Automated Diagnosis of COVID-19 Using Deep Supervised Autoencoder With Multi-View Features From CT Images

Accurate and rapid diagnosis of coronavirus disease 2019 (COVID-19) from chest CT scans is of great importance and urgency during the worldwide outbreak. However, radiologists have to distinguish COVID-19 pneumonia from other pneumonia in a large number of CT scans, which is tedious and inefficient....

Full description

Saved in:
Bibliographic Details
Published inIEEE/ACM transactions on computational biology and bioinformatics Vol. 19; no. 5; pp. 2723 - 2736
Main Authors Cheng, Jianhong, Zhao, Wei, Liu, Jin, Xie, Xingzhi, Wu, Shangjie, Liu, Liangliang, Yue, Hailin, Li, Junjian, Wang, Jianxin, Liu, Jun
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1545-5963
1557-9964
1557-9964
DOI10.1109/TCBB.2021.3102584

Cover

Loading…
Abstract Accurate and rapid diagnosis of coronavirus disease 2019 (COVID-19) from chest CT scans is of great importance and urgency during the worldwide outbreak. However, radiologists have to distinguish COVID-19 pneumonia from other pneumonia in a large number of CT scans, which is tedious and inefficient. Thus, it is urgently and clinically needed to develop an efficient and accurate diagnostic tool to help radiologists to fulfill the difficult task. In this study, we proposed a deep supervised autoencoder (DSAE) framework to automatically identify COVID-19 using multi-view features extracted from CT images. To fully explore features characterizing CT images from different frequency domains, DSAE was proposed to learn the latent representation by multi-task learning. The proposal was designed to both encode valuable information from different frequency features and construct a compact class structure for separability. To achieve this, we designed a multi-task loss function, which consists of a supervised loss and a reconstruction loss. Our proposed method was evaluated on a newly collected dataset of 787 subjects including COVID-19 pneumonia patients, other pneumonia patients, and normal subjects without abnormal CT findings. Extensive experimental results demonstrated that our proposed method achieved encouraging diagnostic performance and may have potential clinical application for the diagnosis of COVID-19.
AbstractList Accurate and rapid diagnosis of coronavirus disease 2019 (COVID-19) from chest CT scans is of great importance and urgency during the worldwide outbreak. However, radiologists have to distinguish COVID-19 pneumonia from other pneumonia in a large number of CT scans, which is tedious and inefficient. Thus, it is urgently and clinically needed to develop an efficient and accurate diagnostic tool to help radiologists to fulfill the difficult task. In this study, we proposed a deep supervised autoencoder (DSAE) framework to automatically identify COVID-19 using multi-view features extracted from CT images. To fully explore features characterizing CT images from different frequency domains, DSAE was proposed to learn the latent representation by multi-task learning. The proposal was designed to both encode valuable information from different frequency features and construct a compact class structure for separability. To achieve this, we designed a multi-task loss function, which consists of a supervised loss and a reconstruction loss. Our proposed method was evaluated on a newly collected dataset of 787 subjects including COVID-19 pneumonia patients, other pneumonia patients, and normal subjects without abnormal CT findings. Extensive experimental results demonstrated that our proposed method achieved encouraging diagnostic performance and may have potential clinical application for the diagnosis of COVID-19.
Accurate and rapid diagnosis of coronavirus disease 2019 (COVID-19) from chest CT scans is of great importance and urgency during the worldwide outbreak. However, radiologists have to distinguish COVID-19 pneumonia from other pneumonia in a large number of CT scans, which is tedious and inefficient. Thus, it is urgently and clinically needed to develop an efficient and accurate diagnostic tool to help radiologists to fulfill the difficult task. In this study, we proposed a deep supervised autoencoder (DSAE) framework to automatically identify COVID-19 using multi-view features extracted from CT images. To fully explore features characterizing CT images from different frequency domains, DSAE was proposed to learn the latent representation by multi-task learning. The proposal was designed to both encode valuable information from different frequency features and construct a compact class structure for separability. To achieve this, we designed a multi-task loss function, which consists of a supervised loss and a reconstruction loss. Our proposed method was evaluated on a newly collected dataset of 787 subjects including COVID-19 pneumonia patients, other pneumonia patients, and normal subjects without abnormal CT findings. Extensive experimental results demonstrated that our proposed method achieved encouraging diagnostic performance and may have potential clinical application for the diagnosis of COVID-19.Accurate and rapid diagnosis of coronavirus disease 2019 (COVID-19) from chest CT scans is of great importance and urgency during the worldwide outbreak. However, radiologists have to distinguish COVID-19 pneumonia from other pneumonia in a large number of CT scans, which is tedious and inefficient. Thus, it is urgently and clinically needed to develop an efficient and accurate diagnostic tool to help radiologists to fulfill the difficult task. In this study, we proposed a deep supervised autoencoder (DSAE) framework to automatically identify COVID-19 using multi-view features extracted from CT images. To fully explore features characterizing CT images from different frequency domains, DSAE was proposed to learn the latent representation by multi-task learning. The proposal was designed to both encode valuable information from different frequency features and construct a compact class structure for separability. To achieve this, we designed a multi-task loss function, which consists of a supervised loss and a reconstruction loss. Our proposed method was evaluated on a newly collected dataset of 787 subjects including COVID-19 pneumonia patients, other pneumonia patients, and normal subjects without abnormal CT findings. Extensive experimental results demonstrated that our proposed method achieved encouraging diagnostic performance and may have potential clinical application for the diagnosis of COVID-19.
Author Zhao, Wei
Cheng, Jianhong
Wu, Shangjie
Liu, Jin
Xie, Xingzhi
Liu, Liangliang
Yue, Hailin
Liu, Jun
Li, Junjian
Wang, Jianxin
Author_xml – sequence: 1
  givenname: Jianhong
  orcidid: 0000-0001-6092-211X
  surname: Cheng
  fullname: Cheng, Jianhong
  email: jianhong_cheng@csu.edu.cn
  organization: Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, China
– sequence: 2
  givenname: Wei
  orcidid: 0000-0002-8520-2087
  surname: Zhao
  fullname: Zhao, Wei
  email: wei.zhao@csu.edu.cn
  organization: Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
– sequence: 3
  givenname: Jin
  orcidid: 0000-0002-4961-7074
  surname: Liu
  fullname: Liu, Jin
  email: liujin06@mail.csu.edu.cn
  organization: Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, China
– sequence: 4
  givenname: Xingzhi
  surname: Xie
  fullname: Xie, Xingzhi
  email: xingzhixie123@csu.edu.cn
  organization: Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
– sequence: 5
  givenname: Shangjie
  surname: Wu
  fullname: Wu, Shangjie
  email: wushangjie@csu.edu.cn
  organization: Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
– sequence: 6
  givenname: Liangliang
  orcidid: 0000-0002-3454-3535
  surname: Liu
  fullname: Liu, Liangliang
  email: liuhau@126.com
  organization: College of Information and Management Science, Henan Agricultural University, Zhengzhou, Henan, China
– sequence: 7
  givenname: Hailin
  surname: Yue
  fullname: Yue, Hailin
  email: yuehailin@mail.csu.edu.cn
  organization: Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, China
– sequence: 8
  givenname: Junjian
  surname: Li
  fullname: Li, Junjian
  email: 194712147@mail.csu.edu.cn
  organization: Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, China
– sequence: 9
  givenname: Jianxin
  orcidid: 0000-0003-1516-0480
  surname: Wang
  fullname: Wang, Jianxin
  email: jxwang@mail.csu.edu.cn
  organization: Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, China
– sequence: 10
  givenname: Jun
  orcidid: 0000-0002-7851-6782
  surname: Liu
  fullname: Liu, Jun
  email: junliu123@csu.edu.cn
  organization: Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
BookMark eNp9kbtu2zAUQIkiQfPqBxRdCGTpIodPSRwTuW4NpMhQJxkJWrx0GUiiQ1It-veV4CBDhky8wzn3Ejhn6GgIAyD0mZIFpURdbZqbmwUjjC44JUzW4gM6pVJWhVKlOJpnIQupSn6CzlJ6IoQJRcRHdMIFl7Qu-Sny12MOvclg8dKb3RCSTzg43Nw9rJcFVfg--WGHlwB7_GvcQ_zj08TOFgxtsBDxo8-_8c-xy7548PAXr8DkMULCqxh63Gzwujc7SBfo2JkuwaeX9xzdr75tmh_F7d33dXN9W7S8VLmQ1lZKqmprBShFLDegBJRbWVoLzNXb1tna1c6Cc5wzqMBta9a2lDiQVJb8HH097N3H8DxCyrr3qYWuMwOEMWkmpRK8rKSc0Ms36FMY4zD9TrOKcUUorclE0QPVxpBSBKf30fcm_tOU6LmDnjvouYN-6TA51Run9dlkH4Ycje_eNb8cTA8Ar5eUJDWVhP8HpaGVBg
CODEN ITCBCY
CitedBy_id crossref_primary_10_1007_s11042_021_11787_y
crossref_primary_10_1007_s42979_024_03546_1
crossref_primary_10_1109_TCBBIO_2024_3515480
crossref_primary_10_1007_s11042_024_20236_5
crossref_primary_10_1109_TCBB_2022_3218590
crossref_primary_10_1016_j_bspc_2024_106951
crossref_primary_10_1016_j_eswa_2024_125397
crossref_primary_10_1109_TETCI_2022_3189054
Cites_doi 10.1109/JBHI.2021.3095476
10.1016/j.inffus.2020.11.005
10.1148/radiol.2020201491
10.1007/s12559-020-09776-8
10.21203/rs.3.rs-32511/v1
10.1148/radiol.2020200432
10.1109/CVPR.2016.90
10.1080/00220670209598786
10.1148/radiol.2020200823
10.1109/BIBM47256.2019.8983092
10.1007/s10140-020-01886-y
10.1023/A:1009715923555
10.1007/s10479-011-0841-3
10.1016/j.neucom.2020.05.070
10.1109/ICASSP39728.2021.9414064
10.1109/TKDE.2021.3070203
10.1016/j.jneumeth.2016.03.001
10.1016/j.neucom.2015.08.104
10.2214/AJR.20.22976
10.1007/s00330-020-06928-0
10.1038/s41598-020-76550-z
10.1109/TMI.2020.2995508
10.1007/s00521-013-1362-6
10.1148/radiol.2020200463
10.1148/radiol.2020200370
10.1016/j.neucom.2020.06.152
10.1109/TMI.2020.2992546
10.7150/thno.45016
10.1007/s11432-020-2849-3
10.1109/TMI.2020.2996256
10.1148/radiol.2020200343
10.1177/154405910408300516
10.1109/TMI.2020.2995965
10.1038/s41591-020-0931-3
10.1148/radiol.2020200905
10.1186/s41747-020-00173-2
10.1007/s00138-020-01119-9
10.1148/radiol.2020201160
10.1148/radiol.2020201433
10.1109/TNNLS.2019.2892409
10.1148/radiol.20202006.2
10.1007/s13398-014-0173-7.2
10.1016/j.sigpro.2016.07.028
10.1109/TCBB.2020.3033538
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TCBB.2021.3102584
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digtal Library (IEEE/IET Electronic Library-IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1557-9964
EndPage 2736
ExternalDocumentID 10_1109_TCBB_2021_3102584
9508150
Genre orig-research
GrantInformation_xml – fundername: Science and Technology Innovation Program of Hunan Province
  grantid: 2020SK53423
– fundername: Central South University
  grantid: 160260005
  funderid: 10.13039/501100002822
– fundername: Foundation from Changsha Scientific and Technical bureau
  grantid: kq2001001
– fundername: Key Emergency Project of Pneumonia Epidemic of novel coronavirus infection
  grantid: 2020SK3006
– fundername: Clinical Research Center for Medical Imaging In Hunan Province
  grantid: 2020SK4001
– fundername: National Natural Science Foundation of China
  grantid: 61802442; 61877059
  funderid: 10.13039/501100001809
– fundername: Higher Education Discipline Innovation Project; 111 Project
  grantid: B18059
  funderid: 10.13039/501100013314
– fundername: Natural Science Foundation of Hunan Province
  grantid: 2019JJ50775
  funderid: 10.13039/501100004735
– fundername: Hunan Provincial Science and Technology Innovation Leading Plan
  grantid: 2020GK2019
– fundername: Hunan Provincial Science and Technology Program
  grantid: 2018WK4001
GroupedDBID 0R~
29I
4.4
53G
5GY
5VS
6IK
8US
97E
AAJGR
AAKMM
AALFJ
AARMG
AASAJ
AAWTH
AAWTV
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACM
ACPRK
ADBCU
ADL
AEBYY
AEFXT
AEJOY
AENEX
AENSD
AETIX
AFRAH
AFWIH
AFWXC
AGQYO
AGSQL
AHBIQ
AIBXA
AIKLT
AKJIK
AKQYR
AKRVB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATWAV
AVWKF
BDXCO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CCLIF
CS3
DU5
EBS
EJD
FEDTE
GUFHI
HGAVV
HZ~
I07
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
LHSKQ
M43
O9-
OCL
P1C
P2P
PQQKQ
RIA
RIE
RNI
RNS
ROL
RZB
TN5
XOL
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c369t-5dd79597bd4e990d3ae94e6b56dde2f8bcfd8f8fdeff332e7efb82cc10fe51563
IEDL.DBID RIE
ISSN 1545-5963
1557-9964
IngestDate Thu Jul 10 18:57:19 EDT 2025
Sun Jun 29 16:11:58 EDT 2025
Tue Jul 01 00:47:53 EDT 2025
Thu Apr 24 23:12:03 EDT 2025
Wed Aug 27 02:18:43 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-009
https://doi.org/10.15223/policy-001
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c369t-5dd79597bd4e990d3ae94e6b56dde2f8bcfd8f8fdeff332e7efb82cc10fe51563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8520-2087
0000-0002-7851-6782
0000-0002-3454-3535
0000-0003-1516-0480
0000-0002-4961-7074
0000-0001-6092-211X
OpenAccessLink https://ieeexplore.ieee.org/ielx7/8857/9913693/09508150.pdf
PMID 34351863
PQID 2723901180
PQPubID 85499
PageCount 14
ParticipantIDs proquest_journals_2723901180
crossref_primary_10_1109_TCBB_2021_3102584
proquest_miscellaneous_2559436755
crossref_citationtrail_10_1109_TCBB_2021_3102584
ieee_primary_9508150
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE/ACM transactions on computational biology and bioinformatics
PublicationTitleAbbrev TCBB
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
Zhang (ref29) 2021
ref15
ref14
ref52
ref11
ref10
(ref2) 2021
ref17
ref16
ref19
ref51
Srivastava (ref44) 2014; 15
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref43
Burges (ref49) 1998; 2
ref8
ref7
Tan (ref27)
(ref1) 2020
ref9
ref4
ref6
ref5
ref40
ref35
ref34
ref37
Chen (ref18) 2020
ref36
ref31
ref30
ref33
Le (ref32); 31
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
(ref3) 2020
Vincent (ref39) 2010; 11
References_xml – volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: ref44
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– year: 2020
  ident: ref1
  article-title: Novel coronavirus-China
– ident: ref41
  doi: 10.1109/JBHI.2021.3095476
– ident: ref15
  doi: 10.1016/j.inffus.2020.11.005
– ident: ref20
  doi: 10.1148/radiol.2020201491
– ident: ref13
  doi: 10.1007/s12559-020-09776-8
– year: 2020
  ident: ref18
  article-title: Machine learning-based CT radiomics model distinguishes COVID-19 from other viral pneumonia
  doi: 10.21203/rs.3.rs-32511/v1
– ident: ref10
  doi: 10.1148/radiol.2020200432
– ident: ref26
  doi: 10.1109/CVPR.2016.90
– ident: ref47
  doi: 10.1080/00220670209598786
– ident: ref9
  doi: 10.1148/radiol.2020200823
– ident: ref34
  doi: 10.1109/BIBM47256.2019.8983092
– year: 2021
  ident: ref2
  article-title: Coronavirus disease (COVID-19) pandemic
– ident: ref25
  doi: 10.1007/s10140-020-01886-y
– volume: 2
  start-page: 121
  issue: 2
  year: 1998
  ident: ref49
  article-title: A tutorial on support vector machines for pattern recognition
  publication-title: Data Mining Knowl. Discov.
  doi: 10.1023/A:1009715923555
– ident: ref50
  doi: 10.1007/s10479-011-0841-3
– volume: 31
  start-page: 107
  volume-title: Proc. 32nd Int. Conf. Neural Inf. Process. Syst.
  ident: ref32
  article-title: Supervised autoencoders: Improving generalization performance with unsupervised regularizers
– ident: ref35
  doi: 10.1016/j.neucom.2020.05.070
– ident: ref36
  doi: 10.1109/ICASSP39728.2021.9414064
– ident: ref37
  doi: 10.1109/TKDE.2021.3070203
– ident: ref33
  doi: 10.1016/j.jneumeth.2016.03.001
– ident: ref40
  doi: 10.1016/j.neucom.2015.08.104
– ident: ref6
  doi: 10.2214/AJR.20.22976
– ident: ref12
  doi: 10.1007/s00330-020-06928-0
– start-page: 6105
  volume-title: Proc. 36th Int. Conf. Mach. Learn.
  ident: ref27
  article-title: EfficientNet: Rethinking model scaling for convolutional neural networks
– ident: ref16
  doi: 10.1038/s41598-020-76550-z
– volume: 11
  start-page: 3371
  issue: Dec
  year: 2010
  ident: ref39
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– year: 2020
  ident: ref3
  article-title: CDC diagnostic tests for COVID-19
– ident: ref22
  doi: 10.1109/TMI.2020.2995508
– ident: ref38
  doi: 10.1007/s00521-013-1362-6
– ident: ref11
  doi: 10.1148/radiol.2020200463
– ident: ref52
  doi: 10.1148/radiol.2020200370
– ident: ref45
  doi: 10.1016/j.neucom.2020.06.152
– ident: ref23
  doi: 10.1109/TMI.2020.2992546
– ident: ref8
  doi: 10.7150/thno.45016
– ident: ref17
  doi: 10.1007/s11432-020-2849-3
– ident: ref24
  doi: 10.1109/TMI.2020.2996256
– ident: ref5
  doi: 10.1148/radiol.2020200343
– ident: ref48
  doi: 10.1177/154405910408300516
– ident: ref21
  doi: 10.1109/TMI.2020.2995965
– ident: ref51
  doi: 10.1038/s41591-020-0931-3
– ident: ref19
  doi: 10.1148/radiol.2020200905
– ident: ref31
  doi: 10.1186/s41747-020-00173-2
– ident: ref28
  doi: 10.1007/s00138-020-01119-9
– ident: ref14
  doi: 10.1148/radiol.2020201160
– ident: ref7
  doi: 10.1148/radiol.2020201433
– ident: ref30
  doi: 10.1109/TNNLS.2019.2892409
– volume-title: J. Comput. Sci. Technol.
  year: 2021
  ident: ref29
  article-title: Diagnosis of COVID-19 pneumonia via a novel deep learning architecture
– ident: ref4
  doi: 10.1148/radiol.20202006.2
– ident: ref43
  doi: 10.1007/s13398-014-0173-7.2
– ident: ref42
  doi: 10.1016/j.sigpro.2016.07.028
– ident: ref46
  doi: 10.1109/TCBB.2020.3033538
SSID ssj0024904
Score 2.3939903
Snippet Accurate and rapid diagnosis of coronavirus disease 2019 (COVID-19) from chest CT scans is of great importance and urgency during the worldwide outbreak....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2723
SubjectTerms Computed tomography
Coronaviruses
COVID-19
deep supervised autoencoder
Diagnosis
Diagnostic software
Feature extraction
Hospitals
Lesions
Medical imaging
multi-task learning
multi-view features
Patients
Pneumonia
Pulmonary diseases
Three-dimensional displays
Viral diseases
Title Automated Diagnosis of COVID-19 Using Deep Supervised Autoencoder With Multi-View Features From CT Images
URI https://ieeexplore.ieee.org/document/9508150
https://www.proquest.com/docview/2723901180
https://www.proquest.com/docview/2559436755
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swELcAaRIv7AMQHWzypD2huSR2nI9HaFfBJMbDCuMtiuOzqLY2VZsIwV-_OyctYpumvUWKHSX52Xf3830x9jFMbWKKxAhN_v8oUaFIC-mEM5k2qK5wEh0NXH6Nz6-jL7f6doN9WufCAIAPPoM-XXpfvq3Kho7KTqhjqSfom0jc2lytp7p6mW8VSBaB0LiqOg9mGGQn48HZGTJBGSJBRRWfUi8ehWZCmMbqmTry_VX-EMpe04xessvVO7YBJj_6TW365eNv5Rv_9yNesZ3O5OSn7Rp5zTZg9oa9aJtQPuyyyWlTV2i3guXDNu5usuSV44Orm4uhCDPuowr4EGDOvzVzki1LHEuzqAimhQX_PqnvuE_lFTcTuOdkVzbI4_loUU35YMwvpii2lnvsevR5PDgXXQMGUao4q4W2llqRJ8ZGgFrLqgKyCGKjYxSK0qWmdDZ1qbPgnFISEnAmlWUZBg7QTorVPtuaVTM4YLyQ2gVloZPCJP7XI4JBFLnIKJIKrseCFQ552VUnpyYZP3PPUoIsJxRzQjHvUOyx4_WUeVua41-DdwmK9cAOhR47WoGdd5t3mctEKp-Ri7c_rG_jtiNfSjGDqsExyMQihWxLv_37kw_ZtqRMCR-OdsS26kUD79B-qc17v3B_AXYo6MA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELemTQhe2GCgFTYwEk8Id4kd5-Nxa6laWMcD3dhbFMdnUcGaqk2E4K_nzkmL-BDiLVLsKMnZd_fzffwYexmmNjFFYoSm-H-UqFCkhXTCmUwbNFc4iY4Gppfx-Cp6e6NvdtjrbS0MAPjkM-jTpY_l26ps6KjslBhLPUDfQ7uvw7Za62dnvcyTBZJPIDSuqy6GGQbZ6Wxwfo5YUIYIUdHIp8TGo9BRCNNY_WKQPMPKH2rZ25rRPptu3rJNMfncb2rTL7__1sDxfz_jgN3vnE5-1q6SB2wHFg_ZnZaG8tshm581dYWeK1g-bDPv5mteOT54fz0ZijDjPq-ADwGW_EOzJO2yxrE0i9pgWljxj_P6E_fFvOJ6Dl85eZYNInk-WlW3fDDjk1tUXOtH7Gr0ZjYYi46CQZQqzmqhrSUy8sTYCNBuWVVAFkFsdIxqUbrUlM6mLnUWnFNKQgLOpLIsw8ABekqxesx2F9UCjhgvpHZBWeikMIn_9Qi-gyhykVGkF1yPBRs55GXXn5xoMr7kHqcEWU5SzEmKeSfFHnu1nbJsm3P8a_AhiWI7sJNCjx1vhJ1323edy0QqX5OLt19sb-PGo2hKsYCqwTGIxSKFeEs_-fuTn7O749n0Ir-YXL57yu5JqpvwyWnHbLdeNXCC3kxtnvlF_APDqewJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Diagnosis+of+COVID-19+Using+Deep+Supervised+Autoencoder+With+Multi-View+Features+From+CT+Images&rft.jtitle=IEEE%2FACM+transactions+on+computational+biology+and+bioinformatics&rft.au=Cheng%2C+Jianhong&rft.au=Zhao%2C+Wei&rft.au=Liu%2C+Jin&rft.au=Xie%2C+Xingzhi&rft.date=2022-09-01&rft.pub=IEEE&rft.issn=1545-5963&rft.volume=19&rft.issue=5&rft.spage=2723&rft.epage=2736&rft_id=info:doi/10.1109%2FTCBB.2021.3102584&rft_id=info%3Apmid%2F34351863&rft.externalDocID=9508150
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5963&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5963&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5963&client=summon