Artificial neural network based modeling on unidirectional and bidirectional pedestrian flow at straight corridors
Pedestrian modeling is a good way to predict pedestrian movement and thus can be used for controlling pedestrian crowds and guiding evacuations in emergencies. In this paper, we propose a pedestrian movement model based on artificial neural network. In the model, the pedestrian velocity vectors are...
Saved in:
Published in | Physica A Vol. 547; p. 123825 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0378-4371 1873-2119 |
DOI | 10.1016/j.physa.2019.123825 |
Cover
Loading…
Abstract | Pedestrian modeling is a good way to predict pedestrian movement and thus can be used for controlling pedestrian crowds and guiding evacuations in emergencies. In this paper, we propose a pedestrian movement model based on artificial neural network. In the model, the pedestrian velocity vectors are predicted with two sub models, Semicircular Forward Space Based submodel (SFSB-submodel) and Rectangular Forward Space Based submodel (RFSB-submodel), respectively. Both unidirectional and bidirectional pedestrian flow at straight corridors are investigated by comparing the simulation and the corresponding experimental results. It is shown that the pedestrian trajectories and the fundamental diagrams from the model are all consistent with that from experiments. And the typical lane-formation phenomena are observed in bidirectional flow simulation. In addition, to quantitatively evaluate the precision of the prediction, the mean destination error (MDE) and mean trajectory error (MTE) are defined and calculated to be approximately 0.2 m and 0.12 m in unidirectional flow scenario. In bidirectional flow, relative distance error (RDE) is about 0.15 m. The findings indicate that the proposed model is reasonable and capable of simulating the unidirectional and bidirectional pedestrian flow illustrated in this paper.
•A model based on artificial neural network is proposed.•Pedestrians’ velocity vectors are predicted with SFSB-submodel and RFSB-submodel.•The proposed model is validitied in unidirectional and bidirectional flow secnarios. |
---|---|
AbstractList | Pedestrian modeling is a good way to predict pedestrian movement and thus can be used for controlling pedestrian crowds and guiding evacuations in emergencies. In this paper, we propose a pedestrian movement model based on artificial neural network. In the model, the pedestrian velocity vectors are predicted with two sub models, Semicircular Forward Space Based submodel (SFSB-submodel) and Rectangular Forward Space Based submodel (RFSB-submodel), respectively. Both unidirectional and bidirectional pedestrian flow at straight corridors are investigated by comparing the simulation and the corresponding experimental results. It is shown that the pedestrian trajectories and the fundamental diagrams from the model are all consistent with that from experiments. And the typical lane-formation phenomena are observed in bidirectional flow simulation. In addition, to quantitatively evaluate the precision of the prediction, the mean destination error (MDE) and mean trajectory error (MTE) are defined and calculated to be approximately 0.2 m and 0.12 m in unidirectional flow scenario. In bidirectional flow, relative distance error (RDE) is about 0.15 m. The findings indicate that the proposed model is reasonable and capable of simulating the unidirectional and bidirectional pedestrian flow illustrated in this paper.
•A model based on artificial neural network is proposed.•Pedestrians’ velocity vectors are predicted with SFSB-submodel and RFSB-submodel.•The proposed model is validitied in unidirectional and bidirectional flow secnarios. |
ArticleNumber | 123825 |
Author | Xia, Long Zhao, Xuedan Song, Weiguo Zhang, Jun |
Author_xml | – sequence: 1 givenname: Xuedan surname: Zhao fullname: Zhao, Xuedan – sequence: 2 givenname: Long surname: Xia fullname: Xia, Long – sequence: 3 givenname: Jun surname: Zhang fullname: Zhang, Jun email: junz@ustc.edu.cn – sequence: 4 givenname: Weiguo surname: Song fullname: Song, Weiguo |
BookMark | eNqFkMtOwzAQRS1UJNrCF7DxD6T4kcbxgkVV8ZIqsYG15fjRuqR2ZbtU_XuShg0sYHU1ozmjmTMBIx-8AeAWoxlGuLrbzvabU5IzgjCfYUJrMr8AY1wzWhCM-QiMEWV1UVKGr8AkpS1CCDNKxiAuYnbWKSdb6M0hniMfQ_yAjUxGw13QpnV-DYOHB--0i0ZlF3w3KL2GzY_O3miTcnTSQ9uGI5QZdqV0602GKsTodIjpGlxa2SZz851T8P748LZ8LlavTy_LxapQtOK5qOYWMUNLrJqackLmFDeGc1RZJJFSpa4ZJ1jR2kqKpSoNYaVliLGmVFhZRaeAD3tVDClFY4VyWfaX9ie1AiPRyxNbcZYnenlikNex9Be7j24n4-kf6n6gTPfWpzNRJOWMV2ZwJHRwf_JfwfaPTw |
CitedBy_id | crossref_primary_10_1016_j_physa_2024_129500 crossref_primary_10_1016_j_physa_2024_129723 crossref_primary_10_1016_j_physa_2024_129600 crossref_primary_10_1007_s00484_022_02379_y crossref_primary_10_1109_TITS_2024_3512583 crossref_primary_10_3390_fi15010012 crossref_primary_10_1016_j_physa_2024_130021 crossref_primary_10_1007_s11633_022_1405_5 crossref_primary_10_1016_j_eswa_2024_125706 crossref_primary_10_1088_1742_5468_abb459 crossref_primary_10_1016_j_physa_2023_128837 crossref_primary_10_1089_big_2020_0159 crossref_primary_10_1155_2021_5580910 crossref_primary_10_1080_17538947_2023_2182376 crossref_primary_10_1016_j_heliyon_2024_e30659 crossref_primary_10_1109_TITS_2024_3375528 crossref_primary_10_1109_TITS_2023_3257760 crossref_primary_10_1016_j_physa_2022_128140 crossref_primary_10_21923_jesd_1104772 |
Cites_doi | 10.1142/S0129183115501314 10.1088/1742-5468/2012/02/P02002 10.1103/PhysRevE.82.046111 10.1016/j.buildenv.2010.03.015 10.1016/j.physa.2018.06.045 10.1109/CVPR.2018.00240 10.1109/TNN.2003.809401 10.1088/1742-5468/2011/06/P06004 10.1016/j.trc.2014.08.012 10.1016/j.physa.2018.09.041 10.1088/1742-5468/aafa7b 10.1016/j.physa.2010.05.003 10.1016/j.physa.2005.08.036 10.1109/TITS.2016.2542843 10.1109/TII.2012.2187914 10.1016/j.simpat.2014.06.005 10.1038/35035023 10.1016/S0378-4371(02)00857-9 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.physa.2019.123825 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1873-2119 |
ExternalDocumentID | 10_1016_j_physa_2019_123825 S0378437119321272 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 7-5 71M 8P~ 9JN 9JO AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAPFB AAXUO ABAOU ABMAC ABNEU ABYKQ ACAZW ACDAQ ACFVG ACGFS ACNCT ACRLP ADBBV ADEZE ADFHU ADGUI AEBSH AEKER AEYQN AFFNX AFKWA AFTJW AGHFR AGTHC AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIIAU AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR AXLSJ BKOJK BLXMC EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IXIXF J1W K-O KOM M38 M41 MHUIS MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSB SSF SSQ SSW SSZ T5K TN5 TWZ WH7 XPP YNT ZMT ~02 ~G- 29O 5VS 6TJ AAFFL AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABJNI ABWVN ABXDB ACNNM ACROA ACRPL ADMUD ADNMO ADVLN AEIPS AFJKZ AFODL AFXIZ AGCQF AGQPQ AGRNS AIIUN AJWLA ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BEHZQ BEZPJ BGSCR BNPGV BNTGB BPUDD BULVW BZJEE CITATION EJD FEDTE FGOYB HMV HVGLF HZ~ MVM NDZJH R2- RIG SEW SPG SSH VOH WUQ XJT XOL YYP ZY4 |
ID | FETCH-LOGICAL-c369t-65f07e341cb83922531be9906f0a0cc4d87921c38fa31ac4e274f7077b4c1cfc3 |
IEDL.DBID | .~1 |
ISSN | 0378-4371 |
IngestDate | Tue Jul 01 01:32:19 EDT 2025 Thu Apr 24 22:50:43 EDT 2025 Fri Feb 23 02:49:21 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Bidirectional flow Pedestrian movement modeling Unidirectional flow Artificial neural network |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c369t-65f07e341cb83922531be9906f0a0cc4d87921c38fa31ac4e274f7077b4c1cfc3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_physa_2019_123825 crossref_primary_10_1016_j_physa_2019_123825 elsevier_sciencedirect_doi_10_1016_j_physa_2019_123825 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-01 2020-06-00 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Physica A |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Yang, Chen, Tian, Dong (b14) 2015 Bode, Ronchi (b1) 2019; 4 Wu, Song, Liu, Lian (b18) 2018; 27 Huang (b29) 2003; 14 Chraibi, Seyfried, Schadschneider (b6) 2010; 82 Boltes, Seyfried, Steffen, Schadschneider (b21) 2010 Ma, Lee, Yuen (b10) 2016; 17 Zhou, Hu, Ji, Xiao (b16) 2019; 514 A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, A. Alahi, Social gan: Socially acceptable trajectories with generative adversarial networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 2255–2264. Hunter, Yu, M.S. Pukish, Kolbusz, Wilamowski (b28) 2012; 8 (b20) 2019 Kirchner, Schadschneider (b3) 2002; 312 Amirian, Van Toll, Hayet, Pettré (b12) 2019 Shao (b9) 2009 Helbing, Farkas, Vicsek (b5) 2000; 407 Hu, Li, Zhang, Wei, You, Chen (b17) 2015; 26 Martinez-Gil, Lozano, Fernández (b8) 2014; 47 Song, Han, Sun, Zhang (b11) 2018; 509 Zhang, Klingsch, Schadschneider, Seyfried (b23) 2012; 2012 Zhang, Yuan (b26) 1997; 1 L. Crociani, G. Lämmel, G. Vizzari, S. Bandini, Learning obervables of a multi-scale simulation system of urban traffic, in: ATT@ IJCAI, 2018, pp. 40–48. Ren, Zhang, Song, Cao (b15) 2019; 2019 Yan-qun, Peng, Sze-Chun, Ru-xun (b2) 2010; 389 Song, Xu, Wang, Ni (b4) 2006; 363 Seer, Brändle, Ratti (b24) 2014; 48 Karsoliya (b19) 2012; 3 Ma, Song, Fang, Lo, Liao (b25) 2010; 45 Zhang, Klingsch, Schadschneider, Seyfried (b22) 2011; 2011 Ke, Liu (b27) 2008 Wu (10.1016/j.physa.2019.123825_b18) 2018; 27 Zhang (10.1016/j.physa.2019.123825_b22) 2011; 2011 Yan-qun (10.1016/j.physa.2019.123825_b2) 2010; 389 Helbing (10.1016/j.physa.2019.123825_b5) 2000; 407 Zhang (10.1016/j.physa.2019.123825_b26) 1997; 1 Huang (10.1016/j.physa.2019.123825_b29) 2003; 14 Zhou (10.1016/j.physa.2019.123825_b16) 2019; 514 Zhang (10.1016/j.physa.2019.123825_b23) 2012; 2012 Yang (10.1016/j.physa.2019.123825_b14) 2015 Hu (10.1016/j.physa.2019.123825_b17) 2015; 26 Shao (10.1016/j.physa.2019.123825_b9) 2009 (10.1016/j.physa.2019.123825_b20) 2019 10.1016/j.physa.2019.123825_b7 Ma (10.1016/j.physa.2019.123825_b25) 2010; 45 Ke (10.1016/j.physa.2019.123825_b27) 2008 Hunter (10.1016/j.physa.2019.123825_b28) 2012; 8 Ma (10.1016/j.physa.2019.123825_b10) 2016; 17 Martinez-Gil (10.1016/j.physa.2019.123825_b8) 2014; 47 Chraibi (10.1016/j.physa.2019.123825_b6) 2010; 82 Kirchner (10.1016/j.physa.2019.123825_b3) 2002; 312 Song (10.1016/j.physa.2019.123825_b4) 2006; 363 Song (10.1016/j.physa.2019.123825_b11) 2018; 509 Bode (10.1016/j.physa.2019.123825_b1) 2019; 4 Karsoliya (10.1016/j.physa.2019.123825_b19) 2012; 3 Ren (10.1016/j.physa.2019.123825_b15) 2019; 2019 Amirian (10.1016/j.physa.2019.123825_b12) 2019 Boltes (10.1016/j.physa.2019.123825_b21) 2010 Seer (10.1016/j.physa.2019.123825_b24) 2014; 48 10.1016/j.physa.2019.123825_b13 |
References_xml | – volume: 389 start-page: 4623 year: 2010 end-page: 4635 ident: b2 article-title: A higher-order macroscopic model for pedestrian flows publication-title: Physica A – start-page: 24 year: 2009 end-page: 29 ident: b9 article-title: A more realistic simulation of pedestrian based on cellular automata publication-title: 2009 IEEE International Workshop on Open-Source Software for Scientific Computation – volume: 4 start-page: 1 year: 2019 end-page: 32 ident: b1 article-title: Statistical model fitting and model selection in pedestrian dynamics research publication-title: Collect. Dyn. – start-page: 828 year: 2008 end-page: 832 ident: b27 article-title: Empirical analysis of optimal hidden neurons in neural network modeling for stock prediction publication-title: 2008 IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application – volume: 312 start-page: 260 year: 2002 end-page: 276 ident: b3 article-title: Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics publication-title: Physica A – volume: 514 start-page: 982 year: 2019 end-page: 992 ident: b16 article-title: Cellular automaton simulation of pedestrian flow considering vision and multi-velocity publication-title: Physica A – start-page: 43 year: 2010 end-page: 54 ident: b21 article-title: Automatic extraction of pedestrian trajectories from video recordings publication-title: Pedestrian and Evacuation Dynamics 2008 – volume: 407 start-page: 487 year: 2000 ident: b5 article-title: Simulating dynamical features of escape panic publication-title: Nature – volume: 26 year: 2015 ident: b17 article-title: Experiment and simulation of the bidirectional pedestrian flow model with overtaking and herding behavior publication-title: Internat. J. Modern Phys. C – volume: 2012 year: 2012 ident: b23 article-title: Ordering in bidirectional pedestrian flows and its influence on the fundamental diagram publication-title: J. Stat. Mech. Theory Exp. – volume: 82 start-page: 46111 year: 2010 ident: b6 article-title: Generalized centrifugal-force model for pedestrian dynamics publication-title: Phys. Rev. E – volume: 8 start-page: 228 year: 2012 end-page: 240 ident: b28 article-title: Selection of proper neural network sizes and architectures—A comparative study publication-title: IEEE Trans. Ind. Inf. – reference: L. Crociani, G. Lämmel, G. Vizzari, S. Bandini, Learning obervables of a multi-scale simulation system of urban traffic, in: ATT@ IJCAI, 2018, pp. 40–48. – volume: 3 start-page: 714 year: 2012 end-page: 717 ident: b19 article-title: Approximating number of hidden layer neurons in multiple hidden layer BPNN architecture publication-title: Int. J. Eng. Trends Technol. – year: 2015 ident: b14 article-title: Experiments of unidirectional and bidirectional pedestrian flows through a bottleneck in a channel publication-title: J. Shanghai Univ. – year: 2019 ident: b20 article-title: Institute for advanced simulation 7: Civil safety research of forschungszentrum Jülich – volume: 1 start-page: 84 year: 1997 end-page: 88 ident: b26 article-title: The PauTa criterion and rejecting the abnormal value publication-title: J. Zhengzhou Univ. Technol. – volume: 47 start-page: 259 year: 2014 end-page: 275 ident: b8 article-title: MARL-Ped: A multi-agent reinforcement learning based framework to simulate pedestrian groups publication-title: Simul. Model. Pract. Theory – volume: 14 start-page: 274 year: 2003 end-page: 281 ident: b29 article-title: Learning capability and storage capacity of two-hidden-layer feedforward networks publication-title: IEEE Trans. Neural Netw. – volume: 48 start-page: 212 year: 2014 end-page: 228 ident: b24 article-title: Kinects and human kinetics: A new approach for studying pedestrian behavior publication-title: Transp. Res. C – reference: A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, A. Alahi, Social gan: Socially acceptable trajectories with generative adversarial networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 2255–2264. – volume: 363 start-page: 492 year: 2006 end-page: 500 ident: b4 article-title: Simulation of evacuation processes using a multi-grid model for pedestrian dynamics publication-title: Physica A – volume: 17 start-page: 3159 year: 2016 end-page: 3170 ident: b10 article-title: An artificial intelligence-based approach for simulating pedestrian movement publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 2019 start-page: 23403 year: 2019 ident: b15 article-title: The fundamental diagrams of elderly pedestrian flow in straight corridors under different densities publication-title: J. Stat. Mech. Theory Exp. – volume: 27 start-page: 114 year: 2018 end-page: 123 ident: b18 article-title: Modified Voronoi method for measuring pedestrian density based on occupy area publication-title: Fire Saf. Sci. – volume: 509 start-page: 827 year: 2018 end-page: 844 ident: b11 article-title: A data-driven neural network approach to simulate pedestrian movement publication-title: Physica A – volume: 45 start-page: 2160 year: 2010 end-page: 2169 ident: b25 article-title: Experimental study on microscopic moving characteristics of pedestrians in built corridor based on digital image processing publication-title: Build. Environ. – year: 2019 ident: b12 article-title: Data-driven crowd simulation with generative adversarial networks – volume: 2011 start-page: 1 year: 2011 end-page: 17 ident: b22 article-title: Transitions in pedestrian fundamental diagrams of straight corridors and T-junctions publication-title: J. Stat. Mech. Theory Exp. – volume: 3 start-page: 714 year: 2012 ident: 10.1016/j.physa.2019.123825_b19 article-title: Approximating number of hidden layer neurons in multiple hidden layer BPNN architecture publication-title: Int. J. Eng. Trends Technol. – volume: 26 year: 2015 ident: 10.1016/j.physa.2019.123825_b17 article-title: Experiment and simulation of the bidirectional pedestrian flow model with overtaking and herding behavior publication-title: Internat. J. Modern Phys. C doi: 10.1142/S0129183115501314 – volume: 2012 year: 2012 ident: 10.1016/j.physa.2019.123825_b23 article-title: Ordering in bidirectional pedestrian flows and its influence on the fundamental diagram publication-title: J. Stat. Mech. Theory Exp. doi: 10.1088/1742-5468/2012/02/P02002 – volume: 82 start-page: 46111 year: 2010 ident: 10.1016/j.physa.2019.123825_b6 article-title: Generalized centrifugal-force model for pedestrian dynamics publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.82.046111 – volume: 27 start-page: 114 issue: 2 year: 2018 ident: 10.1016/j.physa.2019.123825_b18 article-title: Modified Voronoi method for measuring pedestrian density based on occupy area publication-title: Fire Saf. Sci. – volume: 45 start-page: 2160 year: 2010 ident: 10.1016/j.physa.2019.123825_b25 article-title: Experimental study on microscopic moving characteristics of pedestrians in built corridor based on digital image processing publication-title: Build. Environ. doi: 10.1016/j.buildenv.2010.03.015 – volume: 509 start-page: 827 year: 2018 ident: 10.1016/j.physa.2019.123825_b11 article-title: A data-driven neural network approach to simulate pedestrian movement publication-title: Physica A doi: 10.1016/j.physa.2018.06.045 – volume: 4 start-page: 1 year: 2019 ident: 10.1016/j.physa.2019.123825_b1 article-title: Statistical model fitting and model selection in pedestrian dynamics research publication-title: Collect. Dyn. – ident: 10.1016/j.physa.2019.123825_b13 doi: 10.1109/CVPR.2018.00240 – year: 2015 ident: 10.1016/j.physa.2019.123825_b14 article-title: Experiments of unidirectional and bidirectional pedestrian flows through a bottleneck in a channel publication-title: J. Shanghai Univ. – volume: 14 start-page: 274 year: 2003 ident: 10.1016/j.physa.2019.123825_b29 article-title: Learning capability and storage capacity of two-hidden-layer feedforward networks publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2003.809401 – volume: 2011 start-page: 1 year: 2011 ident: 10.1016/j.physa.2019.123825_b22 article-title: Transitions in pedestrian fundamental diagrams of straight corridors and T-junctions publication-title: J. Stat. Mech. Theory Exp. doi: 10.1088/1742-5468/2011/06/P06004 – volume: 48 start-page: 212 year: 2014 ident: 10.1016/j.physa.2019.123825_b24 article-title: Kinects and human kinetics: A new approach for studying pedestrian behavior publication-title: Transp. Res. C doi: 10.1016/j.trc.2014.08.012 – start-page: 828 year: 2008 ident: 10.1016/j.physa.2019.123825_b27 article-title: Empirical analysis of optimal hidden neurons in neural network modeling for stock prediction – volume: 514 start-page: 982 year: 2019 ident: 10.1016/j.physa.2019.123825_b16 article-title: Cellular automaton simulation of pedestrian flow considering vision and multi-velocity publication-title: Physica A doi: 10.1016/j.physa.2018.09.041 – year: 2019 ident: 10.1016/j.physa.2019.123825_b20 – year: 2019 ident: 10.1016/j.physa.2019.123825_b12 – volume: 1 start-page: 84 year: 1997 ident: 10.1016/j.physa.2019.123825_b26 article-title: The PauTa criterion and rejecting the abnormal value publication-title: J. Zhengzhou Univ. Technol. – volume: 2019 start-page: 23403 year: 2019 ident: 10.1016/j.physa.2019.123825_b15 article-title: The fundamental diagrams of elderly pedestrian flow in straight corridors under different densities publication-title: J. Stat. Mech. Theory Exp. doi: 10.1088/1742-5468/aafa7b – volume: 389 start-page: 4623 year: 2010 ident: 10.1016/j.physa.2019.123825_b2 article-title: A higher-order macroscopic model for pedestrian flows publication-title: Physica A doi: 10.1016/j.physa.2010.05.003 – volume: 363 start-page: 492 year: 2006 ident: 10.1016/j.physa.2019.123825_b4 article-title: Simulation of evacuation processes using a multi-grid model for pedestrian dynamics publication-title: Physica A doi: 10.1016/j.physa.2005.08.036 – volume: 17 start-page: 3159 year: 2016 ident: 10.1016/j.physa.2019.123825_b10 article-title: An artificial intelligence-based approach for simulating pedestrian movement publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2016.2542843 – volume: 8 start-page: 228 year: 2012 ident: 10.1016/j.physa.2019.123825_b28 article-title: Selection of proper neural network sizes and architectures—A comparative study publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2012.2187914 – volume: 47 start-page: 259 year: 2014 ident: 10.1016/j.physa.2019.123825_b8 article-title: MARL-Ped: A multi-agent reinforcement learning based framework to simulate pedestrian groups publication-title: Simul. Model. Pract. Theory doi: 10.1016/j.simpat.2014.06.005 – ident: 10.1016/j.physa.2019.123825_b7 – volume: 407 start-page: 487 year: 2000 ident: 10.1016/j.physa.2019.123825_b5 article-title: Simulating dynamical features of escape panic publication-title: Nature doi: 10.1038/35035023 – start-page: 24 year: 2009 ident: 10.1016/j.physa.2019.123825_b9 article-title: A more realistic simulation of pedestrian based on cellular automata – volume: 312 start-page: 260 year: 2002 ident: 10.1016/j.physa.2019.123825_b3 article-title: Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics publication-title: Physica A doi: 10.1016/S0378-4371(02)00857-9 – start-page: 43 year: 2010 ident: 10.1016/j.physa.2019.123825_b21 article-title: Automatic extraction of pedestrian trajectories from video recordings |
SSID | ssj0001732 |
Score | 2.4277442 |
Snippet | Pedestrian modeling is a good way to predict pedestrian movement and thus can be used for controlling pedestrian crowds and guiding evacuations in emergencies.... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 123825 |
SubjectTerms | Artificial neural network Bidirectional flow Pedestrian movement modeling Unidirectional flow |
Title | Artificial neural network based modeling on unidirectional and bidirectional pedestrian flow at straight corridors |
URI | https://dx.doi.org/10.1016/j.physa.2019.123825 |
Volume | 547 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jIngRP_Fz5ODRbkmTJu1xDMdU3EUHu5U2TWAy2tF1ePNvNy9t1YHs4KmQJpC-vv7eR15_D6E7qmy45pPQk1pkHteEe9bKRZ6yiBkmJjLUnei-TMVkxp_mwbyDRu2_MFBW2WB_jekOrZuRQSPNwWqxGLwSJkPOJAUXhPoScBjY66xO9z9_yjyoZPVJgo2WYHbLPORqvCB7AORDNOpbBA-hX_Zf1umXxRkfocPGVcTDejfHqKPzE7TvSjbV-hSVcKPmf8DASukurqYbg2nKsGtyYy0TLnK8yRf1g7rMH07yDKdbIyudadfCI8dmWXzgpMKQBIHQHdsAtVxkRbk-Q7Pxw9to4jUdFKysRVR5IjBEait2lYIj5NsPLtXW_ghDEqIUz0IZ-VSx0CSMJoprG6MaSaRMuaLKKHaOunmR6wuEjdGRCJkIEqD61TxMCUuAXIyZQBM_ukR-K7lYNfTisM1l3NaRvcdO3DGIO67FfYnuvxetanaN3dNF-0riLSWJLf7vWnj134XX6MCHANulXW5Qtyo3-tZ6IVXac2rWQ3vDx-fJ9Asykd1r |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na4MwFA-lZWyXsU_Wfeaw41wTkxo9lrJi14_LWuhNNCbQUbTYlv37y4s6Vhg97CREH8Sf8X3l5fcQeqbShGsu8R2hvNThinDHWLnAkUZj-rEONLU7upOpF875-6K7aKB-fRYGyior3V_qdKutq5FOhWZnvVx2PggTPmeCggtCXWH0cAvYqXgTtXrDUTj9UchUsHIzwQRMIFCTD9kyL0ggAP8QDV6NEvehZfZfBuqX0RmcodPKW8S9ckLnqKGyC3Rkqzbl5hIVcKOkgMBATGkvtqwbg3VKse1zY4wTzjO8y5blu9rkH46zFCd7I2uVKtvFI8N6lX_heIshDwLROzYxarFM82JzheaDt1k_dKomCgZuL9g6XlcToQzyMgFfyDX_XKKMCfI0iYmUPPVF4FLJfB0zGkuuTJiqBREi4ZJKLdk1amZ5pm4Q1loFns-8bgxsv4r7CWEx8Isx3VXEDdrIrZGLZMUwDtNcRXUp2Wdk4Y4A7qiEu41efoTWJcHG4ce9-pNEe-skMibgkODtfwWf0HE4m4yj8XA6ukMnLsTbNgtzj5rbYqcejFOyTR6rRfcNz_XgHA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+neural+network+based+modeling+on+unidirectional+and+bidirectional+pedestrian+flow+at+straight+corridors&rft.jtitle=Physica+A&rft.au=Zhao%2C+Xuedan&rft.au=Xia%2C+Long&rft.au=Zhang%2C+Jun&rft.au=Song%2C+Weiguo&rft.date=2020-06-01&rft.issn=0378-4371&rft.volume=547&rft.spage=123825&rft_id=info:doi/10.1016%2Fj.physa.2019.123825&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_physa_2019_123825 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4371&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4371&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4371&client=summon |