Financial time series forecasting model based on CEEMDAN and LSTM
In order to improve the accuracy of the stock market prices forecasting, two hybrid forecasting models are proposed in this paper which combine the two kinds of empirical mode decomposition (EMD) with the long short-term memory (LSTM). The financial time series is a kind of non-linear and non-statio...
Saved in:
Published in | Physica A Vol. 519; pp. 127 - 139 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.04.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In order to improve the accuracy of the stock market prices forecasting, two hybrid forecasting models are proposed in this paper which combine the two kinds of empirical mode decomposition (EMD) with the long short-term memory (LSTM). The financial time series is a kind of non-linear and non-stationary random signal, which can be decomposed into several intrinsic mode functions of different time scales by the original EMD and the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN). To ensure the effect of historical data onto the prediction result, the LSTM prediction models are established for all each characteristic series from EMD and CEEMDAN deposition. The final prediction results are obtained by reconstructing each prediction series. The forecasting performance of the proposed models is verified by linear regression analysis of the major global stock market indices. Compared with single LSTM model, support vector machine (SVM), multi-layer perceptron (MLP) and other hybrid models, the experimental results show that the proposed models display a better performance in one-step-ahead forecasting of financial time series.
•A new hybrid time series forecasting method is established by combining EMD and CEEMDAN algorithm with LSTM neural network.•The forecasting efficiency of financial time series is improved by the model.•The forecasting results of the proposed model are more accurate than other similar models. |
---|---|
AbstractList | In order to improve the accuracy of the stock market prices forecasting, two hybrid forecasting models are proposed in this paper which combine the two kinds of empirical mode decomposition (EMD) with the long short-term memory (LSTM). The financial time series is a kind of non-linear and non-stationary random signal, which can be decomposed into several intrinsic mode functions of different time scales by the original EMD and the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN). To ensure the effect of historical data onto the prediction result, the LSTM prediction models are established for all each characteristic series from EMD and CEEMDAN deposition. The final prediction results are obtained by reconstructing each prediction series. The forecasting performance of the proposed models is verified by linear regression analysis of the major global stock market indices. Compared with single LSTM model, support vector machine (SVM), multi-layer perceptron (MLP) and other hybrid models, the experimental results show that the proposed models display a better performance in one-step-ahead forecasting of financial time series.
•A new hybrid time series forecasting method is established by combining EMD and CEEMDAN algorithm with LSTM neural network.•The forecasting efficiency of financial time series is improved by the model.•The forecasting results of the proposed model are more accurate than other similar models. |
Author | Li, Zhi Li, Jian Cao, Jian |
Author_xml | – sequence: 1 givenname: Jian surname: Cao fullname: Cao, Jian – sequence: 2 givenname: Zhi surname: Li fullname: Li, Zhi email: lizhi@scu.edu.cn – sequence: 3 givenname: Jian surname: Li fullname: Li, Jian |
BookMark | eNqF0LFOwzAQgGELFYm28AQsfoEEX5w4ycBQlRaQWhjobl3tC7hKncqOkPr2pJSJAaZb7j_pvgkb-c4TY7cgUhCg7nbp4eMYMc0EVClAKhRcsDFUpUwygHrExkKWVZLLEq7YJMadEAJKmY3ZbOk8euOw5b3bE48UHEXedIEMxt75d77vLLV8i5Es7zyfLxbrh9kLR2_56m2zvmaXDbaRbn7mlG2Wi838KVm9Pj7PZ6vESFX3Sa4oF6KSlOV5bk2ZqUZZqAqBJLEWJSjYVrYwiraABjCXBTaFHZYsqUrIKavPZ03oYgzUaON67F3n-4Cu1SD0iULv9DeFPlFoAD1QDK381R6C22M4_lPdnysavvp0FHQ0jrwh6wacXtvO_dl_AYfVeng |
CitedBy_id | crossref_primary_10_1016_j_energy_2020_117756 crossref_primary_10_1016_j_eswa_2020_114332 crossref_primary_10_3390_en13071543 crossref_primary_10_1111_exsy_13772 crossref_primary_10_1016_j_asoc_2024_111365 crossref_primary_10_1115_1_4051115 crossref_primary_10_1016_j_neucom_2024_128389 crossref_primary_10_3390_math11041054 crossref_primary_10_1016_j_engappai_2022_104908 crossref_primary_10_1007_s10614_025_10861_z crossref_primary_10_1007_s10614_023_10354_x crossref_primary_10_1080_0951192X_2021_1963477 crossref_primary_10_1007_s10706_024_03062_2 crossref_primary_10_1002_for_3190 crossref_primary_10_3233_MGS_221511 crossref_primary_10_1016_j_jclepro_2021_128024 crossref_primary_10_1016_j_eswa_2023_121968 crossref_primary_10_1109_ACCESS_2020_2995044 crossref_primary_10_1038_s41598_023_50783_0 crossref_primary_10_3390_e23101309 crossref_primary_10_47933_ijeir_1334065 crossref_primary_10_1016_j_conbuildmat_2023_132596 crossref_primary_10_1007_s11042_023_17620_y crossref_primary_10_1007_s10614_024_10831_x crossref_primary_10_1016_j_eswa_2024_125464 crossref_primary_10_1002_for_3082 crossref_primary_10_1155_2020_5761642 crossref_primary_10_3390_fermentation10120660 crossref_primary_10_1007_s10660_019_09380_5 crossref_primary_10_1049_iet_ipr_2019_1416 crossref_primary_10_1007_s10614_025_10917_0 crossref_primary_10_3389_fenvs_2023_1336867 crossref_primary_10_1016_j_eswa_2023_119617 crossref_primary_10_1016_j_eswa_2022_119336 crossref_primary_10_3390_math10173188 crossref_primary_10_1142_S0219477523400060 crossref_primary_10_1016_j_sysarc_2024_103181 crossref_primary_10_1109_TCSS_2022_3182375 crossref_primary_10_55654_JFS_2024_9_16_09 crossref_primary_10_1016_j_jksuci_2021_10_004 crossref_primary_10_1088_1742_6596_1948_1_012169 crossref_primary_10_1109_ACCESS_2024_3425727 crossref_primary_10_1016_j_future_2022_03_029 crossref_primary_10_1016_j_measurement_2024_115515 crossref_primary_10_3390_math11163603 crossref_primary_10_1016_j_enconman_2020_112869 crossref_primary_10_3390_app13031429 crossref_primary_10_1088_1755_1315_1124_1_012011 crossref_primary_10_3390_su132111822 crossref_primary_10_1002_for_3138 crossref_primary_10_1109_TIM_2021_3051717 crossref_primary_10_1016_j_jhtm_2021_08_022 crossref_primary_10_1007_s11277_023_10751_3 crossref_primary_10_3389_fenrg_2023_1193662 crossref_primary_10_1007_s10614_022_10310_1 crossref_primary_10_1007_s42521_024_00112_5 crossref_primary_10_1155_2020_1795486 crossref_primary_10_3390_atmos12111452 crossref_primary_10_1007_s10462_022_10352_9 crossref_primary_10_1177_09544062221092923 crossref_primary_10_47103_bilturk_1039669 crossref_primary_10_3390_app13085175 crossref_primary_10_2139_ssrn_4650761 crossref_primary_10_3390_e24081088 crossref_primary_10_1155_2022_3216036 crossref_primary_10_1109_MIM_2023_10083022 crossref_primary_10_3390_s23010170 crossref_primary_10_3390_en14196065 crossref_primary_10_1155_jpas_9464938 crossref_primary_10_1016_j_ins_2023_03_021 crossref_primary_10_1016_j_physa_2022_128369 crossref_primary_10_1016_j_eswa_2022_117194 crossref_primary_10_1088_2631_8695_ad9238 crossref_primary_10_1016_j_eswa_2020_113463 crossref_primary_10_1007_s44196_023_00309_3 crossref_primary_10_7717_peerj_cs_1852 crossref_primary_10_7717_peerj_cs_1732 crossref_primary_10_3390_s22166121 crossref_primary_10_3390_electronics13101904 crossref_primary_10_1109_TITS_2022_3166585 crossref_primary_10_1016_j_apenergy_2020_116046 crossref_primary_10_2166_wcc_2024_637 crossref_primary_10_1109_TIFS_2022_3201377 crossref_primary_10_26599_IJCS_2024_9100013 crossref_primary_10_1007_s10489_021_02385_4 crossref_primary_10_1007_s11063_022_11037_8 crossref_primary_10_1016_j_asoc_2023_110700 crossref_primary_10_1016_j_est_2022_104209 crossref_primary_10_1007_s11042_022_12772_9 crossref_primary_10_1016_j_annals_2020_102891 crossref_primary_10_1016_j_physa_2019_122025 crossref_primary_10_1109_ACCESS_2021_3067833 crossref_primary_10_1088_1361_6501_ac769d crossref_primary_10_1016_j_iref_2024_04_027 crossref_primary_10_1007_s11042_024_20531_1 crossref_primary_10_1016_j_scitotenv_2022_157542 crossref_primary_10_1016_j_future_2022_01_002 crossref_primary_10_1109_ACCESS_2021_3050165 crossref_primary_10_1177_14759217241310576 crossref_primary_10_1007_s12145_022_00873_w crossref_primary_10_1016_j_apenergy_2022_118601 crossref_primary_10_3389_fenrg_2021_793413 crossref_primary_10_1007_s11356_022_22959_0 crossref_primary_10_1016_j_eswa_2021_115537 crossref_primary_10_1108_IMDS_07_2019_0370 crossref_primary_10_1016_j_compbiomed_2023_106807 crossref_primary_10_12677_CSA_2022_124111 crossref_primary_10_1007_s10614_025_10899_z crossref_primary_10_3390_e24020146 crossref_primary_10_1016_j_compchemeng_2024_108740 crossref_primary_10_1016_j_neucom_2020_04_086 crossref_primary_10_1038_s41598_025_92262_8 crossref_primary_10_1108_K_04_2023_0637 crossref_primary_10_3390_math9212640 crossref_primary_10_1016_j_physa_2019_122272 crossref_primary_10_1007_s13132_023_01485_5 crossref_primary_10_1016_j_laa_2024_06_002 crossref_primary_10_3390_en16010003 crossref_primary_10_1002_itl2_339 crossref_primary_10_1007_s10489_024_05701_w crossref_primary_10_29130_dubited_820620 crossref_primary_10_1007_s11227_021_04013_x crossref_primary_10_1007_s10489_022_04263_z crossref_primary_10_3390_s23156778 crossref_primary_10_1016_j_physa_2019_123389 crossref_primary_10_3390_math12162434 crossref_primary_10_1016_j_apm_2023_04_028 crossref_primary_10_1109_ACCESS_2020_3041032 crossref_primary_10_1007_s11207_023_02129_2 crossref_primary_10_1515_snde_2021_0032 crossref_primary_10_3390_bioengineering10060685 crossref_primary_10_1016_j_energy_2023_129387 crossref_primary_10_3846_tede_2023_18672 crossref_primary_10_1002_cpe_7384 crossref_primary_10_1016_j_sste_2020_100372 crossref_primary_10_1177_0734242X241259643 crossref_primary_10_1007_s11227_023_05389_8 crossref_primary_10_1108_IMDS_12_2020_0704 crossref_primary_10_1007_s10489_021_02391_6 crossref_primary_10_55195_jscai_1126611 crossref_primary_10_1007_s00521_024_09698_8 crossref_primary_10_3390_app122010433 crossref_primary_10_1007_s11107_022_00964_0 crossref_primary_10_1155_2022_7871109 crossref_primary_10_1007_s10614_025_10907_2 crossref_primary_10_1016_j_asoc_2023_110522 crossref_primary_10_35234_fumbd_1406688 crossref_primary_10_1016_j_rser_2020_109856 crossref_primary_10_1016_j_ipm_2023_103328 crossref_primary_10_1007_s10614_021_10136_3 crossref_primary_10_1371_journal_pone_0268996 crossref_primary_10_3390_su15075882 crossref_primary_10_3390_s24237518 crossref_primary_10_1016_j_asoc_2022_109275 crossref_primary_10_1080_15567036_2024_2323158 crossref_primary_10_2166_ws_2022_412 crossref_primary_10_1155_2020_2518283 crossref_primary_10_1109_ACCESS_2020_3016289 crossref_primary_10_1016_j_psep_2023_06_021 crossref_primary_10_1155_2022_7068406 crossref_primary_10_1016_j_bspc_2022_104544 crossref_primary_10_1016_j_scitotenv_2021_149509 crossref_primary_10_54097_hbem_v17i_11353 crossref_primary_10_3390_su16020607 crossref_primary_10_7717_peerj_cs_1205 crossref_primary_10_1007_s10462_022_10199_0 crossref_primary_10_1007_s11063_022_11019_w crossref_primary_10_3390_su13179681 crossref_primary_10_12677_AAM_2023_129384 crossref_primary_10_1038_s41598_024_70262_4 crossref_primary_10_1155_2022_6499876 crossref_primary_10_1016_j_jrtpm_2022_100311 crossref_primary_10_1016_j_renene_2020_07_142 crossref_primary_10_1016_j_lana_2025_101010 crossref_primary_10_1007_s40745_024_00547_y crossref_primary_10_3390_computation11110218 crossref_primary_10_34104_ajeit_023_063071 crossref_primary_10_2208_journalofjsce_23_26006 crossref_primary_10_1038_s41598_025_94411_5 crossref_primary_10_1007_s44196_024_00713_3 crossref_primary_10_1016_j_eswa_2022_117736 crossref_primary_10_1007_s40314_019_1006_2 crossref_primary_10_1016_j_ins_2022_04_045 crossref_primary_10_1016_j_scitotenv_2020_143099 crossref_primary_10_7717_peerj_cs_2125 crossref_primary_10_1051_wujns_2023283223 crossref_primary_10_1016_j_neunet_2024_106776 crossref_primary_10_1177_1088467X241308796 crossref_primary_10_1016_j_eiar_2024_107612 crossref_primary_10_1016_j_engappai_2022_105663 crossref_primary_10_1016_j_epsr_2024_111307 crossref_primary_10_1007_s13042_020_01210_7 crossref_primary_10_3390_app132212268 crossref_primary_10_1002_for_2897 crossref_primary_10_1007_s12204_023_2672_1 crossref_primary_10_3390_sci7010007 crossref_primary_10_1007_s11269_022_03277_z crossref_primary_10_26745_ahbvuibfd_1191080 crossref_primary_10_1109_TIM_2023_3314830 crossref_primary_10_1016_j_egyr_2022_09_171 crossref_primary_10_3934_era_2023135 crossref_primary_10_1016_j_iimb_2023_05_002 crossref_primary_10_3390_electronics9050823 crossref_primary_10_1016_j_resourpol_2022_103109 crossref_primary_10_1109_JIOT_2024_3375855 crossref_primary_10_3390_su12062451 crossref_primary_10_1016_j_uclim_2023_101418 crossref_primary_10_1016_j_energy_2022_125278 crossref_primary_10_1007_s11869_023_01380_7 crossref_primary_10_1080_01969722_2022_2137634 crossref_primary_10_3390_fractalfract7100708 crossref_primary_10_1016_j_eswa_2023_122461 crossref_primary_10_1155_2022_1465394 crossref_primary_10_1109_ACCESS_2022_3195942 crossref_primary_10_3390_math11224630 crossref_primary_10_1007_s00500_020_04862_3 crossref_primary_10_1016_j_resourpol_2024_105040 crossref_primary_10_1080_00207543_2020_1844332 crossref_primary_10_1016_j_najef_2024_102252 crossref_primary_10_3390_su15076261 crossref_primary_10_1057_s41599_024_03885_7 crossref_primary_10_1080_18824889_2025_2455222 crossref_primary_10_1109_ACCESS_2023_3287319 crossref_primary_10_1186_s40537_021_00512_z crossref_primary_10_30736_informatika_v8i2_1049 crossref_primary_10_1155_2020_6387173 crossref_primary_10_3390_batteries10050152 crossref_primary_10_4491_eer_2024_339 crossref_primary_10_1016_j_envpol_2020_115216 crossref_primary_10_20473_vol11iss20241pp86_104 crossref_primary_10_3390_w14030300 crossref_primary_10_3390_en17174358 crossref_primary_10_1016_j_jenvman_2023_118962 crossref_primary_10_3390_en17071672 crossref_primary_10_1016_j_autcon_2023_104892 crossref_primary_10_1016_j_fuel_2021_122486 crossref_primary_10_3390_electronics12214510 crossref_primary_10_3389_fpls_2022_929140 crossref_primary_10_1002_ente_202100700 crossref_primary_10_1017_S0263574723001492 crossref_primary_10_1109_ACCESS_2020_2996981 crossref_primary_10_1007_s10489_020_01814_0 crossref_primary_10_3390_su15032340 crossref_primary_10_1109_ACCESS_2021_3077962 crossref_primary_10_1007_s13132_024_02087_5 crossref_primary_10_1016_j_oceaneng_2022_110529 crossref_primary_10_7717_peerj_cs_2164 crossref_primary_10_35551_PFQ_2023_2_7 crossref_primary_10_1016_j_irfa_2022_102202 crossref_primary_10_1108_CW_12_2023_0459 crossref_primary_10_3390_su16114693 crossref_primary_10_3390_math9080800 crossref_primary_10_1016_j_heliyon_2023_e21211 crossref_primary_10_1061__ASCE_PS_1949_1204_0000490 crossref_primary_10_5687_iscie_36_296 crossref_primary_10_1109_ACCESS_2022_3179364 crossref_primary_10_34104_ajeit_021_045056 crossref_primary_10_1016_j_asr_2022_12_054 crossref_primary_10_1080_15567036_2023_2216656 crossref_primary_10_3390_agronomy11112145 crossref_primary_10_1016_j_irfa_2024_103147 crossref_primary_10_1016_j_asoc_2022_109089 crossref_primary_10_1109_ACCESS_2021_3090834 crossref_primary_10_1142_S2424786322500141 crossref_primary_10_1007_s11207_020_01653_9 crossref_primary_10_1016_j_energy_2024_131321 crossref_primary_10_1016_j_spasta_2023_100773 crossref_primary_10_1016_j_asoc_2023_110374 crossref_primary_10_1016_j_najef_2021_101421 crossref_primary_10_1016_j_apr_2023_101879 crossref_primary_10_1007_s11071_021_06452_w crossref_primary_10_1002_for_2986 crossref_primary_10_1109_TGCN_2021_3112043 crossref_primary_10_7717_peerj_cs_1057 crossref_primary_10_1007_s00500_025_10501_6 crossref_primary_10_1016_j_jksuci_2024_102252 crossref_primary_10_3389_fenvs_2022_1014021 crossref_primary_10_1086_728699 crossref_primary_10_1016_j_cnsns_2024_108555 crossref_primary_10_1007_s11869_022_01252_6 crossref_primary_10_1080_09720529_2022_2133251 crossref_primary_10_1007_s11227_020_03503_8 crossref_primary_10_3390_math12172794 crossref_primary_10_1016_j_eswa_2021_115390 crossref_primary_10_1016_j_physd_2023_133831 crossref_primary_10_3389_fnhum_2024_1354143 crossref_primary_10_1080_02626667_2024_2374868 crossref_primary_10_1007_s10666_023_09918_w crossref_primary_10_1016_j_eswa_2024_123697 crossref_primary_10_1142_S021812662150122X crossref_primary_10_1016_j_eswa_2024_124303 crossref_primary_10_3390_math11051130 crossref_primary_10_1016_j_measurement_2022_112324 crossref_primary_10_1109_ACCESS_2020_3037681 crossref_primary_10_2478_amns_2025_0569 crossref_primary_10_3390_jmse10091270 crossref_primary_10_2139_ssrn_4577922 crossref_primary_10_3390_e26060467 crossref_primary_10_3390_jcm13071946 crossref_primary_10_1007_s11071_021_06336_z crossref_primary_10_3390_jrfm16060298 crossref_primary_10_1007_s12665_023_11072_1 crossref_primary_10_1016_j_oceaneng_2021_109066 crossref_primary_10_1007_s00530_021_00758_w crossref_primary_10_1016_j_cie_2021_107770 crossref_primary_10_3390_rs15123045 crossref_primary_10_1080_00036846_2023_2276093 crossref_primary_10_1109_ACCESS_2023_3309007 crossref_primary_10_1007_s00521_022_08160_x crossref_primary_10_1088_1361_6579_accb3a crossref_primary_10_1109_ACCESS_2020_3014690 crossref_primary_10_3390_ai4010010 crossref_primary_10_1016_j_energy_2022_123366 crossref_primary_10_1007_s11071_024_10343_1 crossref_primary_10_1109_ACCESS_2021_3114809 crossref_primary_10_1016_j_apr_2021_101252 crossref_primary_10_3390_en15218124 crossref_primary_10_3390_app12126194 crossref_primary_10_1155_2021_9488892 crossref_primary_10_3390_software3010003 crossref_primary_10_1016_j_energy_2020_118787 crossref_primary_10_1088_1742_6596_2224_1_012017 crossref_primary_10_1016_j_enbuild_2024_113977 crossref_primary_10_1002_int_22370 crossref_primary_10_1016_j_najef_2021_101466 crossref_primary_10_1016_j_scs_2020_102613 crossref_primary_10_1007_s11831_023_09970_5 crossref_primary_10_1049_ccs2_12086 crossref_primary_10_1109_ACCESS_2023_3319395 crossref_primary_10_3233_JIFS_233060 crossref_primary_10_23939_ujit2021_03_044 crossref_primary_10_1016_j_asoc_2021_107898 crossref_primary_10_1016_j_knosys_2021_107038 crossref_primary_10_29029_busbed_1391790 crossref_primary_10_1016_j_asoc_2024_112393 crossref_primary_10_1108_CFRI_12_2022_0250 crossref_primary_10_1016_j_jtte_2023_01_004 crossref_primary_10_1016_j_energy_2024_134229 crossref_primary_10_1016_j_neucom_2020_07_059 crossref_primary_10_1038_s41598_024_74503_4 crossref_primary_10_1038_s41598_025_94173_0 crossref_primary_10_1007_s00366_021_01356_0 crossref_primary_10_3390_su142315522 crossref_primary_10_1109_ACCESS_2022_3221941 crossref_primary_10_1109_ACCESS_2023_3301576 crossref_primary_10_1007_s00477_021_02100_2 crossref_primary_10_1016_j_jfds_2024_100143 crossref_primary_10_1016_j_petrol_2020_107013 crossref_primary_10_15388_batp_2020_21 crossref_primary_10_1109_ACCESS_2021_3072673 crossref_primary_10_1007_s11063_022_11046_7 crossref_primary_10_1007_s12204_021_2337_x crossref_primary_10_1016_j_buildenv_2022_109689 crossref_primary_10_1016_j_frl_2023_104515 crossref_primary_10_1155_mmce_6622761 crossref_primary_10_1016_j_renene_2021_04_010 crossref_primary_10_1016_j_jobe_2022_105031 crossref_primary_10_1109_TII_2022_3193414 crossref_primary_10_1007_s40430_022_03968_z crossref_primary_10_1016_j_eswa_2022_117123 crossref_primary_10_3390_electronics11193259 crossref_primary_10_3389_fenrg_2022_991570 crossref_primary_10_3390_fi14120353 crossref_primary_10_1038_s41598_022_17754_3 crossref_primary_10_34104_ijmms_021_074084 crossref_primary_10_1109_ACCESS_2024_3452426 crossref_primary_10_1016_j_asoc_2021_107488 crossref_primary_10_32604_cmc_2023_037293 crossref_primary_10_1002_tee_24005 crossref_primary_10_1155_2019_1576817 crossref_primary_10_1115_1_4050847 crossref_primary_10_1002_for_3201 crossref_primary_10_1364_OE_461007 crossref_primary_10_32604_cmc_2021_012302 crossref_primary_10_1016_j_asoc_2021_107699 crossref_primary_10_1016_j_fss_2023_108657 crossref_primary_10_3390_atmos14030468 crossref_primary_10_1109_ACCESS_2020_2964067 crossref_primary_10_1371_journal_pone_0262539 crossref_primary_10_46947_joaasr632024949 crossref_primary_10_1109_ACCESS_2020_2981506 crossref_primary_10_32604_sdhm_2024_052813 crossref_primary_10_1016_j_etran_2020_100078 crossref_primary_10_3390_e25010071 crossref_primary_10_1007_s00521_024_09931_4 crossref_primary_10_3389_fenvs_2022_907440 |
Cites_doi | 10.1016/j.eswa.2011.02.068 10.1109/TASLP.2015.2400218 10.1016/j.neunet.2017.03.004 10.1016/S0957-4174(00)00027-0 10.1109/ICASSP.2011.5947265 10.1162/neco.1997.9.8.1735 10.1016/j.neucom.2013.03.047 10.1016/j.asoc.2010.09.007 10.1109/72.279181 10.1016/j.jhydrol.2013.05.038 10.1257/.41.2.478 10.1007/s00521-013-1386-y 10.1142/S1793536909000047 10.1016/0169-2070(93)90079-3 10.1080/00401706.1997.10485165 10.1016/S0376-6357(96)00766-8 10.3233/IFS-130775 10.1098/rspa.1998.0193 10.1038/323533a0 10.1016/S0957-4174(01)00047-1 10.1016/j.asoc.2017.04.014 10.1016/j.asoc.2012.09.024 10.1016/S0893-6080(98)00018-5 10.1016/j.neucom.2014.12.084 10.1109/MCI.2009.932254 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. |
Copyright_xml | – notice: 2018 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.physa.2018.11.061 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1873-2119 |
EndPage | 139 |
ExternalDocumentID | 10_1016_j_physa_2018_11_061 S0378437118314985 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 7-5 71M 8P~ 9JN 9JO AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAPFB AAXUO ABAOU ABMAC ABNEU ABYKQ ACAZW ACDAQ ACFVG ACGFS ACNCT ACRLP ADBBV ADEZE ADFHU ADGUI AEBSH AEKER AEYQN AFFNX AFKWA AFTJW AGHFR AGTHC AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIIAU AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR AXLSJ BKOJK BLXMC EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IXIXF J1W K-O KOM M38 M41 MHUIS MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSB SSF SSQ SSW SSZ T5K TN5 TWZ WH7 XPP YNT ZMT ~02 ~G- 29O 5VS 6TJ AAFFL AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABJNI ABWVN ABXDB ACNNM ACROA ACRPL ADMUD ADNMO ADVLN AEIPS AFJKZ AFODL AFXIZ AGCQF AGQPQ AGRNS AIIUN AJWLA ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BEHZQ BEZPJ BGSCR BNPGV BNTGB BPUDD BULVW BZJEE CITATION FEDTE FGOYB HMV HVGLF HZ~ MVM NDZJH R2- SEW SPG SSH VOH WUQ XJT XOL YYP ZY4 |
ID | FETCH-LOGICAL-c369t-46e40083e2444dc726f6d1850ae3a907161b8d5c6eb1ac1a435af5df6dde6803 |
IEDL.DBID | .~1 |
ISSN | 0378-4371 |
IngestDate | Thu Apr 24 23:10:53 EDT 2025 Tue Jul 01 01:32:09 EDT 2025 Fri Feb 23 02:33:06 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | EMD-LSTM prediction Financial time series forecasting CEEMDAN-LSTM prediction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c369t-46e40083e2444dc726f6d1850ae3a907161b8d5c6eb1ac1a435af5df6dde6803 |
PageCount | 13 |
ParticipantIDs | crossref_citationtrail_10_1016_j_physa_2018_11_061 crossref_primary_10_1016_j_physa_2018_11_061 elsevier_sciencedirect_doi_10_1016_j_physa_2018_11_061 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-01 2019-04-00 |
PublicationDateYYYYMMDD | 2019-04-01 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Physica A |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Wang, Wang (b7) 2015; 156 Guo, Xu, Yao, Chen, Aberer, Funaya (b20) 2016 Lin, Horne, Giles (b18) 1998; 11 Shanmugam (b3) 2002; 39 Rumelhart, Hinton, Williams (b9) 1986; 323 Gal (b30) 2015 WU, E. HUANG (b24) 2005; 1 Guresen, Kayakutlu, Daim (b4) 2011; 38 Sundermeyer, Ney, Schlüter (b22) 2015; 23 Sundermeyer, Schlüter, Ney (b21) 2012 M.E. Torres, M.A. Colominas, G. Schlotthauer, P. Flandrin, A complete ensemble empirical mode decomposition with adaptive noise, in: IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 125, 2011, pp. 4144-4147. Wang, Wang, Fang, Niu (b33) 2016; 2016 Hsieh, Hsiao, Yeh (b5) 2011; 11 Adhikari, Agrawal (b12) 2014; 24 Chen, Chang, Chang (b19) 2013; 497 E.H Tay, Cao (b15) 2007; 29 Poon (b1) 2003; 41 Wang (b2) 2002; 22 Kim, Han (b6) 2000; 19 Reby, Lek, Dimopoulos, Joachim, Lauga, Aulagnier (b10) 1997; 40 Kingma, Ba (b31) 2014 Makridakis (b32) 1993; 9 Huang, Shen, Long, Wu, Shih, Zheng (b23) 1998; 454 Graves (b28) 2013 Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (b29) 2014; 15 Wang, Wang (b14) 2017; 90 Pradeepkumar, Ravi (b8) 2017; 58 Kuremoto, Kimura, Kobayashi, Obayashi (b13) 2014; 137 Sapankevych, Sankar (b16) 2009; 4 Kazem, Sharifi, Hussain, Saberi, Hussain (b17) 2013; 13 Sepp, Jürgen (b27) 1997; 9 Khashei, Bijari (b11) 2014; 26 Bengio, Simard, Frasconi (b26) 1994; 5 Wang (10.1016/j.physa.2018.11.061_b33) 2016; 2016 Pradeepkumar (10.1016/j.physa.2018.11.061_b8) 2017; 58 Kuremoto (10.1016/j.physa.2018.11.061_b13) 2014; 137 Kim (10.1016/j.physa.2018.11.061_b6) 2000; 19 Rumelhart (10.1016/j.physa.2018.11.061_b9) 1986; 323 Adhikari (10.1016/j.physa.2018.11.061_b12) 2014; 24 Gal (10.1016/j.physa.2018.11.061_b30) 2015 Kazem (10.1016/j.physa.2018.11.061_b17) 2013; 13 Kingma (10.1016/j.physa.2018.11.061_b31) 2014 Khashei (10.1016/j.physa.2018.11.061_b11) 2014; 26 WU (10.1016/j.physa.2018.11.061_b24) 2005; 1 Guo (10.1016/j.physa.2018.11.061_b20) 2016 Shanmugam (10.1016/j.physa.2018.11.061_b3) 2002; 39 Srivastava (10.1016/j.physa.2018.11.061_b29) 2014; 15 Wang (10.1016/j.physa.2018.11.061_b2) 2002; 22 Chen (10.1016/j.physa.2018.11.061_b19) 2013; 497 Makridakis (10.1016/j.physa.2018.11.061_b32) 1993; 9 Wang (10.1016/j.physa.2018.11.061_b14) 2017; 90 Sundermeyer (10.1016/j.physa.2018.11.061_b22) 2015; 23 10.1016/j.physa.2018.11.061_b25 Reby (10.1016/j.physa.2018.11.061_b10) 1997; 40 Graves (10.1016/j.physa.2018.11.061_b28) 2013 Wang (10.1016/j.physa.2018.11.061_b7) 2015; 156 Sundermeyer (10.1016/j.physa.2018.11.061_b21) 2012 Sepp (10.1016/j.physa.2018.11.061_b27) 1997; 9 Poon (10.1016/j.physa.2018.11.061_b1) 2003; 41 Guresen (10.1016/j.physa.2018.11.061_b4) 2011; 38 E.H Tay (10.1016/j.physa.2018.11.061_b15) 2007; 29 Sapankevych (10.1016/j.physa.2018.11.061_b16) 2009; 4 Lin (10.1016/j.physa.2018.11.061_b18) 1998; 11 Bengio (10.1016/j.physa.2018.11.061_b26) 1994; 5 Hsieh (10.1016/j.physa.2018.11.061_b5) 2011; 11 Huang (10.1016/j.physa.2018.11.061_b23) 1998; 454 |
References_xml | – volume: 22 start-page: 33 year: 2002 end-page: 38 ident: b2 article-title: Predicting stock price using fuzzy grey prediction system publication-title: Expert Syst. Appl. – volume: 323 start-page: 533 year: 1986 end-page: 536 ident: b9 article-title: Learning representations by back-propagating errors publication-title: Nature – volume: 11 start-page: 2510 year: 2011 end-page: 2525 ident: b5 article-title: Forecasting stock markets using wavelet transforms and recurrent neural networks: An integrated system based on artificial bee colony algorithm publication-title: Appl. Soft Comput. J. – volume: 26 start-page: 831 year: 2014 end-page: 845 ident: b11 article-title: Fuzzy artificial neural network p, d, q model for incomplete financial time series forecasting publication-title: J. Intell. Fuzzy Systems – start-page: 285 year: 2015 end-page: 290 ident: b30 article-title: A theoretically grounded application of dropout in recurrent neural networks publication-title: Statistics – volume: 24 start-page: 1441 year: 2014 end-page: 1449 ident: b12 article-title: A combination of artificial neural network and random walk models for financial time series forecasting publication-title: Neural Comput. Appl. – volume: 137 start-page: 47 year: 2014 end-page: 56 ident: b13 article-title: Time series forecasting using a deep belief network with restricted boltzmann machines publication-title: Neurocomputing – reference: M.E. Torres, M.A. Colominas, G. Schlotthauer, P. Flandrin, A complete ensemble empirical mode decomposition with adaptive noise, in: IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 125, 2011, pp. 4144-4147. – volume: 19 start-page: 125 year: 2000 end-page: 132 ident: b6 article-title: Genetic algorithms approach to feature discretization in artificial neural networks for the prediction of stock price index publication-title: Expert Syst. Appl. – volume: 156 start-page: 68 year: 2015 end-page: 78 ident: b7 article-title: Forecasting stock market indexes using principle component analysis and stochastic time effective neural networks publication-title: Neurocomputing – volume: 40 start-page: 35 year: 1997 end-page: 43 ident: b10 article-title: Artificial neural networks as a classification method in the behavioural sciences publication-title: Behav. Process. – volume: 23 start-page: 517 year: 2015 end-page: 529 ident: b22 article-title: From feedforward to recurrent lstm neural networks for language modeling publication-title: IEEE/ACM Trans. Audio Speech Lang. Process. – year: 2014 ident: b31 article-title: Adam: A method for stochastic optimization – volume: 1 start-page: 1 year: 2005 end-page: 41 ident: b24 article-title: Ensemble empirical mode decomposition: A noise-assisted data analysis method publication-title: Adv. Adapt. Data Anal. – year: 2013 ident: b28 article-title: Generating sequences with recurrent neural networks – volume: 90 start-page: 8 year: 2017 end-page: 20 ident: b14 article-title: Forecasting stochastic neural network based on financial empirical mode decomposition publication-title: Neural Netw. – volume: 39 start-page: 426 year: 2002 ident: b3 article-title: Introduction to time series and forecasting publication-title: Technometrics – volume: 58 start-page: 35 year: 2017 end-page: 52 ident: b8 article-title: Forecasting financial time series volatility using particle swarm optimization trained quantile regression neural network publication-title: Appl. Soft Comput. – volume: 5 start-page: 157 year: 1994 ident: b26 article-title: Learning long-term dependencies with gradient descent is difficult publication-title: IEEE Trans. Neural Netw. – volume: 15 start-page: 1929 year: 2014 end-page: 1958 ident: b29 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – volume: 2016 start-page: 1 year: 2016 end-page: 14 ident: b33 article-title: Financial time series prediction using elman recurrent random neural networks publication-title: Comput. Intell. Neurosci. – volume: 13 start-page: 947 year: 2013 end-page: 958 ident: b17 article-title: Support vector regression with chaos-based firefly algorithm for stock market price forecasting publication-title: Appl. Soft Comput. J. – volume: 41 start-page: 478 year: 2003 end-page: 539 ident: b1 article-title: Forecasting volatility in financial markets: A review publication-title: J. Econ. Lit. – volume: 29 start-page: 309 year: 2007 end-page: 317 ident: b15 article-title: Application of support vector machines in financial time series forecasting publication-title: J. Univ. Electron. Sci. Technol. China – volume: 38 start-page: 10389 year: 2011 end-page: 10397 ident: b4 article-title: Using artificial neural network models in stock market index prediction publication-title: Expert Syst. Appl. – volume: 11 start-page: 861 year: 1998 end-page: 868 ident: b18 article-title: How embedded memory in recurrent neural network architectures helps learning long-term temporal dependencies publication-title: Neural Netw. – volume: 9 start-page: 527 year: 1993 end-page: 529 ident: b32 article-title: Accuracy measures: Theoretical and practical concerns ✩ publication-title: Int. J. Forecast. – start-page: 816 year: 2016 end-page: 825 ident: b20 article-title: Robust online time series prediction with recurrent neural networks publication-title: IEEE International Conference on Data Science and Advanced Analytics, vol. 9 – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: b27 article-title: Long short-term memory publication-title: Neural Comput. – volume: 497 start-page: 71 year: 2013 end-page: 79 ident: b19 article-title: Reinforced recurrent neural networks for multi-step-ahead flood forecasts publication-title: J. Hydrol. – start-page: 601 year: 2012 end-page: 608 ident: b21 article-title: LSTM neural networks for language modeling publication-title: Interspeech – volume: 4 start-page: 24 year: 2009 end-page: 38 ident: b16 article-title: Time series prediciton using support vector machines: A survey publication-title: IEEE Comput. Intell. Mag. – volume: 454 start-page: 903 year: 1998 end-page: 995 ident: b23 article-title: The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc. Math. Phys. Eng. Sci. – volume: 2016 start-page: 1 issue: 12 year: 2016 ident: 10.1016/j.physa.2018.11.061_b33 article-title: Financial time series prediction using elman recurrent random neural networks publication-title: Comput. Intell. Neurosci. – volume: 38 start-page: 10389 issue: 8 year: 2011 ident: 10.1016/j.physa.2018.11.061_b4 article-title: Using artificial neural network models in stock market index prediction publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.02.068 – volume: 23 start-page: 517 issue: 3 year: 2015 ident: 10.1016/j.physa.2018.11.061_b22 article-title: From feedforward to recurrent lstm neural networks for language modeling publication-title: IEEE/ACM Trans. Audio Speech Lang. Process. doi: 10.1109/TASLP.2015.2400218 – year: 2013 ident: 10.1016/j.physa.2018.11.061_b28 – volume: 90 start-page: 8 year: 2017 ident: 10.1016/j.physa.2018.11.061_b14 article-title: Forecasting stochastic neural network based on financial empirical mode decomposition publication-title: Neural Netw. doi: 10.1016/j.neunet.2017.03.004 – volume: 19 start-page: 125 issue: 2 year: 2000 ident: 10.1016/j.physa.2018.11.061_b6 article-title: Genetic algorithms approach to feature discretization in artificial neural networks for the prediction of stock price index publication-title: Expert Syst. Appl. doi: 10.1016/S0957-4174(00)00027-0 – ident: 10.1016/j.physa.2018.11.061_b25 doi: 10.1109/ICASSP.2011.5947265 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10.1016/j.physa.2018.11.061_b27 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 137 start-page: 47 issue: 15 year: 2014 ident: 10.1016/j.physa.2018.11.061_b13 article-title: Time series forecasting using a deep belief network with restricted boltzmann machines publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.03.047 – start-page: 601 year: 2012 ident: 10.1016/j.physa.2018.11.061_b21 article-title: LSTM neural networks for language modeling – volume: 11 start-page: 2510 issue: 2 year: 2011 ident: 10.1016/j.physa.2018.11.061_b5 article-title: Forecasting stock markets using wavelet transforms and recurrent neural networks: An integrated system based on artificial bee colony algorithm publication-title: Appl. Soft Comput. J. doi: 10.1016/j.asoc.2010.09.007 – volume: 5 start-page: 157 issue: 2 year: 1994 ident: 10.1016/j.physa.2018.11.061_b26 article-title: Learning long-term dependencies with gradient descent is difficult publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.279181 – start-page: 285 year: 2015 ident: 10.1016/j.physa.2018.11.061_b30 article-title: A theoretically grounded application of dropout in recurrent neural networks publication-title: Statistics – volume: 497 start-page: 71 year: 2013 ident: 10.1016/j.physa.2018.11.061_b19 article-title: Reinforced recurrent neural networks for multi-step-ahead flood forecasts publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2013.05.038 – volume: 29 start-page: 309 issue: 4 year: 2007 ident: 10.1016/j.physa.2018.11.061_b15 article-title: Application of support vector machines in financial time series forecasting publication-title: J. Univ. Electron. Sci. Technol. China – volume: 41 start-page: 478 issue: 2 year: 2003 ident: 10.1016/j.physa.2018.11.061_b1 article-title: Forecasting volatility in financial markets: A review publication-title: J. Econ. Lit. doi: 10.1257/.41.2.478 – volume: 24 start-page: 1441 issue: 6 year: 2014 ident: 10.1016/j.physa.2018.11.061_b12 article-title: A combination of artificial neural network and random walk models for financial time series forecasting publication-title: Neural Comput. Appl. doi: 10.1007/s00521-013-1386-y – volume: 1 start-page: 1 issue: 01 year: 2005 ident: 10.1016/j.physa.2018.11.061_b24 article-title: Ensemble empirical mode decomposition: A noise-assisted data analysis method publication-title: Adv. Adapt. Data Anal. doi: 10.1142/S1793536909000047 – volume: 9 start-page: 527 issue: 4 year: 1993 ident: 10.1016/j.physa.2018.11.061_b32 article-title: Accuracy measures: Theoretical and practical concerns ✩ publication-title: Int. J. Forecast. doi: 10.1016/0169-2070(93)90079-3 – volume: 39 start-page: 426 issue: 4 year: 2002 ident: 10.1016/j.physa.2018.11.061_b3 article-title: Introduction to time series and forecasting publication-title: Technometrics doi: 10.1080/00401706.1997.10485165 – volume: 40 start-page: 35 issue: 1 year: 1997 ident: 10.1016/j.physa.2018.11.061_b10 article-title: Artificial neural networks as a classification method in the behavioural sciences publication-title: Behav. Process. doi: 10.1016/S0376-6357(96)00766-8 – volume: 26 start-page: 831 issue: 2 year: 2014 ident: 10.1016/j.physa.2018.11.061_b11 article-title: Fuzzy artificial neural network p, d, q model for incomplete financial time series forecasting publication-title: J. Intell. Fuzzy Systems doi: 10.3233/IFS-130775 – volume: 454 start-page: 903 issue: 1971 year: 1998 ident: 10.1016/j.physa.2018.11.061_b23 article-title: The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc. Math. Phys. Eng. Sci. doi: 10.1098/rspa.1998.0193 – volume: 323 start-page: 533 issue: 6088 year: 1986 ident: 10.1016/j.physa.2018.11.061_b9 article-title: Learning representations by back-propagating errors publication-title: Nature doi: 10.1038/323533a0 – volume: 22 start-page: 33 issue: 1 year: 2002 ident: 10.1016/j.physa.2018.11.061_b2 article-title: Predicting stock price using fuzzy grey prediction system publication-title: Expert Syst. Appl. doi: 10.1016/S0957-4174(01)00047-1 – volume: 58 start-page: 35 year: 2017 ident: 10.1016/j.physa.2018.11.061_b8 article-title: Forecasting financial time series volatility using particle swarm optimization trained quantile regression neural network publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.04.014 – volume: 13 start-page: 947 issue: 2 year: 2013 ident: 10.1016/j.physa.2018.11.061_b17 article-title: Support vector regression with chaos-based firefly algorithm for stock market price forecasting publication-title: Appl. Soft Comput. J. doi: 10.1016/j.asoc.2012.09.024 – start-page: 816 year: 2016 ident: 10.1016/j.physa.2018.11.061_b20 article-title: Robust online time series prediction with recurrent neural networks – year: 2014 ident: 10.1016/j.physa.2018.11.061_b31 – volume: 15 start-page: 1929 issue: 1 year: 2014 ident: 10.1016/j.physa.2018.11.061_b29 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – volume: 11 start-page: 861 issue: 5 year: 1998 ident: 10.1016/j.physa.2018.11.061_b18 article-title: How embedded memory in recurrent neural network architectures helps learning long-term temporal dependencies publication-title: Neural Netw. doi: 10.1016/S0893-6080(98)00018-5 – volume: 156 start-page: 68 issue: C year: 2015 ident: 10.1016/j.physa.2018.11.061_b7 article-title: Forecasting stock market indexes using principle component analysis and stochastic time effective neural networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.12.084 – volume: 4 start-page: 24 issue: 2 year: 2009 ident: 10.1016/j.physa.2018.11.061_b16 article-title: Time series prediciton using support vector machines: A survey publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2009.932254 |
SSID | ssj0001732 |
Score | 2.6892552 |
Snippet | In order to improve the accuracy of the stock market prices forecasting, two hybrid forecasting models are proposed in this paper which combine the two kinds... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 127 |
SubjectTerms | CEEMDAN-LSTM prediction EMD-LSTM prediction Financial time series forecasting |
Title | Financial time series forecasting model based on CEEMDAN and LSTM |
URI | https://dx.doi.org/10.1016/j.physa.2018.11.061 |
Volume | 519 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JasMwEBUhpdBL6UrXoEOPdWJbsiwfTZqQLsklKeQmZEmGlOKEJr322zvjpQuUHHq0GYF4EjNv7DczhNyA381FwjicgBMetxH3NER6z2qhneRG5hHWO48nYvTMH-bRvEX6TS0Myipr31_59NJb1296NZq91WLRm_oslpzFwJAZ0HyJheacx3jLux_fMo8gZtWfBMiW0LrpPFRqvPDrATYfCmQXW3mK4O_o9CPiDA_Ifk0VaVrt5pC0XHFEdkvJplkfk3TYNMugOCCe4l1yawok1Bm9RjUzLcfcUAxUli4L2h8MxnfphOrC0qfpbHxCZsPBrD_y6oEInmEi2XhcOI6cyUFM5tbEociFhYDra8c0ZLnA3jJpIyPAAWsTaKBCGrAGI-uE9NkpaRfLwp0RGkkjdQSpFrc5z-IkCbXxmWEZ5DOhZeKchA0OytTNwnFmxatqVGEvqgRPIXiQRigA75zcfi1aVb0ytpuLBmD168gVePNtCy_-u_CS7MFTUglvrkh78_buroFTbLJOeWk6ZCe9fxxNPgEst8nF |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB0VEIILYhU7PsCN0DZ2HOfAoSqtWrpcCBI3y7FdqQilFS1CXPgovpBxFhYJcUDimtiR8zyaeZM8zwCcot8d8Ygy3AHLPWYC5imM9J5RXFnBtBgF7rzzYMg7t-z6LrirwFt5FsbJKgvfn_v0zFsXV6oFmtXpeFy9qdFQMBoiQ6ZI80WprOzZl2fM22aX3Svc5DPfb7fiZscrWgt4mvJo7jFumWMfFqMbMzr0-YgbDF01ZanCfBF5UCJMoDm6MqXrCkmFwlXjIGO5qFF87AIsMfQWrmvCxeunrKQe0vzPBWZnbnVlpaNMU-a-VrhiR3Vx4UqH8vrP0fBLhGuvw1pBTUkjf_sNqNh0E5YziaiebUGjXRbnIK4hPXG2a2cESa_VaubU0yRrq0NcYDRkkpJmqzW4agyJSg3p38SDbYj_A6UdWEwnqd0FEggtVICpHTMjloRR5Ctdo5ommD_5hvI98EscpC6Kk7seGQ-yVKHdyww86cDDtEUieHtw_jFpmtfm-H04LwGW30xMYvT4beL-XyeewEonHvRlvzvsHcAq3oly0c8hLM4fn-wR8pl5cpwZEAH5zwb7DhkLBMI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Financial+time+series+forecasting+model+based+on+CEEMDAN+and+LSTM&rft.jtitle=Physica+A&rft.au=Cao%2C+Jian&rft.au=Li%2C+Zhi&rft.au=Li%2C+Jian&rft.date=2019-04-01&rft.issn=0378-4371&rft.volume=519&rft.spage=127&rft.epage=139&rft_id=info:doi/10.1016%2Fj.physa.2018.11.061&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_physa_2018_11_061 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4371&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4371&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4371&client=summon |