Data mining in the Life Sciences with Random Forest: a walk in the park or lost in the jungle?
In the Life Sciences 'omics' data is increasingly generated by different high-throughput technologies. Often only the integration of these data allows uncovering biological insights that can be experimentally validated or mechanistically modelled, i.e. sophisticated computational approache...
Saved in:
Published in | Briefings in bioinformatics Vol. 14; no. 3; pp. 315 - 326 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford Publishing Limited (England)
01.05.2013
Oxford University Press |
Subjects | |
Online Access | Get full text |
ISSN | 1467-5463 1477-4054 1477-4054 |
DOI | 10.1093/bib/bbs034 |
Cover
Loading…
Abstract | In the Life Sciences 'omics' data is increasingly generated by different high-throughput technologies. Often only the integration of these data allows uncovering biological insights that can be experimentally validated or mechanistically modelled, i.e. sophisticated computational approaches are required to extract the complex non-linear trends present in omics data. Classification techniques allow training a model based on variables (e.g. SNPs in genetic association studies) to separate different classes (e.g. healthy subjects versus patients). Random Forest (RF) is a versatile classification algorithm suited for the analysis of these large data sets. In the Life Sciences, RF is popular because RF classification models have a high-prediction accuracy and provide information on importance of variables for classification. For omics data, variables or conditional relations between variables are typically important for a subset of samples of the same class. For example: within a class of cancer patients certain SNP combinations may be important for a subset of patients that have a specific subtype of cancer, but not important for a different subset of patients. These conditional relationships can in principle be uncovered from the data with RF as these are implicitly taken into account by the algorithm during the creation of the classification model. This review details some of the to the best of our knowledge rarely or never used RF properties that allow maximizing the biological insights that can be extracted from complex omics data sets using RF. |
---|---|
AbstractList | In the Life Sciences ‘omics’ data is increasingly generated by different high-throughput technologies. Often only the integration of these data allows uncovering biological insights that can be experimentally validated or mechanistically modelled, i.e. sophisticated computational approaches are required to extract the complex non-linear trends present in omics data. Classification techniques allow training a model based on variables (e.g. SNPs in genetic association studies) to separate different classes (e.g. healthy subjects versus patients). Random Forest (RF) is a versatile classification algorithm suited for the analysis of these large data sets. In the Life Sciences, RF is popular because RF classification models have a high-prediction accuracy and provide information on importance of variables for classification. For omics data, variables or conditional relations between variables are typically important for a subset of samples of the same class. For example: within a class of cancer patients certain SNP combinations may be important for a subset of patients that have a specific subtype of cancer, but not important for a different subset of patients. These conditional relationships can in principle be uncovered from the data with RF as these are implicitly taken into account by the algorithm during the creation of the classification model. This review details some of the to the best of our knowledge rarely or never used RF properties that allow maximizing the biological insights that can be extracted from complex omics data sets using RF. In the Life Sciences 'omics' data is increasingly generated by different high-throughput technologies. Often only the integration of these data allows uncovering biological insights that can be experimentally validated or mechanistically modelled, i.e. sophisticated computational approaches are required to extract the complex non-linear trends present in omics data. Classification techniques allow training a model based on variables (e.g. SNPs in genetic association studies) to separate different classes (e.g. healthy subjects versus patients). Random Forest (RF) is a versatile classification algorithm suited for the analysis of these large data sets. In the Life Sciences, RF is popular because RF classification models have a high-prediction accuracy and provide information on importance of variables for classification. For omics data, variables or conditional relations between variables are typically important for a subset of samples of the same class. For example: within a class of cancer patients certain SNP combinations may be important for a subset of patients that have a specific subtype of cancer, but not important for a different subset of patients. These conditional relationships can in principle be uncovered from the data with RF as these are implicitly taken into account by the algorithm during the creation of the classification model. This review details some of the to the best of our knowledge rarely or never used RF properties that allow maximizing the biological insights that can be extracted from complex omics data sets using RF.In the Life Sciences 'omics' data is increasingly generated by different high-throughput technologies. Often only the integration of these data allows uncovering biological insights that can be experimentally validated or mechanistically modelled, i.e. sophisticated computational approaches are required to extract the complex non-linear trends present in omics data. Classification techniques allow training a model based on variables (e.g. SNPs in genetic association studies) to separate different classes (e.g. healthy subjects versus patients). Random Forest (RF) is a versatile classification algorithm suited for the analysis of these large data sets. In the Life Sciences, RF is popular because RF classification models have a high-prediction accuracy and provide information on importance of variables for classification. For omics data, variables or conditional relations between variables are typically important for a subset of samples of the same class. For example: within a class of cancer patients certain SNP combinations may be important for a subset of patients that have a specific subtype of cancer, but not important for a different subset of patients. These conditional relationships can in principle be uncovered from the data with RF as these are implicitly taken into account by the algorithm during the creation of the classification model. This review details some of the to the best of our knowledge rarely or never used RF properties that allow maximizing the biological insights that can be extracted from complex omics data sets using RF. In the Life Sciences 'omics' data is increasingly generated by different high-throughput technologies. Often only the integration of these data allows uncovering biological insights that can be experimentally validated or mechanistically modelled, i.e. sophisticated computational approaches are required to extract the complex non-linear trends present in omics data. Classification techniques allow training a model based on variables (e.g. SNPs in genetic association studies) to separate different classes (e.g. healthy subjects versus patients). Random Forest (RF) is a versatile classification algorithm suited for the analysis of these large data sets. In the Life Sciences, RF is popular because RF classification models have a high-prediction accuracy and provide information on importance of variables for classification. For omics data, variables or conditional relations between variables are typically important for a subset of samples of the same class. For example: within a class of cancer patients certain SNP combinations may be important for a subset of patients that have a specific subtype of cancer, but not important for a different subset of patients. These conditional relationships can in principle be uncovered from the data with RF as these are implicitly taken into account by the algorithm during the creation of the classification model. This review details some of the to the best of our knowledge rarely or never used RF properties that allow maximizing the biological insights that can be extracted from complex omics data sets using RF. [PUBLICATION ABSTRACT] |
Author | Overmars, L. Boekhorst, J. Backus, L. Bayjanov, J. R. van Hijum, S. A. F. T. Wels, M. Touw, W. G. |
Author_xml | – sequence: 1 givenname: W. G. surname: Touw fullname: Touw, W. G. – sequence: 2 givenname: J. R. surname: Bayjanov fullname: Bayjanov, J. R. – sequence: 3 givenname: L. surname: Overmars fullname: Overmars, L. – sequence: 4 givenname: L. surname: Backus fullname: Backus, L. – sequence: 5 givenname: J. surname: Boekhorst fullname: Boekhorst, J. – sequence: 6 givenname: M. surname: Wels fullname: Wels, M. – sequence: 7 givenname: S. A. F. T. surname: van Hijum fullname: van Hijum, S. A. F. T. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22786785$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0ltvFCEUAGBiauxFX_wBhsQX02QsDDAMPtSYatVkExMvrxJgYZftDKzAtPHfy7jdRhsTnyDwcTgHzjE4CDFYAJ5i9BIjQc6012daZ0ToA3CEKecNRYwezPOON4x25BAc57xBqEW8x4_AYdvyvuM9OwLf36qi4OiDDyvoAyxrCxfeWfjFeBuMzfDGlzX8rMIyjvAyJpvLK6jgjRqu9n6r0hWMCQ4xl_3aZgqrwb5-DB46NWT75HY8Ad8u3329-NAsPr3_ePFm0RjSidJQZxR1GmPn2g53DCnBKcO415oJoxTCunXEGMGVRo63ZNkLzOiSc-YMR5ycgPNd3O2kR7s0NpSkBrlNflTpp4zKy793gl_LVbyWpGOCIFwDvLgNkOKPqRYpR5-NHQYVbJyyxKTjVCDx-67_UUb5DEmlz-_RTZxSqC8xqw61tYi2qmd_Jn-X9f6XKjjdAZNizsm6O4KRnFtA1haQuxaoGN3DxhdVfJwL98O_jvwCWTGzkQ |
CitedBy_id | crossref_primary_10_1080_01971360_2018_1515389 crossref_primary_10_1111_acel_13280 crossref_primary_10_1007_s00330_021_08368_w crossref_primary_10_1016_j_ecolmodel_2014_09_018 crossref_primary_10_1146_annurev_food_041715_033144 crossref_primary_10_1016_j_scitotenv_2017_10_037 crossref_primary_10_1186_s12859_022_04631_z crossref_primary_10_1091_mbc_e17_03_0176 crossref_primary_10_2118_214667_PA crossref_primary_10_1016_j_landurbplan_2018_10_008 crossref_primary_10_1016_j_artmed_2020_101814 crossref_primary_10_1111_ppl_14007 crossref_primary_10_1002_bies_201900122 crossref_primary_10_1016_j_fsigen_2019_102140 crossref_primary_10_1016_j_jad_2022_07_042 crossref_primary_10_1186_1471_2288_14_99 crossref_primary_10_1016_j_aca_2018_08_002 crossref_primary_10_1371_journal_pntd_0007045 crossref_primary_10_1016_j_crmeth_2022_100270 crossref_primary_10_1177_0271678X221083387 crossref_primary_10_1038_s41598_023_36450_4 crossref_primary_10_7717_peerj_480 crossref_primary_10_1002_widm_1114 crossref_primary_10_1534_g3_119_400319 crossref_primary_10_1016_j_aca_2019_03_006 crossref_primary_10_1016_j_ecolind_2019_105659 crossref_primary_10_1038_s41598_021_92439_x crossref_primary_10_1049_iet_syb_2015_0017 crossref_primary_10_1109_ACCESS_2019_2957367 crossref_primary_10_1186_s12859_018_2054_0 crossref_primary_10_3389_fmolb_2021_663532 crossref_primary_10_18632_oncotarget_28022 crossref_primary_10_4018_IJDWM_2020040105 crossref_primary_10_1073_pnas_1800256115 crossref_primary_10_18632_aging_204866 crossref_primary_10_2217_epi_2021_0050 crossref_primary_10_1152_ajplung_00131_2019 crossref_primary_10_3389_fgene_2019_00267 crossref_primary_10_3390_rs14153797 crossref_primary_10_1038_icb_2017_16 crossref_primary_10_1080_07038992_2019_1612738 crossref_primary_10_1016_j_jctube_2018_01_002 crossref_primary_10_1111_mms_12414 crossref_primary_10_1002_pmic_201300230 crossref_primary_10_1021_acs_jcim_5b00722 crossref_primary_10_1038_s41467_025_57078_0 crossref_primary_10_1139_cjfas_2017_0554 crossref_primary_10_1016_j_engappai_2020_104009 crossref_primary_10_1016_j_ygeno_2015_04_001 crossref_primary_10_3102_10769986231193327 crossref_primary_10_1016_j_cocom_2021_e00597 crossref_primary_10_1016_j_biopsych_2012_12_007 crossref_primary_10_5937_ekoPolj1803139M crossref_primary_10_7717_peerj_9945 crossref_primary_10_1186_s12864_016_2753_8 crossref_primary_10_1371_journal_pone_0096385 crossref_primary_10_1371_journal_pcbi_1003212 crossref_primary_10_1016_j_agrformet_2021_108477 crossref_primary_10_1016_j_csbj_2020_10_032 crossref_primary_10_1186_1471_2105_15_8 crossref_primary_10_1016_j_ecoinf_2022_101768 crossref_primary_10_3390_a17080360 crossref_primary_10_2196_39231 crossref_primary_10_1073_pnas_2118636119 crossref_primary_10_1038_s41598_024_78482_4 crossref_primary_10_1061__ASCE_CO_1943_7862_0002411 crossref_primary_10_1002_ppj2_20101 crossref_primary_10_1212_WNL_0000000000007504 crossref_primary_10_1128_spectrum_02065_22 crossref_primary_10_1186_s12859_017_1650_8 crossref_primary_10_1016_j_exer_2015_09_011 crossref_primary_10_1080_10618600_2022_2026780 crossref_primary_10_1038_s41598_020_75088_4 crossref_primary_10_3389_fcimb_2015_00003 crossref_primary_10_1002_hed_27674 crossref_primary_10_1093_bioinformatics_bty087 crossref_primary_10_9778_cmajo_20210031 crossref_primary_10_1371_journal_pone_0086703 crossref_primary_10_1371_journal_pone_0213584 crossref_primary_10_3390_jcm9020343 crossref_primary_10_1093_bib_bbz061 crossref_primary_10_1186_s12859_016_0995_8 crossref_primary_10_1017_S095026881500014X crossref_primary_10_1097_CCM_0000000000006243 crossref_primary_10_1016_j_kint_2017_01_017 crossref_primary_10_1155_2019_5158465 crossref_primary_10_1186_s13020_022_00622_7 crossref_primary_10_1021_acs_jcim_5b00190 crossref_primary_10_1186_1471_2105_15_139 crossref_primary_10_3389_fphar_2020_602369 crossref_primary_10_1186_s13059_017_1243_x crossref_primary_10_1007_s11042_024_18360_3 crossref_primary_10_1007_s00198_019_04892_0 crossref_primary_10_1111_cas_15917 crossref_primary_10_1186_s12889_024_19797_9 crossref_primary_10_1093_bioinformatics_btu277 crossref_primary_10_1186_s12911_022_01859_w crossref_primary_10_1093_database_bax082 crossref_primary_10_1038_s41598_017_16521_z crossref_primary_10_1128_aem_00482_24 crossref_primary_10_1080_13607863_2019_1584787 crossref_primary_10_1093_bioinformatics_bty199 crossref_primary_10_1186_s12915_015_0197_2 crossref_primary_10_1152_ajpendo_00001_2018 crossref_primary_10_1038_s41596_019_0264_1 crossref_primary_10_1007_s12571_017_0714_y crossref_primary_10_1016_j_eswa_2022_117193 crossref_primary_10_1097_MAO_0000000000003042 crossref_primary_10_1128_IAI_00574_17 crossref_primary_10_2217_pme_15_5 crossref_primary_10_1186_s13195_021_00852_1 crossref_primary_10_1371_journal_pone_0216705 crossref_primary_10_1007_s10639_024_12501_9 crossref_primary_10_3390_biomedicines11123206 crossref_primary_10_1155_2023_8964676 crossref_primary_10_1016_j_isprsjprs_2013_11_013 crossref_primary_10_3899_jrheum_200570 crossref_primary_10_3390_biology11030356 crossref_primary_10_2514_1_I011145 crossref_primary_10_3758_s13428_022_01901_9 crossref_primary_10_1186_s12874_022_01625_6 crossref_primary_10_3389_fmicb_2018_01138 crossref_primary_10_1038_s41698_019_0078_1 crossref_primary_10_1007_s00059_018_4707_1 crossref_primary_10_3732_ajb_1400466 crossref_primary_10_1016_j_ecolind_2019_01_059 crossref_primary_10_1155_2022_1872412 crossref_primary_10_1016_j_csda_2012_09_020 crossref_primary_10_1007_s00438_015_1108_5 crossref_primary_10_1016_j_scitotenv_2017_09_195 crossref_primary_10_1128_spectrum_03584_23 crossref_primary_10_1186_s13040_022_00317_7 crossref_primary_10_3389_fpls_2016_01914 crossref_primary_10_1080_01431161_2014_954061 crossref_primary_10_1002_eap_1943 crossref_primary_10_1016_j_jhepr_2024_101090 crossref_primary_10_1016_j_biosystems_2021_104411 crossref_primary_10_1093_database_baw100 crossref_primary_10_1186_s12967_017_1365_7 crossref_primary_10_1038_s41598_018_28650_0 crossref_primary_10_1093_bib_bbu012 crossref_primary_10_1007_s10586_018_1767_1 crossref_primary_10_1371_journal_pone_0070153 crossref_primary_10_1016_j_cub_2019_11_053 crossref_primary_10_1038_s41390_022_02137_1 crossref_primary_10_1038_s41598_017_07729_0 crossref_primary_10_1016_j_tranon_2022_101585 crossref_primary_10_1016_j_apsoil_2024_105414 crossref_primary_10_1101_gr_165415_113 crossref_primary_10_1007_s00227_019_3497_1 crossref_primary_10_18632_aging_103513 crossref_primary_10_1016_j_jmr_2023_107462 crossref_primary_10_1371_journal_pcbi_1005219 crossref_primary_10_1080_1573062X_2022_2155856 crossref_primary_10_3390_metabo11070445 crossref_primary_10_1177_0003702815620545 crossref_primary_10_1186_s12911_020_1100_9 crossref_primary_10_3389_fonc_2024_1452265 crossref_primary_10_1186_1471_2164_15_654 crossref_primary_10_1002_humu_23229 crossref_primary_10_1371_journal_pone_0133044 crossref_primary_10_1104_pp_114_254292 crossref_primary_10_1109_ACCESS_2022_3160213 crossref_primary_10_1186_s12859_016_0971_3 crossref_primary_10_1080_10106049_2015_1059898 crossref_primary_10_3168_jds_2019_16572 crossref_primary_10_3390_electronics8080868 crossref_primary_10_3389_fmicb_2016_00949 crossref_primary_10_1007_s00415_023_12132_z crossref_primary_10_1016_j_agee_2021_107787 crossref_primary_10_1038_s41598_017_01699_z crossref_primary_10_1186_s12711_016_0219_8 crossref_primary_10_1097_MAO_0000000000003927 crossref_primary_10_1038_srep10604 crossref_primary_10_1186_s12884_022_04534_0 crossref_primary_10_1186_s40104_023_00850_3 crossref_primary_10_1016_j_jmb_2021_167071 crossref_primary_10_1016_j_ab_2018_10_027 crossref_primary_10_1016_j_geoderma_2017_12_002 crossref_primary_10_3389_fonc_2021_745808 crossref_primary_10_1093_bioadv_vbae047 crossref_primary_10_1093_molbev_msu266 crossref_primary_10_52586_5036 crossref_primary_10_1371_journal_pone_0136612 crossref_primary_10_3390_rs6021347 crossref_primary_10_1016_j_cmpbup_2021_100028 crossref_primary_10_1186_s12859_022_04734_7 crossref_primary_10_1111_mec_14509 crossref_primary_10_1002_dev_21778 crossref_primary_10_1093_bib_bbac265 crossref_primary_10_1099_mgen_0_000251 crossref_primary_10_1371_journal_pone_0287255 crossref_primary_10_18632_aging_101264 crossref_primary_10_1093_mtomcs_mfac028 crossref_primary_10_1111_jdi_13937 crossref_primary_10_2196_17886 crossref_primary_10_2139_ssrn_3807828 crossref_primary_10_23940_ijpe_21_01_p2_1425 crossref_primary_10_3390_life11080799 crossref_primary_10_1021_acs_analchem_3c04618 crossref_primary_10_1016_j_foreco_2021_118948 crossref_primary_10_1016_j_neuroimage_2019_01_014 crossref_primary_10_1186_s13099_014_0037_x crossref_primary_10_2174_0118744710282465240315053136 crossref_primary_10_3171_2022_1_FOCUS21708 crossref_primary_10_3390_metabo11110753 crossref_primary_10_1038_s42004_024_01161_y crossref_primary_10_1186_s12874_021_01369_9 crossref_primary_10_4155_bio_13_309 crossref_primary_10_1007_s00521_018_3518_x crossref_primary_10_2196_jmir_5870 crossref_primary_10_1038_s41598_020_64461_y crossref_primary_10_3389_fevo_2018_00158 crossref_primary_10_1038_s41598_021_89185_5 crossref_primary_10_1186_s13040_016_0114_4 crossref_primary_10_4161_19490976_2014_972228 crossref_primary_10_1111_2041_210X_14056 crossref_primary_10_15406_jbmoa_2017_04_00116 crossref_primary_10_3390_su13095162 crossref_primary_10_1002_mrd_23684 crossref_primary_10_3389_frwa_2020_578602 crossref_primary_10_1088_1752_7163_aaa492 crossref_primary_10_1111_ejss_13077 crossref_primary_10_1007_s00394_021_02716_8 crossref_primary_10_3390_biom13071153 crossref_primary_10_1016_j_agrformet_2021_108423 crossref_primary_10_1007_s00216_014_7677_z crossref_primary_10_1111_ecog_06762 crossref_primary_10_1371_journal_pgen_1007333 crossref_primary_10_1038_s41397_021_00246_4 crossref_primary_10_1016_j_rse_2016_03_010 crossref_primary_10_1080_17435390_2023_2186279 crossref_primary_10_1121_10_0035563 crossref_primary_10_1186_s12911_015_0165_3 crossref_primary_10_1111_1475_6773_12683 crossref_primary_10_1371_journal_ppat_1009243 crossref_primary_10_1097_EDE_0000000000001404 crossref_primary_10_1021_acs_analchem_8b05592 crossref_primary_10_1139_cjfas_2024_0052 crossref_primary_10_1016_j_ab_2021_114385 crossref_primary_10_1016_j_jag_2020_102264 crossref_primary_10_1063_5_0100948 crossref_primary_10_1117_1_JRS_13_034520 crossref_primary_10_3168_jds_2021_20413 crossref_primary_10_7554_eLife_77373 crossref_primary_10_1038_s41523_019_0123_9 crossref_primary_10_1016_j_scitotenv_2016_10_030 crossref_primary_10_36548_jitdw_2024_3_008 crossref_primary_10_3899_jrheum_181005 crossref_primary_10_1111_jse_12925 crossref_primary_10_1016_j_eswa_2016_07_018 crossref_primary_10_3892_ol_2020_11581 crossref_primary_10_1177_21925682211053593 crossref_primary_10_1016_j_crm_2019_100193 crossref_primary_10_1172_jci_insight_97018 |
Cites_doi | 10.1093/bioinformatics/btl344 10.1111/j.2517-6161.1974.tb00994.x 10.1093/bioinformatics/bth261 10.1093/bioinformatics/bti365 10.1007/s11030-006-9054-0 10.1186/1476-4598-6-70 10.1186/1471-2105-8-25 10.1371/journal.pone.0024973 10.1016/j.procbio.2009.02.007 10.1073/pnas.1632587100 10.1093/bioinformatics/btg182 10.1093/bib/bbr016 10.1016/j.patcog.2010.08.011 10.1093/bioinformatics/btq038 10.1186/1471-2105-11-110 10.1093/bioinformatics/btp331 10.1158/1078-0432.1146.11.3 10.1093/nar/gkq973 10.1023/A:1010933404324 10.1093/hmg/ddq328 10.1038/nmeth.1436 10.1093/nar/gkm368 10.1002/pmic.200600335 10.1186/1753-6561-3-s7-s64 10.1016/j.jmb.2009.02.023 10.1038/nrg3096 10.1002/ana.21038 10.1038/nbt.1524 10.1186/1471-2105-10-130 10.1198/106186004X11417 10.1038/323533a0 10.1186/1471-2105-9-307 10.1038/modpathol.3800322 10.1080/03610928208828251 10.1126/science.1069492 10.1016/j.jmb.2003.11.053 10.1002/prot.20897 10.1186/gb-2010-11-3-r30 10.4310/SII.2009.v2.n3.a11 10.1093/nar/gkq1081 10.1097/QAD.0b013e32833677ac 10.1093/bib/bbk007 10.1016/j.compbiolchem.2011.04.009 10.1093/nar/gkr064 10.1099/mic.0.055434-0 10.1093/bib/bbr053 10.1371/journal.pcbi.0030116 10.1038/ejhg.2010.48 10.1186/1471-2105-12-14 10.1038/nrd728 10.1186/1471-2105-11-37 10.1186/1471-2180-10-293 10.1111/j.1469-1809.1936.tb02137.x 10.1186/1471-2105-10-8 10.1198/106186006X133933 10.1186/1471-2105-12-391 10.1186/1471-2105-7-3 10.1002/prot.22555 10.1023/A:1007465528199 10.1158/0008-5472.CAN-08-2586 10.1002/gepi.20041 10.1007/BF02478259 10.1371/journal.pone.0010632 10.1186/1471-2164-11-299 10.1016/j.syapm.2009.01.003 10.1093/bioinformatics/btq257 10.1080/01621459.1989.10478752 10.1186/1471-2105-5-154 10.1186/gb-2011-12-5-r50 10.1146/annurev-cellbio-100109-104122 10.1016/j.compbiomed.2009.02.002 10.1093/bioinformatics/btr316 10.1038/nature09944 10.1016/j.jbi.2008.06.002 10.1038/bmt.2011.56 10.1371/journal.pone.0019624 10.1002/ijc.22238 10.1016/j.ygeno.2012.04.003 10.1146/annurev.genom.2.1.343 10.1021/jm0493360 10.1371/journal.pone.0014681 10.1037/h0042519 10.1158/1078-0432.CCR-05-2336 10.1245/s10434-008-0034-8 10.1093/biostatistics/kxj011 10.1109/JRPROC.1961.287775 10.1109/TCBB.2011.46 10.1186/1471-2105-9-319 10.1093/bioinformatics/btp713 10.1371/journal.pcbi.1000743 10.1214/aos/1013203450 10.1093/bioinformatics/btq628 10.1186/1471-2164-13-170 10.1093/bioinformatics/btp039 10.1186/1471-2105-10-312 10.1186/1471-2156-5-32 10.2307/1403797 |
ContentType | Journal Article |
Copyright | Copyright Oxford Publishing Limited(England) May 2013 The Author 2012. Published by Oxford University Press. 2012 |
Copyright_xml | – notice: Copyright Oxford Publishing Limited(England) May 2013 – notice: The Author 2012. Published by Oxford University Press. 2012 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 5PM |
DOI | 10.1093/bib/bbs034 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | Engineering Research Database MEDLINE MEDLINE - Academic Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1477-4054 |
EndPage | 326 |
ExternalDocumentID | PMC3659301 2982471591 22786785 10_1093_bib_bbs034 |
Genre | Journal Article Feature |
GroupedDBID | --- -E4 .2P .I3 0R~ 1TH 23N 2WC 36B 4.4 48X 53G 5GY 5VS 6J9 70D 8VB AAHBH AAIJN AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAVAP AAVLN AAYXX ABDBF ABEJV ABEUO ABGNP ABIXL ABNKS ABPQP ABPTD ABQLI ABWST ABXVV ABXZS ABZBJ ACGFO ACGFS ACGOD ACIWK ACPRK ACUFI ACUHS ACUXJ ACYTK ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADOCK ADPDF ADQBN ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AELWJ AEMDU AEMOZ AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHMBA AHQJS AHXPO AIAGR AIJHB AJEEA AJEUX AKHUL AKVCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX AMNDL ANAKG APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN C45 CDBKE CITATION CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EAD EAP EAS EBA EBC EBD EBR EBS EBU EE~ EJD EMB EMK EMOBN EST ESX F5P F9B FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ K1G KBUDW KOP KSI KSN M-Z MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y QWB RD5 RPM RUSNO RW1 RXO SV3 TEORI TH9 TJP TLC TOX TR2 TUS W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ZL0 ~91 AAGQS AAUQX AHGBF C1A CAG CGR COF CUY CVF ECM EIF GROUPED_DOAJ NPM NU- 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 77I 7X8 5PM |
ID | FETCH-LOGICAL-c369t-4fca4fb11ff261650a9745118bb59caa01b2f3cc97ab0f723d89154d775fc7073 |
ISSN | 1467-5463 1477-4054 |
IngestDate | Thu Aug 21 14:01:27 EDT 2025 Fri Sep 05 07:18:15 EDT 2025 Thu Sep 04 23:42:58 EDT 2025 Mon Jun 30 09:01:09 EDT 2025 Mon Jul 21 06:05:03 EDT 2025 Thu Apr 24 23:10:34 EDT 2025 Tue Jul 01 03:39:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | variable importance conditional relationships local importance proximity variable interaction Random Forest |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c369t-4fca4fb11ff261650a9745118bb59caa01b2f3cc97ab0f723d89154d775fc7073 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC3659301 |
PMID | 22786785 |
PQID | 1356021542 |
PQPubID | 26846 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3659301 proquest_miscellaneous_1367490907 proquest_miscellaneous_1354790733 proquest_journals_1356021542 pubmed_primary_22786785 crossref_primary_10_1093_bib_bbs034 crossref_citationtrail_10_1093_bib_bbs034 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-05-01 |
PublicationDateYYYYMMDD | 2013-05-01 |
PublicationDate_xml | – month: 05 year: 2013 text: 2013-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Briefings in bioinformatics |
PublicationTitleAlternate | Brief Bioinform |
PublicationYear | 2013 |
Publisher | Oxford Publishing Limited (England) Oxford University Press |
Publisher_xml | – name: Oxford Publishing Limited (England) – name: Oxford University Press |
References | Hillenmeyer (82_36831542) 2010; 11 Rosenblatt (12_3543362) 1958; 65 Nicholson (37_17149058) 2002; 1 (13_28265676) 1986; 323 (114_38471845) 2011; 39 Fusaro (36_33702972) 2009; 27 Christensen (53_33009187) 2009; 69 (55_40084240) 2011; 27 (110_39719712) 2011; 12 Bureau (32_18614170) 2005; 28 Hettick (68_23291005) 2006; 6 Statnikov (24_31590402) 2008; 9 Caporaso (51_40039037) 2011; 12 (11_24895411) 1943; 5 (111_36545320) 2010; 26 (98_39556149) 2009; 3 Goh (38_18010932) 2004; 336 (72_41427752) 2012; 158 (70_19683031) 2003; 100 (17_43070216) 1989; 57 (106_21143561) 2006; 7 Tarca (23_28993313) 2007; 3 (59_38692063) 2011; 39 Tsou (61_29800085) 2007; 6 De Lobel (54_37281192) 2010; 18 van Hemert (62_38655477) 2010; 10 (8_36666274) 2001; 45 (7_43070212) 2011; 44 Pino Del Carpio (66_39990181) 2011; 6 Nayal (88_22142745) 2006; 63 Shi (91_18747218) 2005; 18 (108_34898951) 2009; 25 Wang (75_40976604) 2011; 12 Zhang (102_36659873) 2009; 2 Lunetta (56_18637098) 2004; 5 Somorjai (31_17762225) 2003; 19 Radivojac (90_35522897) 2010; 78 Chen (39_42488618) 2012; 99 Li (84_39106602) 2011; 12 Nimrod (89_34130103) 2009; 387 (18_43070217) 1936; 7 (19_25671495) 1989; 84 (40_41492176) 2011; 10 (28_18862322) 2005; 21 (73_38788852) 2011; 27 (78_33539485) 2009; 25 Nicodemus (109_36740325) 2010; 11 Gehlenborg (5_36843865) 2010; 7 (112_34095002) 2001; 29 (10_37294679) 1995; 20 Alvarez (49_18689923) 2005; 11 Arumugam (35_39778321) 2011; 473 (107_35286264) 2006; 15 (27_22336651) 2006; 22 Tognazzo (94_31532623) 2009; 42 Strobl (104_23573451) 2007; 8 (21_43070219) 1984; 19 Han (80_33516073) 2009; 10 Zhang (47_34774689) 2009; 10 Wiseman (96_31458663) 2008; 15 (15_42988341) 1961; 49 Medema (87_37280817) 2010; 11 (60_39214455) 2011; 39 Wang (95_34668398) 2009; 39 (100_40737520) 2012; 13 (52_43070227) 2011; 8 Dybowski (79_37172664) 2010; 6 Bayjanov (43_42535230) 2012; 13 (46_37353835) 2010; 26 (50_37877436) 2010; 19 (29_43070221) 2006; 500 (14_38631602) 1997; 29 (113_43070238) 2004; 13 Gupta (65_28416692) 2007; 11 Sampson (33_40923261) 2011; 6 Finehout (67_23713038) 2007; 61 Vingerhoets (63_36346673) 2010; 24 Heider (81_36502821) 2010; 11 Ghosh (4_41155755) 2011; 12 Ma (57_40220225) 2011; 35 Kitano (2_16939205) 2002; 295 Munro (69_22887895) 2006; 119 (34_36294175) 2010; 26 Bordner (77_35663473) 2009; 10 (97_43070235) 2009; 44 (6_22510525) 2006; 7 (16_43070215) 1982; 11 Diaz-Uriarte (25_21610562) 2006; 7 (42_34124281) 1974; 36 Guo (71_22163414) 2006; 12 Chuang (3_37595632) 2010; 26 Wuchty (76_39362292) 2011; 6 Marino (86_39581697) 2012; 47 (48_18466977) 2004; 20 (44_28508494) 2002; 2 Lin (85_18529905) 2004; 5 (101_43076488) 2004; Vol. 3201 Slabbinck (92_34139784) 2009; 32 Springer (93_19502976) 2005; 48 Meijerink (58_37355639) 2010; 5 Ideker (1_11393701) 2001; 2 (26_28815361) 2007; 35 Strobl (105_31532889) 2008; 9 13602029 - Psychol Rev. 1958 Nov;65(6):386-408 20018058 - BMC Proc. 2009 Dec 15;3 Suppl 7:S64 19118007 - Cancer Res. 2009 Jan 1;69(1):227-34 17967182 - Mol Cancer. 2007;6:70 22016406 - Bioinformatics. 2011 Dec 15;27(24):3379-84 20130032 - Bioinformatics. 2010 Mar 15;26(6):831-7 20459862 - BMC Genomics. 2010;11:299 11872829 - Science. 2002 Mar 1;295(5560):1662-4 15529185 - Mod Pathol. 2005 Apr;18(4):547-57 19169245 - Nat Biotechnol. 2009 Feb;27(2):190-8 18620077 - J Biomed Inform. 2009 Feb;42(1):1-10 12120097 - Nat Rev Drug Discov. 2002 Feb;1(2):153-61 21624126 - Genome Biol. 2011;12(5):R50 17604446 - PLoS Comput Biol. 2007 Jun;3(6):e116 20505004 - Bioinformatics. 2010 Jul 15;26(14):1752-8 20165560 - Stat Interface. 2009 Jan 1;2(3):381 17109381 - Proteomics. 2006 Dec;6(24):6416-25 15709182 - Clin Cancer Res. 2005 Feb 1;11(3):1146-53 21383421 - IEEE/ACM Trans Comput Biol Bioinform. 2011 Nov-Dec;8(6):1580-91 20089140 - BMC Bioinformatics. 2010;11:37 20051805 - AIDS. 2010 Feb 20;24(4):503-14 12912828 - Bioinformatics. 2003 Aug 12;19(12):1484-91 16250641 - J Med Chem. 2005 Nov 3;48(22):6821-31 22048662 - Nat Rev Genet. 2011 Dec;12(12):821-32 19386299 - Comput Biol Med. 2009 May;39(5):425-32 20498715 - PLoS One. 2010;5(5):e10632 19233205 - J Mol Biol. 2009 Apr 10;387(4):1040-53 19722269 - Proteins. 2010 Feb 1;78(2):365-80 18612701 - Ann Surg Oncol. 2008 Oct;15(10):2811-26 16991122 - Int J Cancer. 2006 Dec 1;119(11):2642-50 21134890 - Bioinformatics. 2011 Jan 15;27(2):220-4 21441965 - Bone Marrow Transplant. 2012 Feb;47(2):217-26 20226027 - Genome Biol. 2010;11(3):R30 12869696 - Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9608-13 19128505 - BMC Bioinformatics. 2009;10:8 21508958 - Nature. 2011 May 12;473(7346):174-80 20053841 - Bioinformatics. 2010 Feb 15;26(4):445-55 15593090 - Genet Epidemiol. 2005 Feb;28(2):171-82 21704258 - Comput Biol Chem. 2011 Jun;35(3):131-6 21358821 - PLoS One. 2011;6(2):e14681 22546560 - Genomics. 2012 Jun;99(6):323-9 21982331 - BMC Bioinformatics. 2011;12:391 18620558 - BMC Bioinformatics. 2008;9:307 19778442 - BMC Bioinformatics. 2009;10:312 16809386 - Bioinformatics. 2006 Aug 15;22(16):2028-36 21045058 - Nucleic Acids Res. 2011 Jan;39(Database issue):D561-8 20195258 - Nat Methods. 2010 Mar;7(3 Suppl):S56-68 15588316 - BMC Genet. 2004;5:32 19237256 - Syst Appl Microbiol. 2009 May;32(3):163-76 14741208 - J Mol Biol. 2004 Feb 6;336(1):115-30 21969867 - PLoS One. 2011;6(9):e24973 21109530 - Nucleic Acids Res. 2011 Apr;39(7):2492-502 22559291 - BMC Genomics. 2012;13:170 15746281 - Bioinformatics. 2005 May 15;21(10):2185-90 22095227 - Br J Cancer. 2012 Jan 3;106(1):126-32 21080958 - BMC Microbiol. 2010;10:293 20419152 - PLoS Comput Biol. 2010 Apr;6(4):e1000743 21223604 - BMC Bioinformatics. 2011;12:14 20461113 - Eur J Hum Genet. 2010 Oct;18(10):1127-32 18647401 - BMC Bioinformatics. 2008;9:319 21317188 - Nucleic Acids Res. 2011 May;39(9):e62 24723569 - Brief Bioinform. 2015 Mar;16(2):338-45 15491499 - BMC Bioinformatics. 2004 Oct 18;5:154 2185863 - Bull Math Biol. 1990;52(1-2):99-115; discussion 73-97 20604711 - Annu Rev Cell Dev Biol. 2010;26:721-44 22174379 - Microbiology. 2012 Mar;158(Pt 3):696-707 16477622 - Proteins. 2006 Jun 1;63(4):892-906 19460890 - Bioinformatics. 2009 Aug 1;25(15):1884-90 17254353 - BMC Bioinformatics. 2007;8:25 19416535 - BMC Bioinformatics. 2009;10:130 16450363 - Proteins. 2006 May 15;63(3):490-500 19153136 - Bioinformatics. 2009 Mar 1;25(5):585-91 17553836 - Nucleic Acids Res. 2007 Jul;35(Web Server issue):W339-44 22889876 - Stat Appl Genet Mol Biol. 2011;10(1):32 16761367 - Brief Bioinform. 2006 Mar;7(1):86-112 21498552 - Brief Bioinform. 2011 Jul;12(4):369-73 16398926 - BMC Bioinformatics. 2006;7:3 15073010 - Bioinformatics. 2004 Oct 12;20(15):2479-81 21602927 - PLoS One. 2011;6(5):e19624 21653513 - Bioinformatics. 2011 Jul 15;27(14):1929-33 16344280 - Biostatistics. 2006 Jul;7(3):355-73 17167789 - Ann Neurol. 2007 Feb;61(2):120-9 16740756 - Clin Cancer Res. 2006 Jun 1;12(11 Pt 1):3344-54 21908865 - Brief Bioinform. 2012 May;13(3):292-304 17447158 - Mol Divers. 2007 Feb;11(1):23-36 20187966 - BMC Bioinformatics. 2010;11:110 20699326 - Hum Mol Genet. 2010 Nov 1;19(21):4286-95 11701654 - Annu Rev Genomics Hum Genet. 2001;2:343-72 |
References_xml | – volume: 22 start-page: 2028 issn: 1367-4803 issue: 16 year: 2006 ident: 27_22336651 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl344 – volume: 36 start-page: 111 year: 1974 ident: 42_34124281 publication-title: J ROY STAT SOC B MET doi: 10.1111/j.2517-6161.1974.tb00994.x – volume: 20 start-page: 2479 issn: 1367-4803 issue: 15 year: 2004 ident: 48_18466977 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth261 – volume: 21 start-page: 2185 issn: 1367-4803 issue: 10 year: 2005 ident: 28_18862322 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti365 – volume: 20 start-page: 273 issn: 1573-0565 year: 1995 ident: 10_37294679 – volume: 11 start-page: 23 issn: 1381-1991 issue: 1 year: 2007 ident: 65_28416692 publication-title: Molecular diversity doi: 10.1007/s11030-006-9054-0 – volume: 6 start-page: 70 issn: 1476-4598 year: 2007 ident: 61_29800085 publication-title: Molecular cancer [electronic resource] doi: 10.1186/1476-4598-6-70 – volume: 8 start-page: 25 issn: 1471-2105 year: 2007 ident: 104_23573451 publication-title: BMC bioinformatics [electronic resource] doi: 10.1186/1471-2105-8-25 – volume: 6 start-page: e24973 issn: 1932-6203 issue: 9 year: 2011 ident: 33_40923261 doi: 10.1371/journal.pone.0024973 – volume: 44 start-page: 654 issn: 1359-5113 year: 2009 ident: 97_43070235 doi: 10.1016/j.procbio.2009.02.007 – volume: 100 start-page: 9608 issn: 0027-8424 issue: 16 year: 2003 ident: 70_19683031 publication-title: PNAS doi: 10.1073/pnas.1632587100 – volume: 19 start-page: 1484 issn: 1367-4803 issue: 12 year: 2003 ident: 31_17762225 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg182 – volume: 10 start-page: 1 issn: 1544-6115 year: 2011 ident: 40_41492176 – volume: 12 start-page: 369 issn: 1467-5463 issue: 4 year: 2011 ident: 110_39719712 publication-title: Briefings in Bioinformatics doi: 10.1093/bib/bbr016 – volume: 44 start-page: 330 issn: 0031-3203 year: 2011 ident: 7_43070212 doi: 10.1016/j.patcog.2010.08.011 – volume: 500 start-page: 490 issn: 1367-4803 year: 2006 ident: 29_43070221 publication-title: Bioinformatics – volume: 26 start-page: 831 issn: 1367-4803 issue: 6 year: 2010 ident: 111_36545320 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq038 – volume: 11 start-page: 110 issn: 1471-2105 year: 2010 ident: 109_36740325 publication-title: BMC bioinformatics [electronic resource] doi: 10.1186/1471-2105-11-110 – volume: 25 start-page: 1884 issn: 1367-4803 issue: 15 year: 2009 ident: 108_34898951 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp331 – volume: 11 start-page: 1146 issn: 1078-0432 issue: 3 year: 2005 ident: 49_18689923 publication-title: Clinical Cancer Research doi: 10.1158/1078-0432.1146.11.3 – volume: 39 start-page: D561 issn: 0305-1048 issue: suppl_1 year: 2011 ident: 114_38471845 publication-title: Nucleic Acids Research doi: 10.1093/nar/gkq973 – volume: 45 start-page: 5 issn: 1573-0565 year: 2001 ident: 8_36666274 doi: 10.1023/A:1010933404324 – volume: 19 start-page: 4286 issn: 0964-6906 issue: 21 year: 2010 ident: 50_37877436 publication-title: Human Molecular Genetics doi: 10.1093/hmg/ddq328 – volume: 7 start-page: S56 issn: 1548-7091 issue: 3 Suppl year: 2010 ident: 5_36843865 doi: 10.1038/nmeth.1436 – volume: 35 start-page: W339 issn: 0305-1048 issue: suppl_2 year: 2007 ident: 26_28815361 publication-title: Nucleic Acids Research doi: 10.1093/nar/gkm368 – volume: 2 start-page: 18 year: 2002 ident: 44_28508494 publication-title: R NEWS – volume: 6 start-page: 6416 issn: 1615-9853 issue: 24 year: 2006 ident: 68_23291005 publication-title: Proteomics doi: 10.1002/pmic.200600335 – volume: 3 start-page: S64 issn: 1753-6561 year: 2009 ident: 98_39556149 doi: 10.1186/1753-6561-3-s7-s64 – volume: 387 start-page: 1040 issn: 0022-2836 issue: 4 year: 2009 ident: 89_34130103 publication-title: Journal of molecular biology doi: 10.1016/j.jmb.2009.02.023 – volume: 12 start-page: 821 issn: 1471-0056 issue: 12 year: 2011 ident: 4_41155755 publication-title: Nature reviews. Genetics doi: 10.1038/nrg3096 – volume: 61 start-page: 120 issn: 0364-5134 issue: 2 year: 2007 ident: 67_23713038 publication-title: Annals of neurology doi: 10.1002/ana.21038 – volume: 27 start-page: 190 issn: 1087-0156 issue: 2 year: 2009 ident: 36_33702972 publication-title: Nature biotechnology doi: 10.1038/nbt.1524 – volume: 10 start-page: 130 issn: 1471-2105 year: 2009 ident: 47_34774689 publication-title: BMC bioinformatics [electronic resource] doi: 10.1186/1471-2105-10-130 – volume: 13 start-page: 807 issn: 1061-8600 year: 2004 ident: 113_43070238 doi: 10.1198/106186004X11417 – volume: 323 start-page: 533 issn: 1476-4687 year: 1986 ident: 13_28265676 publication-title: Nature; Physical Science (London) doi: 10.1038/323533a0 – volume: 9 start-page: 307 issn: 1471-2105 year: 2008 ident: 105_31532889 publication-title: BMC bioinformatics [electronic resource] doi: 10.1186/1471-2105-9-307 – volume: 18 start-page: 547 issn: 0893-3952 issue: 4 year: 2005 ident: 91_18747218 publication-title: Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc doi: 10.1038/modpathol.3800322 – volume: 11 start-page: 485 year: 1982 ident: 16_43070215 publication-title: COMMUN STAT THEORY doi: 10.1080/03610928208828251 – volume: 295 start-page: 1662 issn: 0036-8075 issue: 5560 year: 2002 ident: 2_16939205 publication-title: Science doi: 10.1126/science.1069492 – volume: 336 start-page: 115 issn: 0022-2836 issue: 1 year: 2004 ident: 38_18010932 publication-title: Journal of molecular biology doi: 10.1016/j.jmb.2003.11.053 – volume: 63 start-page: 892 issn: 0887-3585 issue: 4 year: 2006 ident: 88_22142745 publication-title: Proteins doi: 10.1002/prot.20897 – volume: 11 start-page: R30 issn: 1465-6906 issue: 3 year: 2010 ident: 82_36831542 publication-title: Genome biology doi: 10.1186/gb-2010-11-3-r30 – volume: 2 start-page: 381 issn: 1938-7989 issue: 3 year: 2009 ident: 102_36659873 doi: 10.4310/SII.2009.v2.n3.a11 – volume: 39 start-page: 2492 issn: 0305-1048 issue: 7 year: 2011 ident: 59_38692063 publication-title: Nucleic Acids Research doi: 10.1093/nar/gkq1081 – volume: 24 start-page: 503 issn: 0269-9370 issue: 4 year: 2010 ident: 63_36346673 publication-title: AIDS (London, England) doi: 10.1097/QAD.0b013e32833677ac – volume: 7 start-page: 86 issn: 1467-5463 issue: 1 year: 2006 ident: 6_22510525 publication-title: Briefings in Bioinformatics doi: 10.1093/bib/bbk007 – volume: 35 start-page: 131 issn: 1476-9271 issue: 3 year: 2011 ident: 57_40220225 publication-title: Computational biology and chemistry doi: 10.1016/j.compbiolchem.2011.04.009 – volume: 39 start-page: e62 issn: 0305-1048 issue: 9 year: 2011 ident: 60_39214455 publication-title: Nucleic Acids Research doi: 10.1093/nar/gkr064 – volume: 158 start-page: 696 issn: 1350-0872 issue: Pt_3 year: 2012 ident: 72_41427752 publication-title: Microbiology doi: 10.1099/mic.0.055434-0 – volume: 13 start-page: 292 issn: 1467-5463 issue: 3 year: 2012 ident: 100_40737520 publication-title: Briefings in Bioinformatics doi: 10.1093/bib/bbr053 – volume: 19 start-page: 368 year: 1984 ident: 21_43070219 publication-title: THE WADSWORTH STATISTICS PROBABILITY SERIES – volume: 3 start-page: e116 issn: 1553-734X issue: 6 year: 2007 ident: 23_28993313 doi: 10.1371/journal.pcbi.0030116 – volume: 18 start-page: 1127 issn: 1018-4813 issue: 10 year: 2010 ident: 54_37281192 publication-title: European journal of human genetics : EJHG doi: 10.1038/ejhg.2010.48 – volume: 12 start-page: 14 issn: 1471-2105 year: 2011 ident: 84_39106602 publication-title: BMC bioinformatics [electronic resource] doi: 10.1186/1471-2105-12-14 – volume: 1 start-page: 153 issn: 1474-1776 issue: 2 year: 2002 ident: 37_17149058 publication-title: Nature reviews. Drug discovery doi: 10.1038/nrd728 – volume: 11 start-page: 37 issn: 1471-2105 year: 2010 ident: 81_36502821 publication-title: BMC bioinformatics [electronic resource] doi: 10.1186/1471-2105-11-37 – volume: 10 start-page: 293 issn: 1471-2180 year: 2010 ident: 62_38655477 publication-title: BMC Microbiology doi: 10.1186/1471-2180-10-293 – volume: 7 start-page: 179 issn: 0003-4800 year: 1936 ident: 18_43070217 publication-title: Annals of human genetics doi: 10.1111/j.1469-1809.1936.tb02137.x – volume: 10 start-page: 8 issn: 1471-2105 year: 2009 ident: 80_33516073 publication-title: BMC bioinformatics [electronic resource] doi: 10.1186/1471-2105-10-8 – volume: 15 start-page: 651 issn: 1061-8600 year: 2006 ident: 107_35286264 doi: 10.1198/106186006X133933 – volume: 12 start-page: 391 issn: 1471-2105 year: 2011 ident: 75_40976604 publication-title: BMC bioinformatics [electronic resource] doi: 10.1186/1471-2105-12-391 – volume: 7 start-page: 3 issn: 1471-2105 year: 2006 ident: 25_21610562 publication-title: BMC bioinformatics [electronic resource] doi: 10.1186/1471-2105-7-3 – volume: 78 start-page: 365 issn: 0887-3585 issue: 2 year: 2010 ident: 90_35522897 publication-title: Proteins doi: 10.1002/prot.22555 – volume: 29 start-page: 131 issn: 1573-0565 year: 1997 ident: 14_38631602 doi: 10.1023/A:1007465528199 – volume: 69 start-page: 227 issn: 0008-5472 issue: 1 year: 2009 ident: 53_33009187 publication-title: Cancer Research doi: 10.1158/0008-5472.CAN-08-2586 – volume: 28 start-page: 171 issn: 0741-0395 issue: 2 year: 2005 ident: 32_18614170 publication-title: Genetic epidemiology doi: 10.1002/gepi.20041 – volume: 5 start-page: 115 issn: 0007-4985 year: 1943 ident: 11_24895411 publication-title: The Bulletin of mathematical biophysics doi: 10.1007/BF02478259 – volume: 5 start-page: e10632 issn: 1932-6203 issue: 5 year: 2010 ident: 58_37355639 doi: 10.1371/journal.pone.0010632 – volume: 11 start-page: 299 issn: 1471-2164 year: 2010 ident: 87_37280817 publication-title: BMC genomics [electronic resource] doi: 10.1186/1471-2164-11-299 – volume: 32 start-page: 163 issn: 1618-0984 issue: 3 year: 2009 ident: 92_34139784 publication-title: Systematic and Applied Microbiology doi: 10.1016/j.syapm.2009.01.003 – volume: 26 start-page: 1752 issn: 1367-4803 issue: 14 year: 2010 ident: 46_37353835 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq257 – volume: 84 start-page: 165 issn: 0162-1459 year: 1989 ident: 19_25671495 doi: 10.1080/01621459.1989.10478752 – volume: 5 start-page: 154 issn: 1471-2105 year: 2004 ident: 85_18529905 publication-title: BMC bioinformatics [electronic resource] doi: 10.1186/1471-2105-5-154 – volume: 12 start-page: R50 issn: 1465-6906 issue: 5 year: 2011 ident: 51_40039037 publication-title: Genome biology doi: 10.1186/gb-2011-12-5-r50 – volume: Vol. 3201 start-page: 359 year: 2004 ident: 101_43076488 publication-title: MACHINE LEARNING ECML PROCEEDINGS – volume: 26 start-page: 721 issn: 1081-0706 year: 2010 ident: 3_37595632 publication-title: Annual review of cell and developmental biology doi: 10.1146/annurev-cellbio-100109-104122 – volume: 39 start-page: 425 issn: 0010-4825 issue: 5 year: 2009 ident: 95_34668398 publication-title: Computers in biology and medicine doi: 10.1016/j.compbiomed.2009.02.002 – volume: 27 start-page: 1929 issn: 1367-4803 issue: 14 year: 2011 ident: 55_40084240 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr316 – volume: 473 start-page: 174 issn: 1476-4687 issue: 7346 year: 2011 ident: 35_39778321 publication-title: Nature; Physical Science (London) doi: 10.1038/nature09944 – volume: 42 start-page: 1 issn: 1532-0464 issue: 1 year: 2009 ident: 94_31532623 publication-title: Journal of biomedical informatics doi: 10.1016/j.jbi.2008.06.002 – volume: 47 start-page: 217 issn: 0268-3369 issue: 2 year: 2012 ident: 86_39581697 publication-title: Bone marrow transplantation doi: 10.1038/bmt.2011.56 – volume: 6 start-page: e19624 issn: 1932-6203 issue: 5 year: 2011 ident: 66_39990181 doi: 10.1371/journal.pone.0019624 – volume: 119 start-page: 2642 issn: 0020-7136 issue: 11 year: 2006 ident: 69_22887895 publication-title: International journal of cancer. Journal international du cancer doi: 10.1002/ijc.22238 – volume: 99 start-page: 323 issn: 0888-7543 issue: 6 year: 2012 ident: 39_42488618 publication-title: Genomics doi: 10.1016/j.ygeno.2012.04.003 – volume: 2 start-page: 343 issn: 1527-8204 issue: 1 year: 2001 ident: 1_11393701 publication-title: Annual review of genomics and human genetics doi: 10.1146/annurev.genom.2.1.343 – volume: 48 start-page: 6821 issn: 0022-2623 issue: 22 year: 2005 ident: 93_19502976 publication-title: Journal of medicinal chemistry doi: 10.1021/jm0493360 – volume: 6 start-page: e14681 issn: 1932-6203 issue: 2 year: 2011 ident: 76_39362292 doi: 10.1371/journal.pone.0014681 – volume: 65 start-page: 386 issn: 0033-295X issue: 6 year: 1958 ident: 12_3543362 publication-title: Psychological review doi: 10.1037/h0042519 – volume: 12 start-page: 3344 issn: 1078-0432 issue: 11 year: 2006 ident: 71_22163414 publication-title: Clinical Cancer Research doi: 10.1158/1078-0432.CCR-05-2336 – volume: 15 start-page: 2811 issn: 1068-9265 issue: 10 year: 2008 ident: 96_31458663 publication-title: Annals of Surgical Oncology doi: 10.1245/s10434-008-0034-8 – volume: 7 start-page: 355 issn: 1465-4644 issue: 3 year: 2006 ident: 106_21143561 publication-title: Biostatistics doi: 10.1093/biostatistics/kxj011 – volume: 49 start-page: 8 year: 1961 ident: 15_42988341 publication-title: PROC IRE doi: 10.1109/JRPROC.1961.287775 – volume: 8 start-page: 1580 year: 2011 ident: 52_43070227 publication-title: IEEEACM TRANS COMPUT BIOL BIOINF doi: 10.1109/TCBB.2011.46 – volume: 9 start-page: 319 issn: 1471-2105 year: 2008 ident: 24_31590402 publication-title: BMC bioinformatics [electronic resource] doi: 10.1186/1471-2105-9-319 – volume: 26 start-page: 445 issn: 1367-4803 issue: 4 year: 2010 ident: 34_36294175 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp713 – volume: 6 start-page: e1000743 issn: 1553-734X issue: 4 year: 2010 ident: 79_37172664 doi: 10.1371/journal.pcbi.1000743 – volume: 29 start-page: 1189 issn: 0090-5364 year: 2001 ident: 112_34095002 doi: 10.1214/aos/1013203450 – volume: 27 start-page: 220 issn: 1367-4803 issue: 2 year: 2011 ident: 73_38788852 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq628 – volume: 13 start-page: 170 issn: 1471-2164 year: 2012 ident: 43_42535230 publication-title: BMC genomics [electronic resource] doi: 10.1186/1471-2164-13-170 – volume: 25 start-page: 585 issn: 1367-4803 issue: 5 year: 2009 ident: 78_33539485 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp039 – volume: 10 start-page: 312 issn: 1471-2105 year: 2009 ident: 77_35663473 publication-title: BMC bioinformatics [electronic resource] doi: 10.1186/1471-2105-10-312 – volume: 5 start-page: 32 issn: 1471-2156 year: 2004 ident: 56_18637098 publication-title: BMC genetics [electronic resource] doi: 10.1186/1471-2156-5-32 – volume: 57 start-page: 238 year: 1989 ident: 17_43070216 publication-title: INT STAT REV doi: 10.2307/1403797 – reference: 21498552 - Brief Bioinform. 2011 Jul;12(4):369-73 – reference: 21383421 - IEEE/ACM Trans Comput Biol Bioinform. 2011 Nov-Dec;8(6):1580-91 – reference: 20505004 - Bioinformatics. 2010 Jul 15;26(14):1752-8 – reference: 21602927 - PLoS One. 2011;6(5):e19624 – reference: 19386299 - Comput Biol Med. 2009 May;39(5):425-32 – reference: 20089140 - BMC Bioinformatics. 2010;11:37 – reference: 21908865 - Brief Bioinform. 2012 May;13(3):292-304 – reference: 19128505 - BMC Bioinformatics. 2009;10:8 – reference: 16398926 - BMC Bioinformatics. 2006;7:3 – reference: 16450363 - Proteins. 2006 May 15;63(3):490-500 – reference: 16477622 - Proteins. 2006 Jun 1;63(4):892-906 – reference: 2185863 - Bull Math Biol. 1990;52(1-2):99-115; discussion 73-97 – reference: 18647401 - BMC Bioinformatics. 2008;9:319 – reference: 15593090 - Genet Epidemiol. 2005 Feb;28(2):171-82 – reference: 11701654 - Annu Rev Genomics Hum Genet. 2001;2:343-72 – reference: 20459862 - BMC Genomics. 2010;11:299 – reference: 21358821 - PLoS One. 2011;6(2):e14681 – reference: 13602029 - Psychol Rev. 1958 Nov;65(6):386-408 – reference: 21045058 - Nucleic Acids Res. 2011 Jan;39(Database issue):D561-8 – reference: 20165560 - Stat Interface. 2009 Jan 1;2(3):381 – reference: 21969867 - PLoS One. 2011;6(9):e24973 – reference: 16809386 - Bioinformatics. 2006 Aug 15;22(16):2028-36 – reference: 16740756 - Clin Cancer Res. 2006 Jun 1;12(11 Pt 1):3344-54 – reference: 21109530 - Nucleic Acids Res. 2011 Apr;39(7):2492-502 – reference: 21080958 - BMC Microbiol. 2010;10:293 – reference: 22095227 - Br J Cancer. 2012 Jan 3;106(1):126-32 – reference: 16250641 - J Med Chem. 2005 Nov 3;48(22):6821-31 – reference: 20195258 - Nat Methods. 2010 Mar;7(3 Suppl):S56-68 – reference: 19778442 - BMC Bioinformatics. 2009;10:312 – reference: 20419152 - PLoS Comput Biol. 2010 Apr;6(4):e1000743 – reference: 19237256 - Syst Appl Microbiol. 2009 May;32(3):163-76 – reference: 17553836 - Nucleic Acids Res. 2007 Jul;35(Web Server issue):W339-44 – reference: 21653513 - Bioinformatics. 2011 Jul 15;27(14):1929-33 – reference: 22016406 - Bioinformatics. 2011 Dec 15;27(24):3379-84 – reference: 15746281 - Bioinformatics. 2005 May 15;21(10):2185-90 – reference: 22048662 - Nat Rev Genet. 2011 Dec;12(12):821-32 – reference: 12912828 - Bioinformatics. 2003 Aug 12;19(12):1484-91 – reference: 15588316 - BMC Genet. 2004;5:32 – reference: 17167789 - Ann Neurol. 2007 Feb;61(2):120-9 – reference: 20053841 - Bioinformatics. 2010 Feb 15;26(4):445-55 – reference: 12120097 - Nat Rev Drug Discov. 2002 Feb;1(2):153-61 – reference: 21704258 - Comput Biol Chem. 2011 Jun;35(3):131-6 – reference: 12869696 - Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9608-13 – reference: 16761367 - Brief Bioinform. 2006 Mar;7(1):86-112 – reference: 15529185 - Mod Pathol. 2005 Apr;18(4):547-57 – reference: 21441965 - Bone Marrow Transplant. 2012 Feb;47(2):217-26 – reference: 22174379 - Microbiology. 2012 Mar;158(Pt 3):696-707 – reference: 17967182 - Mol Cancer. 2007;6:70 – reference: 20498715 - PLoS One. 2010;5(5):e10632 – reference: 20187966 - BMC Bioinformatics. 2010;11:110 – reference: 19153136 - Bioinformatics. 2009 Mar 1;25(5):585-91 – reference: 16991122 - Int J Cancer. 2006 Dec 1;119(11):2642-50 – reference: 18620558 - BMC Bioinformatics. 2008;9:307 – reference: 20226027 - Genome Biol. 2010;11(3):R30 – reference: 19416535 - BMC Bioinformatics. 2009;10:130 – reference: 21317188 - Nucleic Acids Res. 2011 May;39(9):e62 – reference: 18612701 - Ann Surg Oncol. 2008 Oct;15(10):2811-26 – reference: 20018058 - BMC Proc. 2009 Dec 15;3 Suppl 7:S64 – reference: 19722269 - Proteins. 2010 Feb 1;78(2):365-80 – reference: 15073010 - Bioinformatics. 2004 Oct 12;20(15):2479-81 – reference: 15491499 - BMC Bioinformatics. 2004 Oct 18;5:154 – reference: 17447158 - Mol Divers. 2007 Feb;11(1):23-36 – reference: 21223604 - BMC Bioinformatics. 2011;12:14 – reference: 22889876 - Stat Appl Genet Mol Biol. 2011;10(1):32 – reference: 19118007 - Cancer Res. 2009 Jan 1;69(1):227-34 – reference: 21624126 - Genome Biol. 2011;12(5):R50 – reference: 20699326 - Hum Mol Genet. 2010 Nov 1;19(21):4286-95 – reference: 17254353 - BMC Bioinformatics. 2007;8:25 – reference: 17109381 - Proteomics. 2006 Dec;6(24):6416-25 – reference: 17604446 - PLoS Comput Biol. 2007 Jun;3(6):e116 – reference: 22546560 - Genomics. 2012 Jun;99(6):323-9 – reference: 21134890 - Bioinformatics. 2011 Jan 15;27(2):220-4 – reference: 16344280 - Biostatistics. 2006 Jul;7(3):355-73 – reference: 20130032 - Bioinformatics. 2010 Mar 15;26(6):831-7 – reference: 20051805 - AIDS. 2010 Feb 20;24(4):503-14 – reference: 18620077 - J Biomed Inform. 2009 Feb;42(1):1-10 – reference: 14741208 - J Mol Biol. 2004 Feb 6;336(1):115-30 – reference: 20461113 - Eur J Hum Genet. 2010 Oct;18(10):1127-32 – reference: 21508958 - Nature. 2011 May 12;473(7346):174-80 – reference: 19460890 - Bioinformatics. 2009 Aug 1;25(15):1884-90 – reference: 15709182 - Clin Cancer Res. 2005 Feb 1;11(3):1146-53 – reference: 19233205 - J Mol Biol. 2009 Apr 10;387(4):1040-53 – reference: 24723569 - Brief Bioinform. 2015 Mar;16(2):338-45 – reference: 20604711 - Annu Rev Cell Dev Biol. 2010;26:721-44 – reference: 11872829 - Science. 2002 Mar 1;295(5560):1662-4 – reference: 22559291 - BMC Genomics. 2012;13:170 – reference: 21982331 - BMC Bioinformatics. 2011;12:391 – reference: 19169245 - Nat Biotechnol. 2009 Feb;27(2):190-8 |
SSID | ssj0020781 |
Score | 2.5021145 |
Snippet | In the Life Sciences 'omics' data is increasingly generated by different high-throughput technologies. Often only the integration of these data allows... In the Life Sciences ‘omics’ data is increasingly generated by different high-throughput technologies. Often only the integration of these data allows... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 315 |
SubjectTerms | Algorithms Biological Science Disciplines Cancer Classification Data Mining Humans Integration Life sciences Neoplasms - genetics Polymorphism, Single Nucleotide |
Title | Data mining in the Life Sciences with Random Forest: a walk in the park or lost in the jungle? |
URI | https://www.ncbi.nlm.nih.gov/pubmed/22786785 https://www.proquest.com/docview/1356021542 https://www.proquest.com/docview/1354790733 https://www.proquest.com/docview/1367490907 https://pubmed.ncbi.nlm.nih.gov/PMC3659301 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKEBIvaNzDBjKCF1SlS-IkbnhB3Cc0MWnqRJ-I7CQWWbtkapOh8cwP55zYydJ2QoMXq3KOqyTn87k450LIS6YYk2Pl2sJLwEERobIFaCWbZ4q5YZZ5UdpE-X4N94_9L9NgOhj87kUt1ZUcJb-uzCv5H67CHPAVs2T_gbPdn8IE_Ab-wggchvFaPP4gKjE8bVo8tPGKB7nK2g1rMteORJGWp0NswrmsdHLzTzGftSvOxGKGUenzclm1cycgAubZWtDfO_CqVdPlE6hkXpqaq1UvXn5S1s2nom-j4efR5SHpxYkoyvMGMKPhUXfh8BzVgu7RdtAjT2Z1f86cSbi9CEAjRlH8YqF9rWXMHOfgreqS0Z3s9XsYYz1BynSSp9HJTGfVb4h7XQpL5hJHuXTMuehKVe01bdfFIOqv7yyG1bFee4Pc9MDZwAYgk8Np57ZjOSSdo6afqS1yG7E9WLun166aNRu-ynrIbc-GmWyTO8b5oG81ku6SQVbcI7d0O9KL--Q74olqPNG8oIAEiniiLZ4o4olqPFGNp9dUUERTS49oouWCIpraOY2mNw_I8aePk_f7tum_YScsjCrbV4nwlXRdpcDPBlNegPOJHqmUQZQI4bjSUyxJIi6ko7jH0nEEFnnKeaASDrrjIdkqyiJ7TKhIlSMcTzoSzFefj4XKeKjYOPV5pCRTFnnVvr44McXpsUfKPN5kk0VedLRnuiTLlVS7LRdis2WXscvAwAcj1_cs8ry7DAIVv5KJIivrhgZuCnuZ_o0m5H7kAJVFHmnGdreCueVgAQYW4Sss7wiwoPvqlSL_0RR2Z2EQgcJ9cq0H3CG3L7feLtmqFnX2FAzkSj5r8PsHRTC9Mg |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+mining+in+the+Life+Sciences+with+Random+Forest%3A+a+walk+in+the+park+or+lost+in+the+jungle%3F&rft.jtitle=Briefings+in+bioinformatics&rft.au=Touw%2C+W.+G.&rft.au=Bayjanov%2C+J.+R.&rft.au=Overmars%2C+L.&rft.au=Backus%2C+L.&rft.date=2013-05-01&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=14&rft.issue=3&rft.spage=315&rft.epage=326&rft_id=info:doi/10.1093%2Fbib%2Fbbs034&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_bib_bbs034 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon |