Kernel sparse representation with pixel-level and region-level local feature kernels for face recognition

Face recognition has been popular in the pattern recognition field for decades, but it is still a difficult problem due to the various image distortions. Recently, sparse representation based classification (SRC) was proposed as a novel image classification approach, which is very effective with suf...

Full description

Saved in:
Bibliographic Details
Published inNeurocomputing (Amsterdam) Vol. 133; pp. 141 - 152
Main Authors Kang, Cuicui, Liao, Shengcai, Xiang, Shiming, Pan, Chunhong
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 10.06.2014
Elsevier
Subjects
Online AccessGet full text
ISSN0925-2312
1872-8286
DOI10.1016/j.neucom.2013.11.022

Cover

Loading…
Abstract Face recognition has been popular in the pattern recognition field for decades, but it is still a difficult problem due to the various image distortions. Recently, sparse representation based classification (SRC) was proposed as a novel image classification approach, which is very effective with sufficient training samples for each class. However, the performance drops when the number of training samples is limited. In this paper, we show that effective local image features and appropriate nonlinear kernels are needed in deriving a better classification method based on sparse representation. Thus, we propose a novel kernel SRC framework and utilize effective local image features in this framework for robust face recognition. First, we present a kernel coordinate descent (KCD) algorithm for the LASSO problem in the kernel space, and we successfully integrate it in the SRC framework (called KCD-SRC) for face recognition. Second, we employ local image features and develop both pixel-level and region-level kernels for KCD-SRC based face recognition, making it discriminative and robust against illumination variations and occlusions. Extensive experiments are conducted on three public face databases (Extended YaleB, CMU-PIE and AR) under illumination variations, noise corruptions, continuous occlusions, and registration errors, demonstrating excellent performances of the KCD-SRC algorithm combining with the proposed kernels. •Suggests the need of local feature based kernels for SRC under small sample size.•Proposes KCD, a kernel based ℓ1-norm minimization method for face recognition.•Proposes LBPh−KH an effective local image feature based kernel.•LBPh−KH+KCD−SRC outperforms SRC by 20%+ under 5 training images per subject.
AbstractList Face recognition has been popular in the pattern recognition field for decades, but it is still a difficult problem due to the various image distortions. Recently, sparse representation based classification (SRC) was proposed as a novel image classification approach, which is very effective with sufficient training samples for each class. However, the performance drops when the number of training samples is limited. In this paper, we show that effective local image features and appropriate nonlinear kernels are needed in deriving a better classification method based on sparse representation. Thus, we propose a novel kernel SRC framework and utilize effective local image features in this framework for robust face recognition. First, we present a kernel coordinate descent (KCD) algorithm for the LASSO problem in the kernel space, and we successfully integrate it in the SRC framework (called KCD-SRC) for face recognition. Second, we employ local image features and develop both pixel-level and region-level kernels for KCD-SRC based face recognition, making it discriminative and robust against illumination variations and occlusions. Extensive experiments are conducted on three public face databases (Extended YaleB, CMU-PIE and AR) under illumination variations, noise corruptions, continuous occlusions, and registration errors, demonstrating excellent performances of the KCD-SRC algorithm combining with the proposed kernels. •Suggests the need of local feature based kernels for SRC under small sample size.•Proposes KCD, a kernel based ℓ1-norm minimization method for face recognition.•Proposes LBPh−KH an effective local image feature based kernel.•LBPh−KH+KCD−SRC outperforms SRC by 20%+ under 5 training images per subject.
Face recognition has been popular in the pattern recognition field for decades, but it is still a difficult problem due to the various image distortions. Recently, sparse representation based classification (SRC) was proposed as a novel image classification approach, which is very effective with sufficient training samples for each class. However, the performance drops when the number of training samples is limited. In this paper, we show that effective local image features and appropriate nonlinear kernels are needed in deriving a better classification method based on sparse representation. Thus, we propose a novel kernel SRC framework and utilize effective local image features in this framework for robust face recognition. First, we present a kernel coordinate descent (KCD) algorithm for the LASSO problem in the kernel space, and we successfully integrate it in the SRC framework (called KCD-SRC) for face recognition. Second, we employ local image features and develop both pixel-level and region-level kernels for KCD-SRC based face recognition, making it discriminative and robust against illumination variations and occlusions. Extensive experiments are conducted on three public face databases (Extended YaleB, CMU-PIE and AR) under illumination variations, noise corruptions, continuous occlusions, and registration errors, demonstrating excellent performances of the KCD-SRC algorithm combining with the proposed kernels.
Author Xiang, Shiming
Liao, Shengcai
Kang, Cuicui
Pan, Chunhong
Author_xml – sequence: 1
  givenname: Cuicui
  surname: Kang
  fullname: Kang, Cuicui
  email: cckang@nlpr.ia.ac.cn
– sequence: 2
  givenname: Shengcai
  surname: Liao
  fullname: Liao, Shengcai
  email: scliao@nlpr.ia.ac.cn
– sequence: 3
  givenname: Shiming
  surname: Xiang
  fullname: Xiang, Shiming
  email: smxiang@nlpr.ia.ac.cn
– sequence: 4
  givenname: Chunhong
  surname: Pan
  fullname: Pan, Chunhong
  email: chpan@nlpr.ia.ac.cn
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28293603$$DView record in Pascal Francis
BookMark eNqFkc1u1DAYRS1UJKaFN2CRDVI3Cf6bxGZRqarKj6jEBtbWF-dz8eCxg50p8PZ4yIgFi7KyZJ97JN97Ts5iikjIS0Y7Rln_etdFPNi07zhlomOso5w_IRumBt4qrvozsqGab1suGH9GzkvZUcoGxvWG-I-YI4amzJALNhnnjAXjAotPsfnhl6_N7H9iaAM-VAziVJn7-na6CMlCaBzCcsjYfPsjK41LuXFgjz6b7qM_yp6Tpw5CwRen84J8eXv7-eZ9e_fp3Yeb67vWil4vba-E5ICKTtCPTtNJyHF0IBWFQamR6wG2VKITWz3IgWvQvesnR-Ukx4lKJy7I5eqdc_p-wLKYvS8WQ4CI6VAM20omxaCYruirEwqlfsNliNYXM2e_h_zLcMW16KmonFw5m1MpGd1fhFFzXMDszLqAOS5gGDN1gRp780_M-rXYJYMP_wtfreHaJz54zKZYj9Hi5Gupi5mSf1zwGx61p_s
CitedBy_id crossref_primary_10_1109_TIP_2015_2492819
crossref_primary_10_1016_j_jvcir_2019_102641
crossref_primary_10_1016_j_neucom_2014_12_051
crossref_primary_10_1109_JSTARS_2017_2757475
crossref_primary_10_1007_s13042_017_0678_4
crossref_primary_10_1016_j_patcog_2018_01_003
crossref_primary_10_1016_j_eswa_2018_09_032
crossref_primary_10_1016_j_neucom_2014_11_098
crossref_primary_10_1016_j_patrec_2015_09_010
crossref_primary_10_1049_iet_its_2018_5316
crossref_primary_10_1142_S0218126618500172
crossref_primary_10_1016_j_neucom_2016_01_092
Cites_doi 10.1109/CVPR.2001.990477
10.1109/TPAMI.2005.242
10.1109/TNN.2003.809398
10.1109/AFGR.2002.1004130
10.1111/j.2517-6161.1996.tb02080.x
10.1109/TPAMI.2005.92
10.1093/biomet/81.3.425
10.7551/mitpress/7503.003.0105
10.1109/TPAMI.2002.1017623
10.1109/ICIP.2011.6116296
10.1007/978-3-642-15561-1_1
10.1016/j.imavis.2008.04.008
10.1109/ICIP.2010.5651933
10.1109/CVPR.2010.5539967
10.1016/j.imavis.2008.04.016
10.1109/TPAMI.2006.244
10.1109/TPAMI.2008.79
10.1002/j.1538-7305.1950.tb00463.x
10.1109/CVPR.2009.5206862
10.1016/0031-3203(95)00067-4
10.1007/978-3-540-24670-1_36
10.1109/TPAMI.2002.1008382
10.1109/TPAMI.2011.112
10.1109/IJCB.2011.6117573
10.1109/ICIP.2008.4712156
10.1109/ICME.2011.6011937
10.1109/CISP.2008.520
ContentType Journal Article
Copyright 2014 Elsevier B.V.
2015 INIST-CNRS
Copyright_xml – notice: 2014 Elsevier B.V.
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.neucom.2013.11.022
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 1872-8286
EndPage 152
ExternalDocumentID 28293603
10_1016_j_neucom_2013_11_022
S0925231214000307
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
SSH
WUQ
XPP
IQODW
7SC
8FD
EFKBS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c369t-68342ae80da6bf90d34bbfa480a788b297a504ef35974729a96f6df04d4bd04f3
IEDL.DBID .~1
ISSN 0925-2312
IngestDate Tue Aug 05 10:58:23 EDT 2025
Wed Apr 02 07:35:46 EDT 2025
Tue Jul 01 03:05:25 EDT 2025
Thu Apr 24 22:53:28 EDT 2025
Fri Feb 23 02:27:13 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Kernels
ℓ1-Norm minimization
Sparse representation classification
LBP
Face recognition
Coordinate descent
Occlusion
Image processing
Autoregressive model
Coordinate system

Norm minimization
Facies
Illumination
Sparse representation
Computer vision
Image databank
Minimization
Regression analysis
Pattern recognition
Computational complexity
Kernel method
Image analysis
Luminance
Descent method
Occultation
Pixel
Image classification
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c369t-68342ae80da6bf90d34bbfa480a788b297a504ef35974729a96f6df04d4bd04f3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1541437819
PQPubID 23500
PageCount 12
ParticipantIDs proquest_miscellaneous_1541437819
pascalfrancis_primary_28293603
crossref_primary_10_1016_j_neucom_2013_11_022
crossref_citationtrail_10_1016_j_neucom_2013_11_022
elsevier_sciencedirect_doi_10_1016_j_neucom_2013_11_022
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-06-10
PublicationDateYYYYMMDD 2014-06-10
PublicationDate_xml – month: 06
  year: 2014
  text: 2014-06-10
  day: 10
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2014
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Ahonen, Hadid, Pietikainen (bib8) 2006; 28
Wagner, Wright, Ganesh, Zhou, Mobahi, Ma (bib24) 2012; 34
Kim, Choi, Yi, Turk (bib20) 2005; 27
Ojala, Pietikäinen, Mäenpää (bib27) 2002; 24

C. Kang, S. Liao, S. Xiang, C. Pan, Kernel sparse representation with local patterns for face recognition, in: IEEE International Conference on Image Processing, 2011, pp. 3009–3012.
G. Wang, D. Yeung, F. Lochovsky, The kernel path in kernelized LASSO, in: International Conference on Artificial Intelligence and Statistics, 2007, pp. 580–587.
H. Lee, A. Battle, R. Raina, A.Y. Ng, Efficient sparse coding algorithms, in: Proceedings of Neural Information Processing System, 2007, pp. 801–808.
Friedman, Hastie, Tibshirani (bib13) 2009; 33
Roth (bib15) 2004; 15
C.H. Chan, J. Kittler, Sparse representation of (multiscale) histograms for face recognition robust to registration and illumination problems, in: IEEE International Conference on Image Processing, 2010, pp. 2441–2444.
Tibshirani (bib2) 1996; 58
Donoho, Johnstone (bib26) 1994; 81
Lee, Ho, Kriegman (bib29) 2005; 27
S.Z. Li, X. Hou, H. Zhang, Q. Cheng, Learning spatially localized, parts-based representation, in: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001, pp. 207–212.
R. Min, J.-L. Dugelay, Improved combination of LBP and sparse representation based classification (SRC) for face recognition, in: 2011 IEEE International Conference on Multimedia and Expo (ICME), 2011, pp. 1–6.
Hamming (bib28) 1950; 29
G. Bai, Y. Zhu, Z. Ding, A hierarchical face recognition method based on local binary pattern, in: Congress on Image and Signal Processing, vol. 2, 2008, pp. 610–614.
Aleix Martínez, R. Benavente, The AR Face Database, Technical Report, 24, Computer Vision Center, 1998.
T. Ahonen, A. Hadid, M. Pietikäinen, Face recognition with local binary patterns, in: European Conference on Computer Vision, 2004, pp. 469–481.
S. Gao, I.W.-H. Tsang, L.-T. Chia, Kernel sparse representation for image classification and face recognition, in: Proceedings of the 11th European Conference on Computer Vision: Part IV, 2010, pp. 1–14.
Hotta (bib22) 2008; 26
.
S. Liao, A. Jain, S. Li, Partial face recognition: alignment-free approach, IEEE Trans. Pattern Anal. Mach. Intell. 99 (2012), PrePrint.
Oh, Lee, Lee (bib21) 2008; 26
Martinez (bib19) 2002; 24
B. Yao, H. Ai, S. Lao, Matching texture units for face recognition, in: Proceedings of the IEEE International Conference on Image Processing, 2008, pp. 1920–1923.
X.-T. Yuan, S. Yan, Visual classification with multi-task joint sparse representation, in: IEEE Conference on Computer Vision and Pattern Recognition, 2010, pp. 3493–3500.
Wright, Yang, Ganesh, Sastry, Ma (bib1) 2009; 31
P. Tseng, On accelerated proximal gradient methods for convex–concave optimization, SIAM J. Optim. (2014), submitted for publication.
H. Jia, A. Martinez, Support vector machines in face recognition with occlusions, in: IEEE Conference on Computer Vision and Pattern Recognition, 2009, pp. 136–141.
Ojala, Pietikäinen, Harwood (bib6) 1996; 29
T. Sim, S. Baker, M. Bsat, The CMU pose, illumination, and expression (PIE) database, in: Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition, 2002.
Friedman (10.1016/j.neucom.2013.11.022_bib13) 2009; 33
Tibshirani (10.1016/j.neucom.2013.11.022_bib2) 1996; 58
Hotta (10.1016/j.neucom.2013.11.022_bib22) 2008; 26
Ojala (10.1016/j.neucom.2013.11.022_bib27) 2002; 24
Wright (10.1016/j.neucom.2013.11.022_bib1) 2009; 31
Ahonen (10.1016/j.neucom.2013.11.022_bib8) 2006; 28
Oh (10.1016/j.neucom.2013.11.022_bib21) 2008; 26
10.1016/j.neucom.2013.11.022_bib14
Donoho (10.1016/j.neucom.2013.11.022_bib26) 1994; 81
10.1016/j.neucom.2013.11.022_bib16
10.1016/j.neucom.2013.11.022_bib17
10.1016/j.neucom.2013.11.022_bib10
10.1016/j.neucom.2013.11.022_bib32
10.1016/j.neucom.2013.11.022_bib11
10.1016/j.neucom.2013.11.022_bib33
10.1016/j.neucom.2013.11.022_bib12
10.1016/j.neucom.2013.11.022_bib18
Martinez (10.1016/j.neucom.2013.11.022_bib19) 2002; 24
Lee (10.1016/j.neucom.2013.11.022_bib29) 2005; 27
Roth (10.1016/j.neucom.2013.11.022_bib15) 2004; 15
10.1016/j.neucom.2013.11.022_bib7
10.1016/j.neucom.2013.11.022_bib5
10.1016/j.neucom.2013.11.022_bib4
10.1016/j.neucom.2013.11.022_bib3
Ojala (10.1016/j.neucom.2013.11.022_bib6) 1996; 29
10.1016/j.neucom.2013.11.022_bib30
10.1016/j.neucom.2013.11.022_bib31
10.1016/j.neucom.2013.11.022_bib9
10.1016/j.neucom.2013.11.022_bib25
10.1016/j.neucom.2013.11.022_bib23
Hamming (10.1016/j.neucom.2013.11.022_bib28) 1950; 29
Wagner (10.1016/j.neucom.2013.11.022_bib24) 2012; 34
Kim (10.1016/j.neucom.2013.11.022_bib20) 2005; 27
References_xml – reference: S. Liao, A. Jain, S. Li, Partial face recognition: alignment-free approach, IEEE Trans. Pattern Anal. Mach. Intell. 99 (2012), PrePrint.
– reference: R. Min, J.-L. Dugelay, Improved combination of LBP and sparse representation based classification (SRC) for face recognition, in: 2011 IEEE International Conference on Multimedia and Expo (ICME), 2011, pp. 1–6.
– reference: H. Jia, A. Martinez, Support vector machines in face recognition with occlusions, in: IEEE Conference on Computer Vision and Pattern Recognition, 2009, pp. 136–141.
– volume: 28
  start-page: 2037
  year: 2006
  end-page: 2041
  ident: bib8
  article-title: Face description with local binary patterns
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: S.Z. Li, X. Hou, H. Zhang, Q. Cheng, Learning spatially localized, parts-based representation, in: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001, pp. 207–212.
– volume: 29
  start-page: 51
  year: 1996
  end-page: 59
  ident: bib6
  article-title: A comparative study of texture measures with classification based on featured distributions
  publication-title: Pattern Recognit.
– reference: T. Ahonen, A. Hadid, M. Pietikäinen, Face recognition with local binary patterns, in: European Conference on Computer Vision, 2004, pp. 469–481.
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: bib2
  article-title: Regression shrinkage and selection via the Lasso
  publication-title: J. R. Stat. Soc. Ser. B (Methodological)
– reference: X.-T. Yuan, S. Yan, Visual classification with multi-task joint sparse representation, in: IEEE Conference on Computer Vision and Pattern Recognition, 2010, pp. 3493–3500.
– reference: P. Tseng, On accelerated proximal gradient methods for convex–concave optimization, SIAM J. Optim. (2014), submitted for publication.
– reference: H. Lee, A. Battle, R. Raina, A.Y. Ng, Efficient sparse coding algorithms, in: Proceedings of Neural Information Processing System, 2007, pp. 801–808.
– volume: 15
  start-page: 16
  year: 2004
  end-page: 28
  ident: bib15
  article-title: The generalized LASSO
  publication-title: IEEE Trans. Neural Netw.
– reference:
– reference: G. Wang, D. Yeung, F. Lochovsky, The kernel path in kernelized LASSO, in: International Conference on Artificial Intelligence and Statistics, 2007, pp. 580–587.
– volume: 33
  start-page: 1
  year: 2009
  end-page: 22
  ident: bib13
  article-title: Regularization paths for generalized linear models via coordinate descent
  publication-title: J. Stat. Softw.
– volume: 81
  start-page: 425
  year: 1994
  end-page: 455
  ident: bib26
  article-title: Ideal spatial adaptation by wavelet shrinkage
  publication-title: Biometrika
– reference: T. Sim, S. Baker, M. Bsat, The CMU pose, illumination, and expression (PIE) database, in: Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition, 2002.
– reference: B. Yao, H. Ai, S. Lao, Matching texture units for face recognition, in: Proceedings of the IEEE International Conference on Image Processing, 2008, pp. 1920–1923.
– volume: 27
  start-page: 684
  year: 2005
  end-page: 698
  ident: bib29
  article-title: Acquiring linear subspaces for face recognition under variable lighting
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: 〉.
– reference: C.H. Chan, J. Kittler, Sparse representation of (multiscale) histograms for face recognition robust to registration and illumination problems, in: IEEE International Conference on Image Processing, 2010, pp. 2441–2444.
– reference: Aleix Martínez, R. Benavente, The AR Face Database, Technical Report, 24, Computer Vision Center, 1998.
– volume: 26
  start-page: 1490
  year: 2008
  end-page: 1498
  ident: bib22
  article-title: Robust face recognition under partial occlusion based on support vector machine with local gaussian summation kernel
  publication-title: Image Vis. Comput.
– volume: 31
  start-page: 210
  year: 2009
  end-page: 227
  ident: bib1
  article-title: Robust face recognition via sparse representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 24
  start-page: 971
  year: 2002
  end-page: 987
  ident: bib27
  article-title: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: S. Gao, I.W.-H. Tsang, L.-T. Chia, Kernel sparse representation for image classification and face recognition, in: Proceedings of the 11th European Conference on Computer Vision: Part IV, 2010, pp. 1–14.
– volume: 29
  start-page: 147
  year: 1950
  end-page: 160
  ident: bib28
  article-title: Error detecting and error correcting codes
  publication-title: Bell Syst. Tech. J.
– reference: C. Kang, S. Liao, S. Xiang, C. Pan, Kernel sparse representation with local patterns for face recognition, in: IEEE International Conference on Image Processing, 2011, pp. 3009–3012.
– volume: 24
  start-page: 748
  year: 2002
  end-page: 763
  ident: bib19
  article-title: Recognizing imprecisely localized, and expression variant faces from a single sample per class
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 27
  start-page: 1977
  year: 2005
  end-page: 1981
  ident: bib20
  article-title: Effective representation using ICA for face recognition robust to local distortion and partial occlusion
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 26
  start-page: 1515
  year: 2008
  end-page: 1523
  ident: bib21
  article-title: Occlusion invariant face recognition using selective local non-negative matrix factorization basis images
  publication-title: Image Vis. Comput.
– reference: G. Bai, Y. Zhu, Z. Ding, A hierarchical face recognition method based on local binary pattern, in: Congress on Image and Signal Processing, vol. 2, 2008, pp. 610–614.
– volume: 34
  start-page: 372
  year: 2012
  end-page: 386
  ident: bib24
  article-title: Toward a practical face recognition system
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– ident: 10.1016/j.neucom.2013.11.022_bib18
  doi: 10.1109/CVPR.2001.990477
– volume: 27
  start-page: 1977
  issue: 12
  year: 2005
  ident: 10.1016/j.neucom.2013.11.022_bib20
  article-title: Effective representation using ICA for face recognition robust to local distortion and partial occlusion
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2005.242
– volume: 15
  start-page: 16
  issue: 1
  year: 2004
  ident: 10.1016/j.neucom.2013.11.022_bib15
  article-title: The generalized LASSO
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2003.809398
– ident: 10.1016/j.neucom.2013.11.022_bib30
  doi: 10.1109/AFGR.2002.1004130
– volume: 58
  start-page: 267
  year: 1996
  ident: 10.1016/j.neucom.2013.11.022_bib2
  article-title: Regression shrinkage and selection via the Lasso
  publication-title: J. R. Stat. Soc. Ser. B (Methodological)
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 27
  start-page: 684
  issue: 5
  year: 2005
  ident: 10.1016/j.neucom.2013.11.022_bib29
  article-title: Acquiring linear subspaces for face recognition under variable lighting
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2005.92
– ident: 10.1016/j.neucom.2013.11.022_bib14
– volume: 81
  start-page: 425
  issue: 3
  year: 1994
  ident: 10.1016/j.neucom.2013.11.022_bib26
  article-title: Ideal spatial adaptation by wavelet shrinkage
  publication-title: Biometrika
  doi: 10.1093/biomet/81.3.425
– ident: 10.1016/j.neucom.2013.11.022_bib12
  doi: 10.7551/mitpress/7503.003.0105
– ident: 10.1016/j.neucom.2013.11.022_bib32
– volume: 24
  start-page: 971
  issue: 7
  year: 2002
  ident: 10.1016/j.neucom.2013.11.022_bib27
  article-title: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2002.1017623
– ident: 10.1016/j.neucom.2013.11.022_bib9
  doi: 10.1109/ICIP.2011.6116296
– ident: 10.1016/j.neucom.2013.11.022_bib10
  doi: 10.1007/978-3-642-15561-1_1
– volume: 26
  start-page: 1490
  issue: 11
  year: 2008
  ident: 10.1016/j.neucom.2013.11.022_bib22
  article-title: Robust face recognition under partial occlusion based on support vector machine with local gaussian summation kernel
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2008.04.008
– ident: 10.1016/j.neucom.2013.11.022_bib5
  doi: 10.1109/ICIP.2010.5651933
– ident: 10.1016/j.neucom.2013.11.022_bib3
  doi: 10.1109/CVPR.2010.5539967
– volume: 26
  start-page: 1515
  issue: 11
  year: 2008
  ident: 10.1016/j.neucom.2013.11.022_bib21
  article-title: Occlusion invariant face recognition using selective local non-negative matrix factorization basis images
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2008.04.016
– volume: 28
  start-page: 2037
  issue: 12
  year: 2006
  ident: 10.1016/j.neucom.2013.11.022_bib8
  article-title: Face description with local binary patterns
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2006.244
– volume: 31
  start-page: 210
  issue: 2
  year: 2009
  ident: 10.1016/j.neucom.2013.11.022_bib1
  article-title: Robust face recognition via sparse representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2008.79
– volume: 29
  start-page: 147
  issue: 2
  year: 1950
  ident: 10.1016/j.neucom.2013.11.022_bib28
  article-title: Error detecting and error correcting codes
  publication-title: Bell Syst. Tech. J.
  doi: 10.1002/j.1538-7305.1950.tb00463.x
– volume: 33
  start-page: 1
  issue: 1
  year: 2009
  ident: 10.1016/j.neucom.2013.11.022_bib13
  article-title: Regularization paths for generalized linear models via coordinate descent
  publication-title: J. Stat. Softw.
– ident: 10.1016/j.neucom.2013.11.022_bib11
– ident: 10.1016/j.neucom.2013.11.022_bib23
  doi: 10.1109/CVPR.2009.5206862
– volume: 29
  start-page: 51
  issue: 1
  year: 1996
  ident: 10.1016/j.neucom.2013.11.022_bib6
  article-title: A comparative study of texture measures with classification based on featured distributions
  publication-title: Pattern Recognit.
  doi: 10.1016/0031-3203(95)00067-4
– ident: 10.1016/j.neucom.2013.11.022_bib7
  doi: 10.1007/978-3-540-24670-1_36
– volume: 24
  start-page: 748
  issue: 6
  year: 2002
  ident: 10.1016/j.neucom.2013.11.022_bib19
  article-title: Recognizing imprecisely localized, and expression variant faces from a single sample per class
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2002.1008382
– volume: 34
  start-page: 372
  issue: 2
  year: 2012
  ident: 10.1016/j.neucom.2013.11.022_bib24
  article-title: Toward a practical face recognition system
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2011.112
– ident: 10.1016/j.neucom.2013.11.022_bib33
– ident: 10.1016/j.neucom.2013.11.022_bib31
– ident: 10.1016/j.neucom.2013.11.022_bib25
  doi: 10.1109/IJCB.2011.6117573
– ident: 10.1016/j.neucom.2013.11.022_bib17
  doi: 10.1109/ICIP.2008.4712156
– ident: 10.1016/j.neucom.2013.11.022_bib4
  doi: 10.1109/ICME.2011.6011937
– ident: 10.1016/j.neucom.2013.11.022_bib16
  doi: 10.1109/CISP.2008.520
SSID ssj0017129
Score 2.1757524
Snippet Face recognition has been popular in the pattern recognition field for decades, but it is still a difficult problem due to the various image distortions....
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 141
SubjectTerms [formula omitted]-Norm minimization
Algorithmics. Computability. Computer arithmetics
Algorithms
Applied sciences
Artificial intelligence
Classification
Computer science; control theory; systems
Coordinate descent
Detection, estimation, filtering, equalization, prediction
Exact sciences and technology
Face recognition
Illumination
Information, signal and communications theory
Kernels
LBP
Occlusion
Pattern recognition. Digital image processing. Computational geometry
Representations
Signal and communications theory
Signal, noise
Sparse representation classification
Telecommunications and information theory
Theoretical computing
Title Kernel sparse representation with pixel-level and region-level local feature kernels for face recognition
URI https://dx.doi.org/10.1016/j.neucom.2013.11.022
https://www.proquest.com/docview/1541437819
Volume 133
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBYhuQRCH2lC3TZGhV4V67Xa3WMICW5Dc0kCuQlJOwK3RjZ-QE_97ZW0WkMIIdDjCj0WzWge0jczCH1TlesqJoBY2hgimXXEeM8ItzVtPXcKctWSn7dq-iB_PFaPe-hyiIVJsMoi-3uZnqV1aZmU3ZwsZ7PJHW159KIYjy5CZtUUwS7rxOXnf3cwD1Yz3ufb4xVJvYfwuYzxCrBNmJGoBMV5yuXJ-Uvq6Whp1nHTfF_t4pngztro-h16U8xIfNH_6Xu0B-EYvR1KNOByYj-g2Q2sAsxxlBurNeCcwnIINwo4XcLi5ewPzMk8gYewCR1OpRoWoTRkVYc95PSf-HeebI2joYu9cWm-Aj9ahBP0cH11fzklpboCcUK1G6IaIbmBhnZGWd_STkhrvZENNdEttrytTUUleJFdDt6aVnnVeSo7aTsqvThF-2ER4CPCjXBMOWMpQCUF9barjYumRaS6q0HQERLDpmpXUo-nChhzPWDMfumeFDqRInolOpJihMhu1LJPvfFK_3qgl37CQjpqh1dGjp-Qd7dcemYWiooR-jrQW8fjl95UTIDFdq1ZKqMu6mhXffrv5T-jw_glEwCN0S9of7Pawlk0dTZ2nHl5jA4uvt9Mb_8BCsYBQA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxwhFD6km4cWStr0QjdNEwt9teuo48w8hpCw6Sb70gTyJuoobLq4y14gPz_qOAuhlEBfnTk6ePRcxs_zAfwQpWnLglmsSa0wL7TByrkCU12RxlEjbGItuZmK8R3_dV_e78F5fxcmwiqz7e9serLWuWWUZ3O0nM1Gv0lDQxZV0JAipKX6CvZjdapyAPtnV5PxdHeYUBW0K7lHSxwF-ht0Cebl7TbCRoIfZD9jOU9K_-Wh3i7VOsyb6wgv_rLdySFdvoeDHEmis-5jD2HP-g_wrmdpQHnTfoTZxK68naNgOlZri1IVy_7GkUfxPyxazh7tHM8jfggp36LI1rDwuSF5O-RsqgCK_qTO1ijEusgpE_vLCKSF_wR3lxe352OcCRawYaLZYFEzTpWtSauEdg1pGdfaKV4TFTJjTZtKlYRbx1LWQRvVCCdaR3jLdUu4Y59h4BfefgFUM1MIozSxtuSMON1WyoToIijeVJaRIbB-UqXJ1ccjCcZc9jCzB9mpQkZVhMREBlUMAe-kll31jRfer3p9yWerSAYH8YLkyTP17oaLJ81MEDaE772-ZdiB8VhFebvYrmURmdRZFUKro_8e_hRej29vruX11XTyFd6EJzzi0QpyDIPNamu_hchno0_yyn4Czj8D8Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kernel+sparse+representation+with+pixel-level+and+region-level+local+feature+kernels+for+face+recognition&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Kang%2C+Cuicui&rft.au=Liao%2C+Shengcai&rft.au=Xiang%2C+Shiming&rft.au=Pan%2C+Chunhong&rft.date=2014-06-10&rft.issn=0925-2312&rft.volume=133&rft.spage=141&rft.epage=152&rft_id=info:doi/10.1016%2Fj.neucom.2013.11.022&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon