Modeling photothermal effects in high power optical resonators used for coherent levitation

Abstract Radiation pressure can be used to enable optomechanical control and manipulation of the quantum state of a mechanical oscillator. Optomechanical interaction can also be mediated by photothermal effects which, although frequently overlooked, may compete with radiation pressure interaction. U...

Full description

Saved in:
Bibliographic Details
Published inNew journal of physics Vol. 25; no. 12; pp. 123051 - 123063
Main Authors Gu, Chenyue, Qin, Jiayi, Guccione, Giovanni, Ma, Jinyong, Lecamwasam, Ruvi, Lam, Ping Koy
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Radiation pressure can be used to enable optomechanical control and manipulation of the quantum state of a mechanical oscillator. Optomechanical interaction can also be mediated by photothermal effects which, although frequently overlooked, may compete with radiation pressure interaction. Understanding of how these phenomena affect the coherent exchange of information between optical and mechanical degrees of freedom is often underdeveloped, particularly in mesoscale high-power systems where photothermal effects can fully dominate the interaction. Here we report an effective theoretical model to predict and successfully reconstruct the dynamics of a unique optomechanical system: a cavity-enhanced setup for macroscopic optical levitation, where a free-standing mirror acts as the optomechanical oscillator. We decompose the photothermal interaction into two opposing light-induced effects, photothermal expansion, and thermo-optic effects. We then reconstruct a heuristic model that links the intracavity field to four types of cavity length changes caused by acoustic ( x ac ), centre of mass ( x lev ), photothermal ( x ex ) and thermo-optic ( x re ) displacements. This offers refined predictions with a higher degree of agreement with experimental results. Our work provides a means to precisely model the photothermal effect of high power optomechanical systems, as well as for developing more precise photothermal modeling of photonics systems for precision sensing and quantum measurements.
AbstractList Abstract Radiation pressure can be used to enable optomechanical control and manipulation of the quantum state of a mechanical oscillator. Optomechanical interaction can also be mediated by photothermal effects which, although frequently overlooked, may compete with radiation pressure interaction. Understanding of how these phenomena affect the coherent exchange of information between optical and mechanical degrees of freedom is often underdeveloped, particularly in mesoscale high-power systems where photothermal effects can fully dominate the interaction. Here we report an effective theoretical model to predict and successfully reconstruct the dynamics of a unique optomechanical system: a cavity-enhanced setup for macroscopic optical levitation, where a free-standing mirror acts as the optomechanical oscillator. We decompose the photothermal interaction into two opposing light-induced effects, photothermal expansion, and thermo-optic effects. We then reconstruct a heuristic model that links the intracavity field to four types of cavity length changes caused by acoustic ( x ac ), centre of mass ( x lev ), photothermal ( x ex ) and thermo-optic ( x re ) displacements. This offers refined predictions with a higher degree of agreement with experimental results. Our work provides a means to precisely model the photothermal effect of high power optomechanical systems, as well as for developing more precise photothermal modeling of photonics systems for precision sensing and quantum measurements.
Radiation pressure can be used to enable optomechanical control and manipulation of the quantum state of a mechanical oscillator. Optomechanical interaction can also be mediated by photothermal effects which, although frequently overlooked, may compete with radiation pressure interaction. Understanding of how these phenomena affect the coherent exchange of information between optical and mechanical degrees of freedom is often underdeveloped, particularly in mesoscale high-power systems where photothermal effects can fully dominate the interaction. Here we report an effective theoretical model to predict and successfully reconstruct the dynamics of a unique optomechanical system: a cavity-enhanced setup for macroscopic optical levitation, where a free-standing mirror acts as the optomechanical oscillator. We decompose the photothermal interaction into two opposing light-induced effects, photothermal expansion, and thermo-optic effects. We then reconstruct a heuristic model that links the intracavity field to four types of cavity length changes caused by acoustic ( $x_\textrm{ac}$ ), centre of mass ( $x_\textrm{lev}$ ), photothermal ( $x_\textrm{ex}$ ) and thermo-optic ( $x_\textrm{re}$ ) displacements. This offers refined predictions with a higher degree of agreement with experimental results. Our work provides a means to precisely model the photothermal effect of high power optomechanical systems, as well as for developing more precise photothermal modeling of photonics systems for precision sensing and quantum measurements.
Radiation pressure can be used to enable optomechanical control and manipulation of the quantum state of a mechanical oscillator. Optomechanical interaction can also be mediated by photothermal effects which, although frequently overlooked, may compete with radiation pressure interaction. Understanding of how these phenomena affect the coherent exchange of information between optical and mechanical degrees of freedom is often underdeveloped, particularly in mesoscale high-power systems where photothermal effects can fully dominate the interaction. Here we report an effective theoretical model to predict and successfully reconstruct the dynamics of a unique optomechanical system: a cavity-enhanced setup for macroscopic optical levitation, where a free-standing mirror acts as the optomechanical oscillator. We decompose the photothermal interaction into two opposing light-induced effects, photothermal expansion, and thermo-optic effects. We then reconstruct a heuristic model that links the intracavity field to four types of cavity length changes caused by acoustic (xac), centre of mass (xlev), photothermal (xex) and thermo-optic (xre) displacements. This offers refined predictions with a higher degree of agreement with experimental results. Our work provides a means to precisely model the photothermal effect of high power optomechanical systems, as well as for developing more precise photothermal modeling of photonics systems for precision sensing and quantum measurements.
Author Qin, Jiayi
Ma, Jinyong
Gu, Chenyue
Lecamwasam, Ruvi
Lam, Ping Koy
Guccione, Giovanni
Author_xml – sequence: 1
  givenname: Chenyue
  orcidid: 0000-0002-1345-9481
  surname: Gu
  fullname: Gu, Chenyue
  organization: ARC Centre of Excellence for Quantum Computation and Communication Technology (CQC2T), Research School of Physics, The Australian National University , Canberra ACT 2601, Australia
– sequence: 2
  givenname: Jiayi
  surname: Qin
  fullname: Qin, Jiayi
  organization: Centre for Gravitational Astrophysics (CGA), Research Schools of Physics & Astronomy and Astrophysics, The Australian National University , Canberra ACT 2601, Australia
– sequence: 3
  givenname: Giovanni
  orcidid: 0000-0003-3710-3217
  surname: Guccione
  fullname: Guccione, Giovanni
  organization: ARC Centre of Excellence for Quantum Computation and Communication Technology (CQC2T), Research School of Physics, The Australian National University , Canberra ACT 2601, Australia
– sequence: 4
  givenname: Jinyong
  surname: Ma
  fullname: Ma, Jinyong
  organization: ARC Centre of Excellence for Transformative Meta-Optical Systems, Research School of Physics, The Australian National University , Canberra ACT 2601, Australia
– sequence: 5
  givenname: Ruvi
  orcidid: 0000-0001-6531-3233
  surname: Lecamwasam
  fullname: Lecamwasam, Ruvi
  organization: ASTAR Quantum Innovation Centre (Q.InC), Institute for Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (ASTAR) , 2 Fusionopolis Way, 08-03 Innovis, Singapore 138634, Singapore
– sequence: 6
  givenname: Ping Koy
  orcidid: 0000-0002-4421-601X
  surname: Lam
  fullname: Lam, Ping Koy
  organization: ASTAR Quantum Innovation Centre (Q.InC), Institute for Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (ASTAR) , 2 Fusionopolis Way, 08-03 Innovis, Singapore 138634, Singapore
BookMark eNp1kU1PHDEMhqMKpC4fd46Reu0WJzOZTI4VKhQJ1AucOETZGWc3q9nxNMmC-u_JdirKhZMt-30fW_YJOxppRMYuBHwT0LaXomr0UjYVXLpeNEZ_You30tG7_DM7SWkLIEQr5YI93VOPQxjXfNpQprzBuHMDR--xy4mHkW_CesMnesHIacqhK92IiUaXKSa-T9hzT5F3VKw4Zj7gc8guBxrP2LF3Q8Lzf_GUPV7_eLj6ubz7dXN79f1u2VWNycu6VrXQatXJVeu1aZVQ0BgPCFoqBUYap0vPrypZeVC6d1CBUQ3W4L0xVXXKbmduT25rpxh2Lv6x5IL9W6C4ti6WzQe0xvmmR5S907oGkM4VJHqzcq2SnZSF9WVmTZF-7zFlu6V9HMv6VhrQ2jRamKKCWdVFSimif5sqwB7eYQ_3tod72_kdxfJ1tgSa_jM_lL8CB3mMoQ
CODEN NJOPFM
Cites_doi 10.1364/OPEX.13.005293
10.1117/12.919574
10.1103/PhysRevLett.97.243905
10.1103/PhysRevLett.114.161102
10.1103/PhysRevD.63.082003
10.1063/1.366785
10.1364/OE.25.013799
10.1103/PhysRevA.95.013826
10.1038/nature06715
10.1038/nature05244
10.1126/science.210.4474.1081
10.1103/PhysRevLett.116.061102
10.1103/PhysRevLett.100.010801
10.1103/RevModPhys.86.1391
10.1103/PhysRevLett.96.231101
10.1103/PhysRevE.73.026217
10.1364/AO.36.005325
10.1038/s41377-019-0239-6
10.1364/OE.20.018268
10.1140/epjd/e2020-10185-5
10.1103/PhysRevA.73.033819
10.1103/PhysRevD.91.092001
10.1364/AO.20.001333
10.1103/PRXQuantum.3.020309
10.1103/PhysRevLett.95.033901
10.1103/PhysRevLett.111.183001
10.1038/nature05273
10.1126/science.abg3027
10.1103/PhysRevLett.98.150802
10.1103/PhysRevLett.89.237402
10.1103/PhysRevLett.116.131103
10.1016/S0375-9601(01)00510-2
10.1103/PhysRevLett.90.083601
10.1038/s42005-020-00467-2
10.1038/nature05231
10.1364/OPTICA.457328
10.1088/1367-2630/10/9/095012
10.1103/PhysRevLett.97.133601
10.1103/PhysRevD.78.102003
10.1063/5.0014905
10.1364/OE.15.017172
10.1126/sciadv.1600521
ContentType Journal Article
Copyright 2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft
2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft
– notice: 2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
8FD
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
H8D
L7M
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1088/1367-2630/ad1697
DatabaseName IOP Publishing Free Content_
IOPscience (Open Access)
CrossRef
Technology Research Database
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
ProQuest One Community College
ProQuest Central
Aerospace Database
Advanced Technologies Database with Aerospace
Publicly Available Content (ProQuest)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Research Database
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest One Academic
Advanced Technologies Database with Aerospace
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: O3W
  name: IOP Publishing Free Content_
  url: http://iopscience.iop.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: AUTh Library subscriptions: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1367-2630
ExternalDocumentID oai_doaj_org_article_9af6dee2da774002aa3f0ef9ba852c22
10_1088_1367_2630_ad1697
njpad1697
GrantInformation_xml – fundername: Australian Research Council Laureate Fellowship
  grantid: FL150100019
– fundername: Australian Research Council Discovery Program
  grantid: DP230101940
– fundername: Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology
  grantid: CE170100012
GroupedDBID 123
1JI
1PV
29N
2WC
5PX
5VS
7.M
AAFWJ
AAJIO
AAJKP
ABHWH
ACAFW
ACGFO
ACHIP
ADBBV
AEFHF
AEJGL
AENEX
AFKRA
AFPKN
AFYNE
AHSEE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
CBCFC
CCPQU
CEBXE
CJUJL
CRLBU
CS3
DU5
E3Z
EBS
EDWGO
EQZZN
F5P
GROUPED_DOAJ
GX1
HH5
IJHAN
IOP
IZVLO
J9A
KNG
KQ8
LAP
M~E
N5L
N9A
O3W
OK1
P2P
PIMPY
PJBAE
RIN
RNS
RO9
ROL
SY9
T37
TR2
TSCCA
UCJ
W28
XPP
XSB
ZMT
AAYXX
CITATION
8FD
ABUWG
AZQEC
DWQXO
H8D
L7M
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c369t-4454175bc2b8f798515069f0e072550929a7c2bfb323f057da030956e40ff9933
IEDL.DBID O3W
ISSN 1367-2630
IngestDate Tue Oct 22 15:12:47 EDT 2024
Thu Oct 10 16:47:22 EDT 2024
Fri Aug 23 02:45:26 EDT 2024
Sun Aug 18 15:20:27 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c369t-4454175bc2b8f798515069f0e072550929a7c2bfb323f057da030956e40ff9933
Notes NJP-115893.R1
ORCID 0000-0001-6531-3233
0000-0002-4421-601X
0000-0003-3710-3217
0000-0002-1345-9481
OpenAccessLink https://iopscience.iop.org/article/10.1088/1367-2630/ad1697
PQID 2907796719
PQPubID 4491272
PageCount 13
ParticipantIDs crossref_primary_10_1088_1367_2630_ad1697
proquest_journals_2907796719
iop_journals_10_1088_1367_2630_ad1697
doaj_primary_oai_doaj_org_article_9af6dee2da774002aa3f0ef9ba852c22
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle New journal of physics
PublicationTitleAbbrev NJP
PublicationTitleAlternate New J. Phys
PublicationYear 2023
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Abbott (njpad1697bib16) 2016; 116
Zhang (njpad1697bib8) 2016; 2
Ashkin (njpad1697bib2) 1980; 210
Gonzalez-Ballestero (njpad1697bib3) 2021; 374
LIGO Scientific Collaboration and Virgo Collaboration (njpad1697bib39) 2016; 116
Furstenberg (njpad1697bib9) 2012; 8374
Michimura (njpad1697bib38) 2020; 74
Braginsky (njpad1697bib15) 2001; 287
Dhurandhar (njpad1697bib40) 1997; 36
Zhao (njpad1697bib31) 2015; 91
Hess (njpad1697bib4) 1989
Yoder (njpad1697bib30) 2005
Thompson (njpad1697bib28) 2008; 452
Kippenberg (njpad1697bib18) 2007; 15
Liu (njpad1697bib17) 2012; 20
Mow-Lowry (njpad1697bib23) 2008; 100
Jinyong (njpad1697bib35) 2020; 3
Corbitt (njpad1697bib29) 2007; 98
Michimura (njpad1697bib37) 2017; 25
De Rosa (njpad1697bib13) 2002; 89
Zhao (njpad1697bib12) 2006; 96
Marino (njpad1697bib41) 2006; 73
Konthasinghe (njpad1697bib33) 2017; 95
Cerdonio (njpad1697bib42) 2001; 63
Evans (njpad1697bib14) 2015; 114
Arcizet (njpad1697bib21) 2006; 73
Guccione (njpad1697bib36) 2013; 111
Kippenberg (njpad1697bib26) 2005; 95
Rokhsari (njpad1697bib34) 2005; 13
Kleckner (njpad1697bib22) 2006; 444
Bertolotti (njpad1697bib6) 1998; 83
Evans (njpad1697bib43) 2008; 78
Olivier Arcizet (njpad1697bib24) 2006; 444
Qiu (njpad1697bib11) 2022; 3
Jiang (njpad1697bib32) 2020; 9
Qin (njpad1697bib45) 2022; 9
Schwab Gigan (njpad1697bib25) 2006; 444
Aspelmeyer (njpad1697bib1) 2014; 86
Chien (njpad1697bib7) 2020; 128
Schliesser (njpad1697bib27) 2006; 97
Pinard (njpad1697bib10) 2008; 10
Madhusudana (njpad1697bib44) 2014
Olivier Arcizet (njpad1697bib19) 2006; 97
Courty (njpad1697bib20) 2003; 90
Jackson (njpad1697bib5) 1981; 20
References_xml – volume: 13
  start-page: 5293
  year: 2005
  ident: njpad1697bib34
  article-title: Radiation-pressure-driven micro-mechanical oscillator
  publication-title: Opt. Express
  doi: 10.1364/OPEX.13.005293
  contributor:
    fullname: Rokhsari
– volume: 8374
  start-page: 293
  year: 2012
  ident: njpad1697bib9
  article-title: Chemical imaging using infrared photothermal microspectroscopy
  publication-title: Proc. SPIE
  doi: 10.1117/12.919574
  contributor:
    fullname: Furstenberg
– volume: 97
  year: 2006
  ident: njpad1697bib27
  article-title: Radiation pressure cooling of a micromechanical oscillator using dynamical backaction
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.243905
  contributor:
    fullname: Schliesser
– volume: 114
  year: 2015
  ident: njpad1697bib14
  article-title: Observation of parametric instability in advanced ligo
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.161102
  contributor:
    fullname: Evans
– volume: 63
  year: 2001
  ident: njpad1697bib42
  article-title: Thermoelastic effects at low temperatures and quantum limits in displacement measurements
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.63.082003
  contributor:
    fullname: Cerdonio
– volume: 83
  start-page: 966
  year: 1998
  ident: njpad1697bib6
  article-title: Analysis of the photothermal deflection technique in the surface reflection scheme: theory and experiment
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.366785
  contributor:
    fullname: Bertolotti
– volume: 25
  start-page: 13799
  year: 2017
  ident: njpad1697bib37
  article-title: Optical levitation of a mirror for reaching the standard quantum limit
  publication-title: Opt. Express
  doi: 10.1364/OE.25.013799
  contributor:
    fullname: Michimura
– volume: 95
  year: 2017
  ident: njpad1697bib33
  article-title: Self-sustained photothermal oscillations in high-finesse fabry-perot microcavities
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.95.013826
  contributor:
    fullname: Konthasinghe
– volume: 452
  start-page: 72
  year: 2008
  ident: njpad1697bib28
  article-title: Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane
  publication-title: Nature
  doi: 10.1038/nature06715
  contributor:
    fullname: Thompson
– volume: 444
  start-page: 71
  year: 2006
  ident: njpad1697bib24
  article-title: Radiation-pressure cooling and optomechanical instability of a micromirror
  publication-title: Nature
  doi: 10.1038/nature05244
  contributor:
    fullname: Olivier Arcizet
– volume: 210
  start-page: 1081
  year: 1980
  ident: njpad1697bib2
  article-title: Applications of laser radiation pressure
  publication-title: Science
  doi: 10.1126/science.210.4474.1081
  contributor:
    fullname: Ashkin
– volume: 116
  year: 2016
  ident: njpad1697bib39
  article-title: Observation of gravitational waves from a binary black hole merger
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.061102
  contributor:
    fullname: LIGO Scientific Collaboration and Virgo Collaboration
– volume: 100
  year: 2008
  ident: njpad1697bib23
  article-title: Cooling of a gram-scale cantilever flexure to 70 mk with a servo-modified optical spring
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.010801
  contributor:
    fullname: Mow-Lowry
– volume: 86
  start-page: 1391
  year: 2014
  ident: njpad1697bib1
  article-title: Cavity optomechanics
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.86.1391
  contributor:
    fullname: Aspelmeyer
– volume: 96
  year: 2006
  ident: njpad1697bib12
  article-title: Compensation of strong thermal lensing in high-optical-power cavities
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.231101
  contributor:
    fullname: Zhao
– volume: 73
  year: 2006
  ident: njpad1697bib41
  article-title: Canard orbits in fabry-perot cavities induced by radiation pressure and photothermal effects
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.73.026217
  contributor:
    fullname: Marino
– volume: 36
  start-page: 5325
  year: 1997
  ident: njpad1697bib40
  article-title: Stability of giant fabry–perot cavities of interferometric gravitational-wave detectors
  publication-title: Appl. Opt.
  doi: 10.1364/AO.36.005325
  contributor:
    fullname: Dhurandhar
– year: 2005
  ident: njpad1697bib30
  contributor:
    fullname: Yoder
– volume: 9
  start-page: 1
  year: 2020
  ident: njpad1697bib32
  article-title: Optothermal dynamics in whispering-gallery microresonators
  publication-title: Light: Sci. Appl.
  doi: 10.1038/s41377-019-0239-6
  contributor:
    fullname: Jiang
– volume: 20
  start-page: 18268
  year: 2012
  ident: njpad1697bib17
  article-title: Wide cantilever stiffness range cavity optomechanical sensors for atomic force microscopy
  publication-title: Opt. Express
  doi: 10.1364/OE.20.018268
  contributor:
    fullname: Liu
– volume: 74
  start-page: 1
  year: 2020
  ident: njpad1697bib38
  article-title: Quantum sensing with milligram scale optomechanical systems
  publication-title: Eur. Phys. J. D
  doi: 10.1140/epjd/e2020-10185-5
  contributor:
    fullname: Michimura
– volume: 73
  year: 2006
  ident: njpad1697bib21
  article-title: Beating quantum limits in an optomechanical sensor by cavity detuning
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.73.033819
  contributor:
    fullname: Arcizet
– volume: 91
  year: 2015
  ident: njpad1697bib31
  article-title: Parametric instability in long optical cavities and suppression by dynamic transverse mode frequency modulation
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.91.092001
  contributor:
    fullname: Zhao
– volume: 20
  start-page: 1333
  year: 1981
  ident: njpad1697bib5
  article-title: Photothermal deflection spectroscopy and detection
  publication-title: Appl. Opt.
  doi: 10.1364/AO.20.001333
  contributor:
    fullname: Jackson
– volume: 3
  year: 2022
  ident: njpad1697bib11
  article-title: Dissipative quantum feedback in measurements using a parametrically coupled microcavity
  publication-title: PRX Quantum
  doi: 10.1103/PRXQuantum.3.020309
  contributor:
    fullname: Qiu
– volume: 95
  year: 2005
  ident: njpad1697bib26
  article-title: Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.033901
  contributor:
    fullname: Kippenberg
– volume: 111
  year: 2013
  ident: njpad1697bib36
  article-title: Scattering-free optical levitation of a cavity mirror
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.183001
  contributor:
    fullname: Guccione
– volume: 444
  start-page: 67
  year: 2006
  ident: njpad1697bib25
  article-title: Self-cooling of a micromirror by radiation pressure
  publication-title: Nature
  doi: 10.1038/nature05273
  contributor:
    fullname: Schwab Gigan
– start-page: pp 9
  year: 2014
  ident: njpad1697bib44
  article-title: Thermal constriction resistance
  contributor:
    fullname: Madhusudana
– volume: 374
  start-page: eabg3027
  year: 2021
  ident: njpad1697bib3
  article-title: Levitodynamics: levitation and control of microscopic objects in vacuum
  publication-title: Science
  doi: 10.1126/science.abg3027
  contributor:
    fullname: Gonzalez-Ballestero
– volume: 98
  year: 2007
  ident: njpad1697bib29
  article-title: An all-optical trap for a gram-scale mirror
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.150802
  contributor:
    fullname: Corbitt
– volume: 89
  year: 2002
  ident: njpad1697bib13
  article-title: Experimental measurement of the dynamic photothermal effect in fabry-perot cavities for gravitational wave detectors
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.89.237402
  contributor:
    fullname: De Rosa
– year: 1989
  ident: njpad1697bib4
  contributor:
    fullname: Hess
– volume: 116
  year: 2016
  ident: njpad1697bib16
  article-title: Gw150914: the advanced ligo detectors in the era of first discoveries
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.131103
  contributor:
    fullname: Abbott
– volume: 287
  start-page: 331
  year: 2001
  ident: njpad1697bib15
  article-title: Parametric oscillatory instability in fabry–perot interferometer
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(01)00510-2
  contributor:
    fullname: Braginsky
– volume: 90
  year: 2003
  ident: njpad1697bib20
  article-title: Quantum locking of mirrors in interferometers
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.90.083601
  contributor:
    fullname: Courty
– volume: 3
  start-page: 1
  year: 2020
  ident: njpad1697bib35
  article-title: Observation of nonlinear dynamics in an optical levitation system
  publication-title: Commun. Phys.
  doi: 10.1038/s42005-020-00467-2
  contributor:
    fullname: Jinyong
– volume: 444
  start-page: 75
  year: 2006
  ident: njpad1697bib22
  article-title: Sub-kelvin optical cooling of a micromechanical resonator
  publication-title: Nature
  doi: 10.1038/nature05231
  contributor:
    fullname: Kleckner
– volume: 9
  start-page: 924
  year: 2022
  ident: njpad1697bib45
  article-title: Cancellation of photothermally induced instability in an optical resonator
  publication-title: Optica
  doi: 10.1364/OPTICA.457328
  contributor:
    fullname: Qin
– volume: 10
  year: 2008
  ident: njpad1697bib10
  article-title: Quantum limits of photothermal and radiation pressure cooling of a movable mirror
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/10/9/095012
  contributor:
    fullname: Pinard
– volume: 97
  year: 2006
  ident: njpad1697bib19
  article-title: High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.133601
  contributor:
    fullname: Olivier Arcizet
– volume: 78
  year: 2008
  ident: njpad1697bib43
  article-title: Thermo-optic noise in coated mirrors for high-precision optical measurements
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.78.102003
  contributor:
    fullname: Evans
– volume: 128
  year: 2020
  ident: njpad1697bib7
  article-title: Nanoelectromechanical photothermal polarization microscopy with 3 å localization precision
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0014905
  contributor:
    fullname: Chien
– volume: 15
  start-page: 17172
  year: 2007
  ident: njpad1697bib18
  article-title: Cavity opto-mechanics
  publication-title: Opt. Express
  doi: 10.1364/OE.15.017172
  contributor:
    fullname: Kippenberg
– volume: 2
  year: 2016
  ident: njpad1697bib8
  article-title: Depth-resolved mid-infrared photothermal imaging of living cells and organisms with submicrometer spatial resolution
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1600521
  contributor:
    fullname: Zhang
SSID ssj0011822
Score 2.4636767
Snippet Abstract Radiation pressure can be used to enable optomechanical control and manipulation of the quantum state of a mechanical oscillator. Optomechanical...
Radiation pressure can be used to enable optomechanical control and manipulation of the quantum state of a mechanical oscillator. Optomechanical interaction...
SourceID doaj
proquest
crossref
iop
SourceType Open Website
Aggregation Database
Publisher
StartPage 123051
SubjectTerms Levitation
Mechanical oscillators
Modelling
optical levitation
Optical resonators
Optics
optomechanics
photothermal effects
Physics
Radiation
Radiation pressure
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8iCF7ET5xOyUEPHsrSNB_NUcUxBD05GHgoaZqwHVzL2v3_vtd2OhD04rUNbfi9JO_38r4IuVGySJ32KgouVZFwQUTWMRlpK0LMnEtMjveQL69qMhXPMznbavWFMWFdeeAOuJGxQRXe88ICUYHta20SmA8mt6nkjnenbyw3xlTvPwDWzHunJGyjEdYli7hK2MgWscICT1tKqK3VD6plUVY_DuRWy4wPyUFPD-l9N60jsuOXx2SvDdN09Ql5x9ZlmEBOq3nZtMlTHzC8D8qgiyXF8sO0wtZntKzae2oKBjVekZermq5rX1CgqdSVc8zzayhml3fe-FMyHT-9PU6ivj1C5BJlmkgIKUD5547nadAGqJNkygA4TIOdwID3WA3vQp5wgEzqwqI7RSovWAhAS5Izsrssl_6cUAGkiFlugoNvFtxbpRMZgxRtrPOk4ANyt8Erq7oqGFnrvU7TDLHNENusw3ZAHhDQr3FYv7p9AFLNeqlmf0l1QG5BHFm_n-pffjbcCOx7MAeDXxulY3PxH3O5JPvYY76LYRmS3Wa19lfARJr8ul10n9nk2jM
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: AUTh Library subscriptions: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS-QwFA-rw4IX2Q8XR90lB_ewhzBpmibNSXRRhgUHkR0QPJQ0H6sHp3Va_3_fazO6IHhtQlveS15-eb_3QcixKnzpdFAsulIx6aJk1vGCaStjxp3LTY1-yMuFmi_ln5viJjncuhRWubGJg6H2jUMf-UzALU4bpTNz0j4y7BqF7GpqobFFJiKTSNNOzs4XV9cvPAKgZ5HISdhOM6xPxoTK-cz6TGGhp_8Oo6FmPxwx9037xjAPp83FJ7KbYCI9HfX6mXwIqy_k4xCu6bqv5BZbmGEiOW3vmn5IonqA6Sk4g96vKJYhpi22QKNNO_irKVys0VXerDv61AVPAa5S19xhvl9PMct8ZOX3yPLi_O_vOUttEpjLlemZlIUEEFA7UZdRG4BQBVcm8sA13Bc44B-rYSzWucgjwDNvkVYpVJA8RoAn-TeyvWpWYZ9QCeCIW2Gig3d6EazSeZGBNm2m69yLKfm1kVfVjtUwqoHFLssKZVuhbKtRtlNyhgJ9mYd1rIcHzfpflbZFZWxUPgThLcBQMM7Wwi-GaGpbFsIJ-OBPUEeV9lX3zseONgp7nfy6ZA7eHz4kO9hFfoxSOSLb_fopfAes0dc_0oJ6BnWG0hE
  priority: 102
  providerName: ProQuest
Title Modeling photothermal effects in high power optical resonators used for coherent levitation
URI https://iopscience.iop.org/article/10.1088/1367-2630/ad1697
https://www.proquest.com/docview/2907796719
https://doaj.org/article/9af6dee2da774002aa3f0ef9ba852c22
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA4-ELyIT1wfSw568FA3TdKkwZMrigrqIooLHkqaJqwH2-LW_-8krSuiiJdSmjQJM23mm8wLoQORFKmRVkTOpCLixvFIG5JEUnMXE2OYyv055M2tuHzk1-NkPIdOZrEwVd1t_cdw2yYKbknYOcSlA59kLKKCkYEuYqHkPFoEqRvQ0R17mpkQADjTzi7521vf5FBI1w_SBab8sScHQXOxilY6hIhP2_WsoTlbrqOl4Klpphvo2Vcv8zHkuJ5UTYifeoXunV8Gfimxz0CMa1_9DFd1OKrGoFP7U_LqbYrfp7bAgFSxqSY-1K_BPsC8NchvoseL84ezy6irkBAZJlQTcZ5wkP-5oXnqpAL0lBChHLFEgqpAAPpoCW0uZ5Q5QGaF9haVRFhOnANkwrbQQlmVdhthDriIaKqcgTELarWQLImBkTqWOStoDx190iur20QYWTBgp2nmaZt52mYtbXto6Ak66-dTWIcHwM6sY2emtBOFtbTQgEBhX9YalmidynWaUENhwkNgR9b9UtM_Jtv7ZNhXZwo6v1RCxmrnn8PsomVfSb71VNlDC83bu90HvNHkfbQ4PL8d3feDvg7Xq7tRP3xrH4un0gU
link.rule.ids 315,786,790,870,2115,21416,27955,27956,33777,38898,38923,43838,53875,53901
linkProvider IOP Publishing
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZgK0QviKdoKeADHDhY6ziOHZ9QW7VaoF0h1EqVOFiOH7SHbtJN-v-ZSbwtElKvsZVEM_b48zy-IeSTqkLtdVQs-Vox6ZNkzvOKaSdTwb0vTYN-yNOlWpzL7xfVRXa49TmtcmMTR0MdWo8-8rmAW5w2Shfma3fDsGsURldzC43HZAspN-sZ2To4Wv78dRdHAPQscnASttMc-cmYUCWfu1AoJHr65zAaOfvhiLlqu_8M83jaHD8nzzJMpPuTXl-QR3H1kjwZ0zV9_4r8xhZmWEhOu8t2GIuormF6Ts6gVyuKNMS0wxZotO1GfzWFizW6ytt1T2_7GCjAVerbS6z3GyhWmU9R-dfk_Pjo7HDBcpsE5ktlBiZlJQEENF40ddIGIFTFlUk8cg33BQ74x2kYS00pygTwLDgMq1QqSp4SwJPyDZmt2lV8S6gEcMSdMMnDO4OITumyKkCbrtBNGcQO-bKRl-0mNgw7RrHr2qJsLcrWTrLdIQco0Lt5yGM9PmjXf2zeFta4pEKMIjiAoWCcnYNfjMk0rq6EF_DBz6AOm_dV_8DH9jYKu598v2R2Hx7-SJ4uzk5P7Mm35Y93ZBs7yk8ZK3tkNqxv43vAHUPzIS-uv4tO1Qc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYKVREXaGkRz9YHeuCQXcdx7PjIoytoC-UAEhIH1_FDVBWbiM1e-PWMHS-oUKFKvUXJJHbGr8-emW8Q2uGlrYxwPPOm4hkznmXakDITmvmcGFPIOpxDnpzyowv29bK8THlOYyxM06apfwCXPVFwr8LkEFcNA8lYRnlBhtrmXIpha_0ceg0jVwSfvuMfZw9mBADPNNkm__bmH2tRpOyHFQaKfTYvx8VmtIx-zqrZ-5j8Hky7emDunjA4_sd_vEVLCYjivV78HXrlxivoTXQINZP36CokSQuh6ri9broYpnUD4sn9A_8a40B0jNuQZA03bTwRx7B1D4fxze0ETyfOYgDE2DTXIaKwwyGOvbf7f0AXoy_nB0dZSsSQmYLLLmOsZAAzakPrygsJIK0kXHriiIAdCQGEpQU883VBCw8A0OpguCm5Y8R7AEDFKpofN2O3hjAD-EU0ld7ANy11mouizKG_6FzUhaXraHfWJKrt-TZUtJNXlQoKU0FhqlfYOtoPbfYgF5iy4w3QtkraVlJ7bp2jVgPQhelfa6ii87LWVUkNhQI_QwOpNHInLxS2NesTj8JUEiEkF7nc-MfPfEILZ4cj9f349NsmWgy563vfmC00391O3TYgnK7-GHvxPRJ88uE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+photothermal+effects+in+high+power+optical+resonators+used+for+coherent+levitation&rft.jtitle=New+journal+of+physics&rft.au=Gu%2C+Chenyue&rft.au=Qin%2C+Jiayi&rft.au=Guccione%2C+Giovanni&rft.au=Ma%2C+Jinyong&rft.date=2023-12-01&rft.pub=IOP+Publishing&rft.eissn=1367-2630&rft.volume=25&rft.issue=12&rft_id=info:doi/10.1088%2F1367-2630%2Fad1697&rft.externalDocID=njpad1697
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-2630&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-2630&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-2630&client=summon