Kernel sparse representation with pixel-level and region-level local feature kernels for face recognition
Face recognition has been popular in the pattern recognition field for decades, but it is still a difficult problem due to the various image distortions. Recently, sparse representation based classification (SRC) was proposed as a novel image classification approach, which is very effective with suf...
Saved in:
Published in | Neurocomputing (Amsterdam) Vol. 133; pp. 141 - 152 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
10.06.2014
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0925-2312 1872-8286 |
DOI | 10.1016/j.neucom.2013.11.022 |
Cover
Loading…
Abstract | Face recognition has been popular in the pattern recognition field for decades, but it is still a difficult problem due to the various image distortions. Recently, sparse representation based classification (SRC) was proposed as a novel image classification approach, which is very effective with sufficient training samples for each class. However, the performance drops when the number of training samples is limited. In this paper, we show that effective local image features and appropriate nonlinear kernels are needed in deriving a better classification method based on sparse representation. Thus, we propose a novel kernel SRC framework and utilize effective local image features in this framework for robust face recognition. First, we present a kernel coordinate descent (KCD) algorithm for the LASSO problem in the kernel space, and we successfully integrate it in the SRC framework (called KCD-SRC) for face recognition. Second, we employ local image features and develop both pixel-level and region-level kernels for KCD-SRC based face recognition, making it discriminative and robust against illumination variations and occlusions. Extensive experiments are conducted on three public face databases (Extended YaleB, CMU-PIE and AR) under illumination variations, noise corruptions, continuous occlusions, and registration errors, demonstrating excellent performances of the KCD-SRC algorithm combining with the proposed kernels.
•Suggests the need of local feature based kernels for SRC under small sample size.•Proposes KCD, a kernel based ℓ1-norm minimization method for face recognition.•Proposes LBPh−KH an effective local image feature based kernel.•LBPh−KH+KCD−SRC outperforms SRC by 20%+ under 5 training images per subject. |
---|---|
AbstractList | Face recognition has been popular in the pattern recognition field for decades, but it is still a difficult problem due to the various image distortions. Recently, sparse representation based classification (SRC) was proposed as a novel image classification approach, which is very effective with sufficient training samples for each class. However, the performance drops when the number of training samples is limited. In this paper, we show that effective local image features and appropriate nonlinear kernels are needed in deriving a better classification method based on sparse representation. Thus, we propose a novel kernel SRC framework and utilize effective local image features in this framework for robust face recognition. First, we present a kernel coordinate descent (KCD) algorithm for the LASSO problem in the kernel space, and we successfully integrate it in the SRC framework (called KCD-SRC) for face recognition. Second, we employ local image features and develop both pixel-level and region-level kernels for KCD-SRC based face recognition, making it discriminative and robust against illumination variations and occlusions. Extensive experiments are conducted on three public face databases (Extended YaleB, CMU-PIE and AR) under illumination variations, noise corruptions, continuous occlusions, and registration errors, demonstrating excellent performances of the KCD-SRC algorithm combining with the proposed kernels.
•Suggests the need of local feature based kernels for SRC under small sample size.•Proposes KCD, a kernel based ℓ1-norm minimization method for face recognition.•Proposes LBPh−KH an effective local image feature based kernel.•LBPh−KH+KCD−SRC outperforms SRC by 20%+ under 5 training images per subject. Face recognition has been popular in the pattern recognition field for decades, but it is still a difficult problem due to the various image distortions. Recently, sparse representation based classification (SRC) was proposed as a novel image classification approach, which is very effective with sufficient training samples for each class. However, the performance drops when the number of training samples is limited. In this paper, we show that effective local image features and appropriate nonlinear kernels are needed in deriving a better classification method based on sparse representation. Thus, we propose a novel kernel SRC framework and utilize effective local image features in this framework for robust face recognition. First, we present a kernel coordinate descent (KCD) algorithm for the LASSO problem in the kernel space, and we successfully integrate it in the SRC framework (called KCD-SRC) for face recognition. Second, we employ local image features and develop both pixel-level and region-level kernels for KCD-SRC based face recognition, making it discriminative and robust against illumination variations and occlusions. Extensive experiments are conducted on three public face databases (Extended YaleB, CMU-PIE and AR) under illumination variations, noise corruptions, continuous occlusions, and registration errors, demonstrating excellent performances of the KCD-SRC algorithm combining with the proposed kernels. |
Author | Xiang, Shiming Liao, Shengcai Kang, Cuicui Pan, Chunhong |
Author_xml | – sequence: 1 givenname: Cuicui surname: Kang fullname: Kang, Cuicui email: cckang@nlpr.ia.ac.cn – sequence: 2 givenname: Shengcai surname: Liao fullname: Liao, Shengcai email: scliao@nlpr.ia.ac.cn – sequence: 3 givenname: Shiming surname: Xiang fullname: Xiang, Shiming email: smxiang@nlpr.ia.ac.cn – sequence: 4 givenname: Chunhong surname: Pan fullname: Pan, Chunhong email: chpan@nlpr.ia.ac.cn |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28293603$$DView record in Pascal Francis |
BookMark | eNqFkc1u1DAYRS1UJKaFN2CRDVI3Cf6bxGZRqarKj6jEBtbWF-dz8eCxg50p8PZ4yIgFi7KyZJ97JN97Ts5iikjIS0Y7Rln_etdFPNi07zhlomOso5w_IRumBt4qrvozsqGab1suGH9GzkvZUcoGxvWG-I-YI4amzJALNhnnjAXjAotPsfnhl6_N7H9iaAM-VAziVJn7-na6CMlCaBzCcsjYfPsjK41LuXFgjz6b7qM_yp6Tpw5CwRen84J8eXv7-eZ9e_fp3Yeb67vWil4vba-E5ICKTtCPTtNJyHF0IBWFQamR6wG2VKITWz3IgWvQvesnR-Ukx4lKJy7I5eqdc_p-wLKYvS8WQ4CI6VAM20omxaCYruirEwqlfsNliNYXM2e_h_zLcMW16KmonFw5m1MpGd1fhFFzXMDszLqAOS5gGDN1gRp780_M-rXYJYMP_wtfreHaJz54zKZYj9Hi5Gupi5mSf1zwGx61p_s |
CitedBy_id | crossref_primary_10_1109_TIP_2015_2492819 crossref_primary_10_1016_j_jvcir_2019_102641 crossref_primary_10_1016_j_neucom_2014_12_051 crossref_primary_10_1109_JSTARS_2017_2757475 crossref_primary_10_1007_s13042_017_0678_4 crossref_primary_10_1016_j_patcog_2018_01_003 crossref_primary_10_1016_j_eswa_2018_09_032 crossref_primary_10_1016_j_neucom_2014_11_098 crossref_primary_10_1016_j_patrec_2015_09_010 crossref_primary_10_1049_iet_its_2018_5316 crossref_primary_10_1142_S0218126618500172 crossref_primary_10_1016_j_neucom_2016_01_092 |
Cites_doi | 10.1109/CVPR.2001.990477 10.1109/TPAMI.2005.242 10.1109/TNN.2003.809398 10.1109/AFGR.2002.1004130 10.1111/j.2517-6161.1996.tb02080.x 10.1109/TPAMI.2005.92 10.1093/biomet/81.3.425 10.7551/mitpress/7503.003.0105 10.1109/TPAMI.2002.1017623 10.1109/ICIP.2011.6116296 10.1007/978-3-642-15561-1_1 10.1016/j.imavis.2008.04.008 10.1109/ICIP.2010.5651933 10.1109/CVPR.2010.5539967 10.1016/j.imavis.2008.04.016 10.1109/TPAMI.2006.244 10.1109/TPAMI.2008.79 10.1002/j.1538-7305.1950.tb00463.x 10.1109/CVPR.2009.5206862 10.1016/0031-3203(95)00067-4 10.1007/978-3-540-24670-1_36 10.1109/TPAMI.2002.1008382 10.1109/TPAMI.2011.112 10.1109/IJCB.2011.6117573 10.1109/ICIP.2008.4712156 10.1109/ICME.2011.6011937 10.1109/CISP.2008.520 |
ContentType | Journal Article |
Copyright | 2014 Elsevier B.V. 2015 INIST-CNRS |
Copyright_xml | – notice: 2014 Elsevier B.V. – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.neucom.2013.11.022 |
DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science Applied Sciences |
EISSN | 1872-8286 |
EndPage | 152 |
ExternalDocumentID | 28293603 10_1016_j_neucom_2013_11_022 S0925231214000307 |
GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC SEW SSH WUQ XPP IQODW 7SC 8FD EFKBS JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c369t-68342ae80da6bf90d34bbfa480a788b297a504ef35974729a96f6df04d4bd04f3 |
IEDL.DBID | .~1 |
ISSN | 0925-2312 |
IngestDate | Tue Aug 05 10:58:23 EDT 2025 Wed Apr 02 07:35:46 EDT 2025 Tue Jul 01 03:05:25 EDT 2025 Thu Apr 24 22:53:28 EDT 2025 Fri Feb 23 02:27:13 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Kernels ℓ1-Norm minimization Sparse representation classification LBP Face recognition Coordinate descent Occlusion Image processing Autoregressive model Coordinate system ℓ Norm minimization Facies Illumination Sparse representation Computer vision Image databank Minimization Regression analysis Pattern recognition Computational complexity Kernel method Image analysis Luminance Descent method Occultation Pixel Image classification |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c369t-68342ae80da6bf90d34bbfa480a788b297a504ef35974729a96f6df04d4bd04f3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 1541437819 |
PQPubID | 23500 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1541437819 pascalfrancis_primary_28293603 crossref_primary_10_1016_j_neucom_2013_11_022 crossref_citationtrail_10_1016_j_neucom_2013_11_022 elsevier_sciencedirect_doi_10_1016_j_neucom_2013_11_022 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-06-10 |
PublicationDateYYYYMMDD | 2014-06-10 |
PublicationDate_xml | – month: 06 year: 2014 text: 2014-06-10 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Neurocomputing (Amsterdam) |
PublicationYear | 2014 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Ahonen, Hadid, Pietikainen (bib8) 2006; 28 Wagner, Wright, Ganesh, Zhou, Mobahi, Ma (bib24) 2012; 34 Kim, Choi, Yi, Turk (bib20) 2005; 27 Ojala, Pietikäinen, Mäenpää (bib27) 2002; 24 〈 C. Kang, S. Liao, S. Xiang, C. Pan, Kernel sparse representation with local patterns for face recognition, in: IEEE International Conference on Image Processing, 2011, pp. 3009–3012. G. Wang, D. Yeung, F. Lochovsky, The kernel path in kernelized LASSO, in: International Conference on Artificial Intelligence and Statistics, 2007, pp. 580–587. H. Lee, A. Battle, R. Raina, A.Y. Ng, Efficient sparse coding algorithms, in: Proceedings of Neural Information Processing System, 2007, pp. 801–808. Friedman, Hastie, Tibshirani (bib13) 2009; 33 Roth (bib15) 2004; 15 C.H. Chan, J. Kittler, Sparse representation of (multiscale) histograms for face recognition robust to registration and illumination problems, in: IEEE International Conference on Image Processing, 2010, pp. 2441–2444. Tibshirani (bib2) 1996; 58 Donoho, Johnstone (bib26) 1994; 81 Lee, Ho, Kriegman (bib29) 2005; 27 S.Z. Li, X. Hou, H. Zhang, Q. Cheng, Learning spatially localized, parts-based representation, in: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001, pp. 207–212. R. Min, J.-L. Dugelay, Improved combination of LBP and sparse representation based classification (SRC) for face recognition, in: 2011 IEEE International Conference on Multimedia and Expo (ICME), 2011, pp. 1–6. Hamming (bib28) 1950; 29 G. Bai, Y. Zhu, Z. Ding, A hierarchical face recognition method based on local binary pattern, in: Congress on Image and Signal Processing, vol. 2, 2008, pp. 610–614. Aleix Martínez, R. Benavente, The AR Face Database, Technical Report, 24, Computer Vision Center, 1998. T. Ahonen, A. Hadid, M. Pietikäinen, Face recognition with local binary patterns, in: European Conference on Computer Vision, 2004, pp. 469–481. S. Gao, I.W.-H. Tsang, L.-T. Chia, Kernel sparse representation for image classification and face recognition, in: Proceedings of the 11th European Conference on Computer Vision: Part IV, 2010, pp. 1–14. Hotta (bib22) 2008; 26 . S. Liao, A. Jain, S. Li, Partial face recognition: alignment-free approach, IEEE Trans. Pattern Anal. Mach. Intell. 99 (2012), PrePrint. Oh, Lee, Lee (bib21) 2008; 26 Martinez (bib19) 2002; 24 B. Yao, H. Ai, S. Lao, Matching texture units for face recognition, in: Proceedings of the IEEE International Conference on Image Processing, 2008, pp. 1920–1923. X.-T. Yuan, S. Yan, Visual classification with multi-task joint sparse representation, in: IEEE Conference on Computer Vision and Pattern Recognition, 2010, pp. 3493–3500. Wright, Yang, Ganesh, Sastry, Ma (bib1) 2009; 31 P. Tseng, On accelerated proximal gradient methods for convex–concave optimization, SIAM J. Optim. (2014), submitted for publication. H. Jia, A. Martinez, Support vector machines in face recognition with occlusions, in: IEEE Conference on Computer Vision and Pattern Recognition, 2009, pp. 136–141. Ojala, Pietikäinen, Harwood (bib6) 1996; 29 T. Sim, S. Baker, M. Bsat, The CMU pose, illumination, and expression (PIE) database, in: Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition, 2002. Friedman (10.1016/j.neucom.2013.11.022_bib13) 2009; 33 Tibshirani (10.1016/j.neucom.2013.11.022_bib2) 1996; 58 Hotta (10.1016/j.neucom.2013.11.022_bib22) 2008; 26 Ojala (10.1016/j.neucom.2013.11.022_bib27) 2002; 24 Wright (10.1016/j.neucom.2013.11.022_bib1) 2009; 31 Ahonen (10.1016/j.neucom.2013.11.022_bib8) 2006; 28 Oh (10.1016/j.neucom.2013.11.022_bib21) 2008; 26 10.1016/j.neucom.2013.11.022_bib14 Donoho (10.1016/j.neucom.2013.11.022_bib26) 1994; 81 10.1016/j.neucom.2013.11.022_bib16 10.1016/j.neucom.2013.11.022_bib17 10.1016/j.neucom.2013.11.022_bib10 10.1016/j.neucom.2013.11.022_bib32 10.1016/j.neucom.2013.11.022_bib11 10.1016/j.neucom.2013.11.022_bib33 10.1016/j.neucom.2013.11.022_bib12 10.1016/j.neucom.2013.11.022_bib18 Martinez (10.1016/j.neucom.2013.11.022_bib19) 2002; 24 Lee (10.1016/j.neucom.2013.11.022_bib29) 2005; 27 Roth (10.1016/j.neucom.2013.11.022_bib15) 2004; 15 10.1016/j.neucom.2013.11.022_bib7 10.1016/j.neucom.2013.11.022_bib5 10.1016/j.neucom.2013.11.022_bib4 10.1016/j.neucom.2013.11.022_bib3 Ojala (10.1016/j.neucom.2013.11.022_bib6) 1996; 29 10.1016/j.neucom.2013.11.022_bib30 10.1016/j.neucom.2013.11.022_bib31 10.1016/j.neucom.2013.11.022_bib9 10.1016/j.neucom.2013.11.022_bib25 10.1016/j.neucom.2013.11.022_bib23 Hamming (10.1016/j.neucom.2013.11.022_bib28) 1950; 29 Wagner (10.1016/j.neucom.2013.11.022_bib24) 2012; 34 Kim (10.1016/j.neucom.2013.11.022_bib20) 2005; 27 |
References_xml | – reference: S. Liao, A. Jain, S. Li, Partial face recognition: alignment-free approach, IEEE Trans. Pattern Anal. Mach. Intell. 99 (2012), PrePrint. – reference: R. Min, J.-L. Dugelay, Improved combination of LBP and sparse representation based classification (SRC) for face recognition, in: 2011 IEEE International Conference on Multimedia and Expo (ICME), 2011, pp. 1–6. – reference: H. Jia, A. Martinez, Support vector machines in face recognition with occlusions, in: IEEE Conference on Computer Vision and Pattern Recognition, 2009, pp. 136–141. – volume: 28 start-page: 2037 year: 2006 end-page: 2041 ident: bib8 article-title: Face description with local binary patterns publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: S.Z. Li, X. Hou, H. Zhang, Q. Cheng, Learning spatially localized, parts-based representation, in: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001, pp. 207–212. – volume: 29 start-page: 51 year: 1996 end-page: 59 ident: bib6 article-title: A comparative study of texture measures with classification based on featured distributions publication-title: Pattern Recognit. – reference: T. Ahonen, A. Hadid, M. Pietikäinen, Face recognition with local binary patterns, in: European Conference on Computer Vision, 2004, pp. 469–481. – volume: 58 start-page: 267 year: 1996 end-page: 288 ident: bib2 article-title: Regression shrinkage and selection via the Lasso publication-title: J. R. Stat. Soc. Ser. B (Methodological) – reference: X.-T. Yuan, S. Yan, Visual classification with multi-task joint sparse representation, in: IEEE Conference on Computer Vision and Pattern Recognition, 2010, pp. 3493–3500. – reference: P. Tseng, On accelerated proximal gradient methods for convex–concave optimization, SIAM J. Optim. (2014), submitted for publication. – reference: H. Lee, A. Battle, R. Raina, A.Y. Ng, Efficient sparse coding algorithms, in: Proceedings of Neural Information Processing System, 2007, pp. 801–808. – volume: 15 start-page: 16 year: 2004 end-page: 28 ident: bib15 article-title: The generalized LASSO publication-title: IEEE Trans. Neural Netw. – reference: 〈 – reference: G. Wang, D. Yeung, F. Lochovsky, The kernel path in kernelized LASSO, in: International Conference on Artificial Intelligence and Statistics, 2007, pp. 580–587. – volume: 33 start-page: 1 year: 2009 end-page: 22 ident: bib13 article-title: Regularization paths for generalized linear models via coordinate descent publication-title: J. Stat. Softw. – volume: 81 start-page: 425 year: 1994 end-page: 455 ident: bib26 article-title: Ideal spatial adaptation by wavelet shrinkage publication-title: Biometrika – reference: T. Sim, S. Baker, M. Bsat, The CMU pose, illumination, and expression (PIE) database, in: Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition, 2002. – reference: B. Yao, H. Ai, S. Lao, Matching texture units for face recognition, in: Proceedings of the IEEE International Conference on Image Processing, 2008, pp. 1920–1923. – volume: 27 start-page: 684 year: 2005 end-page: 698 ident: bib29 article-title: Acquiring linear subspaces for face recognition under variable lighting publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: 〉. – reference: C.H. Chan, J. Kittler, Sparse representation of (multiscale) histograms for face recognition robust to registration and illumination problems, in: IEEE International Conference on Image Processing, 2010, pp. 2441–2444. – reference: Aleix Martínez, R. Benavente, The AR Face Database, Technical Report, 24, Computer Vision Center, 1998. – volume: 26 start-page: 1490 year: 2008 end-page: 1498 ident: bib22 article-title: Robust face recognition under partial occlusion based on support vector machine with local gaussian summation kernel publication-title: Image Vis. Comput. – volume: 31 start-page: 210 year: 2009 end-page: 227 ident: bib1 article-title: Robust face recognition via sparse representation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 24 start-page: 971 year: 2002 end-page: 987 ident: bib27 article-title: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: S. Gao, I.W.-H. Tsang, L.-T. Chia, Kernel sparse representation for image classification and face recognition, in: Proceedings of the 11th European Conference on Computer Vision: Part IV, 2010, pp. 1–14. – volume: 29 start-page: 147 year: 1950 end-page: 160 ident: bib28 article-title: Error detecting and error correcting codes publication-title: Bell Syst. Tech. J. – reference: C. Kang, S. Liao, S. Xiang, C. Pan, Kernel sparse representation with local patterns for face recognition, in: IEEE International Conference on Image Processing, 2011, pp. 3009–3012. – volume: 24 start-page: 748 year: 2002 end-page: 763 ident: bib19 article-title: Recognizing imprecisely localized, and expression variant faces from a single sample per class publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 27 start-page: 1977 year: 2005 end-page: 1981 ident: bib20 article-title: Effective representation using ICA for face recognition robust to local distortion and partial occlusion publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 26 start-page: 1515 year: 2008 end-page: 1523 ident: bib21 article-title: Occlusion invariant face recognition using selective local non-negative matrix factorization basis images publication-title: Image Vis. Comput. – reference: G. Bai, Y. Zhu, Z. Ding, A hierarchical face recognition method based on local binary pattern, in: Congress on Image and Signal Processing, vol. 2, 2008, pp. 610–614. – volume: 34 start-page: 372 year: 2012 end-page: 386 ident: bib24 article-title: Toward a practical face recognition system publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – ident: 10.1016/j.neucom.2013.11.022_bib18 doi: 10.1109/CVPR.2001.990477 – volume: 27 start-page: 1977 issue: 12 year: 2005 ident: 10.1016/j.neucom.2013.11.022_bib20 article-title: Effective representation using ICA for face recognition robust to local distortion and partial occlusion publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2005.242 – volume: 15 start-page: 16 issue: 1 year: 2004 ident: 10.1016/j.neucom.2013.11.022_bib15 article-title: The generalized LASSO publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2003.809398 – ident: 10.1016/j.neucom.2013.11.022_bib30 doi: 10.1109/AFGR.2002.1004130 – volume: 58 start-page: 267 year: 1996 ident: 10.1016/j.neucom.2013.11.022_bib2 article-title: Regression shrinkage and selection via the Lasso publication-title: J. R. Stat. Soc. Ser. B (Methodological) doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 27 start-page: 684 issue: 5 year: 2005 ident: 10.1016/j.neucom.2013.11.022_bib29 article-title: Acquiring linear subspaces for face recognition under variable lighting publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2005.92 – ident: 10.1016/j.neucom.2013.11.022_bib14 – volume: 81 start-page: 425 issue: 3 year: 1994 ident: 10.1016/j.neucom.2013.11.022_bib26 article-title: Ideal spatial adaptation by wavelet shrinkage publication-title: Biometrika doi: 10.1093/biomet/81.3.425 – ident: 10.1016/j.neucom.2013.11.022_bib12 doi: 10.7551/mitpress/7503.003.0105 – ident: 10.1016/j.neucom.2013.11.022_bib32 – volume: 24 start-page: 971 issue: 7 year: 2002 ident: 10.1016/j.neucom.2013.11.022_bib27 article-title: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2002.1017623 – ident: 10.1016/j.neucom.2013.11.022_bib9 doi: 10.1109/ICIP.2011.6116296 – ident: 10.1016/j.neucom.2013.11.022_bib10 doi: 10.1007/978-3-642-15561-1_1 – volume: 26 start-page: 1490 issue: 11 year: 2008 ident: 10.1016/j.neucom.2013.11.022_bib22 article-title: Robust face recognition under partial occlusion based on support vector machine with local gaussian summation kernel publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2008.04.008 – ident: 10.1016/j.neucom.2013.11.022_bib5 doi: 10.1109/ICIP.2010.5651933 – ident: 10.1016/j.neucom.2013.11.022_bib3 doi: 10.1109/CVPR.2010.5539967 – volume: 26 start-page: 1515 issue: 11 year: 2008 ident: 10.1016/j.neucom.2013.11.022_bib21 article-title: Occlusion invariant face recognition using selective local non-negative matrix factorization basis images publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2008.04.016 – volume: 28 start-page: 2037 issue: 12 year: 2006 ident: 10.1016/j.neucom.2013.11.022_bib8 article-title: Face description with local binary patterns publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2006.244 – volume: 31 start-page: 210 issue: 2 year: 2009 ident: 10.1016/j.neucom.2013.11.022_bib1 article-title: Robust face recognition via sparse representation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2008.79 – volume: 29 start-page: 147 issue: 2 year: 1950 ident: 10.1016/j.neucom.2013.11.022_bib28 article-title: Error detecting and error correcting codes publication-title: Bell Syst. Tech. J. doi: 10.1002/j.1538-7305.1950.tb00463.x – volume: 33 start-page: 1 issue: 1 year: 2009 ident: 10.1016/j.neucom.2013.11.022_bib13 article-title: Regularization paths for generalized linear models via coordinate descent publication-title: J. Stat. Softw. – ident: 10.1016/j.neucom.2013.11.022_bib11 – ident: 10.1016/j.neucom.2013.11.022_bib23 doi: 10.1109/CVPR.2009.5206862 – volume: 29 start-page: 51 issue: 1 year: 1996 ident: 10.1016/j.neucom.2013.11.022_bib6 article-title: A comparative study of texture measures with classification based on featured distributions publication-title: Pattern Recognit. doi: 10.1016/0031-3203(95)00067-4 – ident: 10.1016/j.neucom.2013.11.022_bib7 doi: 10.1007/978-3-540-24670-1_36 – volume: 24 start-page: 748 issue: 6 year: 2002 ident: 10.1016/j.neucom.2013.11.022_bib19 article-title: Recognizing imprecisely localized, and expression variant faces from a single sample per class publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2002.1008382 – volume: 34 start-page: 372 issue: 2 year: 2012 ident: 10.1016/j.neucom.2013.11.022_bib24 article-title: Toward a practical face recognition system publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2011.112 – ident: 10.1016/j.neucom.2013.11.022_bib33 – ident: 10.1016/j.neucom.2013.11.022_bib31 – ident: 10.1016/j.neucom.2013.11.022_bib25 doi: 10.1109/IJCB.2011.6117573 – ident: 10.1016/j.neucom.2013.11.022_bib17 doi: 10.1109/ICIP.2008.4712156 – ident: 10.1016/j.neucom.2013.11.022_bib4 doi: 10.1109/ICME.2011.6011937 – ident: 10.1016/j.neucom.2013.11.022_bib16 doi: 10.1109/CISP.2008.520 |
SSID | ssj0017129 |
Score | 2.1757524 |
Snippet | Face recognition has been popular in the pattern recognition field for decades, but it is still a difficult problem due to the various image distortions.... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 141 |
SubjectTerms | [formula omitted]-Norm minimization Algorithmics. Computability. Computer arithmetics Algorithms Applied sciences Artificial intelligence Classification Computer science; control theory; systems Coordinate descent Detection, estimation, filtering, equalization, prediction Exact sciences and technology Face recognition Illumination Information, signal and communications theory Kernels LBP Occlusion Pattern recognition. Digital image processing. Computational geometry Representations Signal and communications theory Signal, noise Sparse representation classification Telecommunications and information theory Theoretical computing |
Title | Kernel sparse representation with pixel-level and region-level local feature kernels for face recognition |
URI | https://dx.doi.org/10.1016/j.neucom.2013.11.022 https://www.proquest.com/docview/1541437819 |
Volume | 133 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBYhuQRCH2lC3TZGhV4V67Xa3WMICW5Dc0kCuQlJOwK3RjZ-QE_97ZW0WkMIIdDjCj0WzWge0jczCH1TlesqJoBY2hgimXXEeM8ItzVtPXcKctWSn7dq-iB_PFaPe-hyiIVJsMoi-3uZnqV1aZmU3ZwsZ7PJHW159KIYjy5CZtUUwS7rxOXnf3cwD1Yz3ufb4xVJvYfwuYzxCrBNmJGoBMV5yuXJ-Uvq6Whp1nHTfF_t4pngztro-h16U8xIfNH_6Xu0B-EYvR1KNOByYj-g2Q2sAsxxlBurNeCcwnIINwo4XcLi5ewPzMk8gYewCR1OpRoWoTRkVYc95PSf-HeebI2joYu9cWm-Aj9ahBP0cH11fzklpboCcUK1G6IaIbmBhnZGWd_STkhrvZENNdEttrytTUUleJFdDt6aVnnVeSo7aTsqvThF-2ER4CPCjXBMOWMpQCUF9barjYumRaS6q0HQERLDpmpXUo-nChhzPWDMfumeFDqRInolOpJihMhu1LJPvfFK_3qgl37CQjpqh1dGjp-Qd7dcemYWiooR-jrQW8fjl95UTIDFdq1ZKqMu6mhXffrv5T-jw_glEwCN0S9of7Pawlk0dTZ2nHl5jA4uvt9Mb_8BCsYBQA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxwhFD6km4cWStr0QjdNEwt9teuo48w8hpCw6Sb70gTyJuoobLq4y14gPz_qOAuhlEBfnTk6ePRcxs_zAfwQpWnLglmsSa0wL7TByrkCU12RxlEjbGItuZmK8R3_dV_e78F5fxcmwiqz7e9serLWuWWUZ3O0nM1Gv0lDQxZV0JAipKX6CvZjdapyAPtnV5PxdHeYUBW0K7lHSxwF-ht0Cebl7TbCRoIfZD9jOU9K_-Wh3i7VOsyb6wgv_rLdySFdvoeDHEmis-5jD2HP-g_wrmdpQHnTfoTZxK68naNgOlZri1IVy_7GkUfxPyxazh7tHM8jfggp36LI1rDwuSF5O-RsqgCK_qTO1ijEusgpE_vLCKSF_wR3lxe352OcCRawYaLZYFEzTpWtSauEdg1pGdfaKV4TFTJjTZtKlYRbx1LWQRvVCCdaR3jLdUu4Y59h4BfefgFUM1MIozSxtuSMON1WyoToIijeVJaRIbB-UqXJ1ccjCcZc9jCzB9mpQkZVhMREBlUMAe-kll31jRfer3p9yWerSAYH8YLkyTP17oaLJ81MEDaE772-ZdiB8VhFebvYrmURmdRZFUKro_8e_hRej29vruX11XTyFd6EJzzi0QpyDIPNamu_hchno0_yyn4Czj8D8Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kernel+sparse+representation+with+pixel-level+and+region-level+local+feature+kernels+for+face+recognition&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Kang%2C+Cuicui&rft.au=Liao%2C+Shengcai&rft.au=Xiang%2C+Shiming&rft.au=Pan%2C+Chunhong&rft.date=2014-06-10&rft.issn=0925-2312&rft.volume=133&rft.spage=141&rft.epage=152&rft_id=info:doi/10.1016%2Fj.neucom.2013.11.022&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |