Data mining in the Life Sciences with Random Forest: a walk in the park or lost in the jungle?

In the Life Sciences 'omics' data is increasingly generated by different high-throughput technologies. Often only the integration of these data allows uncovering biological insights that can be experimentally validated or mechanistically modelled, i.e. sophisticated computational approache...

Full description

Saved in:
Bibliographic Details
Published inBriefings in bioinformatics Vol. 14; no. 3; pp. 315 - 326
Main Authors Touw, W. G., Bayjanov, J. R., Overmars, L., Backus, L., Boekhorst, J., Wels, M., van Hijum, S. A. F. T.
Format Journal Article
LanguageEnglish
Published England Oxford Publishing Limited (England) 01.05.2013
Oxford University Press
Subjects
Online AccessGet full text
ISSN1467-5463
1477-4054
1477-4054
DOI10.1093/bib/bbs034

Cover

Loading…
Abstract In the Life Sciences 'omics' data is increasingly generated by different high-throughput technologies. Often only the integration of these data allows uncovering biological insights that can be experimentally validated or mechanistically modelled, i.e. sophisticated computational approaches are required to extract the complex non-linear trends present in omics data. Classification techniques allow training a model based on variables (e.g. SNPs in genetic association studies) to separate different classes (e.g. healthy subjects versus patients). Random Forest (RF) is a versatile classification algorithm suited for the analysis of these large data sets. In the Life Sciences, RF is popular because RF classification models have a high-prediction accuracy and provide information on importance of variables for classification. For omics data, variables or conditional relations between variables are typically important for a subset of samples of the same class. For example: within a class of cancer patients certain SNP combinations may be important for a subset of patients that have a specific subtype of cancer, but not important for a different subset of patients. These conditional relationships can in principle be uncovered from the data with RF as these are implicitly taken into account by the algorithm during the creation of the classification model. This review details some of the to the best of our knowledge rarely or never used RF properties that allow maximizing the biological insights that can be extracted from complex omics data sets using RF.
AbstractList In the Life Sciences ‘omics’ data is increasingly generated by different high-throughput technologies. Often only the integration of these data allows uncovering biological insights that can be experimentally validated or mechanistically modelled, i.e. sophisticated computational approaches are required to extract the complex non-linear trends present in omics data. Classification techniques allow training a model based on variables (e.g. SNPs in genetic association studies) to separate different classes (e.g. healthy subjects versus patients). Random Forest (RF) is a versatile classification algorithm suited for the analysis of these large data sets. In the Life Sciences, RF is popular because RF classification models have a high-prediction accuracy and provide information on importance of variables for classification. For omics data, variables or conditional relations between variables are typically important for a subset of samples of the same class. For example: within a class of cancer patients certain SNP combinations may be important for a subset of patients that have a specific subtype of cancer, but not important for a different subset of patients. These conditional relationships can in principle be uncovered from the data with RF as these are implicitly taken into account by the algorithm during the creation of the classification model. This review details some of the to the best of our knowledge rarely or never used RF properties that allow maximizing the biological insights that can be extracted from complex omics data sets using RF.
In the Life Sciences 'omics' data is increasingly generated by different high-throughput technologies. Often only the integration of these data allows uncovering biological insights that can be experimentally validated or mechanistically modelled, i.e. sophisticated computational approaches are required to extract the complex non-linear trends present in omics data. Classification techniques allow training a model based on variables (e.g. SNPs in genetic association studies) to separate different classes (e.g. healthy subjects versus patients). Random Forest (RF) is a versatile classification algorithm suited for the analysis of these large data sets. In the Life Sciences, RF is popular because RF classification models have a high-prediction accuracy and provide information on importance of variables for classification. For omics data, variables or conditional relations between variables are typically important for a subset of samples of the same class. For example: within a class of cancer patients certain SNP combinations may be important for a subset of patients that have a specific subtype of cancer, but not important for a different subset of patients. These conditional relationships can in principle be uncovered from the data with RF as these are implicitly taken into account by the algorithm during the creation of the classification model. This review details some of the to the best of our knowledge rarely or never used RF properties that allow maximizing the biological insights that can be extracted from complex omics data sets using RF.In the Life Sciences 'omics' data is increasingly generated by different high-throughput technologies. Often only the integration of these data allows uncovering biological insights that can be experimentally validated or mechanistically modelled, i.e. sophisticated computational approaches are required to extract the complex non-linear trends present in omics data. Classification techniques allow training a model based on variables (e.g. SNPs in genetic association studies) to separate different classes (e.g. healthy subjects versus patients). Random Forest (RF) is a versatile classification algorithm suited for the analysis of these large data sets. In the Life Sciences, RF is popular because RF classification models have a high-prediction accuracy and provide information on importance of variables for classification. For omics data, variables or conditional relations between variables are typically important for a subset of samples of the same class. For example: within a class of cancer patients certain SNP combinations may be important for a subset of patients that have a specific subtype of cancer, but not important for a different subset of patients. These conditional relationships can in principle be uncovered from the data with RF as these are implicitly taken into account by the algorithm during the creation of the classification model. This review details some of the to the best of our knowledge rarely or never used RF properties that allow maximizing the biological insights that can be extracted from complex omics data sets using RF.
In the Life Sciences 'omics' data is increasingly generated by different high-throughput technologies. Often only the integration of these data allows uncovering biological insights that can be experimentally validated or mechanistically modelled, i.e. sophisticated computational approaches are required to extract the complex non-linear trends present in omics data. Classification techniques allow training a model based on variables (e.g. SNPs in genetic association studies) to separate different classes (e.g. healthy subjects versus patients). Random Forest (RF) is a versatile classification algorithm suited for the analysis of these large data sets. In the Life Sciences, RF is popular because RF classification models have a high-prediction accuracy and provide information on importance of variables for classification. For omics data, variables or conditional relations between variables are typically important for a subset of samples of the same class. For example: within a class of cancer patients certain SNP combinations may be important for a subset of patients that have a specific subtype of cancer, but not important for a different subset of patients. These conditional relationships can in principle be uncovered from the data with RF as these are implicitly taken into account by the algorithm during the creation of the classification model. This review details some of the to the best of our knowledge rarely or never used RF properties that allow maximizing the biological insights that can be extracted from complex omics data sets using RF. [PUBLICATION ABSTRACT]
Author Overmars, L.
Boekhorst, J.
Backus, L.
Bayjanov, J. R.
van Hijum, S. A. F. T.
Wels, M.
Touw, W. G.
Author_xml – sequence: 1
  givenname: W. G.
  surname: Touw
  fullname: Touw, W. G.
– sequence: 2
  givenname: J. R.
  surname: Bayjanov
  fullname: Bayjanov, J. R.
– sequence: 3
  givenname: L.
  surname: Overmars
  fullname: Overmars, L.
– sequence: 4
  givenname: L.
  surname: Backus
  fullname: Backus, L.
– sequence: 5
  givenname: J.
  surname: Boekhorst
  fullname: Boekhorst, J.
– sequence: 6
  givenname: M.
  surname: Wels
  fullname: Wels, M.
– sequence: 7
  givenname: S. A. F. T.
  surname: van Hijum
  fullname: van Hijum, S. A. F. T.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22786785$$D View this record in MEDLINE/PubMed
BookMark eNqF0ltvFCEUAGBiauxFX_wBhsQX02QsDDAMPtSYatVkExMvrxJgYZftDKzAtPHfy7jdRhsTnyDwcTgHzjE4CDFYAJ5i9BIjQc6012daZ0ToA3CEKecNRYwezPOON4x25BAc57xBqEW8x4_AYdvyvuM9OwLf36qi4OiDDyvoAyxrCxfeWfjFeBuMzfDGlzX8rMIyjvAyJpvLK6jgjRqu9n6r0hWMCQ4xl_3aZgqrwb5-DB46NWT75HY8Ad8u3329-NAsPr3_ePFm0RjSidJQZxR1GmPn2g53DCnBKcO415oJoxTCunXEGMGVRo63ZNkLzOiSc-YMR5ycgPNd3O2kR7s0NpSkBrlNflTpp4zKy793gl_LVbyWpGOCIFwDvLgNkOKPqRYpR5-NHQYVbJyyxKTjVCDx-67_UUb5DEmlz-_RTZxSqC8xqw61tYi2qmd_Jn-X9f6XKjjdAZNizsm6O4KRnFtA1haQuxaoGN3DxhdVfJwL98O_jvwCWTGzkQ
CitedBy_id crossref_primary_10_1080_01971360_2018_1515389
crossref_primary_10_1111_acel_13280
crossref_primary_10_1007_s00330_021_08368_w
crossref_primary_10_1016_j_ecolmodel_2014_09_018
crossref_primary_10_1146_annurev_food_041715_033144
crossref_primary_10_1016_j_scitotenv_2017_10_037
crossref_primary_10_1186_s12859_022_04631_z
crossref_primary_10_1091_mbc_e17_03_0176
crossref_primary_10_2118_214667_PA
crossref_primary_10_1016_j_landurbplan_2018_10_008
crossref_primary_10_1016_j_artmed_2020_101814
crossref_primary_10_1111_ppl_14007
crossref_primary_10_1002_bies_201900122
crossref_primary_10_1016_j_fsigen_2019_102140
crossref_primary_10_1016_j_jad_2022_07_042
crossref_primary_10_1186_1471_2288_14_99
crossref_primary_10_1016_j_aca_2018_08_002
crossref_primary_10_1371_journal_pntd_0007045
crossref_primary_10_1016_j_crmeth_2022_100270
crossref_primary_10_1177_0271678X221083387
crossref_primary_10_1038_s41598_023_36450_4
crossref_primary_10_7717_peerj_480
crossref_primary_10_1002_widm_1114
crossref_primary_10_1534_g3_119_400319
crossref_primary_10_1016_j_aca_2019_03_006
crossref_primary_10_1016_j_ecolind_2019_105659
crossref_primary_10_1038_s41598_021_92439_x
crossref_primary_10_1049_iet_syb_2015_0017
crossref_primary_10_1109_ACCESS_2019_2957367
crossref_primary_10_1186_s12859_018_2054_0
crossref_primary_10_3389_fmolb_2021_663532
crossref_primary_10_18632_oncotarget_28022
crossref_primary_10_4018_IJDWM_2020040105
crossref_primary_10_1073_pnas_1800256115
crossref_primary_10_18632_aging_204866
crossref_primary_10_2217_epi_2021_0050
crossref_primary_10_1152_ajplung_00131_2019
crossref_primary_10_3389_fgene_2019_00267
crossref_primary_10_3390_rs14153797
crossref_primary_10_1038_icb_2017_16
crossref_primary_10_1080_07038992_2019_1612738
crossref_primary_10_1016_j_jctube_2018_01_002
crossref_primary_10_1111_mms_12414
crossref_primary_10_1002_pmic_201300230
crossref_primary_10_1021_acs_jcim_5b00722
crossref_primary_10_1038_s41467_025_57078_0
crossref_primary_10_1139_cjfas_2017_0554
crossref_primary_10_1016_j_engappai_2020_104009
crossref_primary_10_1016_j_ygeno_2015_04_001
crossref_primary_10_3102_10769986231193327
crossref_primary_10_1016_j_cocom_2021_e00597
crossref_primary_10_1016_j_biopsych_2012_12_007
crossref_primary_10_5937_ekoPolj1803139M
crossref_primary_10_7717_peerj_9945
crossref_primary_10_1186_s12864_016_2753_8
crossref_primary_10_1371_journal_pone_0096385
crossref_primary_10_1371_journal_pcbi_1003212
crossref_primary_10_1016_j_agrformet_2021_108477
crossref_primary_10_1016_j_csbj_2020_10_032
crossref_primary_10_1186_1471_2105_15_8
crossref_primary_10_1016_j_ecoinf_2022_101768
crossref_primary_10_3390_a17080360
crossref_primary_10_2196_39231
crossref_primary_10_1073_pnas_2118636119
crossref_primary_10_1038_s41598_024_78482_4
crossref_primary_10_1061__ASCE_CO_1943_7862_0002411
crossref_primary_10_1002_ppj2_20101
crossref_primary_10_1212_WNL_0000000000007504
crossref_primary_10_1128_spectrum_02065_22
crossref_primary_10_1186_s12859_017_1650_8
crossref_primary_10_1016_j_exer_2015_09_011
crossref_primary_10_1080_10618600_2022_2026780
crossref_primary_10_1038_s41598_020_75088_4
crossref_primary_10_3389_fcimb_2015_00003
crossref_primary_10_1002_hed_27674
crossref_primary_10_1093_bioinformatics_bty087
crossref_primary_10_9778_cmajo_20210031
crossref_primary_10_1371_journal_pone_0086703
crossref_primary_10_1371_journal_pone_0213584
crossref_primary_10_3390_jcm9020343
crossref_primary_10_1093_bib_bbz061
crossref_primary_10_1186_s12859_016_0995_8
crossref_primary_10_1017_S095026881500014X
crossref_primary_10_1097_CCM_0000000000006243
crossref_primary_10_1016_j_kint_2017_01_017
crossref_primary_10_1155_2019_5158465
crossref_primary_10_1186_s13020_022_00622_7
crossref_primary_10_1021_acs_jcim_5b00190
crossref_primary_10_1186_1471_2105_15_139
crossref_primary_10_3389_fphar_2020_602369
crossref_primary_10_1186_s13059_017_1243_x
crossref_primary_10_1007_s11042_024_18360_3
crossref_primary_10_1007_s00198_019_04892_0
crossref_primary_10_1111_cas_15917
crossref_primary_10_1186_s12889_024_19797_9
crossref_primary_10_1093_bioinformatics_btu277
crossref_primary_10_1186_s12911_022_01859_w
crossref_primary_10_1093_database_bax082
crossref_primary_10_1038_s41598_017_16521_z
crossref_primary_10_1128_aem_00482_24
crossref_primary_10_1080_13607863_2019_1584787
crossref_primary_10_1093_bioinformatics_bty199
crossref_primary_10_1186_s12915_015_0197_2
crossref_primary_10_1152_ajpendo_00001_2018
crossref_primary_10_1038_s41596_019_0264_1
crossref_primary_10_1007_s12571_017_0714_y
crossref_primary_10_1016_j_eswa_2022_117193
crossref_primary_10_1097_MAO_0000000000003042
crossref_primary_10_1128_IAI_00574_17
crossref_primary_10_2217_pme_15_5
crossref_primary_10_1186_s13195_021_00852_1
crossref_primary_10_1371_journal_pone_0216705
crossref_primary_10_1007_s10639_024_12501_9
crossref_primary_10_3390_biomedicines11123206
crossref_primary_10_1155_2023_8964676
crossref_primary_10_1016_j_isprsjprs_2013_11_013
crossref_primary_10_3899_jrheum_200570
crossref_primary_10_3390_biology11030356
crossref_primary_10_2514_1_I011145
crossref_primary_10_3758_s13428_022_01901_9
crossref_primary_10_1186_s12874_022_01625_6
crossref_primary_10_3389_fmicb_2018_01138
crossref_primary_10_1038_s41698_019_0078_1
crossref_primary_10_1007_s00059_018_4707_1
crossref_primary_10_3732_ajb_1400466
crossref_primary_10_1016_j_ecolind_2019_01_059
crossref_primary_10_1155_2022_1872412
crossref_primary_10_1016_j_csda_2012_09_020
crossref_primary_10_1007_s00438_015_1108_5
crossref_primary_10_1016_j_scitotenv_2017_09_195
crossref_primary_10_1128_spectrum_03584_23
crossref_primary_10_1186_s13040_022_00317_7
crossref_primary_10_3389_fpls_2016_01914
crossref_primary_10_1080_01431161_2014_954061
crossref_primary_10_1002_eap_1943
crossref_primary_10_1016_j_jhepr_2024_101090
crossref_primary_10_1016_j_biosystems_2021_104411
crossref_primary_10_1093_database_baw100
crossref_primary_10_1186_s12967_017_1365_7
crossref_primary_10_1038_s41598_018_28650_0
crossref_primary_10_1093_bib_bbu012
crossref_primary_10_1007_s10586_018_1767_1
crossref_primary_10_1371_journal_pone_0070153
crossref_primary_10_1016_j_cub_2019_11_053
crossref_primary_10_1038_s41390_022_02137_1
crossref_primary_10_1038_s41598_017_07729_0
crossref_primary_10_1016_j_tranon_2022_101585
crossref_primary_10_1016_j_apsoil_2024_105414
crossref_primary_10_1101_gr_165415_113
crossref_primary_10_1007_s00227_019_3497_1
crossref_primary_10_18632_aging_103513
crossref_primary_10_1016_j_jmr_2023_107462
crossref_primary_10_1371_journal_pcbi_1005219
crossref_primary_10_1080_1573062X_2022_2155856
crossref_primary_10_3390_metabo11070445
crossref_primary_10_1177_0003702815620545
crossref_primary_10_1186_s12911_020_1100_9
crossref_primary_10_3389_fonc_2024_1452265
crossref_primary_10_1186_1471_2164_15_654
crossref_primary_10_1002_humu_23229
crossref_primary_10_1371_journal_pone_0133044
crossref_primary_10_1104_pp_114_254292
crossref_primary_10_1109_ACCESS_2022_3160213
crossref_primary_10_1186_s12859_016_0971_3
crossref_primary_10_1080_10106049_2015_1059898
crossref_primary_10_3168_jds_2019_16572
crossref_primary_10_3390_electronics8080868
crossref_primary_10_3389_fmicb_2016_00949
crossref_primary_10_1007_s00415_023_12132_z
crossref_primary_10_1016_j_agee_2021_107787
crossref_primary_10_1038_s41598_017_01699_z
crossref_primary_10_1186_s12711_016_0219_8
crossref_primary_10_1097_MAO_0000000000003927
crossref_primary_10_1038_srep10604
crossref_primary_10_1186_s12884_022_04534_0
crossref_primary_10_1186_s40104_023_00850_3
crossref_primary_10_1016_j_jmb_2021_167071
crossref_primary_10_1016_j_ab_2018_10_027
crossref_primary_10_1016_j_geoderma_2017_12_002
crossref_primary_10_3389_fonc_2021_745808
crossref_primary_10_1093_bioadv_vbae047
crossref_primary_10_1093_molbev_msu266
crossref_primary_10_52586_5036
crossref_primary_10_1371_journal_pone_0136612
crossref_primary_10_3390_rs6021347
crossref_primary_10_1016_j_cmpbup_2021_100028
crossref_primary_10_1186_s12859_022_04734_7
crossref_primary_10_1111_mec_14509
crossref_primary_10_1002_dev_21778
crossref_primary_10_1093_bib_bbac265
crossref_primary_10_1099_mgen_0_000251
crossref_primary_10_1371_journal_pone_0287255
crossref_primary_10_18632_aging_101264
crossref_primary_10_1093_mtomcs_mfac028
crossref_primary_10_1111_jdi_13937
crossref_primary_10_2196_17886
crossref_primary_10_2139_ssrn_3807828
crossref_primary_10_23940_ijpe_21_01_p2_1425
crossref_primary_10_3390_life11080799
crossref_primary_10_1021_acs_analchem_3c04618
crossref_primary_10_1016_j_foreco_2021_118948
crossref_primary_10_1016_j_neuroimage_2019_01_014
crossref_primary_10_1186_s13099_014_0037_x
crossref_primary_10_2174_0118744710282465240315053136
crossref_primary_10_3171_2022_1_FOCUS21708
crossref_primary_10_3390_metabo11110753
crossref_primary_10_1038_s42004_024_01161_y
crossref_primary_10_1186_s12874_021_01369_9
crossref_primary_10_4155_bio_13_309
crossref_primary_10_1007_s00521_018_3518_x
crossref_primary_10_2196_jmir_5870
crossref_primary_10_1038_s41598_020_64461_y
crossref_primary_10_3389_fevo_2018_00158
crossref_primary_10_1038_s41598_021_89185_5
crossref_primary_10_1186_s13040_016_0114_4
crossref_primary_10_4161_19490976_2014_972228
crossref_primary_10_1111_2041_210X_14056
crossref_primary_10_15406_jbmoa_2017_04_00116
crossref_primary_10_3390_su13095162
crossref_primary_10_1002_mrd_23684
crossref_primary_10_3389_frwa_2020_578602
crossref_primary_10_1088_1752_7163_aaa492
crossref_primary_10_1111_ejss_13077
crossref_primary_10_1007_s00394_021_02716_8
crossref_primary_10_3390_biom13071153
crossref_primary_10_1016_j_agrformet_2021_108423
crossref_primary_10_1007_s00216_014_7677_z
crossref_primary_10_1111_ecog_06762
crossref_primary_10_1371_journal_pgen_1007333
crossref_primary_10_1038_s41397_021_00246_4
crossref_primary_10_1016_j_rse_2016_03_010
crossref_primary_10_1080_17435390_2023_2186279
crossref_primary_10_1121_10_0035563
crossref_primary_10_1186_s12911_015_0165_3
crossref_primary_10_1111_1475_6773_12683
crossref_primary_10_1371_journal_ppat_1009243
crossref_primary_10_1097_EDE_0000000000001404
crossref_primary_10_1021_acs_analchem_8b05592
crossref_primary_10_1139_cjfas_2024_0052
crossref_primary_10_1016_j_ab_2021_114385
crossref_primary_10_1016_j_jag_2020_102264
crossref_primary_10_1063_5_0100948
crossref_primary_10_1117_1_JRS_13_034520
crossref_primary_10_3168_jds_2021_20413
crossref_primary_10_7554_eLife_77373
crossref_primary_10_1038_s41523_019_0123_9
crossref_primary_10_1016_j_scitotenv_2016_10_030
crossref_primary_10_36548_jitdw_2024_3_008
crossref_primary_10_3899_jrheum_181005
crossref_primary_10_1111_jse_12925
crossref_primary_10_1016_j_eswa_2016_07_018
crossref_primary_10_3892_ol_2020_11581
crossref_primary_10_1177_21925682211053593
crossref_primary_10_1016_j_crm_2019_100193
crossref_primary_10_1172_jci_insight_97018
Cites_doi 10.1093/bioinformatics/btl344
10.1111/j.2517-6161.1974.tb00994.x
10.1093/bioinformatics/bth261
10.1093/bioinformatics/bti365
10.1007/s11030-006-9054-0
10.1186/1476-4598-6-70
10.1186/1471-2105-8-25
10.1371/journal.pone.0024973
10.1016/j.procbio.2009.02.007
10.1073/pnas.1632587100
10.1093/bioinformatics/btg182
10.1093/bib/bbr016
10.1016/j.patcog.2010.08.011
10.1093/bioinformatics/btq038
10.1186/1471-2105-11-110
10.1093/bioinformatics/btp331
10.1158/1078-0432.1146.11.3
10.1093/nar/gkq973
10.1023/A:1010933404324
10.1093/hmg/ddq328
10.1038/nmeth.1436
10.1093/nar/gkm368
10.1002/pmic.200600335
10.1186/1753-6561-3-s7-s64
10.1016/j.jmb.2009.02.023
10.1038/nrg3096
10.1002/ana.21038
10.1038/nbt.1524
10.1186/1471-2105-10-130
10.1198/106186004X11417
10.1038/323533a0
10.1186/1471-2105-9-307
10.1038/modpathol.3800322
10.1080/03610928208828251
10.1126/science.1069492
10.1016/j.jmb.2003.11.053
10.1002/prot.20897
10.1186/gb-2010-11-3-r30
10.4310/SII.2009.v2.n3.a11
10.1093/nar/gkq1081
10.1097/QAD.0b013e32833677ac
10.1093/bib/bbk007
10.1016/j.compbiolchem.2011.04.009
10.1093/nar/gkr064
10.1099/mic.0.055434-0
10.1093/bib/bbr053
10.1371/journal.pcbi.0030116
10.1038/ejhg.2010.48
10.1186/1471-2105-12-14
10.1038/nrd728
10.1186/1471-2105-11-37
10.1186/1471-2180-10-293
10.1111/j.1469-1809.1936.tb02137.x
10.1186/1471-2105-10-8
10.1198/106186006X133933
10.1186/1471-2105-12-391
10.1186/1471-2105-7-3
10.1002/prot.22555
10.1023/A:1007465528199
10.1158/0008-5472.CAN-08-2586
10.1002/gepi.20041
10.1007/BF02478259
10.1371/journal.pone.0010632
10.1186/1471-2164-11-299
10.1016/j.syapm.2009.01.003
10.1093/bioinformatics/btq257
10.1080/01621459.1989.10478752
10.1186/1471-2105-5-154
10.1186/gb-2011-12-5-r50
10.1146/annurev-cellbio-100109-104122
10.1016/j.compbiomed.2009.02.002
10.1093/bioinformatics/btr316
10.1038/nature09944
10.1016/j.jbi.2008.06.002
10.1038/bmt.2011.56
10.1371/journal.pone.0019624
10.1002/ijc.22238
10.1016/j.ygeno.2012.04.003
10.1146/annurev.genom.2.1.343
10.1021/jm0493360
10.1371/journal.pone.0014681
10.1037/h0042519
10.1158/1078-0432.CCR-05-2336
10.1245/s10434-008-0034-8
10.1093/biostatistics/kxj011
10.1109/JRPROC.1961.287775
10.1109/TCBB.2011.46
10.1186/1471-2105-9-319
10.1093/bioinformatics/btp713
10.1371/journal.pcbi.1000743
10.1214/aos/1013203450
10.1093/bioinformatics/btq628
10.1186/1471-2164-13-170
10.1093/bioinformatics/btp039
10.1186/1471-2105-10-312
10.1186/1471-2156-5-32
10.2307/1403797
ContentType Journal Article
Copyright Copyright Oxford Publishing Limited(England) May 2013
The Author 2012. Published by Oxford University Press. 2012
Copyright_xml – notice: Copyright Oxford Publishing Limited(England) May 2013
– notice: The Author 2012. Published by Oxford University Press. 2012
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
5PM
DOI 10.1093/bib/bbs034
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
Engineering Research Database
MEDLINE
MEDLINE - Academic
Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
EndPage 326
ExternalDocumentID PMC3659301
2982471591
22786785
10_1093_bib_bbs034
Genre Journal Article
Feature
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAHBH
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAVAP
AAVLN
AAYXX
ABDBF
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABPTD
ABQLI
ABWST
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACUHS
ACUXJ
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHQJS
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMNDL
ANAKG
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C45
CDBKE
CITATION
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EJD
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
K1G
KBUDW
KOP
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
AAGQS
AAUQX
AHGBF
C1A
CAG
CGR
COF
CUY
CVF
ECM
EIF
GROUPED_DOAJ
NPM
NU-
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
77I
7X8
5PM
ID FETCH-LOGICAL-c369t-4fca4fb11ff261650a9745118bb59caa01b2f3cc97ab0f723d89154d775fc7073
ISSN 1467-5463
1477-4054
IngestDate Thu Aug 21 14:01:27 EDT 2025
Fri Sep 05 07:18:15 EDT 2025
Thu Sep 04 23:42:58 EDT 2025
Mon Jun 30 09:01:09 EDT 2025
Mon Jul 21 06:05:03 EDT 2025
Thu Apr 24 23:10:34 EDT 2025
Tue Jul 01 03:39:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords variable importance
conditional relationships
local importance
proximity
variable interaction
Random Forest
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c369t-4fca4fb11ff261650a9745118bb59caa01b2f3cc97ab0f723d89154d775fc7073
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC3659301
PMID 22786785
PQID 1356021542
PQPubID 26846
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3659301
proquest_miscellaneous_1367490907
proquest_miscellaneous_1354790733
proquest_journals_1356021542
pubmed_primary_22786785
crossref_primary_10_1093_bib_bbs034
crossref_citationtrail_10_1093_bib_bbs034
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-05-01
PublicationDateYYYYMMDD 2013-05-01
PublicationDate_xml – month: 05
  year: 2013
  text: 2013-05-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Briefings in bioinformatics
PublicationTitleAlternate Brief Bioinform
PublicationYear 2013
Publisher Oxford Publishing Limited (England)
Oxford University Press
Publisher_xml – name: Oxford Publishing Limited (England)
– name: Oxford University Press
References Hillenmeyer (82_36831542) 2010; 11
Rosenblatt (12_3543362) 1958; 65
Nicholson (37_17149058) 2002; 1
(13_28265676) 1986; 323
(114_38471845) 2011; 39
Fusaro (36_33702972) 2009; 27
Christensen (53_33009187) 2009; 69
(55_40084240) 2011; 27
(110_39719712) 2011; 12
Bureau (32_18614170) 2005; 28
Hettick (68_23291005) 2006; 6
Statnikov (24_31590402) 2008; 9
Caporaso (51_40039037) 2011; 12
(11_24895411) 1943; 5
(111_36545320) 2010; 26
(98_39556149) 2009; 3
Goh (38_18010932) 2004; 336
(72_41427752) 2012; 158
(70_19683031) 2003; 100
(17_43070216) 1989; 57
(106_21143561) 2006; 7
Tarca (23_28993313) 2007; 3
(59_38692063) 2011; 39
Tsou (61_29800085) 2007; 6
De Lobel (54_37281192) 2010; 18
van Hemert (62_38655477) 2010; 10
(8_36666274) 2001; 45
(7_43070212) 2011; 44
Pino Del Carpio (66_39990181) 2011; 6
Nayal (88_22142745) 2006; 63
Shi (91_18747218) 2005; 18
(108_34898951) 2009; 25
Wang (75_40976604) 2011; 12
Zhang (102_36659873) 2009; 2
Lunetta (56_18637098) 2004; 5
Somorjai (31_17762225) 2003; 19
Radivojac (90_35522897) 2010; 78
Chen (39_42488618) 2012; 99
Li (84_39106602) 2011; 12
Nimrod (89_34130103) 2009; 387
(18_43070217) 1936; 7
(19_25671495) 1989; 84
(40_41492176) 2011; 10
(28_18862322) 2005; 21
(73_38788852) 2011; 27
(78_33539485) 2009; 25
Nicodemus (109_36740325) 2010; 11
Gehlenborg (5_36843865) 2010; 7
(112_34095002) 2001; 29
(10_37294679) 1995; 20
Alvarez (49_18689923) 2005; 11
Arumugam (35_39778321) 2011; 473
(107_35286264) 2006; 15
(27_22336651) 2006; 22
Tognazzo (94_31532623) 2009; 42
Strobl (104_23573451) 2007; 8
(21_43070219) 1984; 19
Han (80_33516073) 2009; 10
Zhang (47_34774689) 2009; 10
Wiseman (96_31458663) 2008; 15
(15_42988341) 1961; 49
Medema (87_37280817) 2010; 11
(60_39214455) 2011; 39
Wang (95_34668398) 2009; 39
(100_40737520) 2012; 13
(52_43070227) 2011; 8
Dybowski (79_37172664) 2010; 6
Bayjanov (43_42535230) 2012; 13
(46_37353835) 2010; 26
(50_37877436) 2010; 19
(29_43070221) 2006; 500
(14_38631602) 1997; 29
(113_43070238) 2004; 13
Gupta (65_28416692) 2007; 11
Sampson (33_40923261) 2011; 6
Finehout (67_23713038) 2007; 61
Vingerhoets (63_36346673) 2010; 24
Heider (81_36502821) 2010; 11
Ghosh (4_41155755) 2011; 12
Ma (57_40220225) 2011; 35
Kitano (2_16939205) 2002; 295
Munro (69_22887895) 2006; 119
(34_36294175) 2010; 26
Bordner (77_35663473) 2009; 10
(97_43070235) 2009; 44
(6_22510525) 2006; 7
(16_43070215) 1982; 11
Diaz-Uriarte (25_21610562) 2006; 7
(42_34124281) 1974; 36
Guo (71_22163414) 2006; 12
Chuang (3_37595632) 2010; 26
Wuchty (76_39362292) 2011; 6
Marino (86_39581697) 2012; 47
(48_18466977) 2004; 20
(44_28508494) 2002; 2
Lin (85_18529905) 2004; 5
(101_43076488) 2004; Vol. 3201
Slabbinck (92_34139784) 2009; 32
Springer (93_19502976) 2005; 48
Meijerink (58_37355639) 2010; 5
Ideker (1_11393701) 2001; 2
(26_28815361) 2007; 35
Strobl (105_31532889) 2008; 9
13602029 - Psychol Rev. 1958 Nov;65(6):386-408
20018058 - BMC Proc. 2009 Dec 15;3 Suppl 7:S64
19118007 - Cancer Res. 2009 Jan 1;69(1):227-34
17967182 - Mol Cancer. 2007;6:70
22016406 - Bioinformatics. 2011 Dec 15;27(24):3379-84
20130032 - Bioinformatics. 2010 Mar 15;26(6):831-7
20459862 - BMC Genomics. 2010;11:299
11872829 - Science. 2002 Mar 1;295(5560):1662-4
15529185 - Mod Pathol. 2005 Apr;18(4):547-57
19169245 - Nat Biotechnol. 2009 Feb;27(2):190-8
18620077 - J Biomed Inform. 2009 Feb;42(1):1-10
12120097 - Nat Rev Drug Discov. 2002 Feb;1(2):153-61
21624126 - Genome Biol. 2011;12(5):R50
17604446 - PLoS Comput Biol. 2007 Jun;3(6):e116
20505004 - Bioinformatics. 2010 Jul 15;26(14):1752-8
20165560 - Stat Interface. 2009 Jan 1;2(3):381
17109381 - Proteomics. 2006 Dec;6(24):6416-25
15709182 - Clin Cancer Res. 2005 Feb 1;11(3):1146-53
21383421 - IEEE/ACM Trans Comput Biol Bioinform. 2011 Nov-Dec;8(6):1580-91
20089140 - BMC Bioinformatics. 2010;11:37
20051805 - AIDS. 2010 Feb 20;24(4):503-14
12912828 - Bioinformatics. 2003 Aug 12;19(12):1484-91
16250641 - J Med Chem. 2005 Nov 3;48(22):6821-31
22048662 - Nat Rev Genet. 2011 Dec;12(12):821-32
19386299 - Comput Biol Med. 2009 May;39(5):425-32
20498715 - PLoS One. 2010;5(5):e10632
19233205 - J Mol Biol. 2009 Apr 10;387(4):1040-53
19722269 - Proteins. 2010 Feb 1;78(2):365-80
18612701 - Ann Surg Oncol. 2008 Oct;15(10):2811-26
16991122 - Int J Cancer. 2006 Dec 1;119(11):2642-50
21134890 - Bioinformatics. 2011 Jan 15;27(2):220-4
21441965 - Bone Marrow Transplant. 2012 Feb;47(2):217-26
20226027 - Genome Biol. 2010;11(3):R30
12869696 - Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9608-13
19128505 - BMC Bioinformatics. 2009;10:8
21508958 - Nature. 2011 May 12;473(7346):174-80
20053841 - Bioinformatics. 2010 Feb 15;26(4):445-55
15593090 - Genet Epidemiol. 2005 Feb;28(2):171-82
21704258 - Comput Biol Chem. 2011 Jun;35(3):131-6
21358821 - PLoS One. 2011;6(2):e14681
22546560 - Genomics. 2012 Jun;99(6):323-9
21982331 - BMC Bioinformatics. 2011;12:391
18620558 - BMC Bioinformatics. 2008;9:307
19778442 - BMC Bioinformatics. 2009;10:312
16809386 - Bioinformatics. 2006 Aug 15;22(16):2028-36
21045058 - Nucleic Acids Res. 2011 Jan;39(Database issue):D561-8
20195258 - Nat Methods. 2010 Mar;7(3 Suppl):S56-68
15588316 - BMC Genet. 2004;5:32
19237256 - Syst Appl Microbiol. 2009 May;32(3):163-76
14741208 - J Mol Biol. 2004 Feb 6;336(1):115-30
21969867 - PLoS One. 2011;6(9):e24973
21109530 - Nucleic Acids Res. 2011 Apr;39(7):2492-502
22559291 - BMC Genomics. 2012;13:170
15746281 - Bioinformatics. 2005 May 15;21(10):2185-90
22095227 - Br J Cancer. 2012 Jan 3;106(1):126-32
21080958 - BMC Microbiol. 2010;10:293
20419152 - PLoS Comput Biol. 2010 Apr;6(4):e1000743
21223604 - BMC Bioinformatics. 2011;12:14
20461113 - Eur J Hum Genet. 2010 Oct;18(10):1127-32
18647401 - BMC Bioinformatics. 2008;9:319
21317188 - Nucleic Acids Res. 2011 May;39(9):e62
24723569 - Brief Bioinform. 2015 Mar;16(2):338-45
15491499 - BMC Bioinformatics. 2004 Oct 18;5:154
2185863 - Bull Math Biol. 1990;52(1-2):99-115; discussion 73-97
20604711 - Annu Rev Cell Dev Biol. 2010;26:721-44
22174379 - Microbiology. 2012 Mar;158(Pt 3):696-707
16477622 - Proteins. 2006 Jun 1;63(4):892-906
19460890 - Bioinformatics. 2009 Aug 1;25(15):1884-90
17254353 - BMC Bioinformatics. 2007;8:25
19416535 - BMC Bioinformatics. 2009;10:130
16450363 - Proteins. 2006 May 15;63(3):490-500
19153136 - Bioinformatics. 2009 Mar 1;25(5):585-91
17553836 - Nucleic Acids Res. 2007 Jul;35(Web Server issue):W339-44
22889876 - Stat Appl Genet Mol Biol. 2011;10(1):32
16761367 - Brief Bioinform. 2006 Mar;7(1):86-112
21498552 - Brief Bioinform. 2011 Jul;12(4):369-73
16398926 - BMC Bioinformatics. 2006;7:3
15073010 - Bioinformatics. 2004 Oct 12;20(15):2479-81
21602927 - PLoS One. 2011;6(5):e19624
21653513 - Bioinformatics. 2011 Jul 15;27(14):1929-33
16344280 - Biostatistics. 2006 Jul;7(3):355-73
17167789 - Ann Neurol. 2007 Feb;61(2):120-9
16740756 - Clin Cancer Res. 2006 Jun 1;12(11 Pt 1):3344-54
21908865 - Brief Bioinform. 2012 May;13(3):292-304
17447158 - Mol Divers. 2007 Feb;11(1):23-36
20187966 - BMC Bioinformatics. 2010;11:110
20699326 - Hum Mol Genet. 2010 Nov 1;19(21):4286-95
11701654 - Annu Rev Genomics Hum Genet. 2001;2:343-72
References_xml – volume: 22
  start-page: 2028
  issn: 1367-4803
  issue: 16
  year: 2006
  ident: 27_22336651
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl344
– volume: 36
  start-page: 111
  year: 1974
  ident: 42_34124281
  publication-title: J ROY STAT SOC B MET
  doi: 10.1111/j.2517-6161.1974.tb00994.x
– volume: 20
  start-page: 2479
  issn: 1367-4803
  issue: 15
  year: 2004
  ident: 48_18466977
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth261
– volume: 21
  start-page: 2185
  issn: 1367-4803
  issue: 10
  year: 2005
  ident: 28_18862322
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti365
– volume: 20
  start-page: 273
  issn: 1573-0565
  year: 1995
  ident: 10_37294679
– volume: 11
  start-page: 23
  issn: 1381-1991
  issue: 1
  year: 2007
  ident: 65_28416692
  publication-title: Molecular diversity
  doi: 10.1007/s11030-006-9054-0
– volume: 6
  start-page: 70
  issn: 1476-4598
  year: 2007
  ident: 61_29800085
  publication-title: Molecular cancer [electronic resource]
  doi: 10.1186/1476-4598-6-70
– volume: 8
  start-page: 25
  issn: 1471-2105
  year: 2007
  ident: 104_23573451
  publication-title: BMC bioinformatics [electronic resource]
  doi: 10.1186/1471-2105-8-25
– volume: 6
  start-page: e24973
  issn: 1932-6203
  issue: 9
  year: 2011
  ident: 33_40923261
  doi: 10.1371/journal.pone.0024973
– volume: 44
  start-page: 654
  issn: 1359-5113
  year: 2009
  ident: 97_43070235
  doi: 10.1016/j.procbio.2009.02.007
– volume: 100
  start-page: 9608
  issn: 0027-8424
  issue: 16
  year: 2003
  ident: 70_19683031
  publication-title: PNAS
  doi: 10.1073/pnas.1632587100
– volume: 19
  start-page: 1484
  issn: 1367-4803
  issue: 12
  year: 2003
  ident: 31_17762225
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg182
– volume: 10
  start-page: 1
  issn: 1544-6115
  year: 2011
  ident: 40_41492176
– volume: 12
  start-page: 369
  issn: 1467-5463
  issue: 4
  year: 2011
  ident: 110_39719712
  publication-title: Briefings in Bioinformatics
  doi: 10.1093/bib/bbr016
– volume: 44
  start-page: 330
  issn: 0031-3203
  year: 2011
  ident: 7_43070212
  doi: 10.1016/j.patcog.2010.08.011
– volume: 500
  start-page: 490
  issn: 1367-4803
  year: 2006
  ident: 29_43070221
  publication-title: Bioinformatics
– volume: 26
  start-page: 831
  issn: 1367-4803
  issue: 6
  year: 2010
  ident: 111_36545320
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq038
– volume: 11
  start-page: 110
  issn: 1471-2105
  year: 2010
  ident: 109_36740325
  publication-title: BMC bioinformatics [electronic resource]
  doi: 10.1186/1471-2105-11-110
– volume: 25
  start-page: 1884
  issn: 1367-4803
  issue: 15
  year: 2009
  ident: 108_34898951
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp331
– volume: 11
  start-page: 1146
  issn: 1078-0432
  issue: 3
  year: 2005
  ident: 49_18689923
  publication-title: Clinical Cancer Research
  doi: 10.1158/1078-0432.1146.11.3
– volume: 39
  start-page: D561
  issn: 0305-1048
  issue: suppl_1
  year: 2011
  ident: 114_38471845
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkq973
– volume: 45
  start-page: 5
  issn: 1573-0565
  year: 2001
  ident: 8_36666274
  doi: 10.1023/A:1010933404324
– volume: 19
  start-page: 4286
  issn: 0964-6906
  issue: 21
  year: 2010
  ident: 50_37877436
  publication-title: Human Molecular Genetics
  doi: 10.1093/hmg/ddq328
– volume: 7
  start-page: S56
  issn: 1548-7091
  issue: 3 Suppl
  year: 2010
  ident: 5_36843865
  doi: 10.1038/nmeth.1436
– volume: 35
  start-page: W339
  issn: 0305-1048
  issue: suppl_2
  year: 2007
  ident: 26_28815361
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkm368
– volume: 2
  start-page: 18
  year: 2002
  ident: 44_28508494
  publication-title: R NEWS
– volume: 6
  start-page: 6416
  issn: 1615-9853
  issue: 24
  year: 2006
  ident: 68_23291005
  publication-title: Proteomics
  doi: 10.1002/pmic.200600335
– volume: 3
  start-page: S64
  issn: 1753-6561
  year: 2009
  ident: 98_39556149
  doi: 10.1186/1753-6561-3-s7-s64
– volume: 387
  start-page: 1040
  issn: 0022-2836
  issue: 4
  year: 2009
  ident: 89_34130103
  publication-title: Journal of molecular biology
  doi: 10.1016/j.jmb.2009.02.023
– volume: 12
  start-page: 821
  issn: 1471-0056
  issue: 12
  year: 2011
  ident: 4_41155755
  publication-title: Nature reviews. Genetics
  doi: 10.1038/nrg3096
– volume: 61
  start-page: 120
  issn: 0364-5134
  issue: 2
  year: 2007
  ident: 67_23713038
  publication-title: Annals of neurology
  doi: 10.1002/ana.21038
– volume: 27
  start-page: 190
  issn: 1087-0156
  issue: 2
  year: 2009
  ident: 36_33702972
  publication-title: Nature biotechnology
  doi: 10.1038/nbt.1524
– volume: 10
  start-page: 130
  issn: 1471-2105
  year: 2009
  ident: 47_34774689
  publication-title: BMC bioinformatics [electronic resource]
  doi: 10.1186/1471-2105-10-130
– volume: 13
  start-page: 807
  issn: 1061-8600
  year: 2004
  ident: 113_43070238
  doi: 10.1198/106186004X11417
– volume: 323
  start-page: 533
  issn: 1476-4687
  year: 1986
  ident: 13_28265676
  publication-title: Nature; Physical Science (London)
  doi: 10.1038/323533a0
– volume: 9
  start-page: 307
  issn: 1471-2105
  year: 2008
  ident: 105_31532889
  publication-title: BMC bioinformatics [electronic resource]
  doi: 10.1186/1471-2105-9-307
– volume: 18
  start-page: 547
  issn: 0893-3952
  issue: 4
  year: 2005
  ident: 91_18747218
  publication-title: Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc
  doi: 10.1038/modpathol.3800322
– volume: 11
  start-page: 485
  year: 1982
  ident: 16_43070215
  publication-title: COMMUN STAT THEORY
  doi: 10.1080/03610928208828251
– volume: 295
  start-page: 1662
  issn: 0036-8075
  issue: 5560
  year: 2002
  ident: 2_16939205
  publication-title: Science
  doi: 10.1126/science.1069492
– volume: 336
  start-page: 115
  issn: 0022-2836
  issue: 1
  year: 2004
  ident: 38_18010932
  publication-title: Journal of molecular biology
  doi: 10.1016/j.jmb.2003.11.053
– volume: 63
  start-page: 892
  issn: 0887-3585
  issue: 4
  year: 2006
  ident: 88_22142745
  publication-title: Proteins
  doi: 10.1002/prot.20897
– volume: 11
  start-page: R30
  issn: 1465-6906
  issue: 3
  year: 2010
  ident: 82_36831542
  publication-title: Genome biology
  doi: 10.1186/gb-2010-11-3-r30
– volume: 2
  start-page: 381
  issn: 1938-7989
  issue: 3
  year: 2009
  ident: 102_36659873
  doi: 10.4310/SII.2009.v2.n3.a11
– volume: 39
  start-page: 2492
  issn: 0305-1048
  issue: 7
  year: 2011
  ident: 59_38692063
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkq1081
– volume: 24
  start-page: 503
  issn: 0269-9370
  issue: 4
  year: 2010
  ident: 63_36346673
  publication-title: AIDS (London, England)
  doi: 10.1097/QAD.0b013e32833677ac
– volume: 7
  start-page: 86
  issn: 1467-5463
  issue: 1
  year: 2006
  ident: 6_22510525
  publication-title: Briefings in Bioinformatics
  doi: 10.1093/bib/bbk007
– volume: 35
  start-page: 131
  issn: 1476-9271
  issue: 3
  year: 2011
  ident: 57_40220225
  publication-title: Computational biology and chemistry
  doi: 10.1016/j.compbiolchem.2011.04.009
– volume: 39
  start-page: e62
  issn: 0305-1048
  issue: 9
  year: 2011
  ident: 60_39214455
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkr064
– volume: 158
  start-page: 696
  issn: 1350-0872
  issue: Pt_3
  year: 2012
  ident: 72_41427752
  publication-title: Microbiology
  doi: 10.1099/mic.0.055434-0
– volume: 13
  start-page: 292
  issn: 1467-5463
  issue: 3
  year: 2012
  ident: 100_40737520
  publication-title: Briefings in Bioinformatics
  doi: 10.1093/bib/bbr053
– volume: 19
  start-page: 368
  year: 1984
  ident: 21_43070219
  publication-title: THE WADSWORTH STATISTICS PROBABILITY SERIES
– volume: 3
  start-page: e116
  issn: 1553-734X
  issue: 6
  year: 2007
  ident: 23_28993313
  doi: 10.1371/journal.pcbi.0030116
– volume: 18
  start-page: 1127
  issn: 1018-4813
  issue: 10
  year: 2010
  ident: 54_37281192
  publication-title: European journal of human genetics : EJHG
  doi: 10.1038/ejhg.2010.48
– volume: 12
  start-page: 14
  issn: 1471-2105
  year: 2011
  ident: 84_39106602
  publication-title: BMC bioinformatics [electronic resource]
  doi: 10.1186/1471-2105-12-14
– volume: 1
  start-page: 153
  issn: 1474-1776
  issue: 2
  year: 2002
  ident: 37_17149058
  publication-title: Nature reviews. Drug discovery
  doi: 10.1038/nrd728
– volume: 11
  start-page: 37
  issn: 1471-2105
  year: 2010
  ident: 81_36502821
  publication-title: BMC bioinformatics [electronic resource]
  doi: 10.1186/1471-2105-11-37
– volume: 10
  start-page: 293
  issn: 1471-2180
  year: 2010
  ident: 62_38655477
  publication-title: BMC Microbiology
  doi: 10.1186/1471-2180-10-293
– volume: 7
  start-page: 179
  issn: 0003-4800
  year: 1936
  ident: 18_43070217
  publication-title: Annals of human genetics
  doi: 10.1111/j.1469-1809.1936.tb02137.x
– volume: 10
  start-page: 8
  issn: 1471-2105
  year: 2009
  ident: 80_33516073
  publication-title: BMC bioinformatics [electronic resource]
  doi: 10.1186/1471-2105-10-8
– volume: 15
  start-page: 651
  issn: 1061-8600
  year: 2006
  ident: 107_35286264
  doi: 10.1198/106186006X133933
– volume: 12
  start-page: 391
  issn: 1471-2105
  year: 2011
  ident: 75_40976604
  publication-title: BMC bioinformatics [electronic resource]
  doi: 10.1186/1471-2105-12-391
– volume: 7
  start-page: 3
  issn: 1471-2105
  year: 2006
  ident: 25_21610562
  publication-title: BMC bioinformatics [electronic resource]
  doi: 10.1186/1471-2105-7-3
– volume: 78
  start-page: 365
  issn: 0887-3585
  issue: 2
  year: 2010
  ident: 90_35522897
  publication-title: Proteins
  doi: 10.1002/prot.22555
– volume: 29
  start-page: 131
  issn: 1573-0565
  year: 1997
  ident: 14_38631602
  doi: 10.1023/A:1007465528199
– volume: 69
  start-page: 227
  issn: 0008-5472
  issue: 1
  year: 2009
  ident: 53_33009187
  publication-title: Cancer Research
  doi: 10.1158/0008-5472.CAN-08-2586
– volume: 28
  start-page: 171
  issn: 0741-0395
  issue: 2
  year: 2005
  ident: 32_18614170
  publication-title: Genetic epidemiology
  doi: 10.1002/gepi.20041
– volume: 5
  start-page: 115
  issn: 0007-4985
  year: 1943
  ident: 11_24895411
  publication-title: The Bulletin of mathematical biophysics
  doi: 10.1007/BF02478259
– volume: 5
  start-page: e10632
  issn: 1932-6203
  issue: 5
  year: 2010
  ident: 58_37355639
  doi: 10.1371/journal.pone.0010632
– volume: 11
  start-page: 299
  issn: 1471-2164
  year: 2010
  ident: 87_37280817
  publication-title: BMC genomics [electronic resource]
  doi: 10.1186/1471-2164-11-299
– volume: 32
  start-page: 163
  issn: 1618-0984
  issue: 3
  year: 2009
  ident: 92_34139784
  publication-title: Systematic and Applied Microbiology
  doi: 10.1016/j.syapm.2009.01.003
– volume: 26
  start-page: 1752
  issn: 1367-4803
  issue: 14
  year: 2010
  ident: 46_37353835
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq257
– volume: 84
  start-page: 165
  issn: 0162-1459
  year: 1989
  ident: 19_25671495
  doi: 10.1080/01621459.1989.10478752
– volume: 5
  start-page: 154
  issn: 1471-2105
  year: 2004
  ident: 85_18529905
  publication-title: BMC bioinformatics [electronic resource]
  doi: 10.1186/1471-2105-5-154
– volume: 12
  start-page: R50
  issn: 1465-6906
  issue: 5
  year: 2011
  ident: 51_40039037
  publication-title: Genome biology
  doi: 10.1186/gb-2011-12-5-r50
– volume: Vol. 3201
  start-page: 359
  year: 2004
  ident: 101_43076488
  publication-title: MACHINE LEARNING ECML PROCEEDINGS
– volume: 26
  start-page: 721
  issn: 1081-0706
  year: 2010
  ident: 3_37595632
  publication-title: Annual review of cell and developmental biology
  doi: 10.1146/annurev-cellbio-100109-104122
– volume: 39
  start-page: 425
  issn: 0010-4825
  issue: 5
  year: 2009
  ident: 95_34668398
  publication-title: Computers in biology and medicine
  doi: 10.1016/j.compbiomed.2009.02.002
– volume: 27
  start-page: 1929
  issn: 1367-4803
  issue: 14
  year: 2011
  ident: 55_40084240
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr316
– volume: 473
  start-page: 174
  issn: 1476-4687
  issue: 7346
  year: 2011
  ident: 35_39778321
  publication-title: Nature; Physical Science (London)
  doi: 10.1038/nature09944
– volume: 42
  start-page: 1
  issn: 1532-0464
  issue: 1
  year: 2009
  ident: 94_31532623
  publication-title: Journal of biomedical informatics
  doi: 10.1016/j.jbi.2008.06.002
– volume: 47
  start-page: 217
  issn: 0268-3369
  issue: 2
  year: 2012
  ident: 86_39581697
  publication-title: Bone marrow transplantation
  doi: 10.1038/bmt.2011.56
– volume: 6
  start-page: e19624
  issn: 1932-6203
  issue: 5
  year: 2011
  ident: 66_39990181
  doi: 10.1371/journal.pone.0019624
– volume: 119
  start-page: 2642
  issn: 0020-7136
  issue: 11
  year: 2006
  ident: 69_22887895
  publication-title: International journal of cancer. Journal international du cancer
  doi: 10.1002/ijc.22238
– volume: 99
  start-page: 323
  issn: 0888-7543
  issue: 6
  year: 2012
  ident: 39_42488618
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2012.04.003
– volume: 2
  start-page: 343
  issn: 1527-8204
  issue: 1
  year: 2001
  ident: 1_11393701
  publication-title: Annual review of genomics and human genetics
  doi: 10.1146/annurev.genom.2.1.343
– volume: 48
  start-page: 6821
  issn: 0022-2623
  issue: 22
  year: 2005
  ident: 93_19502976
  publication-title: Journal of medicinal chemistry
  doi: 10.1021/jm0493360
– volume: 6
  start-page: e14681
  issn: 1932-6203
  issue: 2
  year: 2011
  ident: 76_39362292
  doi: 10.1371/journal.pone.0014681
– volume: 65
  start-page: 386
  issn: 0033-295X
  issue: 6
  year: 1958
  ident: 12_3543362
  publication-title: Psychological review
  doi: 10.1037/h0042519
– volume: 12
  start-page: 3344
  issn: 1078-0432
  issue: 11
  year: 2006
  ident: 71_22163414
  publication-title: Clinical Cancer Research
  doi: 10.1158/1078-0432.CCR-05-2336
– volume: 15
  start-page: 2811
  issn: 1068-9265
  issue: 10
  year: 2008
  ident: 96_31458663
  publication-title: Annals of Surgical Oncology
  doi: 10.1245/s10434-008-0034-8
– volume: 7
  start-page: 355
  issn: 1465-4644
  issue: 3
  year: 2006
  ident: 106_21143561
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxj011
– volume: 49
  start-page: 8
  year: 1961
  ident: 15_42988341
  publication-title: PROC IRE
  doi: 10.1109/JRPROC.1961.287775
– volume: 8
  start-page: 1580
  year: 2011
  ident: 52_43070227
  publication-title: IEEEACM TRANS COMPUT BIOL BIOINF
  doi: 10.1109/TCBB.2011.46
– volume: 9
  start-page: 319
  issn: 1471-2105
  year: 2008
  ident: 24_31590402
  publication-title: BMC bioinformatics [electronic resource]
  doi: 10.1186/1471-2105-9-319
– volume: 26
  start-page: 445
  issn: 1367-4803
  issue: 4
  year: 2010
  ident: 34_36294175
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp713
– volume: 6
  start-page: e1000743
  issn: 1553-734X
  issue: 4
  year: 2010
  ident: 79_37172664
  doi: 10.1371/journal.pcbi.1000743
– volume: 29
  start-page: 1189
  issn: 0090-5364
  year: 2001
  ident: 112_34095002
  doi: 10.1214/aos/1013203450
– volume: 27
  start-page: 220
  issn: 1367-4803
  issue: 2
  year: 2011
  ident: 73_38788852
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq628
– volume: 13
  start-page: 170
  issn: 1471-2164
  year: 2012
  ident: 43_42535230
  publication-title: BMC genomics [electronic resource]
  doi: 10.1186/1471-2164-13-170
– volume: 25
  start-page: 585
  issn: 1367-4803
  issue: 5
  year: 2009
  ident: 78_33539485
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp039
– volume: 10
  start-page: 312
  issn: 1471-2105
  year: 2009
  ident: 77_35663473
  publication-title: BMC bioinformatics [electronic resource]
  doi: 10.1186/1471-2105-10-312
– volume: 5
  start-page: 32
  issn: 1471-2156
  year: 2004
  ident: 56_18637098
  publication-title: BMC genetics [electronic resource]
  doi: 10.1186/1471-2156-5-32
– volume: 57
  start-page: 238
  year: 1989
  ident: 17_43070216
  publication-title: INT STAT REV
  doi: 10.2307/1403797
– reference: 21498552 - Brief Bioinform. 2011 Jul;12(4):369-73
– reference: 21383421 - IEEE/ACM Trans Comput Biol Bioinform. 2011 Nov-Dec;8(6):1580-91
– reference: 20505004 - Bioinformatics. 2010 Jul 15;26(14):1752-8
– reference: 21602927 - PLoS One. 2011;6(5):e19624
– reference: 19386299 - Comput Biol Med. 2009 May;39(5):425-32
– reference: 20089140 - BMC Bioinformatics. 2010;11:37
– reference: 21908865 - Brief Bioinform. 2012 May;13(3):292-304
– reference: 19128505 - BMC Bioinformatics. 2009;10:8
– reference: 16398926 - BMC Bioinformatics. 2006;7:3
– reference: 16450363 - Proteins. 2006 May 15;63(3):490-500
– reference: 16477622 - Proteins. 2006 Jun 1;63(4):892-906
– reference: 2185863 - Bull Math Biol. 1990;52(1-2):99-115; discussion 73-97
– reference: 18647401 - BMC Bioinformatics. 2008;9:319
– reference: 15593090 - Genet Epidemiol. 2005 Feb;28(2):171-82
– reference: 11701654 - Annu Rev Genomics Hum Genet. 2001;2:343-72
– reference: 20459862 - BMC Genomics. 2010;11:299
– reference: 21358821 - PLoS One. 2011;6(2):e14681
– reference: 13602029 - Psychol Rev. 1958 Nov;65(6):386-408
– reference: 21045058 - Nucleic Acids Res. 2011 Jan;39(Database issue):D561-8
– reference: 20165560 - Stat Interface. 2009 Jan 1;2(3):381
– reference: 21969867 - PLoS One. 2011;6(9):e24973
– reference: 16809386 - Bioinformatics. 2006 Aug 15;22(16):2028-36
– reference: 16740756 - Clin Cancer Res. 2006 Jun 1;12(11 Pt 1):3344-54
– reference: 21109530 - Nucleic Acids Res. 2011 Apr;39(7):2492-502
– reference: 21080958 - BMC Microbiol. 2010;10:293
– reference: 22095227 - Br J Cancer. 2012 Jan 3;106(1):126-32
– reference: 16250641 - J Med Chem. 2005 Nov 3;48(22):6821-31
– reference: 20195258 - Nat Methods. 2010 Mar;7(3 Suppl):S56-68
– reference: 19778442 - BMC Bioinformatics. 2009;10:312
– reference: 20419152 - PLoS Comput Biol. 2010 Apr;6(4):e1000743
– reference: 19237256 - Syst Appl Microbiol. 2009 May;32(3):163-76
– reference: 17553836 - Nucleic Acids Res. 2007 Jul;35(Web Server issue):W339-44
– reference: 21653513 - Bioinformatics. 2011 Jul 15;27(14):1929-33
– reference: 22016406 - Bioinformatics. 2011 Dec 15;27(24):3379-84
– reference: 15746281 - Bioinformatics. 2005 May 15;21(10):2185-90
– reference: 22048662 - Nat Rev Genet. 2011 Dec;12(12):821-32
– reference: 12912828 - Bioinformatics. 2003 Aug 12;19(12):1484-91
– reference: 15588316 - BMC Genet. 2004;5:32
– reference: 17167789 - Ann Neurol. 2007 Feb;61(2):120-9
– reference: 20053841 - Bioinformatics. 2010 Feb 15;26(4):445-55
– reference: 12120097 - Nat Rev Drug Discov. 2002 Feb;1(2):153-61
– reference: 21704258 - Comput Biol Chem. 2011 Jun;35(3):131-6
– reference: 12869696 - Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9608-13
– reference: 16761367 - Brief Bioinform. 2006 Mar;7(1):86-112
– reference: 15529185 - Mod Pathol. 2005 Apr;18(4):547-57
– reference: 21441965 - Bone Marrow Transplant. 2012 Feb;47(2):217-26
– reference: 22174379 - Microbiology. 2012 Mar;158(Pt 3):696-707
– reference: 17967182 - Mol Cancer. 2007;6:70
– reference: 20498715 - PLoS One. 2010;5(5):e10632
– reference: 20187966 - BMC Bioinformatics. 2010;11:110
– reference: 19153136 - Bioinformatics. 2009 Mar 1;25(5):585-91
– reference: 16991122 - Int J Cancer. 2006 Dec 1;119(11):2642-50
– reference: 18620558 - BMC Bioinformatics. 2008;9:307
– reference: 20226027 - Genome Biol. 2010;11(3):R30
– reference: 19416535 - BMC Bioinformatics. 2009;10:130
– reference: 21317188 - Nucleic Acids Res. 2011 May;39(9):e62
– reference: 18612701 - Ann Surg Oncol. 2008 Oct;15(10):2811-26
– reference: 20018058 - BMC Proc. 2009 Dec 15;3 Suppl 7:S64
– reference: 19722269 - Proteins. 2010 Feb 1;78(2):365-80
– reference: 15073010 - Bioinformatics. 2004 Oct 12;20(15):2479-81
– reference: 15491499 - BMC Bioinformatics. 2004 Oct 18;5:154
– reference: 17447158 - Mol Divers. 2007 Feb;11(1):23-36
– reference: 21223604 - BMC Bioinformatics. 2011;12:14
– reference: 22889876 - Stat Appl Genet Mol Biol. 2011;10(1):32
– reference: 19118007 - Cancer Res. 2009 Jan 1;69(1):227-34
– reference: 21624126 - Genome Biol. 2011;12(5):R50
– reference: 20699326 - Hum Mol Genet. 2010 Nov 1;19(21):4286-95
– reference: 17254353 - BMC Bioinformatics. 2007;8:25
– reference: 17109381 - Proteomics. 2006 Dec;6(24):6416-25
– reference: 17604446 - PLoS Comput Biol. 2007 Jun;3(6):e116
– reference: 22546560 - Genomics. 2012 Jun;99(6):323-9
– reference: 21134890 - Bioinformatics. 2011 Jan 15;27(2):220-4
– reference: 16344280 - Biostatistics. 2006 Jul;7(3):355-73
– reference: 20130032 - Bioinformatics. 2010 Mar 15;26(6):831-7
– reference: 20051805 - AIDS. 2010 Feb 20;24(4):503-14
– reference: 18620077 - J Biomed Inform. 2009 Feb;42(1):1-10
– reference: 14741208 - J Mol Biol. 2004 Feb 6;336(1):115-30
– reference: 20461113 - Eur J Hum Genet. 2010 Oct;18(10):1127-32
– reference: 21508958 - Nature. 2011 May 12;473(7346):174-80
– reference: 19460890 - Bioinformatics. 2009 Aug 1;25(15):1884-90
– reference: 15709182 - Clin Cancer Res. 2005 Feb 1;11(3):1146-53
– reference: 19233205 - J Mol Biol. 2009 Apr 10;387(4):1040-53
– reference: 24723569 - Brief Bioinform. 2015 Mar;16(2):338-45
– reference: 20604711 - Annu Rev Cell Dev Biol. 2010;26:721-44
– reference: 11872829 - Science. 2002 Mar 1;295(5560):1662-4
– reference: 22559291 - BMC Genomics. 2012;13:170
– reference: 21982331 - BMC Bioinformatics. 2011;12:391
– reference: 19169245 - Nat Biotechnol. 2009 Feb;27(2):190-8
SSID ssj0020781
Score 2.5021145
Snippet In the Life Sciences 'omics' data is increasingly generated by different high-throughput technologies. Often only the integration of these data allows...
In the Life Sciences ‘omics’ data is increasingly generated by different high-throughput technologies. Often only the integration of these data allows...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 315
SubjectTerms Algorithms
Biological Science Disciplines
Cancer
Classification
Data Mining
Humans
Integration
Life sciences
Neoplasms - genetics
Polymorphism, Single Nucleotide
Title Data mining in the Life Sciences with Random Forest: a walk in the park or lost in the jungle?
URI https://www.ncbi.nlm.nih.gov/pubmed/22786785
https://www.proquest.com/docview/1356021542
https://www.proquest.com/docview/1354790733
https://www.proquest.com/docview/1367490907
https://pubmed.ncbi.nlm.nih.gov/PMC3659301
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKEBIvaNzDBjKCF1SlS-IkbnhB3Cc0MWnqRJ-I7CQWWbtkapOh8cwP55zYydJ2QoMXq3KOqyTn87k450LIS6YYk2Pl2sJLwEERobIFaCWbZ4q5YZZ5UdpE-X4N94_9L9NgOhj87kUt1ZUcJb-uzCv5H67CHPAVs2T_gbPdn8IE_Ab-wggchvFaPP4gKjE8bVo8tPGKB7nK2g1rMteORJGWp0NswrmsdHLzTzGftSvOxGKGUenzclm1cycgAubZWtDfO_CqVdPlE6hkXpqaq1UvXn5S1s2nom-j4efR5SHpxYkoyvMGMKPhUXfh8BzVgu7RdtAjT2Z1f86cSbi9CEAjRlH8YqF9rWXMHOfgreqS0Z3s9XsYYz1BynSSp9HJTGfVb4h7XQpL5hJHuXTMuehKVe01bdfFIOqv7yyG1bFee4Pc9MDZwAYgk8Np57ZjOSSdo6afqS1yG7E9WLun166aNRu-ynrIbc-GmWyTO8b5oG81ku6SQVbcI7d0O9KL--Q74olqPNG8oIAEiniiLZ4o4olqPFGNp9dUUERTS49oouWCIpraOY2mNw_I8aePk_f7tum_YScsjCrbV4nwlXRdpcDPBlNegPOJHqmUQZQI4bjSUyxJIi6ko7jH0nEEFnnKeaASDrrjIdkqyiJ7TKhIlSMcTzoSzFefj4XKeKjYOPV5pCRTFnnVvr44McXpsUfKPN5kk0VedLRnuiTLlVS7LRdis2WXscvAwAcj1_cs8ry7DAIVv5KJIivrhgZuCnuZ_o0m5H7kAJVFHmnGdreCueVgAQYW4Sss7wiwoPvqlSL_0RR2Z2EQgcJ9cq0H3CG3L7feLtmqFnX2FAzkSj5r8PsHRTC9Mg
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+mining+in+the+Life+Sciences+with+Random+Forest%3A+a+walk+in+the+park+or+lost+in+the+jungle%3F&rft.jtitle=Briefings+in+bioinformatics&rft.au=Touw%2C+W.+G.&rft.au=Bayjanov%2C+J.+R.&rft.au=Overmars%2C+L.&rft.au=Backus%2C+L.&rft.date=2013-05-01&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=14&rft.issue=3&rft.spage=315&rft.epage=326&rft_id=info:doi/10.1093%2Fbib%2Fbbs034&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_bib_bbs034
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon