powder bed fusion technology of additive manufacturing
– year: 1964
  ident: 10.1016/j.addma.2018.12.002_bib0050
– volume: 39
  start-page: 201
  year: 1981
  ident: 10.1016/j.addma.2018.12.002_bib0070
  article-title: Volume of fluid (VOF) method for the dynamics of free boundaries
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(81)90145-5
– volume: 87
  start-page: 797
  year: 2015
  ident: 10.1016/j.addma.2018.12.002_bib0135
  article-title: Investigation into spatter behavior during selective laser melting of AISI 316L stainless steel powder
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2015.08.086
– ident: 10.1016/j.addma.2018.12.002_bib0155
– year: 2017
  ident: 10.1016/j.addma.2018.12.002_bib0010
– year: 2002
  ident: 10.1016/j.addma.2018.12.002_bib0145
– volume: 69
  start-page: 73
  year: 2014
  ident: 10.1016/j.addma.2018.12.002_bib0115
  article-title: Thermodynamic and surface properties of liquid Co-Cr-Ni alloys
  publication-title: J. Chem. Thermodyn.
  doi: 10.1016/j.jct.2013.09.034
– volume: 247
  start-page: 280
  year: 2017
  ident: 10.1016/j.addma.2018.12.002_bib0035
  article-title: Numerical simulation of multi-component evaporation during selective electron beam melting of TiAl
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2017.04.016
– volume: 65
  start-page: 75
  year: 1984
  ident: 10.1016/j.addma.2018.12.002_bib0180
  article-title: Steady state columnar and equiaxed growth of dendrites and eutectic
  publication-title: Mater. Sci. Eng.
  doi: 10.1016/0025-5416(84)90201-5
– volume: 31
  start-page: 939
  year: 2015
  ident: 10.1016/j.addma.2018.12.002_bib0055
  article-title: Crystallographic texture engineering through novel melt strategies via electron beam melting: inconel 718
  publication-title: Mater. Sci. Technol.
  doi: 10.1179/1743284714Y.0000000697
– year: 2015
  ident: 10.1016/j.addma.2018.12.002_bib0075
– volume: 108
  start-page: 36
  year: 2016
  ident: 10.1016/j.addma.2018.12.002_bib0130
  article-title: Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.02.014
– volume: 112
  start-page: 303
  year: 2016
  ident: 10.1016/j.addma.2018.12.002_bib0170
  article-title: Numerical modeling of heat-transfer and the influence of process parameters on tailoring the grain morphology of IN718 in electron beam additive manufacturing
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.03.063
– volume: 34
  start-page: 823
  year: 1986
  ident: 10.1016/j.addma.2018.12.002_bib0185
  article-title: Theory of microstructural development during rapid solidification
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(86)90056-8
– volume: 513–514
  start-page: 311
  year: 2009
  ident: 10.1016/j.addma.2018.12.002_bib0205
  article-title: Effects of process variables and size-scale on solidification microstructure in beam-based fabrication of bulky 3D structures
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2009.02.019
– volume: 214
  start-page: 2522
  year: 2014
  ident: 10.1016/j.addma.2018.12.002_bib0030
  article-title: Defect generation and propagation mechanism during additive manufacturing by selective beam melting
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2014.05.002
– volume: 19
  start-page: 1
  year: 2018
  ident: 10.1016/j.addma.2018.12.002_bib0015
  article-title: A literature review of powder-based electron beam melting focusing on numerical simulations
  publication-title: Addit. Manuf.
– volume: 48
  start-page: 675
  year: 2000
  ident: 10.1016/j.addma.2018.12.002_bib0175
  article-title: EBSD characterisation and modelling of columnar dendritic grains growing in the presence of fluid flow
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(99)00413-9
– year: 2008
  ident: 10.1016/j.addma.2018.12.002_bib0080
– year: 1999
  ident: 10.1016/j.addma.2018.12.002_bib0090
– ident: 10.1016/j.addma.2018.12.002_bib0110
– volume: Vol.15
  start-page: 468
  year: 2008
  ident: 10.1016/j.addma.2018.12.002_bib0105
– year: 2016
  ident: 10.1016/j.addma.2018.12.002_bib0190
– volume: 141
  start-page: 210
  year: 2018
  ident: 10.1016/j.addma.2018.12.002_bib0045
  article-title: Meso-scale modeling of multiple-layer fabrication process in Selective Electron beam Melting: Inter-layer/track voids formation
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2017.12.031
– volume: 27
  year: 2015
  ident: 10.1016/j.addma.2018.12.002_bib0160
  article-title: Experimental approach for quantification of fluid dynamics in laser metal welding
  publication-title: J. Laser Appl.
  doi: 10.2351/1.4906302
– volume: 56
  start-page: 730
  year: 2007
  ident: 10.1016/j.addma.2018.12.002_bib0140
  article-title: Consolidation phenomena in laser and powder-bed based layered manufacturing
  publication-title: CIRP Ann. Manuf. Technol.
  doi: 10.1016/j.cirp.2007.10.004
– volume: vol. 7
  start-page: 3089
  year: 2012
  ident: 10.1016/j.addma.2018.12.002_bib0025
  article-title: Temperature distribution and fluid flow modeling of electron beam melting® (EBM)
– year: 2014
  ident: 10.1016/j.addma.2018.12.002_bib0060
– volume: 12
  start-page: 178
  year: 2016
  ident: 10.1016/j.addma.2018.12.002_bib0150
  article-title: Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion
  publication-title: Addit. Manuf.
  doi: 10.1016/j.addma.2016.05.003
SSID ssj0001537982
Score 2.4717476
Snippet Selective electron beam melting (SEBM) is a type of additive manufacturing (AM) that involves multiple physical processes. Because of its unique process...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 202
SubjectTerms Computational thermal-fluid dynamics
Molten pool behavior
Selective electron beam melting
Solidification conditions
Title Molten pool behavior and effect of fluid flow on solidification conditions in selective electron beam melting (SEBM) of a biomedical Co-Cr-Mo alloy
URI https://dx.doi.org/10.1016/j.addma.2018.12.002
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LSsNAcCl60YP4xGeZgwcFY_PYJN1jDUpV0osK3kI2u4FIm5TSIl78CX_YmU3iA6EHLyHZ7CxhZnZmdjIPxk4lKnWJcs7SeLXwJrdSrSRud0_60uaKZ-TviEfB8InfPfvPHRa1uTAUVtnI_lqmG2ndjPQabPamRdF7cF2HOihxZEpUSoISzTkPicsv351vP4vvhcL0jKL5FgG0xYdMmBfub1N_yOkbt2DjXvmjoH4onZtNttFYizCoP2iLdXS5zdZ_1BDcYR9xNUa7F6hXFrRJ95CWCupQDahyyMeLQuG1eoWqBOS2QlGEkCEK4IFY1XFbUOBL0xcHRSC0DXJw0XQCEz2mAGk4e7i-is9p0RTq1H2iMkSVFc2suAL6j_-2y55urh-jodV0WrAyLxBzxIrse0qINHVCO-PKCaUtlQiEo1NEss7Risr6dJzyPaQ6F2mgbBykERVI7u2xlbIq9T4DHvhKK9eVQkqufdm3eZjxPKMiOGEu7APmtuhNsqYMOXXDGCdtvNlLYmiSEE0Sx02QJgfs4gtoWlfhWD49aOmW_GKmBPXEMsDD_wIesTV8EnVw2jFbmc8W-gStlbnsGnbsstXB7f1w9AlydumJ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9UwDLfGOAAHxKcYY-ADSCARXj_Sjxx2gMemN7busk3aLTRNKhW9tdP2pmkX_gn-lP2Ds9MWhpB2QNolqpLGSm3XdqJfbIC3hpy6ITsnHLWCHmpROmvod49NYgJpZcXnHcVuOjuQ3w6TwyW4HO_CMKxysP29TffWeuiZDNycHDfNZC-KQq6gJEkpySmpEVm57S7Oad92ur71lYT8Loo2N_anMzGUFhBVnKqFyFOTx1apsgyzoJI2zExgrEpV6Eqi6moKG6qc9w9JTJ8pVZnagDq5x6ZGxkT3Dtyl0ZzLJnz6Gf452EniTPkiVbxAwSscsx15XBkZFJ_wKMz9OeRwnvOPR7zm5TYfwcMhPMXPPQcew5Jrn8CDa0kLn8KvoptToI1cnAvHW_5YthZ7bAh2Ndbzs8ZS251j1yKpd2MZkuS1AGkHbnugGDY06AvxkM3FsSIPES2P8MjNGZGN7_c2vhQfmGiJfa4AViucdmJ6IooOGThw8QwOboX_z2G57Vr3AlCmiXU2iowyRrrE5IHMKllXnHUnq1WwAtHIXl0Nec-5_MZcjwC3H9rLRLNMdBhpkskKfPw96bhP-3Hz6-koN_2X9mpyTDdNfPm_E9_Avdl-saN3tna3V-E-jageGfcKlhcnZ26NQqWFee1VE-H7bf8LVzdsJDw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molten+pool+behavior+and+effect+of+fluid+flow+on+solidification+conditions+in+selective+electron+beam+melting+%28SEBM%29+of+a+biomedical+Co-Cr-Mo+alloy&rft.jtitle=Additive+manufacturing&rft.au=Zhao%2C+Yufan&rft.au=Koizumi%2C+Yuichiro&rft.au=Aoyagi%2C+Kenta&rft.au=Wei%2C+Daixiu&rft.date=2019-03-01&rft.issn=2214-8604&rft.volume=26&rft.spage=202&rft.epage=214&rft_id=info:doi/10.1016%2Fj.addma.2018.12.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_addma_2018_12_002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-8604&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-8604&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-8604&client=summon