Attention and Long Short-Term Memory Network for Remaining Useful Lifetime Predictions of Turbofan Engine Degradation
Machine Prognostics and Health Management (PHM) is often concerned with the prediction of the Remaining Useful Lifetime (RUL) of assets. Accurate real-time RUL predictions enable equipment health assessment and maintenance planning. In this work, we propose a Long Short-Term Memory (LSTM) network co...
Saved in:
Published in | International journal of prognostics and health management Vol. 10; no. 4 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
The Prognostics and Health Management Society
04.06.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Machine Prognostics and Health Management (PHM) is often concerned with the prediction of the Remaining Useful Lifetime (RUL) of assets. Accurate real-time RUL predictions enable equipment health assessment and maintenance planning. In this work, we propose a Long Short-Term Memory (LSTM) network combined with global Attention mechanisms to learn RUL relationships directly from time-series sensor data. We use the NASA Commercial Modular Aero- Propulsion System Simulation (C-MAPPS) datasets to assess the performance of our proposed method. We compare our approach with current state-of-the-art methods on the same datasets and show that our results yield competitive results. Moreover, our method does not require previous degradation knowledge, and attention weights can be used to visualise temporal relationships between inputs and predicted outputs. |
---|---|
AbstractList | Machine Prognostics and Health Management (PHM) is often concerned with the prediction of the Remaining Useful Lifetime (RUL) of assets. Accurate real-time RUL predictions enable equipment health assessment and maintenance planning. In this work, we propose a Long Short-Term Memory (LSTM) network combined with global Attention mechanisms to learn RUL relationships directly from time-series sensor data. We use the NASA Commercial Modular Aero- Propulsion System Simulation (C-MAPPS) datasets to assess the performance of our proposed method. We compare our approach with current state-of-the-art methods on the same datasets and show that our results yield competitive results. Moreover, our method does not require previous degradation knowledge, and attention weights can be used to visualise temporal relationships between inputs and predicted outputs. |
Author | Zhang, Yingqian Akcay, Alp Costa, Paulo Roberto de Oliveira da Kaymak, Uzay |
Author_xml | – sequence: 1 givenname: Paulo Roberto de Oliveira da surname: Costa fullname: Costa, Paulo Roberto de Oliveira da – sequence: 2 givenname: Alp surname: Akcay fullname: Akcay, Alp – sequence: 3 givenname: Yingqian surname: Zhang fullname: Zhang, Yingqian – sequence: 4 givenname: Uzay surname: Kaymak fullname: Kaymak, Uzay |
BookMark | eNqFkd1OGzEQRi0EEhR4hcovsKnH3nh3pd4gSilSCgjSa8s_4-A0ayOvQ5W372ZTVag3tSx55JnvXMz5QI5jikjIR2AzIRmDT2H9-tLPOINu9gYs1DMuuTgiZxzmouKybo_f1afkchjWbDyyq3kDZ2R7VQrGElKkOjq6SHFFn19SLtUSc0-_Y5_yjt5j-ZXyT-pTpk_Y6xDDOPdjQL_d0EXwWEKP9DGjC3bPGmjydLnNJnkd6U1chYj0C66ydnrfvyAnXm8GvPzznpPl15vl9bdq8XB7d321qKyQXank3ICARktneAutqy003KMHa3wn2tow2Uhw2DivRQ1dY1pvazB8XEzTMnFO7g5Yl_RavebQ67xTSQc1faS8UjqXYDeoWgtsvCA6K2ppheHGNR04J3UrNbMjSx5YNqdhyOj_8oCpSYWaVKi9CjWpUHsVY_DzP0EbyrSFknXY_C_-Gz2ulXY |
CitedBy_id | crossref_primary_10_1109_ACCESS_2022_3187702 crossref_primary_10_1016_j_ijhydene_2025_01_437 crossref_primary_10_1109_ACCESS_2024_3517705 crossref_primary_10_1007_s00170_024_14000_0 crossref_primary_10_1088_1361_6501_ac22f0 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.36001/ijphm.2019.v10i4.2623 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2153-2648 |
ExternalDocumentID | oai_doaj_org_article_8c10c10139c346c3b2bd791dd6a86a0c 10_36001_ijphm_2019_v10i4_2623 |
GroupedDBID | 5VS AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ KQ8 M~E OK1 |
ID | FETCH-LOGICAL-c369t-65b1317a6db2818d4c172fef1cbf9384b06761de7dfa34197b8fc41b20017803 |
IEDL.DBID | DOA |
ISSN | 2153-2648 |
IngestDate | Wed Aug 27 01:24:46 EDT 2025 Thu Apr 24 23:04:50 EDT 2025 Tue Jul 01 02:50:06 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c369t-65b1317a6db2818d4c172fef1cbf9384b06761de7dfa34197b8fc41b20017803 |
OpenAccessLink | https://doaj.org/article/8c10c10139c346c3b2bd791dd6a86a0c |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8c10c10139c346c3b2bd791dd6a86a0c crossref_primary_10_36001_ijphm_2019_v10i4_2623 crossref_citationtrail_10_36001_ijphm_2019_v10i4_2623 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-04 |
PublicationDateYYYYMMDD | 2023-06-04 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-04 day: 04 |
PublicationDecade | 2020 |
PublicationTitle | International journal of prognostics and health management |
PublicationYear | 2023 |
Publisher | The Prognostics and Health Management Society |
Publisher_xml | – name: The Prognostics and Health Management Society |
SSID | ssj0000694271 |
Score | 2.4116685 |
Snippet | Machine Prognostics and Health Management (PHM) is often concerned with the prediction of the Remaining Useful Lifetime (RUL) of assets. Accurate real-time RUL... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
SubjectTerms | attention deep learning prognostics recurrent neural networks |
Title | Attention and Long Short-Term Memory Network for Remaining Useful Lifetime Predictions of Turbofan Engine Degradation |
URI | https://doaj.org/article/8c10c10139c346c3b2bd791dd6a86a0c |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb5wwELWqnNJDlaat8tFGPvRKFoMxcCRdyNIuILGskp4Q_lI2ijZRtMnvz4zZRNtTLpU4IQ9CzyPPm9H4DSE_hdDYPAVpqjYBimrH3pDa0DMmUHFkgihQWBqoajFb8t_X0fXOqC_sCRvlgUfgJoliPjxAVFTIhQplIHWcMq3FkIjBV3j6QszbSabGMzjlQczGK8EhBvXJ6vbhBq-es_T8mfkrfh6IIPwnGu2I9rvoUhyQT1taSLPxdz6TD2Z9SD7uiAV-IU9Z1-U1VpRoVk_pvKkv6WLWtJ0HjLSiVV417V9a591V0_6hkNzRNq-ysi5h3XKRF8s5nZdF3pVVTgH3aenaRxa0KWi3bC-aIqvpKDNFp_llm01d9eor6cDm18zbDk3wVCjSjSciyYATDDgnCoKx5gooijWWKWnTMOESwpNg2sTaDqjlFsvEKs4k9lbFiR9-I3vr-7U5IlRYX1op_BhIBOcmklabxIqIG6shUeTHJHrFrldbQXGca3HXQ2LhMO8d5j1i3jvMe8T8mEze7B5GSY13LS5wa95WoyS2ewGO0m8dpX_PUU7-x0dOyT7Om3e9Yvw72ds8PpkfwEo28sw54AuuJtTN |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ATTENTION+AND+LONG+SHORT-TERM+MEMORY+NETWORK+FOR+REMAINING+USEFUL+LIFETIME+PREDICTIONS+OF+TURBOFAN+ENGINE+DEGRADATION&rft.jtitle=International+journal+of+prognostics+and+health+management&rft.au=Paulo+Roberto+de+Oliveira+da+Costa&rft.au=Alp+Akcay&rft.au=Yingqian+Zhang&rft.au=Uzay+Kaymak&rft.date=2023-06-04&rft.pub=The+Prognostics+and+Health+Management+Society&rft.eissn=2153-2648&rft.volume=10&rft.issue=4&rft_id=info:doi/10.36001%2Fijphm.2019.v10i4.2623&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8c10c10139c346c3b2bd791dd6a86a0c |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2153-2648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2153-2648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2153-2648&client=summon |