Molten pool behavior and effect of fluid flow on solidification conditions in selective electron beam melting (SEBM) of a biomedical Co-Cr-Mo alloy
Selective electron beam melting (SEBM) is a type of additive manufacturing (AM) that involves multiple physical processes. Because of its unique process conditions compared to other AM processes, a detailed investigation into the molten pool behavior and dominant physics of SEBM is required. Fluid c...
Saved in:
Published in | Additive manufacturing Vol. 26; pp. 202 - 214 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Selective electron beam melting (SEBM) is a type of additive manufacturing (AM) that involves multiple physical processes. Because of its unique process conditions compared to other AM processes, a detailed investigation into the molten pool behavior and dominant physics of SEBM is required. Fluid convection involves mass and heat transfer; therefore, fluid flow can have a profound effect on solidification conditions. In this study, computational thermal-fluid dynamics simulations with multi-physical modeling and proof-of-concept experiments were used to analyze the molten pool behavior and resultant thermal conditions related to solidification. The Marangoni effect of molten metal primarily determines fluid behavior and is a critical factor affecting the molten pool instability in SEBM of the Co–Cr–Mo alloy. The solidification parameters calculated from simulated data, especially the solidification rate, are sensitive to the local fluid flow at the solidification front. Combined with experimental analysis, the results presented herein indicate that active fluid convection at the solidification front increase the probability of new grain formation, which suppresses the epitaxial growth of columnar grains. |
---|---|
AbstractList | Selective electron beam melting (SEBM) is a type of additive manufacturing (AM) that involves multiple physical processes. Because of its unique process conditions compared to other AM processes, a detailed investigation into the molten pool behavior and dominant physics of SEBM is required. Fluid convection involves mass and heat transfer; therefore, fluid flow can have a profound effect on solidification conditions. In this study, computational thermal-fluid dynamics simulations with multi-physical modeling and proof-of-concept experiments were used to analyze the molten pool behavior and resultant thermal conditions related to solidification. The Marangoni effect of molten metal primarily determines fluid behavior and is a critical factor affecting the molten pool instability in SEBM of the Co–Cr–Mo alloy. The solidification parameters calculated from simulated data, especially the solidification rate, are sensitive to the local fluid flow at the solidification front. Combined with experimental analysis, the results presented herein indicate that active fluid convection at the solidification front increase the probability of new grain formation, which suppresses the epitaxial growth of columnar grains. |
Author | Zhao, Yufan Koizumi, Yuichiro Aoyagi, Kenta Yamanaka, Kenta Chiba, Akihiko Wei, Daixiu |
Author_xml | – sequence: 1 givenname: Yufan orcidid: 0000-0002-6211-6207 surname: Zhao fullname: Zhao, Yufan organization: Department of Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan – sequence: 2 givenname: Yuichiro surname: Koizumi fullname: Koizumi, Yuichiro email: ykoizumi@mat.eng.osaka-u.ac.jp organization: Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan – sequence: 3 givenname: Kenta surname: Aoyagi fullname: Aoyagi, Kenta organization: Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan – sequence: 4 givenname: Daixiu orcidid: 0000-0003-0264-462X surname: Wei fullname: Wei, Daixiu organization: Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan – sequence: 5 givenname: Kenta orcidid: 0000-0003-1675-4731 surname: Yamanaka fullname: Yamanaka, Kenta organization: Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan – sequence: 6 givenname: Akihiko surname: Chiba fullname: Chiba, Akihiko organization: Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan |
BookMark | eNqFkL1OwzAUhS1UJErpE7B4hCHBTtI0HhggKj9SKwZgthz7Bm7lxJUTivocvDBO6cQAi33utc-RzndKRq1rgZBzzmLOeH61jpUxjYoTxouYJzFjyREZJwnPonnB2eigi5xlJ2TadWvGGJ-lc1EkY_K1craHlm6cs7SCd7VF56lqDYW6Bt1TV9PafqAJp_ukrqWds2iwRq16DKN2rcFBdRTDI9hgwi3QvfDhQwWqoQ3YHts3evG8uF1dDqGKVugaMCHH0tJFpY9Wjipr3e6MHNfKdjA93BPyerd4KR-i5dP9Y3mzjHSaiz4UqorUCKEUnzOdGT6vWGVELjgonhVQpyLRReiazVKoIBMqNywsh43JqyydkPQnV3vXdR5qufHYKL-TnMkBrVzLPVo5oJU8kQFtcIlfLo39nkXvFdp_vNc_Xgi1tghedhqh1QGDD7ikcfin_xunSJjL |
CitedBy_id | crossref_primary_10_1016_j_addma_2019_100908 crossref_primary_10_1016_j_msea_2019_138826 crossref_primary_10_1007_s11665_024_10422_9 crossref_primary_10_7791_jspmee_10_214 crossref_primary_10_2497_jjspm_15B_T6_08 crossref_primary_10_7791_jspmee_12_188 crossref_primary_10_1016_j_matdes_2022_110927 crossref_primary_10_1007_s00170_024_13979_w crossref_primary_10_1080_10407782_2020_1777795 crossref_primary_10_1108_RPJ_05_2024_0218 crossref_primary_10_1088_2053_1591_aca508 crossref_primary_10_7791_jspmee_8_132 crossref_primary_10_1007_s00170_023_10897_1 crossref_primary_10_2320_materia_63_533 crossref_primary_10_2464_jilm_72_178 crossref_primary_10_1007_s00231_022_03318_8 crossref_primary_10_1016_j_partic_2022_07_001 crossref_primary_10_5104_jiep_23_446 crossref_primary_10_1002_adem_202301157 crossref_primary_10_1080_17452759_2023_2219665 crossref_primary_10_1080_09506608_2023_2169501 crossref_primary_10_7791_jspmee_10_208 crossref_primary_10_2497_jjspm_69_417 crossref_primary_10_2139_ssrn_3866407 crossref_primary_10_1007_s00170_022_09366_y crossref_primary_10_1016_j_optlastec_2021_107443 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124521 crossref_primary_10_3389_fmats_2023_1211648 crossref_primary_10_1007_s42114_021_00327_9 crossref_primary_10_2355_isijinternational_ISIJINT_2022_184 crossref_primary_10_26599_MAS_2025_9580002 crossref_primary_10_1063_5_0248530 crossref_primary_10_1016_j_matlet_2019_07_078 crossref_primary_10_1080_00325899_2022_2116405 crossref_primary_10_1016_j_tca_2021_179119 crossref_primary_10_2464_jilm_72_164 crossref_primary_10_1016_j_jcrysgro_2019_05_027 crossref_primary_10_2207_jjws_93_440 crossref_primary_10_1016_j_addma_2019_100982 |
Cites_doi | 10.1080/10407780600710391 10.2351/1.4817788 10.1016/j.actamat.2016.06.022 10.1088/0022-3727/42/17/175502 10.1016/j.addma.2017.10.017 10.13182/NSE62-A28099 10.1016/S1359-6454(99)00287-6 10.1007/978-3-540-85056-4_2 10.1016/S0168-583X(97)00111-0 10.1016/0021-9991(81)90145-5 10.1016/j.matdes.2015.08.086 10.1016/j.jct.2013.09.034 10.1016/j.jmatprotec.2017.04.016 10.1016/0025-5416(84)90201-5 10.1179/1743284714Y.0000000697 10.1016/j.actamat.2016.02.014 10.1016/j.actamat.2016.03.063 10.1016/0001-6160(86)90056-8 10.1016/j.msea.2009.02.019 10.1016/j.jmatprotec.2014.05.002 10.1016/S1359-6454(99)00413-9 10.1016/j.matdes.2017.12.031 10.2351/1.4906302 10.1016/j.cirp.2007.10.004 10.1016/j.addma.2016.05.003 |
ContentType | Journal Article |
Copyright | 2018 |
Copyright_xml | – notice: 2018 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.addma.2018.12.002 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2214-7810 |
EndPage | 214 |
ExternalDocumentID | 10_1016_j_addma_2018_12_002 S2214860418306195 |
GroupedDBID | --M .~1 0R~ 1~. 4.4 457 4G. 7-5 8P~ AABXZ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAXUO ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FYGXN GBLVA KOM M41 O9- OAUVE PC. ROL SPC SPCBC SSM SST SSZ T5K ~G- AAQFI AATTM AAXKI AAYWO AAYXX ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c369t-86b83d99aa170c4d17b0bd9691ea148ef392c8001453ebe49a6d0f390014d6b43 |
IEDL.DBID | .~1 |
ISSN | 2214-8604 |
IngestDate | Tue Jul 01 01:46:58 EDT 2025 Thu Apr 24 23:07:09 EDT 2025 Fri Feb 23 02:48:47 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Selective electron beam melting Computational thermal-fluid dynamics Molten pool behavior Solidification conditions |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c369t-86b83d99aa170c4d17b0bd9691ea148ef392c8001453ebe49a6d0f390014d6b43 |
ORCID | 0000-0002-6211-6207 0000-0003-0264-462X 0000-0003-1675-4731 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1016_j_addma_2018_12_002 crossref_citationtrail_10_1016_j_addma_2018_12_002 elsevier_sciencedirect_doi_10_1016_j_addma_2018_12_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2019 2019-03-00 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: March 2019 |
PublicationDecade | 2010 |
PublicationTitle | Additive manufacturing |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Plotkowski, Kirka, Babu (bib0200) 2017; 18 Klassen, Forster, Juechter, Körner (bib0035) 2017; 247 Kruth, Levy, Klocke, Childs (bib0140) 2007; 56 Chalmers (bib0050) 1964 Tenner, Berg, Brock, Klämpfl, Schmidt (bib0160) 2015; 27 Dehoff, Kirka, List, Unocic, Sames (bib0055) 2015; 31 Bontha, Klingbeil, Kobryn, Fraser (bib0205) 2009; 513–514 Kumar, Dutta, Sundarraj, Walker (bib0195) 2007; 51 Lippold (bib0060) 2014 Valencia (bib0080) 2008 Khairallah, Anderson, Rubenchik, King (bib0130) 2016; 108 Liu, Yang, Mai, Wang, Song (bib0135) 2015; 87 Schou, Risø (bib0085) 1997; 124 Takatani, Gandin, Rappaz (bib0175) 2000; 48 Bauereiß, Scharowsky, Körner (bib0030) 2014; 214 Jamshidinia, Kong, Kovacevic (bib0025) 2012; vol. 7 Hull Jagadish, Osgood, Parisi, Wang, Warlimont (bib0010) 2017 Raghavan, Wei, Palmer, DebRoy (bib0165) 2013; 25 Yan, Ge, Smith, Lin, Kafka, Lin, Liu (bib0040) 2016; 115 Cho, Farson, Milewski, Hollis (bib0095) 2009; 42 Carpenter, CarTech® BioDur® CCM® Alloy, (n.d.). Bhavar, Kattire, Pawar, Khot, Gujar, Singh (bib0005) 2014 (accessed January 17, 2018). Costa, Delsante, Borzone, Zivkovic, Novakovic (bib0115) 2014; 69 Yan, Qian, Ge, Lin, Liu, Lin, Wagner (bib0045) 2018; 141 Boettinger, Coriell, Greer, Karma, Kurz, Rappaz, Trivedi (bib0020) 2000; 48 Hirt, Nichols (bib0070) 1981; 39 FlowScience (bib0125) 2015 Lee, Zhang (bib0150) 2016; 12 Strauss (bib0120) 1962; 12 Matweb (bib0100) 2017 Hunt (bib0180) 1984; 65 Jonathan Dantzig (bib0190) 2016 Kurz, Giovanola, Trivedi (bib0185) 1986; 34 FlowScience (bib0075) 2015 Valencia, Quested (bib0105) 2008; Vol.15 Messler (bib0090) 1999 Galati, Iuliano (bib0015) 2018; 19 Anderson (bib0065) 2009 Mills (bib0145) 2002 T. Lienert, T. Siewert, S. Babu, V. Acoff, S.W.P. Specifications, ASM Handbook, Volume 6A, Welding Fundamentals and Processes, System. 286 (2011) 287. Raghavan, Dehoff, Pannala, Simunovic, Kirka, Turner, Carlson, Babu (bib0170) 2016; 112 Hunt (10.1016/j.addma.2018.12.002_bib0180) 1984; 65 Costa (10.1016/j.addma.2018.12.002_bib0115) 2014; 69 Strauss (10.1016/j.addma.2018.12.002_bib0120) 1962; 12 Raghavan (10.1016/j.addma.2018.12.002_bib0170) 2016; 112 Hull Jagadish (10.1016/j.addma.2018.12.002_bib0010) 2017 FlowScience (10.1016/j.addma.2018.12.002_bib0075) 2015 Jonathan Dantzig (10.1016/j.addma.2018.12.002_bib0190) 2016 Messler (10.1016/j.addma.2018.12.002_bib0090) 1999 Bauereiß (10.1016/j.addma.2018.12.002_bib0030) 2014; 214 Dehoff (10.1016/j.addma.2018.12.002_bib0055) 2015; 31 Mills (10.1016/j.addma.2018.12.002_bib0145) 2002 Yan (10.1016/j.addma.2018.12.002_bib0040) 2016; 115 Bhavar (10.1016/j.addma.2018.12.002_bib0005) 2014 Plotkowski (10.1016/j.addma.2018.12.002_bib0200) 2017; 18 10.1016/j.addma.2018.12.002_bib0155 10.1016/j.addma.2018.12.002_bib0110 Lee (10.1016/j.addma.2018.12.002_bib0150) 2016; 12 Kurz (10.1016/j.addma.2018.12.002_bib0185) 1986; 34 Chalmers (10.1016/j.addma.2018.12.002_bib0050) 1964 Matweb (10.1016/j.addma.2018.12.002_bib0100) 2017 Valencia (10.1016/j.addma.2018.12.002_bib0080) 2008 Anderson (10.1016/j.addma.2018.12.002_bib0065) 2009 Raghavan (10.1016/j.addma.2018.12.002_bib0165) 2013; 25 Klassen (10.1016/j.addma.2018.12.002_bib0035) 2017; 247 Lippold (10.1016/j.addma.2018.12.002_bib0060) 2014 Takatani (10.1016/j.addma.2018.12.002_bib0175) 2000; 48 Kumar (10.1016/j.addma.2018.12.002_bib0195) 2007; 51 Yan (10.1016/j.addma.2018.12.002_bib0045) 2018; 141 Jamshidinia (10.1016/j.addma.2018.12.002_bib0025) 2012; vol. 7 Valencia (10.1016/j.addma.2018.12.002_bib0105) 2008; Vol.15 Khairallah (10.1016/j.addma.2018.12.002_bib0130) 2016; 108 FlowScience (10.1016/j.addma.2018.12.002_bib0125) 2015 Liu (10.1016/j.addma.2018.12.002_bib0135) 2015; 87 Boettinger (10.1016/j.addma.2018.12.002_bib0020) 2000; 48 Tenner (10.1016/j.addma.2018.12.002_bib0160) 2015; 27 Galati (10.1016/j.addma.2018.12.002_bib0015) 2018; 19 Schou (10.1016/j.addma.2018.12.002_bib0085) 1997; 124 Cho (10.1016/j.addma.2018.12.002_bib0095) 2009; 42 Kruth (10.1016/j.addma.2018.12.002_bib0140) 2007; 56 Bontha (10.1016/j.addma.2018.12.002_bib0205) 2009; 513–514 Hirt (10.1016/j.addma.2018.12.002_bib0070) 1981; 39 |
References_xml | – volume: 31 start-page: 939 year: 2015 end-page: 944 ident: bib0055 article-title: Crystallographic texture engineering through novel melt strategies via electron beam melting: inconel 718 publication-title: Mater. Sci. Technol. – year: 2015 ident: bib0075 article-title: FLOW-3D | Highly-Accurate CFD Software, Free Surface Transient Flows – reference: T. Lienert, T. Siewert, S. Babu, V. Acoff, S.W.P. Specifications, ASM Handbook, Volume 6A, Welding Fundamentals and Processes, System. 286 (2011) 287. – volume: 247 start-page: 280 year: 2017 end-page: 288 ident: bib0035 article-title: Numerical simulation of multi-component evaporation during selective electron beam melting of TiAl publication-title: J. Mater. Process. Technol. – start-page: 15 year: 2009 end-page: 51 ident: bib0065 article-title: Governing equations of fluid dynamics publication-title: Prog. Comput. Fluid Dyn. Int. J. – volume: 48 start-page: 43 year: 2000 end-page: 70 ident: bib0020 article-title: Solidification microstructures: recent developments, future directions publication-title: Acta Mater. – year: 1999 ident: bib0090 article-title: Principles of Welding: Processes, Physics, Chemistry, and Metallurgy – year: 2008 ident: bib0080 article-title: Thermophysical Properties Sources and Availability of Reliable Data – volume: 112 start-page: 303 year: 2016 end-page: 314 ident: bib0170 article-title: Numerical modeling of heat-transfer and the influence of process parameters on tailoring the grain morphology of IN718 in electron beam additive manufacturing publication-title: Acta Mater. – volume: 141 start-page: 210 year: 2018 end-page: 219 ident: bib0045 article-title: Meso-scale modeling of multiple-layer fabrication process in Selective Electron beam Melting: Inter-layer/track voids formation publication-title: Mater. Des. – volume: Vol.15 start-page: 468 year: 2008 end-page: 481 ident: bib0105 publication-title: Thermophysical Properties, ASM Handbook: Casting – year: 2016 ident: bib0190 article-title: Solidification – volume: 12 start-page: 178 year: 2016 end-page: 188 ident: bib0150 article-title: Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion publication-title: Addit. Manuf. – volume: 513–514 start-page: 311 year: 2009 end-page: 318 ident: bib0205 article-title: Effects of process variables and size-scale on solidification microstructure in beam-based fabrication of bulky 3D structures publication-title: Mater. Sci. Eng. A – reference: (accessed January 17, 2018). – year: 1964 ident: bib0050 article-title: Principles of Solidification – year: 2002 ident: bib0145 article-title: Recommended Values of Thermophysical Properties for Selected Commercial Alloys – volume: 27 year: 2015 ident: bib0160 article-title: Experimental approach for quantification of fluid dynamics in laser metal welding publication-title: J. Laser Appl. – volume: 51 start-page: 59 year: 2007 end-page: 83 ident: bib0195 article-title: Remelting of solid and its effect on macrosegregation during solidification publication-title: Numer. Heat Transfer Part A: Appl. – year: 2017 ident: bib0100 article-title: Carpenter BioDur – volume: 108 start-page: 36 year: 2016 end-page: 45 ident: bib0130 article-title: Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones publication-title: Acta Mater. – volume: 34 start-page: 823 year: 1986 end-page: 830 ident: bib0185 article-title: Theory of microstructural development during rapid solidification publication-title: Acta Metall. – volume: 124 start-page: 647 year: 1997 end-page: 648 ident: bib0085 article-title: Laser-beam interactions with materials: physical principles and applications publication-title: Nucl. Instrum. Methods Phys. Res. B – volume: 115 start-page: 403 year: 2016 end-page: 412 ident: bib0040 article-title: Multi-scale modeling of electron beam melting of functionally graded materials publication-title: Acta Mater. – volume: 69 start-page: 73 year: 2014 end-page: 84 ident: bib0115 article-title: Thermodynamic and surface properties of liquid Co-Cr-Ni alloys publication-title: J. Chem. Thermodyn. – volume: 18 start-page: 256 year: 2017 end-page: 268 ident: bib0200 article-title: Verification and validation of a rapid heat transfer calculation methodology for transient melt pool solidification conditions in powder bed metal additive manufacturing publication-title: Addit. Manuf. – volume: 214 start-page: 2522 year: 2014 end-page: 2528 ident: bib0030 article-title: Defect generation and propagation mechanism during additive manufacturing by selective beam melting publication-title: J. Mater. Process. Technol. – volume: 42 year: 2009 ident: bib0095 article-title: Weld pool flows during initial stages of keyhole formation in laser welding publication-title: J. Phys. D Appl. Phys. – volume: 25 year: 2013 ident: bib0165 article-title: Heat transfer and fluid flow in additive manufacturing publication-title: J. Laser Appl. – volume: 48 start-page: 675 year: 2000 end-page: 688 ident: bib0175 article-title: EBSD characterisation and modelling of columnar dendritic grains growing in the presence of fluid flow publication-title: Acta Mater. – volume: vol. 7 start-page: 3089 year: 2012 ident: bib0025 article-title: Temperature distribution and fluid flow modeling of electron beam melting® (EBM) publication-title: Fluids and Heat Transfer, Parts A, B, C, and D, ASME – year: 2015 ident: bib0125 article-title: Flow3D: Version 11.1 – year: 2014 ident: bib0060 article-title: Welding Metallurgy and Weldability – volume: 12 start-page: 436 year: 1962 end-page: 439 ident: bib0120 article-title: The temperature dependence of the viscosity of liquid metals publication-title: Nucl. Sci. Eng. – volume: 87 start-page: 797 year: 2015 end-page: 806 ident: bib0135 article-title: Investigation into spatter behavior during selective laser melting of AISI 316L stainless steel powder publication-title: Mater. Des. – volume: 65 start-page: 75 year: 1984 end-page: 83 ident: bib0180 article-title: Steady state columnar and equiaxed growth of dendrites and eutectic publication-title: Mater. Sci. Eng. – year: 2014 ident: bib0005 article-title: A review on powder bed fusion technology of additive manufacturing publication-title: Processes, Applications, and Performance of Materials in Additive Manufacturing – reference: Carpenter, CarTech® BioDur® CCM® Alloy, (n.d.). – volume: 56 start-page: 730 year: 2007 end-page: 759 ident: bib0140 article-title: Consolidation phenomena in laser and powder-bed based layered manufacturing publication-title: CIRP Ann. Manuf. Technol. – volume: 39 start-page: 201 year: 1981 end-page: 225 ident: bib0070 article-title: Volume of fluid (VOF) method for the dynamics of free boundaries publication-title: J. Comput. Phys. – year: 2017 ident: bib0010 article-title: Additive Manufacturing of Metals - From Fundamental Technology to Rocket Nozzles, Medial Implants, and Custom Jewelry – volume: 19 start-page: 1 year: 2018 end-page: 20 ident: bib0015 article-title: A literature review of powder-based electron beam melting focusing on numerical simulations publication-title: Addit. Manuf. – year: 2017 ident: 10.1016/j.addma.2018.12.002_bib0100 – year: 2015 ident: 10.1016/j.addma.2018.12.002_bib0125 – volume: 51 start-page: 59 year: 2007 ident: 10.1016/j.addma.2018.12.002_bib0195 article-title: Remelting of solid and its effect on macrosegregation during solidification publication-title: Numer. Heat Transfer Part A: Appl. doi: 10.1080/10407780600710391 – volume: 25 year: 2013 ident: 10.1016/j.addma.2018.12.002_bib0165 article-title: Heat transfer and fluid flow in additive manufacturing publication-title: J. Laser Appl. doi: 10.2351/1.4817788 – volume: 115 start-page: 403 year: 2016 ident: 10.1016/j.addma.2018.12.002_bib0040 article-title: Multi-scale modeling of electron beam melting of functionally graded materials publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.06.022 – volume: 42 year: 2009 ident: 10.1016/j.addma.2018.12.002_bib0095 article-title: Weld pool flows during initial stages of keyhole formation in laser welding publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/42/17/175502 – volume: 18 start-page: 256 year: 2017 ident: 10.1016/j.addma.2018.12.002_bib0200 article-title: Verification and validation of a rapid heat transfer calculation methodology for transient melt pool solidification conditions in powder bed metal additive manufacturing publication-title: Addit. Manuf. doi: 10.1016/j.addma.2017.10.017 – volume: 12 start-page: 436 year: 1962 ident: 10.1016/j.addma.2018.12.002_bib0120 article-title: The temperature dependence of the viscosity of liquid metals publication-title: Nucl. Sci. Eng. doi: 10.13182/NSE62-A28099 – volume: 48 start-page: 43 year: 2000 ident: 10.1016/j.addma.2018.12.002_bib0020 article-title: Solidification microstructures: recent developments, future directions publication-title: Acta Mater. doi: 10.1016/S1359-6454(99)00287-6 – start-page: 15 year: 2009 ident: 10.1016/j.addma.2018.12.002_bib0065 article-title: Governing equations of fluid dynamics publication-title: Prog. Comput. Fluid Dyn. Int. J. doi: 10.1007/978-3-540-85056-4_2 – volume: 124 start-page: 647 year: 1997 ident: 10.1016/j.addma.2018.12.002_bib0085 article-title: Laser-beam interactions with materials: physical principles and applications publication-title: Nucl. Instrum. Methods Phys. Res. B doi: 10.1016/S0168-583X(97)00111-0 – year: 2014 ident: 10.1016/j.addma.2018.12.002_bib0005 article-title: A review on powder bed fusion technology of additive manufacturing – year: 1964 ident: 10.1016/j.addma.2018.12.002_bib0050 – volume: 39 start-page: 201 year: 1981 ident: 10.1016/j.addma.2018.12.002_bib0070 article-title: Volume of fluid (VOF) method for the dynamics of free boundaries publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(81)90145-5 – volume: 87 start-page: 797 year: 2015 ident: 10.1016/j.addma.2018.12.002_bib0135 article-title: Investigation into spatter behavior during selective laser melting of AISI 316L stainless steel powder publication-title: Mater. Des. doi: 10.1016/j.matdes.2015.08.086 – ident: 10.1016/j.addma.2018.12.002_bib0155 – year: 2017 ident: 10.1016/j.addma.2018.12.002_bib0010 – year: 2002 ident: 10.1016/j.addma.2018.12.002_bib0145 – volume: 69 start-page: 73 year: 2014 ident: 10.1016/j.addma.2018.12.002_bib0115 article-title: Thermodynamic and surface properties of liquid Co-Cr-Ni alloys publication-title: J. Chem. Thermodyn. doi: 10.1016/j.jct.2013.09.034 – volume: 247 start-page: 280 year: 2017 ident: 10.1016/j.addma.2018.12.002_bib0035 article-title: Numerical simulation of multi-component evaporation during selective electron beam melting of TiAl publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2017.04.016 – volume: 65 start-page: 75 year: 1984 ident: 10.1016/j.addma.2018.12.002_bib0180 article-title: Steady state columnar and equiaxed growth of dendrites and eutectic publication-title: Mater. Sci. Eng. doi: 10.1016/0025-5416(84)90201-5 – volume: 31 start-page: 939 year: 2015 ident: 10.1016/j.addma.2018.12.002_bib0055 article-title: Crystallographic texture engineering through novel melt strategies via electron beam melting: inconel 718 publication-title: Mater. Sci. Technol. doi: 10.1179/1743284714Y.0000000697 – year: 2015 ident: 10.1016/j.addma.2018.12.002_bib0075 – volume: 108 start-page: 36 year: 2016 ident: 10.1016/j.addma.2018.12.002_bib0130 article-title: Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.02.014 – volume: 112 start-page: 303 year: 2016 ident: 10.1016/j.addma.2018.12.002_bib0170 article-title: Numerical modeling of heat-transfer and the influence of process parameters on tailoring the grain morphology of IN718 in electron beam additive manufacturing publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.03.063 – volume: 34 start-page: 823 year: 1986 ident: 10.1016/j.addma.2018.12.002_bib0185 article-title: Theory of microstructural development during rapid solidification publication-title: Acta Metall. doi: 10.1016/0001-6160(86)90056-8 – volume: 513–514 start-page: 311 year: 2009 ident: 10.1016/j.addma.2018.12.002_bib0205 article-title: Effects of process variables and size-scale on solidification microstructure in beam-based fabrication of bulky 3D structures publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2009.02.019 – volume: 214 start-page: 2522 year: 2014 ident: 10.1016/j.addma.2018.12.002_bib0030 article-title: Defect generation and propagation mechanism during additive manufacturing by selective beam melting publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2014.05.002 – volume: 19 start-page: 1 year: 2018 ident: 10.1016/j.addma.2018.12.002_bib0015 article-title: A literature review of powder-based electron beam melting focusing on numerical simulations publication-title: Addit. Manuf. – volume: 48 start-page: 675 year: 2000 ident: 10.1016/j.addma.2018.12.002_bib0175 article-title: EBSD characterisation and modelling of columnar dendritic grains growing in the presence of fluid flow publication-title: Acta Mater. doi: 10.1016/S1359-6454(99)00413-9 – year: 2008 ident: 10.1016/j.addma.2018.12.002_bib0080 – year: 1999 ident: 10.1016/j.addma.2018.12.002_bib0090 – ident: 10.1016/j.addma.2018.12.002_bib0110 – volume: Vol.15 start-page: 468 year: 2008 ident: 10.1016/j.addma.2018.12.002_bib0105 – year: 2016 ident: 10.1016/j.addma.2018.12.002_bib0190 – volume: 141 start-page: 210 year: 2018 ident: 10.1016/j.addma.2018.12.002_bib0045 article-title: Meso-scale modeling of multiple-layer fabrication process in Selective Electron beam Melting: Inter-layer/track voids formation publication-title: Mater. Des. doi: 10.1016/j.matdes.2017.12.031 – volume: 27 year: 2015 ident: 10.1016/j.addma.2018.12.002_bib0160 article-title: Experimental approach for quantification of fluid dynamics in laser metal welding publication-title: J. Laser Appl. doi: 10.2351/1.4906302 – volume: 56 start-page: 730 year: 2007 ident: 10.1016/j.addma.2018.12.002_bib0140 article-title: Consolidation phenomena in laser and powder-bed based layered manufacturing publication-title: CIRP Ann. Manuf. Technol. doi: 10.1016/j.cirp.2007.10.004 – volume: vol. 7 start-page: 3089 year: 2012 ident: 10.1016/j.addma.2018.12.002_bib0025 article-title: Temperature distribution and fluid flow modeling of electron beam melting® (EBM) – year: 2014 ident: 10.1016/j.addma.2018.12.002_bib0060 – volume: 12 start-page: 178 year: 2016 ident: 10.1016/j.addma.2018.12.002_bib0150 article-title: Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion publication-title: Addit. Manuf. doi: 10.1016/j.addma.2016.05.003 |
SSID | ssj0001537982 |
Score | 2.4717476 |
Snippet | Selective electron beam melting (SEBM) is a type of additive manufacturing (AM) that involves multiple physical processes. Because of its unique process... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 202 |
SubjectTerms | Computational thermal-fluid dynamics Molten pool behavior Selective electron beam melting Solidification conditions |
Title | Molten pool behavior and effect of fluid flow on solidification conditions in selective electron beam melting (SEBM) of a biomedical Co-Cr-Mo alloy |
URI | https://dx.doi.org/10.1016/j.addma.2018.12.002 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LSsNAcCl60YP4xGeZgwcFY_PYJN1jDUpV0osK3kI2u4FIm5TSIl78CX_YmU3iA6EHLyHZ7CxhZnZmdjIPxk4lKnWJcs7SeLXwJrdSrSRud0_60uaKZ-TviEfB8InfPfvPHRa1uTAUVtnI_lqmG2ndjPQabPamRdF7cF2HOihxZEpUSoISzTkPicsv351vP4vvhcL0jKL5FgG0xYdMmBfub1N_yOkbt2DjXvmjoH4onZtNttFYizCoP2iLdXS5zdZ_1BDcYR9xNUa7F6hXFrRJ95CWCupQDahyyMeLQuG1eoWqBOS2QlGEkCEK4IFY1XFbUOBL0xcHRSC0DXJw0XQCEz2mAGk4e7i-is9p0RTq1H2iMkSVFc2suAL6j_-2y55urh-jodV0WrAyLxBzxIrse0qINHVCO-PKCaUtlQiEo1NEss7Risr6dJzyPaQ6F2mgbBykERVI7u2xlbIq9T4DHvhKK9eVQkqufdm3eZjxPKMiOGEu7APmtuhNsqYMOXXDGCdtvNlLYmiSEE0Sx02QJgfs4gtoWlfhWD49aOmW_GKmBPXEMsDD_wIesTV8EnVw2jFbmc8W-gStlbnsGnbsstXB7f1w9AlydumJ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9UwDLfGOAAHxKcYY-ADSCARXj_Sjxx2gMemN7busk3aLTRNKhW9tdP2pmkX_gn-lP2Ds9MWhpB2QNolqpLGSm3XdqJfbIC3hpy6ITsnHLWCHmpROmvod49NYgJpZcXnHcVuOjuQ3w6TwyW4HO_CMKxysP29TffWeuiZDNycHDfNZC-KQq6gJEkpySmpEVm57S7Oad92ur71lYT8Loo2N_anMzGUFhBVnKqFyFOTx1apsgyzoJI2zExgrEpV6Eqi6moKG6qc9w9JTJ8pVZnagDq5x6ZGxkT3Dtyl0ZzLJnz6Gf452EniTPkiVbxAwSscsx15XBkZFJ_wKMz9OeRwnvOPR7zm5TYfwcMhPMXPPQcew5Jrn8CDa0kLn8KvoptToI1cnAvHW_5YthZ7bAh2Ndbzs8ZS251j1yKpd2MZkuS1AGkHbnugGDY06AvxkM3FsSIPES2P8MjNGZGN7_c2vhQfmGiJfa4AViucdmJ6IooOGThw8QwOboX_z2G57Vr3AlCmiXU2iowyRrrE5IHMKllXnHUnq1WwAtHIXl0Nec-5_MZcjwC3H9rLRLNMdBhpkskKfPw96bhP-3Hz6-koN_2X9mpyTDdNfPm_E9_Avdl-saN3tna3V-E-jageGfcKlhcnZ26NQqWFee1VE-H7bf8LVzdsJDw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molten+pool+behavior+and+effect+of+fluid+flow+on+solidification+conditions+in+selective+electron+beam+melting+%28SEBM%29+of+a+biomedical+Co-Cr-Mo+alloy&rft.jtitle=Additive+manufacturing&rft.au=Zhao%2C+Yufan&rft.au=Koizumi%2C+Yuichiro&rft.au=Aoyagi%2C+Kenta&rft.au=Wei%2C+Daixiu&rft.date=2019-03-01&rft.issn=2214-8604&rft.volume=26&rft.spage=202&rft.epage=214&rft_id=info:doi/10.1016%2Fj.addma.2018.12.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_addma_2018_12_002 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-8604&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-8604&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-8604&client=summon |