Financial time series forecasting model based on CEEMDAN and LSTM

In order to improve the accuracy of the stock market prices forecasting, two hybrid forecasting models are proposed in this paper which combine the two kinds of empirical mode decomposition (EMD) with the long short-term memory (LSTM). The financial time series is a kind of non-linear and non-statio...

Full description

Saved in:
Bibliographic Details
Published inPhysica A Vol. 519; pp. 127 - 139
Main Authors Cao, Jian, Li, Zhi, Li, Jian
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.04.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In order to improve the accuracy of the stock market prices forecasting, two hybrid forecasting models are proposed in this paper which combine the two kinds of empirical mode decomposition (EMD) with the long short-term memory (LSTM). The financial time series is a kind of non-linear and non-stationary random signal, which can be decomposed into several intrinsic mode functions of different time scales by the original EMD and the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN). To ensure the effect of historical data onto the prediction result, the LSTM prediction models are established for all each characteristic series from EMD and CEEMDAN deposition. The final prediction results are obtained by reconstructing each prediction series. The forecasting performance of the proposed models is verified by linear regression analysis of the major global stock market indices. Compared with single LSTM model, support vector machine (SVM), multi-layer perceptron (MLP) and other hybrid models, the experimental results show that the proposed models display a better performance in one-step-ahead forecasting of financial time series. •A new hybrid time series forecasting method is established by combining EMD and CEEMDAN algorithm with LSTM neural network.•The forecasting efficiency of financial time series is improved by the model.•The forecasting results of the proposed model are more accurate than other similar models.
AbstractList In order to improve the accuracy of the stock market prices forecasting, two hybrid forecasting models are proposed in this paper which combine the two kinds of empirical mode decomposition (EMD) with the long short-term memory (LSTM). The financial time series is a kind of non-linear and non-stationary random signal, which can be decomposed into several intrinsic mode functions of different time scales by the original EMD and the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN). To ensure the effect of historical data onto the prediction result, the LSTM prediction models are established for all each characteristic series from EMD and CEEMDAN deposition. The final prediction results are obtained by reconstructing each prediction series. The forecasting performance of the proposed models is verified by linear regression analysis of the major global stock market indices. Compared with single LSTM model, support vector machine (SVM), multi-layer perceptron (MLP) and other hybrid models, the experimental results show that the proposed models display a better performance in one-step-ahead forecasting of financial time series. •A new hybrid time series forecasting method is established by combining EMD and CEEMDAN algorithm with LSTM neural network.•The forecasting efficiency of financial time series is improved by the model.•The forecasting results of the proposed model are more accurate than other similar models.
Author Li, Zhi
Li, Jian
Cao, Jian
Author_xml – sequence: 1
  givenname: Jian
  surname: Cao
  fullname: Cao, Jian
– sequence: 2
  givenname: Zhi
  surname: Li
  fullname: Li, Zhi
  email: lizhi@scu.edu.cn
– sequence: 3
  givenname: Jian
  surname: Li
  fullname: Li, Jian
BookMark eNqF0LFOwzAQgGELFYm28AQsfoEEX5w4ycBQlRaQWhjobl3tC7hKncqOkPr2pJSJAaZb7j_pvgkb-c4TY7cgUhCg7nbp4eMYMc0EVClAKhRcsDFUpUwygHrExkKWVZLLEq7YJMadEAJKmY3ZbOk8euOw5b3bE48UHEXedIEMxt75d77vLLV8i5Es7zyfLxbrh9kLR2_56m2zvmaXDbaRbn7mlG2Wi838KVm9Pj7PZ6vESFX3Sa4oF6KSlOV5bk2ZqUZZqAqBJLEWJSjYVrYwiraABjCXBTaFHZYsqUrIKavPZ03oYgzUaON67F3n-4Cu1SD0iULv9DeFPlFoAD1QDK381R6C22M4_lPdnysavvp0FHQ0jrwh6wacXtvO_dl_AYfVeng
CitedBy_id crossref_primary_10_1016_j_energy_2020_117756
crossref_primary_10_1016_j_eswa_2020_114332
crossref_primary_10_3390_en13071543
crossref_primary_10_1111_exsy_13772
crossref_primary_10_1016_j_asoc_2024_111365
crossref_primary_10_1115_1_4051115
crossref_primary_10_1016_j_neucom_2024_128389
crossref_primary_10_3390_math11041054
crossref_primary_10_1016_j_engappai_2022_104908
crossref_primary_10_1007_s10614_025_10861_z
crossref_primary_10_1007_s10614_023_10354_x
crossref_primary_10_1080_0951192X_2021_1963477
crossref_primary_10_1007_s10706_024_03062_2
crossref_primary_10_1002_for_3190
crossref_primary_10_3233_MGS_221511
crossref_primary_10_1016_j_jclepro_2021_128024
crossref_primary_10_1016_j_eswa_2023_121968
crossref_primary_10_1109_ACCESS_2020_2995044
crossref_primary_10_1038_s41598_023_50783_0
crossref_primary_10_3390_e23101309
crossref_primary_10_47933_ijeir_1334065
crossref_primary_10_1016_j_conbuildmat_2023_132596
crossref_primary_10_1007_s11042_023_17620_y
crossref_primary_10_1007_s10614_024_10831_x
crossref_primary_10_1016_j_eswa_2024_125464
crossref_primary_10_1002_for_3082
crossref_primary_10_1155_2020_5761642
crossref_primary_10_3390_fermentation10120660
crossref_primary_10_1007_s10660_019_09380_5
crossref_primary_10_1049_iet_ipr_2019_1416
crossref_primary_10_1007_s10614_025_10917_0
crossref_primary_10_3389_fenvs_2023_1336867
crossref_primary_10_1016_j_eswa_2023_119617
crossref_primary_10_1016_j_eswa_2022_119336
crossref_primary_10_3390_math10173188
crossref_primary_10_1142_S0219477523400060
crossref_primary_10_1016_j_sysarc_2024_103181
crossref_primary_10_1109_TCSS_2022_3182375
crossref_primary_10_55654_JFS_2024_9_16_09
crossref_primary_10_1016_j_jksuci_2021_10_004
crossref_primary_10_1088_1742_6596_1948_1_012169
crossref_primary_10_1109_ACCESS_2024_3425727
crossref_primary_10_1016_j_future_2022_03_029
crossref_primary_10_1016_j_measurement_2024_115515
crossref_primary_10_3390_math11163603
crossref_primary_10_1016_j_enconman_2020_112869
crossref_primary_10_3390_app13031429
crossref_primary_10_1088_1755_1315_1124_1_012011
crossref_primary_10_3390_su132111822
crossref_primary_10_1002_for_3138
crossref_primary_10_1109_TIM_2021_3051717
crossref_primary_10_1016_j_jhtm_2021_08_022
crossref_primary_10_1007_s11277_023_10751_3
crossref_primary_10_3389_fenrg_2023_1193662
crossref_primary_10_1007_s10614_022_10310_1
crossref_primary_10_1007_s42521_024_00112_5
crossref_primary_10_1155_2020_1795486
crossref_primary_10_3390_atmos12111452
crossref_primary_10_1007_s10462_022_10352_9
crossref_primary_10_1177_09544062221092923
crossref_primary_10_47103_bilturk_1039669
crossref_primary_10_3390_app13085175
crossref_primary_10_2139_ssrn_4650761
crossref_primary_10_3390_e24081088
crossref_primary_10_1155_2022_3216036
crossref_primary_10_1109_MIM_2023_10083022
crossref_primary_10_3390_s23010170
crossref_primary_10_3390_en14196065
crossref_primary_10_1155_jpas_9464938
crossref_primary_10_1016_j_ins_2023_03_021
crossref_primary_10_1016_j_physa_2022_128369
crossref_primary_10_1016_j_eswa_2022_117194
crossref_primary_10_1088_2631_8695_ad9238
crossref_primary_10_1016_j_eswa_2020_113463
crossref_primary_10_1007_s44196_023_00309_3
crossref_primary_10_7717_peerj_cs_1852
crossref_primary_10_7717_peerj_cs_1732
crossref_primary_10_3390_s22166121
crossref_primary_10_3390_electronics13101904
crossref_primary_10_1109_TITS_2022_3166585
crossref_primary_10_1016_j_apenergy_2020_116046
crossref_primary_10_2166_wcc_2024_637
crossref_primary_10_1109_TIFS_2022_3201377
crossref_primary_10_26599_IJCS_2024_9100013
crossref_primary_10_1007_s10489_021_02385_4
crossref_primary_10_1007_s11063_022_11037_8
crossref_primary_10_1016_j_asoc_2023_110700
crossref_primary_10_1016_j_est_2022_104209
crossref_primary_10_1007_s11042_022_12772_9
crossref_primary_10_1016_j_annals_2020_102891
crossref_primary_10_1016_j_physa_2019_122025
crossref_primary_10_1109_ACCESS_2021_3067833
crossref_primary_10_1088_1361_6501_ac769d
crossref_primary_10_1016_j_iref_2024_04_027
crossref_primary_10_1007_s11042_024_20531_1
crossref_primary_10_1016_j_scitotenv_2022_157542
crossref_primary_10_1016_j_future_2022_01_002
crossref_primary_10_1109_ACCESS_2021_3050165
crossref_primary_10_1177_14759217241310576
crossref_primary_10_1007_s12145_022_00873_w
crossref_primary_10_1016_j_apenergy_2022_118601
crossref_primary_10_3389_fenrg_2021_793413
crossref_primary_10_1007_s11356_022_22959_0
crossref_primary_10_1016_j_eswa_2021_115537
crossref_primary_10_1108_IMDS_07_2019_0370
crossref_primary_10_1016_j_compbiomed_2023_106807
crossref_primary_10_12677_CSA_2022_124111
crossref_primary_10_1007_s10614_025_10899_z
crossref_primary_10_3390_e24020146
crossref_primary_10_1016_j_compchemeng_2024_108740
crossref_primary_10_1016_j_neucom_2020_04_086
crossref_primary_10_1038_s41598_025_92262_8
crossref_primary_10_1108_K_04_2023_0637
crossref_primary_10_3390_math9212640
crossref_primary_10_1016_j_physa_2019_122272
crossref_primary_10_1007_s13132_023_01485_5
crossref_primary_10_1016_j_laa_2024_06_002
crossref_primary_10_3390_en16010003
crossref_primary_10_1002_itl2_339
crossref_primary_10_1007_s10489_024_05701_w
crossref_primary_10_29130_dubited_820620
crossref_primary_10_1007_s11227_021_04013_x
crossref_primary_10_1007_s10489_022_04263_z
crossref_primary_10_3390_s23156778
crossref_primary_10_1016_j_physa_2019_123389
crossref_primary_10_3390_math12162434
crossref_primary_10_1016_j_apm_2023_04_028
crossref_primary_10_1109_ACCESS_2020_3041032
crossref_primary_10_1007_s11207_023_02129_2
crossref_primary_10_1515_snde_2021_0032
crossref_primary_10_3390_bioengineering10060685
crossref_primary_10_1016_j_energy_2023_129387
crossref_primary_10_3846_tede_2023_18672
crossref_primary_10_1002_cpe_7384
crossref_primary_10_1016_j_sste_2020_100372
crossref_primary_10_1177_0734242X241259643
crossref_primary_10_1007_s11227_023_05389_8
crossref_primary_10_1108_IMDS_12_2020_0704
crossref_primary_10_1007_s10489_021_02391_6
crossref_primary_10_55195_jscai_1126611
crossref_primary_10_1007_s00521_024_09698_8
crossref_primary_10_3390_app122010433
crossref_primary_10_1007_s11107_022_00964_0
crossref_primary_10_1155_2022_7871109
crossref_primary_10_1007_s10614_025_10907_2
crossref_primary_10_1016_j_asoc_2023_110522
crossref_primary_10_35234_fumbd_1406688
crossref_primary_10_1016_j_rser_2020_109856
crossref_primary_10_1016_j_ipm_2023_103328
crossref_primary_10_1007_s10614_021_10136_3
crossref_primary_10_1371_journal_pone_0268996
crossref_primary_10_3390_su15075882
crossref_primary_10_3390_s24237518
crossref_primary_10_1016_j_asoc_2022_109275
crossref_primary_10_1080_15567036_2024_2323158
crossref_primary_10_2166_ws_2022_412
crossref_primary_10_1155_2020_2518283
crossref_primary_10_1109_ACCESS_2020_3016289
crossref_primary_10_1016_j_psep_2023_06_021
crossref_primary_10_1155_2022_7068406
crossref_primary_10_1016_j_bspc_2022_104544
crossref_primary_10_1016_j_scitotenv_2021_149509
crossref_primary_10_54097_hbem_v17i_11353
crossref_primary_10_3390_su16020607
crossref_primary_10_7717_peerj_cs_1205
crossref_primary_10_1007_s10462_022_10199_0
crossref_primary_10_1007_s11063_022_11019_w
crossref_primary_10_3390_su13179681
crossref_primary_10_12677_AAM_2023_129384
crossref_primary_10_1038_s41598_024_70262_4
crossref_primary_10_1155_2022_6499876
crossref_primary_10_1016_j_jrtpm_2022_100311
crossref_primary_10_1016_j_renene_2020_07_142
crossref_primary_10_1016_j_lana_2025_101010
crossref_primary_10_1007_s40745_024_00547_y
crossref_primary_10_3390_computation11110218
crossref_primary_10_34104_ajeit_023_063071
crossref_primary_10_2208_journalofjsce_23_26006
crossref_primary_10_1038_s41598_025_94411_5
crossref_primary_10_1007_s44196_024_00713_3
crossref_primary_10_1016_j_eswa_2022_117736
crossref_primary_10_1007_s40314_019_1006_2
crossref_primary_10_1016_j_ins_2022_04_045
crossref_primary_10_1016_j_scitotenv_2020_143099
crossref_primary_10_7717_peerj_cs_2125
crossref_primary_10_1051_wujns_2023283223
crossref_primary_10_1016_j_neunet_2024_106776
crossref_primary_10_1177_1088467X241308796
crossref_primary_10_1016_j_eiar_2024_107612
crossref_primary_10_1016_j_engappai_2022_105663
crossref_primary_10_1016_j_epsr_2024_111307
crossref_primary_10_1007_s13042_020_01210_7
crossref_primary_10_3390_app132212268
crossref_primary_10_1002_for_2897
crossref_primary_10_1007_s12204_023_2672_1
crossref_primary_10_3390_sci7010007
crossref_primary_10_1007_s11269_022_03277_z
crossref_primary_10_26745_ahbvuibfd_1191080
crossref_primary_10_1109_TIM_2023_3314830
crossref_primary_10_1016_j_egyr_2022_09_171
crossref_primary_10_3934_era_2023135
crossref_primary_10_1016_j_iimb_2023_05_002
crossref_primary_10_3390_electronics9050823
crossref_primary_10_1016_j_resourpol_2022_103109
crossref_primary_10_1109_JIOT_2024_3375855
crossref_primary_10_3390_su12062451
crossref_primary_10_1016_j_uclim_2023_101418
crossref_primary_10_1016_j_energy_2022_125278
crossref_primary_10_1007_s11869_023_01380_7
crossref_primary_10_1080_01969722_2022_2137634
crossref_primary_10_3390_fractalfract7100708
crossref_primary_10_1016_j_eswa_2023_122461
crossref_primary_10_1155_2022_1465394
crossref_primary_10_1109_ACCESS_2022_3195942
crossref_primary_10_3390_math11224630
crossref_primary_10_1007_s00500_020_04862_3
crossref_primary_10_1016_j_resourpol_2024_105040
crossref_primary_10_1080_00207543_2020_1844332
crossref_primary_10_1016_j_najef_2024_102252
crossref_primary_10_3390_su15076261
crossref_primary_10_1057_s41599_024_03885_7
crossref_primary_10_1080_18824889_2025_2455222
crossref_primary_10_1109_ACCESS_2023_3287319
crossref_primary_10_1186_s40537_021_00512_z
crossref_primary_10_30736_informatika_v8i2_1049
crossref_primary_10_1155_2020_6387173
crossref_primary_10_3390_batteries10050152
crossref_primary_10_4491_eer_2024_339
crossref_primary_10_1016_j_envpol_2020_115216
crossref_primary_10_20473_vol11iss20241pp86_104
crossref_primary_10_3390_w14030300
crossref_primary_10_3390_en17174358
crossref_primary_10_1016_j_jenvman_2023_118962
crossref_primary_10_3390_en17071672
crossref_primary_10_1016_j_autcon_2023_104892
crossref_primary_10_1016_j_fuel_2021_122486
crossref_primary_10_3390_electronics12214510
crossref_primary_10_3389_fpls_2022_929140
crossref_primary_10_1002_ente_202100700
crossref_primary_10_1017_S0263574723001492
crossref_primary_10_1109_ACCESS_2020_2996981
crossref_primary_10_1007_s10489_020_01814_0
crossref_primary_10_3390_su15032340
crossref_primary_10_1109_ACCESS_2021_3077962
crossref_primary_10_1007_s13132_024_02087_5
crossref_primary_10_1016_j_oceaneng_2022_110529
crossref_primary_10_7717_peerj_cs_2164
crossref_primary_10_35551_PFQ_2023_2_7
crossref_primary_10_1016_j_irfa_2022_102202
crossref_primary_10_1108_CW_12_2023_0459
crossref_primary_10_3390_su16114693
crossref_primary_10_3390_math9080800
crossref_primary_10_1016_j_heliyon_2023_e21211
crossref_primary_10_1061__ASCE_PS_1949_1204_0000490
crossref_primary_10_5687_iscie_36_296
crossref_primary_10_1109_ACCESS_2022_3179364
crossref_primary_10_34104_ajeit_021_045056
crossref_primary_10_1016_j_asr_2022_12_054
crossref_primary_10_1080_15567036_2023_2216656
crossref_primary_10_3390_agronomy11112145
crossref_primary_10_1016_j_irfa_2024_103147
crossref_primary_10_1016_j_asoc_2022_109089
crossref_primary_10_1109_ACCESS_2021_3090834
crossref_primary_10_1142_S2424786322500141
crossref_primary_10_1007_s11207_020_01653_9
crossref_primary_10_1016_j_energy_2024_131321
crossref_primary_10_1016_j_spasta_2023_100773
crossref_primary_10_1016_j_asoc_2023_110374
crossref_primary_10_1016_j_najef_2021_101421
crossref_primary_10_1016_j_apr_2023_101879
crossref_primary_10_1007_s11071_021_06452_w
crossref_primary_10_1002_for_2986
crossref_primary_10_1109_TGCN_2021_3112043
crossref_primary_10_7717_peerj_cs_1057
crossref_primary_10_1007_s00500_025_10501_6
crossref_primary_10_1016_j_jksuci_2024_102252
crossref_primary_10_3389_fenvs_2022_1014021
crossref_primary_10_1086_728699
crossref_primary_10_1016_j_cnsns_2024_108555
crossref_primary_10_1007_s11869_022_01252_6
crossref_primary_10_1080_09720529_2022_2133251
crossref_primary_10_1007_s11227_020_03503_8
crossref_primary_10_3390_math12172794
crossref_primary_10_1016_j_eswa_2021_115390
crossref_primary_10_1016_j_physd_2023_133831
crossref_primary_10_3389_fnhum_2024_1354143
crossref_primary_10_1080_02626667_2024_2374868
crossref_primary_10_1007_s10666_023_09918_w
crossref_primary_10_1016_j_eswa_2024_123697
crossref_primary_10_1142_S021812662150122X
crossref_primary_10_1016_j_eswa_2024_124303
crossref_primary_10_3390_math11051130
crossref_primary_10_1016_j_measurement_2022_112324
crossref_primary_10_1109_ACCESS_2020_3037681
crossref_primary_10_2478_amns_2025_0569
crossref_primary_10_3390_jmse10091270
crossref_primary_10_2139_ssrn_4577922
crossref_primary_10_3390_e26060467
crossref_primary_10_3390_jcm13071946
crossref_primary_10_1007_s11071_021_06336_z
crossref_primary_10_3390_jrfm16060298
crossref_primary_10_1007_s12665_023_11072_1
crossref_primary_10_1016_j_oceaneng_2021_109066
crossref_primary_10_1007_s00530_021_00758_w
crossref_primary_10_1016_j_cie_2021_107770
crossref_primary_10_3390_rs15123045
crossref_primary_10_1080_00036846_2023_2276093
crossref_primary_10_1109_ACCESS_2023_3309007
crossref_primary_10_1007_s00521_022_08160_x
crossref_primary_10_1088_1361_6579_accb3a
crossref_primary_10_1109_ACCESS_2020_3014690
crossref_primary_10_3390_ai4010010
crossref_primary_10_1016_j_energy_2022_123366
crossref_primary_10_1007_s11071_024_10343_1
crossref_primary_10_1109_ACCESS_2021_3114809
crossref_primary_10_1016_j_apr_2021_101252
crossref_primary_10_3390_en15218124
crossref_primary_10_3390_app12126194
crossref_primary_10_1155_2021_9488892
crossref_primary_10_3390_software3010003
crossref_primary_10_1016_j_energy_2020_118787
crossref_primary_10_1088_1742_6596_2224_1_012017
crossref_primary_10_1016_j_enbuild_2024_113977
crossref_primary_10_1002_int_22370
crossref_primary_10_1016_j_najef_2021_101466
crossref_primary_10_1016_j_scs_2020_102613
crossref_primary_10_1007_s11831_023_09970_5
crossref_primary_10_1049_ccs2_12086
crossref_primary_10_1109_ACCESS_2023_3319395
crossref_primary_10_3233_JIFS_233060
crossref_primary_10_23939_ujit2021_03_044
crossref_primary_10_1016_j_asoc_2021_107898
crossref_primary_10_1016_j_knosys_2021_107038
crossref_primary_10_29029_busbed_1391790
crossref_primary_10_1016_j_asoc_2024_112393
crossref_primary_10_1108_CFRI_12_2022_0250
crossref_primary_10_1016_j_jtte_2023_01_004
crossref_primary_10_1016_j_energy_2024_134229
crossref_primary_10_1016_j_neucom_2020_07_059
crossref_primary_10_1038_s41598_024_74503_4
crossref_primary_10_1038_s41598_025_94173_0
crossref_primary_10_1007_s00366_021_01356_0
crossref_primary_10_3390_su142315522
crossref_primary_10_1109_ACCESS_2022_3221941
crossref_primary_10_1109_ACCESS_2023_3301576
crossref_primary_10_1007_s00477_021_02100_2
crossref_primary_10_1016_j_jfds_2024_100143
crossref_primary_10_1016_j_petrol_2020_107013
crossref_primary_10_15388_batp_2020_21
crossref_primary_10_1109_ACCESS_2021_3072673
crossref_primary_10_1007_s11063_022_11046_7
crossref_primary_10_1007_s12204_021_2337_x
crossref_primary_10_1016_j_buildenv_2022_109689
crossref_primary_10_1016_j_frl_2023_104515
crossref_primary_10_1155_mmce_6622761
crossref_primary_10_1016_j_renene_2021_04_010
crossref_primary_10_1016_j_jobe_2022_105031
crossref_primary_10_1109_TII_2022_3193414
crossref_primary_10_1007_s40430_022_03968_z
crossref_primary_10_1016_j_eswa_2022_117123
crossref_primary_10_3390_electronics11193259
crossref_primary_10_3389_fenrg_2022_991570
crossref_primary_10_3390_fi14120353
crossref_primary_10_1038_s41598_022_17754_3
crossref_primary_10_34104_ijmms_021_074084
crossref_primary_10_1109_ACCESS_2024_3452426
crossref_primary_10_1016_j_asoc_2021_107488
crossref_primary_10_32604_cmc_2023_037293
crossref_primary_10_1002_tee_24005
crossref_primary_10_1155_2019_1576817
crossref_primary_10_1115_1_4050847
crossref_primary_10_1002_for_3201
crossref_primary_10_1364_OE_461007
crossref_primary_10_32604_cmc_2021_012302
crossref_primary_10_1016_j_asoc_2021_107699
crossref_primary_10_1016_j_fss_2023_108657
crossref_primary_10_3390_atmos14030468
crossref_primary_10_1109_ACCESS_2020_2964067
crossref_primary_10_1371_journal_pone_0262539
crossref_primary_10_46947_joaasr632024949
crossref_primary_10_1109_ACCESS_2020_2981506
crossref_primary_10_32604_sdhm_2024_052813
crossref_primary_10_1016_j_etran_2020_100078
crossref_primary_10_3390_e25010071
crossref_primary_10_1007_s00521_024_09931_4
crossref_primary_10_3389_fenvs_2022_907440
Cites_doi 10.1016/j.eswa.2011.02.068
10.1109/TASLP.2015.2400218
10.1016/j.neunet.2017.03.004
10.1016/S0957-4174(00)00027-0
10.1109/ICASSP.2011.5947265
10.1162/neco.1997.9.8.1735
10.1016/j.neucom.2013.03.047
10.1016/j.asoc.2010.09.007
10.1109/72.279181
10.1016/j.jhydrol.2013.05.038
10.1257/.41.2.478
10.1007/s00521-013-1386-y
10.1142/S1793536909000047
10.1016/0169-2070(93)90079-3
10.1080/00401706.1997.10485165
10.1016/S0376-6357(96)00766-8
10.3233/IFS-130775
10.1098/rspa.1998.0193
10.1038/323533a0
10.1016/S0957-4174(01)00047-1
10.1016/j.asoc.2017.04.014
10.1016/j.asoc.2012.09.024
10.1016/S0893-6080(98)00018-5
10.1016/j.neucom.2014.12.084
10.1109/MCI.2009.932254
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.physa.2018.11.061
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1873-2119
EndPage 139
ExternalDocumentID 10_1016_j_physa_2018_11_061
S0378437118314985
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAPFB
AAXUO
ABAOU
ABMAC
ABNEU
ABYKQ
ACAZW
ACDAQ
ACFVG
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADFHU
ADGUI
AEBSH
AEKER
AEYQN
AFFNX
AFKWA
AFTJW
AGHFR
AGTHC
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIIAU
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
AXLSJ
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IXIXF
J1W
K-O
KOM
M38
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSB
SSF
SSQ
SSW
SSZ
T5K
TN5
TWZ
WH7
XPP
YNT
ZMT
~02
~G-
29O
5VS
6TJ
AAFFL
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABJNI
ABWVN
ABXDB
ACNNM
ACROA
ACRPL
ADMUD
ADNMO
ADVLN
AEIPS
AFJKZ
AFODL
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
AJWLA
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BEHZQ
BEZPJ
BGSCR
BNPGV
BNTGB
BPUDD
BULVW
BZJEE
CITATION
FEDTE
FGOYB
HMV
HVGLF
HZ~
MVM
NDZJH
R2-
SEW
SPG
SSH
VOH
WUQ
XJT
XOL
YYP
ZY4
ID FETCH-LOGICAL-c369t-46e40083e2444dc726f6d1850ae3a907161b8d5c6eb1ac1a435af5df6dde6803
IEDL.DBID .~1
ISSN 0378-4371
IngestDate Thu Apr 24 23:10:53 EDT 2025
Tue Jul 01 01:32:09 EDT 2025
Fri Feb 23 02:33:06 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords EMD-LSTM prediction
Financial time series forecasting
CEEMDAN-LSTM prediction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c369t-46e40083e2444dc726f6d1850ae3a907161b8d5c6eb1ac1a435af5df6dde6803
PageCount 13
ParticipantIDs crossref_citationtrail_10_1016_j_physa_2018_11_061
crossref_primary_10_1016_j_physa_2018_11_061
elsevier_sciencedirect_doi_10_1016_j_physa_2018_11_061
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-01
2019-04-00
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-01
  day: 01
PublicationDecade 2010
PublicationTitle Physica A
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wang, Wang (b7) 2015; 156
Guo, Xu, Yao, Chen, Aberer, Funaya (b20) 2016
Lin, Horne, Giles (b18) 1998; 11
Shanmugam (b3) 2002; 39
Rumelhart, Hinton, Williams (b9) 1986; 323
Gal (b30) 2015
WU, E. HUANG (b24) 2005; 1
Guresen, Kayakutlu, Daim (b4) 2011; 38
Sundermeyer, Ney, Schlüter (b22) 2015; 23
Sundermeyer, Schlüter, Ney (b21) 2012
M.E. Torres, M.A. Colominas, G. Schlotthauer, P. Flandrin, A complete ensemble empirical mode decomposition with adaptive noise, in: IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 125, 2011, pp. 4144-4147.
Wang, Wang, Fang, Niu (b33) 2016; 2016
Hsieh, Hsiao, Yeh (b5) 2011; 11
Adhikari, Agrawal (b12) 2014; 24
Chen, Chang, Chang (b19) 2013; 497
E.H Tay, Cao (b15) 2007; 29
Poon (b1) 2003; 41
Wang (b2) 2002; 22
Kim, Han (b6) 2000; 19
Reby, Lek, Dimopoulos, Joachim, Lauga, Aulagnier (b10) 1997; 40
Kingma, Ba (b31) 2014
Makridakis (b32) 1993; 9
Huang, Shen, Long, Wu, Shih, Zheng (b23) 1998; 454
Graves (b28) 2013
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (b29) 2014; 15
Wang, Wang (b14) 2017; 90
Pradeepkumar, Ravi (b8) 2017; 58
Kuremoto, Kimura, Kobayashi, Obayashi (b13) 2014; 137
Sapankevych, Sankar (b16) 2009; 4
Kazem, Sharifi, Hussain, Saberi, Hussain (b17) 2013; 13
Sepp, Jürgen (b27) 1997; 9
Khashei, Bijari (b11) 2014; 26
Bengio, Simard, Frasconi (b26) 1994; 5
Wang (10.1016/j.physa.2018.11.061_b33) 2016; 2016
Pradeepkumar (10.1016/j.physa.2018.11.061_b8) 2017; 58
Kuremoto (10.1016/j.physa.2018.11.061_b13) 2014; 137
Kim (10.1016/j.physa.2018.11.061_b6) 2000; 19
Rumelhart (10.1016/j.physa.2018.11.061_b9) 1986; 323
Adhikari (10.1016/j.physa.2018.11.061_b12) 2014; 24
Gal (10.1016/j.physa.2018.11.061_b30) 2015
Kazem (10.1016/j.physa.2018.11.061_b17) 2013; 13
Kingma (10.1016/j.physa.2018.11.061_b31) 2014
Khashei (10.1016/j.physa.2018.11.061_b11) 2014; 26
WU (10.1016/j.physa.2018.11.061_b24) 2005; 1
Guo (10.1016/j.physa.2018.11.061_b20) 2016
Shanmugam (10.1016/j.physa.2018.11.061_b3) 2002; 39
Srivastava (10.1016/j.physa.2018.11.061_b29) 2014; 15
Wang (10.1016/j.physa.2018.11.061_b2) 2002; 22
Chen (10.1016/j.physa.2018.11.061_b19) 2013; 497
Makridakis (10.1016/j.physa.2018.11.061_b32) 1993; 9
Wang (10.1016/j.physa.2018.11.061_b14) 2017; 90
Sundermeyer (10.1016/j.physa.2018.11.061_b22) 2015; 23
10.1016/j.physa.2018.11.061_b25
Reby (10.1016/j.physa.2018.11.061_b10) 1997; 40
Graves (10.1016/j.physa.2018.11.061_b28) 2013
Wang (10.1016/j.physa.2018.11.061_b7) 2015; 156
Sundermeyer (10.1016/j.physa.2018.11.061_b21) 2012
Sepp (10.1016/j.physa.2018.11.061_b27) 1997; 9
Poon (10.1016/j.physa.2018.11.061_b1) 2003; 41
Guresen (10.1016/j.physa.2018.11.061_b4) 2011; 38
E.H Tay (10.1016/j.physa.2018.11.061_b15) 2007; 29
Sapankevych (10.1016/j.physa.2018.11.061_b16) 2009; 4
Lin (10.1016/j.physa.2018.11.061_b18) 1998; 11
Bengio (10.1016/j.physa.2018.11.061_b26) 1994; 5
Hsieh (10.1016/j.physa.2018.11.061_b5) 2011; 11
Huang (10.1016/j.physa.2018.11.061_b23) 1998; 454
References_xml – volume: 22
  start-page: 33
  year: 2002
  end-page: 38
  ident: b2
  article-title: Predicting stock price using fuzzy grey prediction system
  publication-title: Expert Syst. Appl.
– volume: 323
  start-page: 533
  year: 1986
  end-page: 536
  ident: b9
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
– volume: 11
  start-page: 2510
  year: 2011
  end-page: 2525
  ident: b5
  article-title: Forecasting stock markets using wavelet transforms and recurrent neural networks: An integrated system based on artificial bee colony algorithm
  publication-title: Appl. Soft Comput. J.
– volume: 26
  start-page: 831
  year: 2014
  end-page: 845
  ident: b11
  article-title: Fuzzy artificial neural network p, d, q model for incomplete financial time series forecasting
  publication-title: J. Intell. Fuzzy Systems
– start-page: 285
  year: 2015
  end-page: 290
  ident: b30
  article-title: A theoretically grounded application of dropout in recurrent neural networks
  publication-title: Statistics
– volume: 24
  start-page: 1441
  year: 2014
  end-page: 1449
  ident: b12
  article-title: A combination of artificial neural network and random walk models for financial time series forecasting
  publication-title: Neural Comput. Appl.
– volume: 137
  start-page: 47
  year: 2014
  end-page: 56
  ident: b13
  article-title: Time series forecasting using a deep belief network with restricted boltzmann machines
  publication-title: Neurocomputing
– reference: M.E. Torres, M.A. Colominas, G. Schlotthauer, P. Flandrin, A complete ensemble empirical mode decomposition with adaptive noise, in: IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 125, 2011, pp. 4144-4147.
– volume: 19
  start-page: 125
  year: 2000
  end-page: 132
  ident: b6
  article-title: Genetic algorithms approach to feature discretization in artificial neural networks for the prediction of stock price index
  publication-title: Expert Syst. Appl.
– volume: 156
  start-page: 68
  year: 2015
  end-page: 78
  ident: b7
  article-title: Forecasting stock market indexes using principle component analysis and stochastic time effective neural networks
  publication-title: Neurocomputing
– volume: 40
  start-page: 35
  year: 1997
  end-page: 43
  ident: b10
  article-title: Artificial neural networks as a classification method in the behavioural sciences
  publication-title: Behav. Process.
– volume: 23
  start-page: 517
  year: 2015
  end-page: 529
  ident: b22
  article-title: From feedforward to recurrent lstm neural networks for language modeling
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
– year: 2014
  ident: b31
  article-title: Adam: A method for stochastic optimization
– volume: 1
  start-page: 1
  year: 2005
  end-page: 41
  ident: b24
  article-title: Ensemble empirical mode decomposition: A noise-assisted data analysis method
  publication-title: Adv. Adapt. Data Anal.
– year: 2013
  ident: b28
  article-title: Generating sequences with recurrent neural networks
– volume: 90
  start-page: 8
  year: 2017
  end-page: 20
  ident: b14
  article-title: Forecasting stochastic neural network based on financial empirical mode decomposition
  publication-title: Neural Netw.
– volume: 39
  start-page: 426
  year: 2002
  ident: b3
  article-title: Introduction to time series and forecasting
  publication-title: Technometrics
– volume: 58
  start-page: 35
  year: 2017
  end-page: 52
  ident: b8
  article-title: Forecasting financial time series volatility using particle swarm optimization trained quantile regression neural network
  publication-title: Appl. Soft Comput.
– volume: 5
  start-page: 157
  year: 1994
  ident: b26
  article-title: Learning long-term dependencies with gradient descent is difficult
  publication-title: IEEE Trans. Neural Netw.
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: b29
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– volume: 2016
  start-page: 1
  year: 2016
  end-page: 14
  ident: b33
  article-title: Financial time series prediction using elman recurrent random neural networks
  publication-title: Comput. Intell. Neurosci.
– volume: 13
  start-page: 947
  year: 2013
  end-page: 958
  ident: b17
  article-title: Support vector regression with chaos-based firefly algorithm for stock market price forecasting
  publication-title: Appl. Soft Comput. J.
– volume: 41
  start-page: 478
  year: 2003
  end-page: 539
  ident: b1
  article-title: Forecasting volatility in financial markets: A review
  publication-title: J. Econ. Lit.
– volume: 29
  start-page: 309
  year: 2007
  end-page: 317
  ident: b15
  article-title: Application of support vector machines in financial time series forecasting
  publication-title: J. Univ. Electron. Sci. Technol. China
– volume: 38
  start-page: 10389
  year: 2011
  end-page: 10397
  ident: b4
  article-title: Using artificial neural network models in stock market index prediction
  publication-title: Expert Syst. Appl.
– volume: 11
  start-page: 861
  year: 1998
  end-page: 868
  ident: b18
  article-title: How embedded memory in recurrent neural network architectures helps learning long-term temporal dependencies
  publication-title: Neural Netw.
– volume: 9
  start-page: 527
  year: 1993
  end-page: 529
  ident: b32
  article-title: Accuracy measures: Theoretical and practical concerns ✩
  publication-title: Int. J. Forecast.
– start-page: 816
  year: 2016
  end-page: 825
  ident: b20
  article-title: Robust online time series prediction with recurrent neural networks
  publication-title: IEEE International Conference on Data Science and Advanced Analytics, vol. 9
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b27
  article-title: Long short-term memory
  publication-title: Neural Comput.
– volume: 497
  start-page: 71
  year: 2013
  end-page: 79
  ident: b19
  article-title: Reinforced recurrent neural networks for multi-step-ahead flood forecasts
  publication-title: J. Hydrol.
– start-page: 601
  year: 2012
  end-page: 608
  ident: b21
  article-title: LSTM neural networks for language modeling
  publication-title: Interspeech
– volume: 4
  start-page: 24
  year: 2009
  end-page: 38
  ident: b16
  article-title: Time series prediciton using support vector machines: A survey
  publication-title: IEEE Comput. Intell. Mag.
– volume: 454
  start-page: 903
  year: 1998
  end-page: 995
  ident: b23
  article-title: The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc. Math. Phys. Eng. Sci.
– volume: 2016
  start-page: 1
  issue: 12
  year: 2016
  ident: 10.1016/j.physa.2018.11.061_b33
  article-title: Financial time series prediction using elman recurrent random neural networks
  publication-title: Comput. Intell. Neurosci.
– volume: 38
  start-page: 10389
  issue: 8
  year: 2011
  ident: 10.1016/j.physa.2018.11.061_b4
  article-title: Using artificial neural network models in stock market index prediction
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.02.068
– volume: 23
  start-page: 517
  issue: 3
  year: 2015
  ident: 10.1016/j.physa.2018.11.061_b22
  article-title: From feedforward to recurrent lstm neural networks for language modeling
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2015.2400218
– year: 2013
  ident: 10.1016/j.physa.2018.11.061_b28
– volume: 90
  start-page: 8
  year: 2017
  ident: 10.1016/j.physa.2018.11.061_b14
  article-title: Forecasting stochastic neural network based on financial empirical mode decomposition
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2017.03.004
– volume: 19
  start-page: 125
  issue: 2
  year: 2000
  ident: 10.1016/j.physa.2018.11.061_b6
  article-title: Genetic algorithms approach to feature discretization in artificial neural networks for the prediction of stock price index
  publication-title: Expert Syst. Appl.
  doi: 10.1016/S0957-4174(00)00027-0
– ident: 10.1016/j.physa.2018.11.061_b25
  doi: 10.1109/ICASSP.2011.5947265
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.physa.2018.11.061_b27
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 137
  start-page: 47
  issue: 15
  year: 2014
  ident: 10.1016/j.physa.2018.11.061_b13
  article-title: Time series forecasting using a deep belief network with restricted boltzmann machines
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.03.047
– start-page: 601
  year: 2012
  ident: 10.1016/j.physa.2018.11.061_b21
  article-title: LSTM neural networks for language modeling
– volume: 11
  start-page: 2510
  issue: 2
  year: 2011
  ident: 10.1016/j.physa.2018.11.061_b5
  article-title: Forecasting stock markets using wavelet transforms and recurrent neural networks: An integrated system based on artificial bee colony algorithm
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2010.09.007
– volume: 5
  start-page: 157
  issue: 2
  year: 1994
  ident: 10.1016/j.physa.2018.11.061_b26
  article-title: Learning long-term dependencies with gradient descent is difficult
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.279181
– start-page: 285
  year: 2015
  ident: 10.1016/j.physa.2018.11.061_b30
  article-title: A theoretically grounded application of dropout in recurrent neural networks
  publication-title: Statistics
– volume: 497
  start-page: 71
  year: 2013
  ident: 10.1016/j.physa.2018.11.061_b19
  article-title: Reinforced recurrent neural networks for multi-step-ahead flood forecasts
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2013.05.038
– volume: 29
  start-page: 309
  issue: 4
  year: 2007
  ident: 10.1016/j.physa.2018.11.061_b15
  article-title: Application of support vector machines in financial time series forecasting
  publication-title: J. Univ. Electron. Sci. Technol. China
– volume: 41
  start-page: 478
  issue: 2
  year: 2003
  ident: 10.1016/j.physa.2018.11.061_b1
  article-title: Forecasting volatility in financial markets: A review
  publication-title: J. Econ. Lit.
  doi: 10.1257/.41.2.478
– volume: 24
  start-page: 1441
  issue: 6
  year: 2014
  ident: 10.1016/j.physa.2018.11.061_b12
  article-title: A combination of artificial neural network and random walk models for financial time series forecasting
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-013-1386-y
– volume: 1
  start-page: 1
  issue: 01
  year: 2005
  ident: 10.1016/j.physa.2018.11.061_b24
  article-title: Ensemble empirical mode decomposition: A noise-assisted data analysis method
  publication-title: Adv. Adapt. Data Anal.
  doi: 10.1142/S1793536909000047
– volume: 9
  start-page: 527
  issue: 4
  year: 1993
  ident: 10.1016/j.physa.2018.11.061_b32
  article-title: Accuracy measures: Theoretical and practical concerns ✩
  publication-title: Int. J. Forecast.
  doi: 10.1016/0169-2070(93)90079-3
– volume: 39
  start-page: 426
  issue: 4
  year: 2002
  ident: 10.1016/j.physa.2018.11.061_b3
  article-title: Introduction to time series and forecasting
  publication-title: Technometrics
  doi: 10.1080/00401706.1997.10485165
– volume: 40
  start-page: 35
  issue: 1
  year: 1997
  ident: 10.1016/j.physa.2018.11.061_b10
  article-title: Artificial neural networks as a classification method in the behavioural sciences
  publication-title: Behav. Process.
  doi: 10.1016/S0376-6357(96)00766-8
– volume: 26
  start-page: 831
  issue: 2
  year: 2014
  ident: 10.1016/j.physa.2018.11.061_b11
  article-title: Fuzzy artificial neural network p, d, q model for incomplete financial time series forecasting
  publication-title: J. Intell. Fuzzy Systems
  doi: 10.3233/IFS-130775
– volume: 454
  start-page: 903
  issue: 1971
  year: 1998
  ident: 10.1016/j.physa.2018.11.061_b23
  article-title: The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc. Math. Phys. Eng. Sci.
  doi: 10.1098/rspa.1998.0193
– volume: 323
  start-page: 533
  issue: 6088
  year: 1986
  ident: 10.1016/j.physa.2018.11.061_b9
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– volume: 22
  start-page: 33
  issue: 1
  year: 2002
  ident: 10.1016/j.physa.2018.11.061_b2
  article-title: Predicting stock price using fuzzy grey prediction system
  publication-title: Expert Syst. Appl.
  doi: 10.1016/S0957-4174(01)00047-1
– volume: 58
  start-page: 35
  year: 2017
  ident: 10.1016/j.physa.2018.11.061_b8
  article-title: Forecasting financial time series volatility using particle swarm optimization trained quantile regression neural network
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.04.014
– volume: 13
  start-page: 947
  issue: 2
  year: 2013
  ident: 10.1016/j.physa.2018.11.061_b17
  article-title: Support vector regression with chaos-based firefly algorithm for stock market price forecasting
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2012.09.024
– start-page: 816
  year: 2016
  ident: 10.1016/j.physa.2018.11.061_b20
  article-title: Robust online time series prediction with recurrent neural networks
– year: 2014
  ident: 10.1016/j.physa.2018.11.061_b31
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: 10.1016/j.physa.2018.11.061_b29
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– volume: 11
  start-page: 861
  issue: 5
  year: 1998
  ident: 10.1016/j.physa.2018.11.061_b18
  article-title: How embedded memory in recurrent neural network architectures helps learning long-term temporal dependencies
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(98)00018-5
– volume: 156
  start-page: 68
  issue: C
  year: 2015
  ident: 10.1016/j.physa.2018.11.061_b7
  article-title: Forecasting stock market indexes using principle component analysis and stochastic time effective neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.12.084
– volume: 4
  start-page: 24
  issue: 2
  year: 2009
  ident: 10.1016/j.physa.2018.11.061_b16
  article-title: Time series prediciton using support vector machines: A survey
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2009.932254
SSID ssj0001732
Score 2.6892552
Snippet In order to improve the accuracy of the stock market prices forecasting, two hybrid forecasting models are proposed in this paper which combine the two kinds...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 127
SubjectTerms CEEMDAN-LSTM prediction
EMD-LSTM prediction
Financial time series forecasting
Title Financial time series forecasting model based on CEEMDAN and LSTM
URI https://dx.doi.org/10.1016/j.physa.2018.11.061
Volume 519
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JasMwEBUhpdBL6UrXoEOPdWJbsiwfTZqQLsklKeQmZEmGlOKEJr322zvjpQuUHHq0GYF4EjNv7DczhNyA381FwjicgBMetxH3NER6z2qhneRG5hHWO48nYvTMH-bRvEX6TS0Myipr31_59NJb1296NZq91WLRm_oslpzFwJAZ0HyJheacx3jLux_fMo8gZtWfBMiW0LrpPFRqvPDrATYfCmQXW3mK4O_o9CPiDA_Ifk0VaVrt5pC0XHFEdkvJplkfk3TYNMugOCCe4l1yawok1Bm9RjUzLcfcUAxUli4L2h8MxnfphOrC0qfpbHxCZsPBrD_y6oEInmEi2XhcOI6cyUFM5tbEociFhYDra8c0ZLnA3jJpIyPAAWsTaKBCGrAGI-uE9NkpaRfLwp0RGkkjdQSpFrc5z-IkCbXxmWEZ5DOhZeKchA0OytTNwnFmxatqVGEvqgRPIXiQRigA75zcfi1aVb0ytpuLBmD168gVePNtCy_-u_CS7MFTUglvrkh78_buroFTbLJOeWk6ZCe9fxxNPgEst8nF
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB0VEIILYhU7PsCN0DZ2HOfAoSqtWrpcCBI3y7FdqQilFS1CXPgovpBxFhYJcUDimtiR8zyaeZM8zwCcot8d8Ygy3AHLPWYC5imM9J5RXFnBtBgF7rzzYMg7t-z6LrirwFt5FsbJKgvfn_v0zFsXV6oFmtXpeFy9qdFQMBoiQ6ZI80WprOzZl2fM22aX3Svc5DPfb7fiZscrWgt4mvJo7jFumWMfFqMbMzr0-YgbDF01ZanCfBF5UCJMoDm6MqXrCkmFwlXjIGO5qFF87AIsMfQWrmvCxeunrKQe0vzPBWZnbnVlpaNMU-a-VrhiR3Vx4UqH8vrP0fBLhGuvw1pBTUkjf_sNqNh0E5YziaiebUGjXRbnIK4hPXG2a2cESa_VaubU0yRrq0NcYDRkkpJmqzW4agyJSg3p38SDbYj_A6UdWEwnqd0FEggtVICpHTMjloRR5Ctdo5ommD_5hvI98EscpC6Kk7seGQ-yVKHdyww86cDDtEUieHtw_jFpmtfm-H04LwGW30xMYvT4beL-XyeewEonHvRlvzvsHcAq3oly0c8hLM4fn-wR8pl5cpwZEAH5zwb7DhkLBMI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Financial+time+series+forecasting+model+based+on+CEEMDAN+and+LSTM&rft.jtitle=Physica+A&rft.au=Cao%2C+Jian&rft.au=Li%2C+Zhi&rft.au=Li%2C+Jian&rft.date=2019-04-01&rft.issn=0378-4371&rft.volume=519&rft.spage=127&rft.epage=139&rft_id=info:doi/10.1016%2Fj.physa.2018.11.061&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_physa_2018_11_061
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4371&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4371&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4371&client=summon