Artificial neural network based modeling on unidirectional and bidirectional pedestrian flow at straight corridors

Pedestrian modeling is a good way to predict pedestrian movement and thus can be used for controlling pedestrian crowds and guiding evacuations in emergencies. In this paper, we propose a pedestrian movement model based on artificial neural network. In the model, the pedestrian velocity vectors are...

Full description

Saved in:
Bibliographic Details
Published inPhysica A Vol. 547; p. 123825
Main Authors Zhao, Xuedan, Xia, Long, Zhang, Jun, Song, Weiguo
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2020
Subjects
Online AccessGet full text
ISSN0378-4371
1873-2119
DOI10.1016/j.physa.2019.123825

Cover

Loading…
Abstract Pedestrian modeling is a good way to predict pedestrian movement and thus can be used for controlling pedestrian crowds and guiding evacuations in emergencies. In this paper, we propose a pedestrian movement model based on artificial neural network. In the model, the pedestrian velocity vectors are predicted with two sub models, Semicircular Forward Space Based submodel (SFSB-submodel) and Rectangular Forward Space Based submodel (RFSB-submodel), respectively. Both unidirectional and bidirectional pedestrian flow at straight corridors are investigated by comparing the simulation and the corresponding experimental results. It is shown that the pedestrian trajectories and the fundamental diagrams from the model are all consistent with that from experiments. And the typical lane-formation phenomena are observed in bidirectional flow simulation. In addition, to quantitatively evaluate the precision of the prediction, the mean destination error (MDE) and mean trajectory error (MTE) are defined and calculated to be approximately 0.2 m and 0.12 m in unidirectional flow scenario. In bidirectional flow, relative distance error (RDE) is about 0.15 m. The findings indicate that the proposed model is reasonable and capable of simulating the unidirectional and bidirectional pedestrian flow illustrated in this paper. •A model based on artificial neural network is proposed.•Pedestrians’ velocity vectors are predicted with SFSB-submodel and RFSB-submodel.•The proposed model is validitied in unidirectional and bidirectional flow secnarios.
AbstractList Pedestrian modeling is a good way to predict pedestrian movement and thus can be used for controlling pedestrian crowds and guiding evacuations in emergencies. In this paper, we propose a pedestrian movement model based on artificial neural network. In the model, the pedestrian velocity vectors are predicted with two sub models, Semicircular Forward Space Based submodel (SFSB-submodel) and Rectangular Forward Space Based submodel (RFSB-submodel), respectively. Both unidirectional and bidirectional pedestrian flow at straight corridors are investigated by comparing the simulation and the corresponding experimental results. It is shown that the pedestrian trajectories and the fundamental diagrams from the model are all consistent with that from experiments. And the typical lane-formation phenomena are observed in bidirectional flow simulation. In addition, to quantitatively evaluate the precision of the prediction, the mean destination error (MDE) and mean trajectory error (MTE) are defined and calculated to be approximately 0.2 m and 0.12 m in unidirectional flow scenario. In bidirectional flow, relative distance error (RDE) is about 0.15 m. The findings indicate that the proposed model is reasonable and capable of simulating the unidirectional and bidirectional pedestrian flow illustrated in this paper. •A model based on artificial neural network is proposed.•Pedestrians’ velocity vectors are predicted with SFSB-submodel and RFSB-submodel.•The proposed model is validitied in unidirectional and bidirectional flow secnarios.
ArticleNumber 123825
Author Xia, Long
Zhao, Xuedan
Song, Weiguo
Zhang, Jun
Author_xml – sequence: 1
  givenname: Xuedan
  surname: Zhao
  fullname: Zhao, Xuedan
– sequence: 2
  givenname: Long
  surname: Xia
  fullname: Xia, Long
– sequence: 3
  givenname: Jun
  surname: Zhang
  fullname: Zhang, Jun
  email: junz@ustc.edu.cn
– sequence: 4
  givenname: Weiguo
  surname: Song
  fullname: Song, Weiguo
BookMark eNqFkMtOwzAQRS1UJNrCF7DxD6T4kcbxgkVV8ZIqsYG15fjRuqR2ZbtU_XuShg0sYHU1ozmjmTMBIx-8AeAWoxlGuLrbzvabU5IzgjCfYUJrMr8AY1wzWhCM-QiMEWV1UVKGr8AkpS1CCDNKxiAuYnbWKSdb6M0hniMfQ_yAjUxGw13QpnV-DYOHB--0i0ZlF3w3KL2GzY_O3miTcnTSQ9uGI5QZdqV0602GKsTodIjpGlxa2SZz851T8P748LZ8LlavTy_LxapQtOK5qOYWMUNLrJqackLmFDeGc1RZJJFSpa4ZJ1jR2kqKpSoNYaVliLGmVFhZRaeAD3tVDClFY4VyWfaX9ie1AiPRyxNbcZYnenlikNex9Be7j24n4-kf6n6gTPfWpzNRJOWMV2ZwJHRwf_JfwfaPTw
CitedBy_id crossref_primary_10_1016_j_physa_2024_129500
crossref_primary_10_1016_j_physa_2024_129723
crossref_primary_10_1016_j_physa_2024_129600
crossref_primary_10_1007_s00484_022_02379_y
crossref_primary_10_1109_TITS_2024_3512583
crossref_primary_10_3390_fi15010012
crossref_primary_10_1016_j_physa_2024_130021
crossref_primary_10_1007_s11633_022_1405_5
crossref_primary_10_1016_j_eswa_2024_125706
crossref_primary_10_1088_1742_5468_abb459
crossref_primary_10_1016_j_physa_2023_128837
crossref_primary_10_1089_big_2020_0159
crossref_primary_10_1155_2021_5580910
crossref_primary_10_1080_17538947_2023_2182376
crossref_primary_10_1016_j_heliyon_2024_e30659
crossref_primary_10_1109_TITS_2024_3375528
crossref_primary_10_1109_TITS_2023_3257760
crossref_primary_10_1016_j_physa_2022_128140
crossref_primary_10_21923_jesd_1104772
Cites_doi 10.1142/S0129183115501314
10.1088/1742-5468/2012/02/P02002
10.1103/PhysRevE.82.046111
10.1016/j.buildenv.2010.03.015
10.1016/j.physa.2018.06.045
10.1109/CVPR.2018.00240
10.1109/TNN.2003.809401
10.1088/1742-5468/2011/06/P06004
10.1016/j.trc.2014.08.012
10.1016/j.physa.2018.09.041
10.1088/1742-5468/aafa7b
10.1016/j.physa.2010.05.003
10.1016/j.physa.2005.08.036
10.1109/TITS.2016.2542843
10.1109/TII.2012.2187914
10.1016/j.simpat.2014.06.005
10.1038/35035023
10.1016/S0378-4371(02)00857-9
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.physa.2019.123825
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1873-2119
ExternalDocumentID 10_1016_j_physa_2019_123825
S0378437119321272
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAPFB
AAXUO
ABAOU
ABMAC
ABNEU
ABYKQ
ACAZW
ACDAQ
ACFVG
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADFHU
ADGUI
AEBSH
AEKER
AEYQN
AFFNX
AFKWA
AFTJW
AGHFR
AGTHC
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIIAU
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
AXLSJ
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IXIXF
J1W
K-O
KOM
M38
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSB
SSF
SSQ
SSW
SSZ
T5K
TN5
TWZ
WH7
XPP
YNT
ZMT
~02
~G-
29O
5VS
6TJ
AAFFL
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABJNI
ABWVN
ABXDB
ACNNM
ACROA
ACRPL
ADMUD
ADNMO
ADVLN
AEIPS
AFJKZ
AFODL
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
AJWLA
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BEHZQ
BEZPJ
BGSCR
BNPGV
BNTGB
BPUDD
BULVW
BZJEE
CITATION
EJD
FEDTE
FGOYB
HMV
HVGLF
HZ~
MVM
NDZJH
R2-
RIG
SEW
SPG
SSH
VOH
WUQ
XJT
XOL
YYP
ZY4
ID FETCH-LOGICAL-c369t-65f07e341cb83922531be9906f0a0cc4d87921c38fa31ac4e274f7077b4c1cfc3
IEDL.DBID .~1
ISSN 0378-4371
IngestDate Tue Jul 01 01:32:19 EDT 2025
Thu Apr 24 22:50:43 EDT 2025
Fri Feb 23 02:49:21 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Bidirectional flow
Pedestrian movement modeling
Unidirectional flow
Artificial neural network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c369t-65f07e341cb83922531be9906f0a0cc4d87921c38fa31ac4e274f7077b4c1cfc3
ParticipantIDs crossref_citationtrail_10_1016_j_physa_2019_123825
crossref_primary_10_1016_j_physa_2019_123825
elsevier_sciencedirect_doi_10_1016_j_physa_2019_123825
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-01
2020-06-00
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Physica A
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Yang, Chen, Tian, Dong (b14) 2015
Bode, Ronchi (b1) 2019; 4
Wu, Song, Liu, Lian (b18) 2018; 27
Huang (b29) 2003; 14
Chraibi, Seyfried, Schadschneider (b6) 2010; 82
Boltes, Seyfried, Steffen, Schadschneider (b21) 2010
Ma, Lee, Yuen (b10) 2016; 17
Zhou, Hu, Ji, Xiao (b16) 2019; 514
A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, A. Alahi, Social gan: Socially acceptable trajectories with generative adversarial networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 2255–2264.
Hunter, Yu, M.S. Pukish, Kolbusz, Wilamowski (b28) 2012; 8
(b20) 2019
Kirchner, Schadschneider (b3) 2002; 312
Amirian, Van Toll, Hayet, Pettré (b12) 2019
Shao (b9) 2009
Helbing, Farkas, Vicsek (b5) 2000; 407
Hu, Li, Zhang, Wei, You, Chen (b17) 2015; 26
Martinez-Gil, Lozano, Fernández (b8) 2014; 47
Song, Han, Sun, Zhang (b11) 2018; 509
Zhang, Klingsch, Schadschneider, Seyfried (b23) 2012; 2012
Zhang, Yuan (b26) 1997; 1
L. Crociani, G. Lämmel, G. Vizzari, S. Bandini, Learning obervables of a multi-scale simulation system of urban traffic, in: ATT@ IJCAI, 2018, pp. 40–48.
Ren, Zhang, Song, Cao (b15) 2019; 2019
Yan-qun, Peng, Sze-Chun, Ru-xun (b2) 2010; 389
Song, Xu, Wang, Ni (b4) 2006; 363
Seer, Brändle, Ratti (b24) 2014; 48
Karsoliya (b19) 2012; 3
Ma, Song, Fang, Lo, Liao (b25) 2010; 45
Zhang, Klingsch, Schadschneider, Seyfried (b22) 2011; 2011
Ke, Liu (b27) 2008
Wu (10.1016/j.physa.2019.123825_b18) 2018; 27
Zhang (10.1016/j.physa.2019.123825_b22) 2011; 2011
Yan-qun (10.1016/j.physa.2019.123825_b2) 2010; 389
Helbing (10.1016/j.physa.2019.123825_b5) 2000; 407
Zhang (10.1016/j.physa.2019.123825_b26) 1997; 1
Huang (10.1016/j.physa.2019.123825_b29) 2003; 14
Zhou (10.1016/j.physa.2019.123825_b16) 2019; 514
Zhang (10.1016/j.physa.2019.123825_b23) 2012; 2012
Yang (10.1016/j.physa.2019.123825_b14) 2015
Hu (10.1016/j.physa.2019.123825_b17) 2015; 26
Shao (10.1016/j.physa.2019.123825_b9) 2009
(10.1016/j.physa.2019.123825_b20) 2019
10.1016/j.physa.2019.123825_b7
Ma (10.1016/j.physa.2019.123825_b25) 2010; 45
Ke (10.1016/j.physa.2019.123825_b27) 2008
Hunter (10.1016/j.physa.2019.123825_b28) 2012; 8
Ma (10.1016/j.physa.2019.123825_b10) 2016; 17
Martinez-Gil (10.1016/j.physa.2019.123825_b8) 2014; 47
Chraibi (10.1016/j.physa.2019.123825_b6) 2010; 82
Kirchner (10.1016/j.physa.2019.123825_b3) 2002; 312
Song (10.1016/j.physa.2019.123825_b4) 2006; 363
Song (10.1016/j.physa.2019.123825_b11) 2018; 509
Bode (10.1016/j.physa.2019.123825_b1) 2019; 4
Karsoliya (10.1016/j.physa.2019.123825_b19) 2012; 3
Ren (10.1016/j.physa.2019.123825_b15) 2019; 2019
Amirian (10.1016/j.physa.2019.123825_b12) 2019
Boltes (10.1016/j.physa.2019.123825_b21) 2010
Seer (10.1016/j.physa.2019.123825_b24) 2014; 48
10.1016/j.physa.2019.123825_b13
References_xml – volume: 389
  start-page: 4623
  year: 2010
  end-page: 4635
  ident: b2
  article-title: A higher-order macroscopic model for pedestrian flows
  publication-title: Physica A
– start-page: 24
  year: 2009
  end-page: 29
  ident: b9
  article-title: A more realistic simulation of pedestrian based on cellular automata
  publication-title: 2009 IEEE International Workshop on Open-Source Software for Scientific Computation
– volume: 4
  start-page: 1
  year: 2019
  end-page: 32
  ident: b1
  article-title: Statistical model fitting and model selection in pedestrian dynamics research
  publication-title: Collect. Dyn.
– start-page: 828
  year: 2008
  end-page: 832
  ident: b27
  article-title: Empirical analysis of optimal hidden neurons in neural network modeling for stock prediction
  publication-title: 2008 IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application
– volume: 312
  start-page: 260
  year: 2002
  end-page: 276
  ident: b3
  article-title: Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics
  publication-title: Physica A
– volume: 514
  start-page: 982
  year: 2019
  end-page: 992
  ident: b16
  article-title: Cellular automaton simulation of pedestrian flow considering vision and multi-velocity
  publication-title: Physica A
– start-page: 43
  year: 2010
  end-page: 54
  ident: b21
  article-title: Automatic extraction of pedestrian trajectories from video recordings
  publication-title: Pedestrian and Evacuation Dynamics 2008
– volume: 407
  start-page: 487
  year: 2000
  ident: b5
  article-title: Simulating dynamical features of escape panic
  publication-title: Nature
– volume: 26
  year: 2015
  ident: b17
  article-title: Experiment and simulation of the bidirectional pedestrian flow model with overtaking and herding behavior
  publication-title: Internat. J. Modern Phys. C
– volume: 2012
  year: 2012
  ident: b23
  article-title: Ordering in bidirectional pedestrian flows and its influence on the fundamental diagram
  publication-title: J. Stat. Mech. Theory Exp.
– volume: 82
  start-page: 46111
  year: 2010
  ident: b6
  article-title: Generalized centrifugal-force model for pedestrian dynamics
  publication-title: Phys. Rev. E
– volume: 8
  start-page: 228
  year: 2012
  end-page: 240
  ident: b28
  article-title: Selection of proper neural network sizes and architectures—A comparative study
  publication-title: IEEE Trans. Ind. Inf.
– reference: L. Crociani, G. Lämmel, G. Vizzari, S. Bandini, Learning obervables of a multi-scale simulation system of urban traffic, in: ATT@ IJCAI, 2018, pp. 40–48.
– volume: 3
  start-page: 714
  year: 2012
  end-page: 717
  ident: b19
  article-title: Approximating number of hidden layer neurons in multiple hidden layer BPNN architecture
  publication-title: Int. J. Eng. Trends Technol.
– year: 2015
  ident: b14
  article-title: Experiments of unidirectional and bidirectional pedestrian flows through a bottleneck in a channel
  publication-title: J. Shanghai Univ.
– year: 2019
  ident: b20
  article-title: Institute for advanced simulation 7: Civil safety research of forschungszentrum Jülich
– volume: 1
  start-page: 84
  year: 1997
  end-page: 88
  ident: b26
  article-title: The PauTa criterion and rejecting the abnormal value
  publication-title: J. Zhengzhou Univ. Technol.
– volume: 47
  start-page: 259
  year: 2014
  end-page: 275
  ident: b8
  article-title: MARL-Ped: A multi-agent reinforcement learning based framework to simulate pedestrian groups
  publication-title: Simul. Model. Pract. Theory
– volume: 14
  start-page: 274
  year: 2003
  end-page: 281
  ident: b29
  article-title: Learning capability and storage capacity of two-hidden-layer feedforward networks
  publication-title: IEEE Trans. Neural Netw.
– volume: 48
  start-page: 212
  year: 2014
  end-page: 228
  ident: b24
  article-title: Kinects and human kinetics: A new approach for studying pedestrian behavior
  publication-title: Transp. Res. C
– reference: A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, A. Alahi, Social gan: Socially acceptable trajectories with generative adversarial networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 2255–2264.
– volume: 363
  start-page: 492
  year: 2006
  end-page: 500
  ident: b4
  article-title: Simulation of evacuation processes using a multi-grid model for pedestrian dynamics
  publication-title: Physica A
– volume: 17
  start-page: 3159
  year: 2016
  end-page: 3170
  ident: b10
  article-title: An artificial intelligence-based approach for simulating pedestrian movement
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 2019
  start-page: 23403
  year: 2019
  ident: b15
  article-title: The fundamental diagrams of elderly pedestrian flow in straight corridors under different densities
  publication-title: J. Stat. Mech. Theory Exp.
– volume: 27
  start-page: 114
  year: 2018
  end-page: 123
  ident: b18
  article-title: Modified Voronoi method for measuring pedestrian density based on occupy area
  publication-title: Fire Saf. Sci.
– volume: 509
  start-page: 827
  year: 2018
  end-page: 844
  ident: b11
  article-title: A data-driven neural network approach to simulate pedestrian movement
  publication-title: Physica A
– volume: 45
  start-page: 2160
  year: 2010
  end-page: 2169
  ident: b25
  article-title: Experimental study on microscopic moving characteristics of pedestrians in built corridor based on digital image processing
  publication-title: Build. Environ.
– year: 2019
  ident: b12
  article-title: Data-driven crowd simulation with generative adversarial networks
– volume: 2011
  start-page: 1
  year: 2011
  end-page: 17
  ident: b22
  article-title: Transitions in pedestrian fundamental diagrams of straight corridors and T-junctions
  publication-title: J. Stat. Mech. Theory Exp.
– volume: 3
  start-page: 714
  year: 2012
  ident: 10.1016/j.physa.2019.123825_b19
  article-title: Approximating number of hidden layer neurons in multiple hidden layer BPNN architecture
  publication-title: Int. J. Eng. Trends Technol.
– volume: 26
  year: 2015
  ident: 10.1016/j.physa.2019.123825_b17
  article-title: Experiment and simulation of the bidirectional pedestrian flow model with overtaking and herding behavior
  publication-title: Internat. J. Modern Phys. C
  doi: 10.1142/S0129183115501314
– volume: 2012
  year: 2012
  ident: 10.1016/j.physa.2019.123825_b23
  article-title: Ordering in bidirectional pedestrian flows and its influence on the fundamental diagram
  publication-title: J. Stat. Mech. Theory Exp.
  doi: 10.1088/1742-5468/2012/02/P02002
– volume: 82
  start-page: 46111
  year: 2010
  ident: 10.1016/j.physa.2019.123825_b6
  article-title: Generalized centrifugal-force model for pedestrian dynamics
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.82.046111
– volume: 27
  start-page: 114
  issue: 2
  year: 2018
  ident: 10.1016/j.physa.2019.123825_b18
  article-title: Modified Voronoi method for measuring pedestrian density based on occupy area
  publication-title: Fire Saf. Sci.
– volume: 45
  start-page: 2160
  year: 2010
  ident: 10.1016/j.physa.2019.123825_b25
  article-title: Experimental study on microscopic moving characteristics of pedestrians in built corridor based on digital image processing
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2010.03.015
– volume: 509
  start-page: 827
  year: 2018
  ident: 10.1016/j.physa.2019.123825_b11
  article-title: A data-driven neural network approach to simulate pedestrian movement
  publication-title: Physica A
  doi: 10.1016/j.physa.2018.06.045
– volume: 4
  start-page: 1
  year: 2019
  ident: 10.1016/j.physa.2019.123825_b1
  article-title: Statistical model fitting and model selection in pedestrian dynamics research
  publication-title: Collect. Dyn.
– ident: 10.1016/j.physa.2019.123825_b13
  doi: 10.1109/CVPR.2018.00240
– year: 2015
  ident: 10.1016/j.physa.2019.123825_b14
  article-title: Experiments of unidirectional and bidirectional pedestrian flows through a bottleneck in a channel
  publication-title: J. Shanghai Univ.
– volume: 14
  start-page: 274
  year: 2003
  ident: 10.1016/j.physa.2019.123825_b29
  article-title: Learning capability and storage capacity of two-hidden-layer feedforward networks
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2003.809401
– volume: 2011
  start-page: 1
  year: 2011
  ident: 10.1016/j.physa.2019.123825_b22
  article-title: Transitions in pedestrian fundamental diagrams of straight corridors and T-junctions
  publication-title: J. Stat. Mech. Theory Exp.
  doi: 10.1088/1742-5468/2011/06/P06004
– volume: 48
  start-page: 212
  year: 2014
  ident: 10.1016/j.physa.2019.123825_b24
  article-title: Kinects and human kinetics: A new approach for studying pedestrian behavior
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2014.08.012
– start-page: 828
  year: 2008
  ident: 10.1016/j.physa.2019.123825_b27
  article-title: Empirical analysis of optimal hidden neurons in neural network modeling for stock prediction
– volume: 514
  start-page: 982
  year: 2019
  ident: 10.1016/j.physa.2019.123825_b16
  article-title: Cellular automaton simulation of pedestrian flow considering vision and multi-velocity
  publication-title: Physica A
  doi: 10.1016/j.physa.2018.09.041
– year: 2019
  ident: 10.1016/j.physa.2019.123825_b20
– year: 2019
  ident: 10.1016/j.physa.2019.123825_b12
– volume: 1
  start-page: 84
  year: 1997
  ident: 10.1016/j.physa.2019.123825_b26
  article-title: The PauTa criterion and rejecting the abnormal value
  publication-title: J. Zhengzhou Univ. Technol.
– volume: 2019
  start-page: 23403
  year: 2019
  ident: 10.1016/j.physa.2019.123825_b15
  article-title: The fundamental diagrams of elderly pedestrian flow in straight corridors under different densities
  publication-title: J. Stat. Mech. Theory Exp.
  doi: 10.1088/1742-5468/aafa7b
– volume: 389
  start-page: 4623
  year: 2010
  ident: 10.1016/j.physa.2019.123825_b2
  article-title: A higher-order macroscopic model for pedestrian flows
  publication-title: Physica A
  doi: 10.1016/j.physa.2010.05.003
– volume: 363
  start-page: 492
  year: 2006
  ident: 10.1016/j.physa.2019.123825_b4
  article-title: Simulation of evacuation processes using a multi-grid model for pedestrian dynamics
  publication-title: Physica A
  doi: 10.1016/j.physa.2005.08.036
– volume: 17
  start-page: 3159
  year: 2016
  ident: 10.1016/j.physa.2019.123825_b10
  article-title: An artificial intelligence-based approach for simulating pedestrian movement
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2016.2542843
– volume: 8
  start-page: 228
  year: 2012
  ident: 10.1016/j.physa.2019.123825_b28
  article-title: Selection of proper neural network sizes and architectures—A comparative study
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2012.2187914
– volume: 47
  start-page: 259
  year: 2014
  ident: 10.1016/j.physa.2019.123825_b8
  article-title: MARL-Ped: A multi-agent reinforcement learning based framework to simulate pedestrian groups
  publication-title: Simul. Model. Pract. Theory
  doi: 10.1016/j.simpat.2014.06.005
– ident: 10.1016/j.physa.2019.123825_b7
– volume: 407
  start-page: 487
  year: 2000
  ident: 10.1016/j.physa.2019.123825_b5
  article-title: Simulating dynamical features of escape panic
  publication-title: Nature
  doi: 10.1038/35035023
– start-page: 24
  year: 2009
  ident: 10.1016/j.physa.2019.123825_b9
  article-title: A more realistic simulation of pedestrian based on cellular automata
– volume: 312
  start-page: 260
  year: 2002
  ident: 10.1016/j.physa.2019.123825_b3
  article-title: Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics
  publication-title: Physica A
  doi: 10.1016/S0378-4371(02)00857-9
– start-page: 43
  year: 2010
  ident: 10.1016/j.physa.2019.123825_b21
  article-title: Automatic extraction of pedestrian trajectories from video recordings
SSID ssj0001732
Score 2.4277442
Snippet Pedestrian modeling is a good way to predict pedestrian movement and thus can be used for controlling pedestrian crowds and guiding evacuations in emergencies....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 123825
SubjectTerms Artificial neural network
Bidirectional flow
Pedestrian movement modeling
Unidirectional flow
Title Artificial neural network based modeling on unidirectional and bidirectional pedestrian flow at straight corridors
URI https://dx.doi.org/10.1016/j.physa.2019.123825
Volume 547
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jIngRP_Fz5ODRbkmTJu1xDMdU3EUHu5U2TWAy2tF1ePNvNy9t1YHs4KmQJpC-vv7eR15_D6E7qmy45pPQk1pkHteEe9bKRZ6yiBkmJjLUnei-TMVkxp_mwbyDRu2_MFBW2WB_jekOrZuRQSPNwWqxGLwSJkPOJAUXhPoScBjY66xO9z9_yjyoZPVJgo2WYHbLPORqvCB7AORDNOpbBA-hX_Zf1umXxRkfocPGVcTDejfHqKPzE7TvSjbV-hSVcKPmf8DASukurqYbg2nKsGtyYy0TLnK8yRf1g7rMH07yDKdbIyudadfCI8dmWXzgpMKQBIHQHdsAtVxkRbk-Q7Pxw9to4jUdFKysRVR5IjBEait2lYIj5NsPLtXW_ghDEqIUz0IZ-VSx0CSMJoprG6MaSaRMuaLKKHaOunmR6wuEjdGRCJkIEqD61TxMCUuAXIyZQBM_ukR-K7lYNfTisM1l3NaRvcdO3DGIO67FfYnuvxetanaN3dNF-0riLSWJLf7vWnj134XX6MCHANulXW5Qtyo3-tZ6IVXac2rWQ3vDx-fJ9Asykd1r
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na4MwFA-lZWyXsU_Wfeaw41wTkxo9lrJi14_LWuhNNCbQUbTYlv37y4s6Vhg97CREH8Sf8X3l5fcQeqbShGsu8R2hvNThinDHWLnAkUZj-rEONLU7upOpF875-6K7aKB-fRYGyior3V_qdKutq5FOhWZnvVx2PggTPmeCggtCXWH0cAvYqXgTtXrDUTj9UchUsHIzwQRMIFCTD9kyL0ggAP8QDV6NEvehZfZfBuqX0RmcodPKW8S9ckLnqKGyC3Rkqzbl5hIVcKOkgMBATGkvtqwbg3VKse1zY4wTzjO8y5blu9rkH46zFCd7I2uVKtvFI8N6lX_heIshDwLROzYxarFM82JzheaDt1k_dKomCgZuL9g6XlcToQzyMgFfyDX_XKKMCfI0iYmUPPVF4FLJfB0zGkuuTJiqBREi4ZJKLdk1amZ5pm4Q1loFns-8bgxsv4r7CWEx8Isx3VXEDdrIrZGLZMUwDtNcRXUp2Wdk4Y4A7qiEu41efoTWJcHG4ce9-pNEe-skMibgkODtfwWf0HE4m4yj8XA6ukMnLsTbNgtzj5rbYqcejFOyTR6rRfcNz_XgHA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+neural+network+based+modeling+on+unidirectional+and+bidirectional+pedestrian+flow+at+straight+corridors&rft.jtitle=Physica+A&rft.au=Zhao%2C+Xuedan&rft.au=Xia%2C+Long&rft.au=Zhang%2C+Jun&rft.au=Song%2C+Weiguo&rft.date=2020-06-01&rft.issn=0378-4371&rft.volume=547&rft.spage=123825&rft_id=info:doi/10.1016%2Fj.physa.2019.123825&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_physa_2019_123825
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4371&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4371&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4371&client=summon