Attention and Long Short-Term Memory Network for Remaining Useful Lifetime Predictions of Turbofan Engine Degradation

Machine Prognostics and Health Management (PHM) is often concerned with the prediction of the Remaining Useful Lifetime (RUL) of assets. Accurate real-time RUL predictions enable equipment health assessment and maintenance planning. In this work, we propose a Long Short-Term Memory (LSTM) network co...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of prognostics and health management Vol. 10; no. 4
Main Authors Costa, Paulo Roberto de Oliveira da, Akcay, Alp, Zhang, Yingqian, Kaymak, Uzay
Format Journal Article
LanguageEnglish
Published The Prognostics and Health Management Society 04.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Machine Prognostics and Health Management (PHM) is often concerned with the prediction of the Remaining Useful Lifetime (RUL) of assets. Accurate real-time RUL predictions enable equipment health assessment and maintenance planning. In this work, we propose a Long Short-Term Memory (LSTM) network combined with global Attention mechanisms to learn RUL relationships directly from time-series sensor data. We use the NASA Commercial Modular Aero- Propulsion System Simulation (C-MAPPS) datasets to assess the performance of our proposed method. We compare our approach with current state-of-the-art methods on the same datasets and show that our results yield competitive results. Moreover, our method does not require previous degradation knowledge, and attention weights can be used to visualise temporal relationships between inputs and predicted outputs.
AbstractList Machine Prognostics and Health Management (PHM) is often concerned with the prediction of the Remaining Useful Lifetime (RUL) of assets. Accurate real-time RUL predictions enable equipment health assessment and maintenance planning. In this work, we propose a Long Short-Term Memory (LSTM) network combined with global Attention mechanisms to learn RUL relationships directly from time-series sensor data. We use the NASA Commercial Modular Aero- Propulsion System Simulation (C-MAPPS) datasets to assess the performance of our proposed method. We compare our approach with current state-of-the-art methods on the same datasets and show that our results yield competitive results. Moreover, our method does not require previous degradation knowledge, and attention weights can be used to visualise temporal relationships between inputs and predicted outputs.
Author Zhang, Yingqian
Akcay, Alp
Costa, Paulo Roberto de Oliveira da
Kaymak, Uzay
Author_xml – sequence: 1
  givenname: Paulo Roberto de Oliveira da
  surname: Costa
  fullname: Costa, Paulo Roberto de Oliveira da
– sequence: 2
  givenname: Alp
  surname: Akcay
  fullname: Akcay, Alp
– sequence: 3
  givenname: Yingqian
  surname: Zhang
  fullname: Zhang, Yingqian
– sequence: 4
  givenname: Uzay
  surname: Kaymak
  fullname: Kaymak, Uzay
BookMark eNqFkd1OGzEQRi0EEhR4hcovsKnH3nh3pd4gSilSCgjSa8s_4-A0ayOvQ5W372ZTVag3tSx55JnvXMz5QI5jikjIR2AzIRmDT2H9-tLPOINu9gYs1DMuuTgiZxzmouKybo_f1afkchjWbDyyq3kDZ2R7VQrGElKkOjq6SHFFn19SLtUSc0-_Y5_yjt5j-ZXyT-pTpk_Y6xDDOPdjQL_d0EXwWEKP9DGjC3bPGmjydLnNJnkd6U1chYj0C66ydnrfvyAnXm8GvPzznpPl15vl9bdq8XB7d321qKyQXank3ICARktneAutqy003KMHa3wn2tow2Uhw2DivRQ1dY1pvazB8XEzTMnFO7g5Yl_RavebQ67xTSQc1faS8UjqXYDeoWgtsvCA6K2ppheHGNR04J3UrNbMjSx5YNqdhyOj_8oCpSYWaVKi9CjWpUHsVY_DzP0EbyrSFknXY_C_-Gz2ulXY
CitedBy_id crossref_primary_10_1109_ACCESS_2022_3187702
crossref_primary_10_1016_j_ijhydene_2025_01_437
crossref_primary_10_1109_ACCESS_2024_3517705
crossref_primary_10_1007_s00170_024_14000_0
crossref_primary_10_1088_1361_6501_ac22f0
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.36001/ijphm.2019.v10i4.2623
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2153-2648
ExternalDocumentID oai_doaj_org_article_8c10c10139c346c3b2bd791dd6a86a0c
10_36001_ijphm_2019_v10i4_2623
GroupedDBID 5VS
AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
KQ8
M~E
OK1
ID FETCH-LOGICAL-c369t-65b1317a6db2818d4c172fef1cbf9384b06761de7dfa34197b8fc41b20017803
IEDL.DBID DOA
ISSN 2153-2648
IngestDate Wed Aug 27 01:24:46 EDT 2025
Thu Apr 24 23:04:50 EDT 2025
Tue Jul 01 02:50:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c369t-65b1317a6db2818d4c172fef1cbf9384b06761de7dfa34197b8fc41b20017803
OpenAccessLink https://doaj.org/article/8c10c10139c346c3b2bd791dd6a86a0c
ParticipantIDs doaj_primary_oai_doaj_org_article_8c10c10139c346c3b2bd791dd6a86a0c
crossref_primary_10_36001_ijphm_2019_v10i4_2623
crossref_citationtrail_10_36001_ijphm_2019_v10i4_2623
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-04
PublicationDateYYYYMMDD 2023-06-04
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-04
  day: 04
PublicationDecade 2020
PublicationTitle International journal of prognostics and health management
PublicationYear 2023
Publisher The Prognostics and Health Management Society
Publisher_xml – name: The Prognostics and Health Management Society
SSID ssj0000694271
Score 2.4116685
Snippet Machine Prognostics and Health Management (PHM) is often concerned with the prediction of the Remaining Useful Lifetime (RUL) of assets. Accurate real-time RUL...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
SubjectTerms attention
deep learning
prognostics
recurrent neural networks
Title Attention and Long Short-Term Memory Network for Remaining Useful Lifetime Predictions of Turbofan Engine Degradation
URI https://doaj.org/article/8c10c10139c346c3b2bd791dd6a86a0c
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb5wwELWqnNJDlaat8tFGPvRKFoMxcCRdyNIuILGskp4Q_lI2ijZRtMnvz4zZRNtTLpU4IQ9CzyPPm9H4DSE_hdDYPAVpqjYBimrH3pDa0DMmUHFkgihQWBqoajFb8t_X0fXOqC_sCRvlgUfgJoliPjxAVFTIhQplIHWcMq3FkIjBV3j6QszbSabGMzjlQczGK8EhBvXJ6vbhBq-es_T8mfkrfh6IIPwnGu2I9rvoUhyQT1taSLPxdz6TD2Z9SD7uiAV-IU9Z1-U1VpRoVk_pvKkv6WLWtJ0HjLSiVV417V9a591V0_6hkNzRNq-ysi5h3XKRF8s5nZdF3pVVTgH3aenaRxa0KWi3bC-aIqvpKDNFp_llm01d9eor6cDm18zbDk3wVCjSjSciyYATDDgnCoKx5gooijWWKWnTMOESwpNg2sTaDqjlFsvEKs4k9lbFiR9-I3vr-7U5IlRYX1op_BhIBOcmklabxIqIG6shUeTHJHrFrldbQXGca3HXQ2LhMO8d5j1i3jvMe8T8mEze7B5GSY13LS5wa95WoyS2ewGO0m8dpX_PUU7-x0dOyT7Om3e9Yvw72ds8PpkfwEo28sw54AuuJtTN
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ATTENTION+AND+LONG+SHORT-TERM+MEMORY+NETWORK+FOR+REMAINING+USEFUL+LIFETIME+PREDICTIONS+OF+TURBOFAN+ENGINE+DEGRADATION&rft.jtitle=International+journal+of+prognostics+and+health+management&rft.au=Paulo+Roberto+de+Oliveira+da+Costa&rft.au=Alp+Akcay&rft.au=Yingqian+Zhang&rft.au=Uzay+Kaymak&rft.date=2023-06-04&rft.pub=The+Prognostics+and+Health+Management+Society&rft.eissn=2153-2648&rft.volume=10&rft.issue=4&rft_id=info:doi/10.36001%2Fijphm.2019.v10i4.2623&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8c10c10139c346c3b2bd791dd6a86a0c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2153-2648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2153-2648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2153-2648&client=summon