Optimization of nonconventional wells under uncertainty using statistical proxies

The determination of the optimal type and placement of a nonconventional well in a heterogeneous reservoir represents a challenging optimization problem. This determination is significantly more complicated if uncertainty in the reservoir geology is included in the optimization. In this study, a gen...

Full description

Saved in:
Bibliographic Details
Published inComputational geosciences Vol. 10; no. 4; pp. 389 - 404
Main Authors Artus, Vincent, Durlofsky, Louis J., Onwunalu, Jérôme, Aziz, Khalid
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Nature B.V 01.12.2006
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The determination of the optimal type and placement of a nonconventional well in a heterogeneous reservoir represents a challenging optimization problem. This determination is significantly more complicated if uncertainty in the reservoir geology is included in the optimization. In this study, a genetic algorithm is applied to optimize the deployment of nonconventional wells. Geological uncertainty is accounted for by optimizing over multiple reservoir models (realizations) subject to a prescribed risk attitude. To reduce the excessive computational requirements of the base method, a new statistical proxy (which provides fast estimates of the objective function) based on cluster analysis is introduced into the optimization process. This proxy provides an estimate of the cumulative distribution function (CDF) of the scenario performance, which enables the quantification of proxy uncertainty. Knowledge of the proxy-based performance estimate in conjunction with the proxy CDF enables the systematic selection of the most appropriate scenarios for full simulation. Application of the overall method for the optimization of monobore and dual-lateral well placement demonstrates the performance of the hybrid optimization procedure. Specifically, it is shown that by simulating only 10% or 20% of the scenarios (as determined by application of the proxy), optimization results very close to those achieved by simulating all cases are obtained.[PUBLICATION ABSTRACT]
AbstractList The determination of the optimal type and placement of a nonconventional well in a heterogeneous reservoir represents a challenging optimization problem. This determination is significantly more complicated if uncertainty in the reservoir geology is included in the optimization. In this study, a genetic algorithm is applied to optimize the deployment of nonconventional wells. Geological uncertainty is accounted for by optimizing over multiple reservoir models (realizations) subject to a prescribed risk attitude. To reduce the excessive computational requirements of the base method, a new statistical proxy (which provides fast estimates of the objective function) based on cluster analysis is introduced into the optimization process. This proxy provides an estimate of the cumulative distribution function (CDF) of the scenario performance, which enables the quantification of proxy uncertainty. Knowledge of the proxy-based performance estimate in conjunction with the proxy CDF enables the systematic selection of the most appropriate scenarios for full simulation. Application of the overall method for the optimization of monobore and dual-lateral well placement demonstrates the performance of the hybrid optimization procedure. Specifically, it is shown that by simulating only 10% or 20% of the scenarios (as determined by application of the proxy), optimization results very close to those achieved by simulating all cases are obtained.[PUBLICATION ABSTRACT]
The determination of the optimal type and placement of a nonconventional well in a heterogeneous reservoir represents a challenging optimization problem. This determination is significantly more complicated if uncertainty in the reservoir geology is included in the optimization. In this study, a genetic algorithm is applied to optimize the deployment of nonconventional wells. Geological uncertainty is accounted for by optimizing over multiple reservoir models (realizations) subject to a prescribed risk attitude. To reduce the excessive computational requirements of the base method, a new statistical proxy (which provides fast estimates of the objective function) based on cluster analysis is introduced into the optimization process. This proxy provides an estimate of the cumulative distribution function (CDF) of the scenario performance, which enables the quantification of proxy uncertainty. Knowledge of the proxy-based performance estimate in conjunction with the proxy CDF enables the systematic selection of the most appropriate scenarios for full simulation. Application of the overall method for the optimization of monobore and dual-lateral well placement demonstrates the performance of the hybrid optimization procedure. Specifically, it is shown that by simulating only 10% or 20% of the scenarios (as determined by application of the proxy), optimization results very close to those achieved by simulating all cases are obtained.
Author Aziz, Khalid
Artus, Vincent
Durlofsky, Louis J.
Onwunalu, Jérôme
Author_xml – sequence: 1
  givenname: Vincent
  surname: Artus
  fullname: Artus, Vincent
– sequence: 2
  givenname: Louis J.
  surname: Durlofsky
  fullname: Durlofsky, Louis J.
– sequence: 3
  givenname: Jérôme
  surname: Onwunalu
  fullname: Onwunalu, Jérôme
– sequence: 4
  givenname: Khalid
  surname: Aziz
  fullname: Aziz, Khalid
BookMark eNp9kE9PAyEQxYmpiW31A3jbePCGDgvLlqNp_JeYNCZ6JizLGpotVGDV-ullracevMxMyO-9Yd4MTZx3BqFzAlcEoL6OBCrBMQDHAijB4ghNSVVTTJgQkzyzEnBG6hM0i3ENAKKmZIqeV9tkN_ZbJetd4bsi-2rvPowbH1RffJq-j8XgWhNy1SYkZV3aFUO07q2IKQtjsjqT2-C_rImn6LhTfTRnf32OXu9uX5YP-Gl1_7i8ecKacpEwbY0WnaoU5VoIvhAVZYy0WhPRmKasFsAVkAZAt6pmpGRU8UYpyLPuxsvm6HLvm_e-DyYmubFR598qZ_wQJeWs5FBWGbw4ANd-CPm2KOuKUM5LNrqRPaSDjzGYTm6D3aiwkwTkmLDcJyxzwnJMWIqsqQ802qbfIFNQtv9H-QODNIND
CitedBy_id crossref_primary_10_1007_s10596_016_9584_1
crossref_primary_10_1016_j_procs_2010_04_145
crossref_primary_10_1007_s10596_020_09985_y
crossref_primary_10_1016_j_egypro_2011_02_377
crossref_primary_10_1016_j_fuel_2017_06_030
crossref_primary_10_1016_j_petrol_2022_111005
crossref_primary_10_2118_217972_PA
crossref_primary_10_1144_1470_9236_07_081
crossref_primary_10_1002_aic_15209
crossref_primary_10_1016_j_petrol_2022_110639
crossref_primary_10_1007_s11004_016_9643_0
crossref_primary_10_1007_s10596_011_9254_2
crossref_primary_10_1007_s10596_009_9142_1
crossref_primary_10_1007_s40808_022_01501_8
crossref_primary_10_1016_j_ress_2011_08_005
crossref_primary_10_4236_aces_2018_82007
crossref_primary_10_1016_j_upstre_2021_100055
crossref_primary_10_1016_j_procs_2016_05_500
crossref_primary_10_1016_j_petrol_2021_109545
crossref_primary_10_1627_jpi_60_41
crossref_primary_10_1016_j_asoc_2022_109842
crossref_primary_10_1016_j_petrol_2018_12_043
crossref_primary_10_1016_j_petrol_2020_107424
crossref_primary_10_1016_j_jngse_2011_10_002
crossref_primary_10_1016_j_petrol_2019_106414
crossref_primary_10_1016_j_ejor_2017_01_044
crossref_primary_10_1016_j_cie_2014_11_007
crossref_primary_10_1007_s10596_013_9375_x
crossref_primary_10_1007_s11859_011_0742_y
crossref_primary_10_1007_s13202_016_0302_2
crossref_primary_10_1016_j_cageo_2016_08_002
crossref_primary_10_1016_j_petrol_2018_10_005
crossref_primary_10_1007_s13202_019_0710_1
crossref_primary_10_1016_j_petrol_2013_07_012
crossref_primary_10_1016_j_petrol_2014_12_016
crossref_primary_10_1016_j_petrol_2017_10_083
crossref_primary_10_2516_ogst_2021014
crossref_primary_10_1007_s41688_017_0014_x
crossref_primary_10_1016_j_ress_2012_08_001
crossref_primary_10_1002_2015WR017418
crossref_primary_10_1007_s10596_014_9422_2
crossref_primary_10_1007_s10596_016_9559_2
crossref_primary_10_1115_1_4034808
crossref_primary_10_3390_en13164054
crossref_primary_10_1007_s10596_015_9507_6
crossref_primary_10_1007_s10596_015_9516_5
crossref_primary_10_1016_j_petlm_2015_11_004
crossref_primary_10_1007_s11004_017_9676_z
crossref_primary_10_2118_209584_PA
crossref_primary_10_2118_210562_PA
Cites_doi 10.2118/62812-PA
10.2118/74691-PA
10.2118/69739-PA
10.2118/83669-PA
10.2118/75353-PA
10.1017/CBO9780511812651
10.2118/86880-PA
10.2118/78266-PA
10.1007/978-1-4020-3610-1_72
ContentType Journal Article
Copyright Springer Science+Business Media B.V. 2006
Copyright_xml – notice: Springer Science+Business Media B.V. 2006
DBID AAYXX
CITATION
3V.
7SC
7UA
7XB
88I
8AL
8FD
8FE
8FG
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H8D
H96
HCIFZ
JQ2
K7-
L.G
L7M
L~C
L~D
M0N
M2P
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s10596-006-9031-9
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1573-1499
EndPage 404
ExternalDocumentID 2140538541
10_1007_s10596_006_9031_9
Genre Feature
GroupedDBID -Y2
-~C
.86
.VR
06D
0R~
0VY
199
1N0
203
29F
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
88I
8FE
8FG
8FH
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFGCZ
AFHIU
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHBYD
AHKAY
AHPBZ
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
CITATION
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
LAK
LK5
LLZTM
M2P
M4Y
M7R
MA-
N2Q
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P62
P9R
PCBAR
PF0
PHGZM
PHGZT
PQQKQ
PROAC
PT4
PT5
Q2X
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~02
~A9
3V.
7SC
7UA
7XB
8AL
8FD
8FK
ABRTQ
C1K
F1W
H8D
H96
JQ2
L.G
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQGLB
PQUKI
Q9U
TUS
ID FETCH-LOGICAL-c369t-3dec9fa5a36c9968953441dcc19beb25806a01b00cda741243a6baa0741cf1573
IEDL.DBID BENPR
ISSN 1420-0597
IngestDate Thu Jul 10 22:13:58 EDT 2025
Mon Aug 18 00:03:07 EDT 2025
Tue Jul 01 04:04:50 EDT 2025
Thu Apr 24 22:58:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c369t-3dec9fa5a36c9968953441dcc19beb25806a01b00cda741243a6baa0741cf1573
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 751366247
PQPubID 55381
PageCount 16
ParticipantIDs proquest_miscellaneous_36426025
proquest_journals_751366247
crossref_primary_10_1007_s10596_006_9031_9
crossref_citationtrail_10_1007_s10596_006_9031_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-12-01
PublicationDateYYYYMMDD 2006-12-01
PublicationDate_xml – month: 12
  year: 2006
  text: 2006-12-01
  day: 01
PublicationDecade 2000
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Computational geosciences
PublicationYear 2006
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References 9031_CR4
9031_CR3
W.L. Martinez (9031_CR12) 2002
9031_CR2
9031_CR18
9031_CR1
9031_CR19
9031_CR8
9031_CR7
9031_CR6
9031_CR5
9031_CR13
9031_CR10
9031_CR9
9031_CR11
9031_CR16
9031_CR17
9031_CR14
9031_CR15
9031_CR20
References_xml – ident: 9031_CR15
– ident: 9031_CR18
  doi: 10.2118/62812-PA
– ident: 9031_CR2
– ident: 9031_CR1
– ident: 9031_CR3
– ident: 9031_CR14
  doi: 10.2118/74691-PA
– ident: 9031_CR6
– ident: 9031_CR5
– ident: 9031_CR10
– ident: 9031_CR17
  doi: 10.2118/69739-PA
– ident: 9031_CR19
– ident: 9031_CR4
  doi: 10.2118/83669-PA
– ident: 9031_CR13
  doi: 10.2118/75353-PA
– ident: 9031_CR9
– ident: 9031_CR8
– ident: 9031_CR16
  doi: 10.1017/CBO9780511812651
– ident: 9031_CR20
  doi: 10.2118/86880-PA
– ident: 9031_CR7
  doi: 10.2118/78266-PA
– ident: 9031_CR11
  doi: 10.1007/978-1-4020-3610-1_72
– volume-title: Computational Statistics Handbook with Matlab
  year: 2002
  ident: 9031_CR12
SSID ssj0009731
Score 2.0815582
Snippet The determination of the optimal type and placement of a nonconventional well in a heterogeneous reservoir represents a challenging optimization problem. This...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 389
SubjectTerms Objective function
Operations research
Optimization
Reservoirs
Studies
Title Optimization of nonconventional wells under uncertainty using statistical proxies
URI https://www.proquest.com/docview/751366247
https://www.proquest.com/docview/36426025
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgExIXxFOMx-iBE1JF0zRpckIMbSAkxkNM2q1Kk5YLbEDHgX-P3WUbu-zSS5OqcmLHjj_7AziPZC6c1C7kViYhWj8e5klKsB2GE5xVsaPi5Ie-vBsk90Mx9NicysMqZzaxNtRubOmO_DIVjEsZJ-nV51dIpFGUXPUMGuvQRAusVAOanW7_6WXRdTetCQlZElPGV6eztOa0dk4Q_hYDao0bO9TLB9OyXa4Pm942bHkvMbieLusOrBWjXdi4rVl4f_fg-REV_cNXUAbjMsAY_j98PKAbuSqg-rBvfNpp2n_yGxDK_S2gIqK6PzOOJBgLBsv7MOh1X2_uQs-NEFou9STkrrC6NMJwaTFkUVpwdGyctUznGCwLFUkTMdQp60xKDNPcyNwYciBsyUTKD6CB_1YcQoAqiKKRRVSWOjH4qdIpZQsjFGM8F6YF0UwwmfWNw4m_4j1btDwmWWYEkSNZZroFF_Mpn9OuGasGH8-knXkFqrL5crfgbP4Wdz6lM8yoGP9UGZfUXT8WRyvnH8Nm7LmGInYCjcn3T3GKfsQkb8O66t22oXnd63T6bb93_gDyYskU
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV05T8MwFH7iEIIFcYpyeoAFKSKOYyceEEJAW24hgcQWHDthgbbQItQfxX_kvRwFlm4sWWJb0cs7_Y4PYNdXqXRKO09YFXqo_YSXhhGV7XDc4GwcOGpOvr5R7Yfw4lE-TsBX3QtDZZW1TiwUtetauiM_iCQXSgVhdNR78wg0ipKrNYJGyRWX2fATI7b-4fkp_t69IGie3Z-0vQpUwLNC6YEnXGZ1bqQRyqKvH2sp0CNw1nKdYpQpY18ZnyMzWmcigmYWRqXGkOW1OZeRwHMnYToUaMipMb3Z-pnxGxXwhzwMKL-sozqJWnbqSar2xfBdoxh5-q8Z_GsFCtPWXID5yidlxyUTLcJE1lmCmVaB-TtchrtbVCuvVb8m6-as0-38LlZndP_XZ9SN9o5PWxYZDIaMauqfGbUsFdOgcSUVzWBovgIP_0K0VZjCb8vWgKHAI2lU5ue5Dg0elbs4tpmRMecilaYBfk2YxFZjygkt4yX5GbBMtEyoII9omegG7I-29MoZHeMWb9TUTipx7Scj5mrAzugtyhklT0wn6370E6Foln8g18fu34HZ9v31VXJ1fnO5AXNBhXLk802YGrx_ZFvowQzS7YJvGDz9N6N-AxnYAd8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5BIlAvqC1FDWmbPbQXJAuv17v2HqqqbZKGUlJagcTNrHftXooNSVCVn8a_Y8aPUC7ccvHFuytrPM-db2YA3vsqlU5p5wmrQg-1n_DSMCLYDscNzsaBo-Lkk6manIffL-TFBty1tTAEq2x1YqWoXWnpjvwwklwoFYTRYd6gIk6H40_XNx4NkKJEaztNo-aQ42z5D6O3-cejIf7qD0EwHp19nXjNgAHPCqUXnnCZ1bmRRiiLfn-spUDvwFnLdYoRp4x9ZXyOjGmdiWhMszAqNYassM25jASeuwndiIKiDnS_jKanvx86_kbVMEQeBpRt1lGbUq3r9iRhfzGY1yhUnn5sFB_bhMrQjZ_DTuOhss81S72Ajax4CVvfqgnAy1349ROVzFVTvcnKnBVl8T90ndFt4JxRbdoMn7aGHCyWjBD2fxgVMFW9oXElQWgwUH8F52sh2x508Nuy18BQ_JE0KvPzXIcGj8pdHNvMyJhzkUrTA78lTGKbpuU0O-Nv8tBumWiZEDyPaJnoHhystlzXHTueWtxvqZ00wjtPVqzWg8HqLUodpVJMkZW380Qo6uwfyP0n9w9gG5k0-XE0Pe7Ds6AZeeTzN9BZzG6zt-jOLNJ3DeMwuFw3r94DVWMHcQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+nonconventional+wells+under+uncertainty+using+statistical+proxies&rft.jtitle=Computational+geosciences&rft.au=Artus%2C+Vincent&rft.au=Durlofsky%2C+Louis+J&rft.au=Onwunalu%2C+Jerome&rft.au=Aziz%2C+Khalid&rft.date=2006-12-01&rft.issn=1420-0597&rft.volume=10&rft.issue=4&rft.spage=389&rft.epage=404&rft_id=info:doi/10.1007%2Fs10596-006-9031-9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-0597&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-0597&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-0597&client=summon