Optimization of nonconventional wells under uncertainty using statistical proxies
The determination of the optimal type and placement of a nonconventional well in a heterogeneous reservoir represents a challenging optimization problem. This determination is significantly more complicated if uncertainty in the reservoir geology is included in the optimization. In this study, a gen...
Saved in:
Published in | Computational geosciences Vol. 10; no. 4; pp. 389 - 404 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Nature B.V
01.12.2006
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The determination of the optimal type and placement of a nonconventional well in a heterogeneous reservoir represents a challenging optimization problem. This determination is significantly more complicated if uncertainty in the reservoir geology is included in the optimization. In this study, a genetic algorithm is applied to optimize the deployment of nonconventional wells. Geological uncertainty is accounted for by optimizing over multiple reservoir models (realizations) subject to a prescribed risk attitude. To reduce the excessive computational requirements of the base method, a new statistical proxy (which provides fast estimates of the objective function) based on cluster analysis is introduced into the optimization process. This proxy provides an estimate of the cumulative distribution function (CDF) of the scenario performance, which enables the quantification of proxy uncertainty. Knowledge of the proxy-based performance estimate in conjunction with the proxy CDF enables the systematic selection of the most appropriate scenarios for full simulation. Application of the overall method for the optimization of monobore and dual-lateral well placement demonstrates the performance of the hybrid optimization procedure. Specifically, it is shown that by simulating only 10% or 20% of the scenarios (as determined by application of the proxy), optimization results very close to those achieved by simulating all cases are obtained.[PUBLICATION ABSTRACT] |
---|---|
AbstractList | The determination of the optimal type and placement of a nonconventional well in a heterogeneous reservoir represents a challenging optimization problem. This determination is significantly more complicated if uncertainty in the reservoir geology is included in the optimization. In this study, a genetic algorithm is applied to optimize the deployment of nonconventional wells. Geological uncertainty is accounted for by optimizing over multiple reservoir models (realizations) subject to a prescribed risk attitude. To reduce the excessive computational requirements of the base method, a new statistical proxy (which provides fast estimates of the objective function) based on cluster analysis is introduced into the optimization process. This proxy provides an estimate of the cumulative distribution function (CDF) of the scenario performance, which enables the quantification of proxy uncertainty. Knowledge of the proxy-based performance estimate in conjunction with the proxy CDF enables the systematic selection of the most appropriate scenarios for full simulation. Application of the overall method for the optimization of monobore and dual-lateral well placement demonstrates the performance of the hybrid optimization procedure. Specifically, it is shown that by simulating only 10% or 20% of the scenarios (as determined by application of the proxy), optimization results very close to those achieved by simulating all cases are obtained.[PUBLICATION ABSTRACT] The determination of the optimal type and placement of a nonconventional well in a heterogeneous reservoir represents a challenging optimization problem. This determination is significantly more complicated if uncertainty in the reservoir geology is included in the optimization. In this study, a genetic algorithm is applied to optimize the deployment of nonconventional wells. Geological uncertainty is accounted for by optimizing over multiple reservoir models (realizations) subject to a prescribed risk attitude. To reduce the excessive computational requirements of the base method, a new statistical proxy (which provides fast estimates of the objective function) based on cluster analysis is introduced into the optimization process. This proxy provides an estimate of the cumulative distribution function (CDF) of the scenario performance, which enables the quantification of proxy uncertainty. Knowledge of the proxy-based performance estimate in conjunction with the proxy CDF enables the systematic selection of the most appropriate scenarios for full simulation. Application of the overall method for the optimization of monobore and dual-lateral well placement demonstrates the performance of the hybrid optimization procedure. Specifically, it is shown that by simulating only 10% or 20% of the scenarios (as determined by application of the proxy), optimization results very close to those achieved by simulating all cases are obtained. |
Author | Aziz, Khalid Artus, Vincent Durlofsky, Louis J. Onwunalu, Jérôme |
Author_xml | – sequence: 1 givenname: Vincent surname: Artus fullname: Artus, Vincent – sequence: 2 givenname: Louis J. surname: Durlofsky fullname: Durlofsky, Louis J. – sequence: 3 givenname: Jérôme surname: Onwunalu fullname: Onwunalu, Jérôme – sequence: 4 givenname: Khalid surname: Aziz fullname: Aziz, Khalid |
BookMark | eNp9kE9PAyEQxYmpiW31A3jbePCGDgvLlqNp_JeYNCZ6JizLGpotVGDV-ullracevMxMyO-9Yd4MTZx3BqFzAlcEoL6OBCrBMQDHAijB4ghNSVVTTJgQkzyzEnBG6hM0i3ENAKKmZIqeV9tkN_ZbJetd4bsi-2rvPowbH1RffJq-j8XgWhNy1SYkZV3aFUO07q2IKQtjsjqT2-C_rImn6LhTfTRnf32OXu9uX5YP-Gl1_7i8ecKacpEwbY0WnaoU5VoIvhAVZYy0WhPRmKasFsAVkAZAt6pmpGRU8UYpyLPuxsvm6HLvm_e-DyYmubFR598qZ_wQJeWs5FBWGbw4ANd-CPm2KOuKUM5LNrqRPaSDjzGYTm6D3aiwkwTkmLDcJyxzwnJMWIqsqQ802qbfIFNQtv9H-QODNIND |
CitedBy_id | crossref_primary_10_1007_s10596_016_9584_1 crossref_primary_10_1016_j_procs_2010_04_145 crossref_primary_10_1007_s10596_020_09985_y crossref_primary_10_1016_j_egypro_2011_02_377 crossref_primary_10_1016_j_fuel_2017_06_030 crossref_primary_10_1016_j_petrol_2022_111005 crossref_primary_10_2118_217972_PA crossref_primary_10_1144_1470_9236_07_081 crossref_primary_10_1002_aic_15209 crossref_primary_10_1016_j_petrol_2022_110639 crossref_primary_10_1007_s11004_016_9643_0 crossref_primary_10_1007_s10596_011_9254_2 crossref_primary_10_1007_s10596_009_9142_1 crossref_primary_10_1007_s40808_022_01501_8 crossref_primary_10_1016_j_ress_2011_08_005 crossref_primary_10_4236_aces_2018_82007 crossref_primary_10_1016_j_upstre_2021_100055 crossref_primary_10_1016_j_procs_2016_05_500 crossref_primary_10_1016_j_petrol_2021_109545 crossref_primary_10_1627_jpi_60_41 crossref_primary_10_1016_j_asoc_2022_109842 crossref_primary_10_1016_j_petrol_2018_12_043 crossref_primary_10_1016_j_petrol_2020_107424 crossref_primary_10_1016_j_jngse_2011_10_002 crossref_primary_10_1016_j_petrol_2019_106414 crossref_primary_10_1016_j_ejor_2017_01_044 crossref_primary_10_1016_j_cie_2014_11_007 crossref_primary_10_1007_s10596_013_9375_x crossref_primary_10_1007_s11859_011_0742_y crossref_primary_10_1007_s13202_016_0302_2 crossref_primary_10_1016_j_cageo_2016_08_002 crossref_primary_10_1016_j_petrol_2018_10_005 crossref_primary_10_1007_s13202_019_0710_1 crossref_primary_10_1016_j_petrol_2013_07_012 crossref_primary_10_1016_j_petrol_2014_12_016 crossref_primary_10_1016_j_petrol_2017_10_083 crossref_primary_10_2516_ogst_2021014 crossref_primary_10_1007_s41688_017_0014_x crossref_primary_10_1016_j_ress_2012_08_001 crossref_primary_10_1002_2015WR017418 crossref_primary_10_1007_s10596_014_9422_2 crossref_primary_10_1007_s10596_016_9559_2 crossref_primary_10_1115_1_4034808 crossref_primary_10_3390_en13164054 crossref_primary_10_1007_s10596_015_9507_6 crossref_primary_10_1007_s10596_015_9516_5 crossref_primary_10_1016_j_petlm_2015_11_004 crossref_primary_10_1007_s11004_017_9676_z crossref_primary_10_2118_209584_PA crossref_primary_10_2118_210562_PA |
Cites_doi | 10.2118/62812-PA 10.2118/74691-PA 10.2118/69739-PA 10.2118/83669-PA 10.2118/75353-PA 10.1017/CBO9780511812651 10.2118/86880-PA 10.2118/78266-PA 10.1007/978-1-4020-3610-1_72 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media B.V. 2006 |
Copyright_xml | – notice: Springer Science+Business Media B.V. 2006 |
DBID | AAYXX CITATION 3V. 7SC 7UA 7XB 88I 8AL 8FD 8FE 8FG 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H8D H96 HCIFZ JQ2 K7- L.G L7M L~C L~D M0N M2P P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1007/s10596-006-9031-9 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection ProQuest Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 1573-1499 |
EndPage | 404 |
ExternalDocumentID | 2140538541 10_1007_s10596_006_9031_9 |
Genre | Feature |
GroupedDBID | -Y2 -~C .86 .VR 06D 0R~ 0VY 199 1N0 203 29F 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 88I 8FE 8FG 8FH 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHHG ADHIR ADHKG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AEZWR AFBBN AFDZB AFGCZ AFHIU AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHBYD AHKAY AHPBZ AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BAPOH BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU CITATION COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ K6V K7- KDC KOV LAK LK5 LLZTM M2P M4Y M7R MA- N2Q N9A NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P62 P9R PCBAR PF0 PHGZM PHGZT PQQKQ PROAC PT4 PT5 Q2X QOS R89 R9I RNS ROL RPX RSV S16 S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~02 ~A9 3V. 7SC 7UA 7XB 8AL 8FD 8FK ABRTQ C1K F1W H8D H96 JQ2 L.G L7M L~C L~D M0N PKEHL PQEST PQGLB PQUKI Q9U TUS |
ID | FETCH-LOGICAL-c369t-3dec9fa5a36c9968953441dcc19beb25806a01b00cda741243a6baa0741cf1573 |
IEDL.DBID | BENPR |
ISSN | 1420-0597 |
IngestDate | Thu Jul 10 22:13:58 EDT 2025 Mon Aug 18 00:03:07 EDT 2025 Tue Jul 01 04:04:50 EDT 2025 Thu Apr 24 22:58:10 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c369t-3dec9fa5a36c9968953441dcc19beb25806a01b00cda741243a6baa0741cf1573 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
PQID | 751366247 |
PQPubID | 55381 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_36426025 proquest_journals_751366247 crossref_primary_10_1007_s10596_006_9031_9 crossref_citationtrail_10_1007_s10596_006_9031_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2006-12-01 |
PublicationDateYYYYMMDD | 2006-12-01 |
PublicationDate_xml | – month: 12 year: 2006 text: 2006-12-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationTitle | Computational geosciences |
PublicationYear | 2006 |
Publisher | Springer Nature B.V |
Publisher_xml | – name: Springer Nature B.V |
References | 9031_CR4 9031_CR3 W.L. Martinez (9031_CR12) 2002 9031_CR2 9031_CR18 9031_CR1 9031_CR19 9031_CR8 9031_CR7 9031_CR6 9031_CR5 9031_CR13 9031_CR10 9031_CR9 9031_CR11 9031_CR16 9031_CR17 9031_CR14 9031_CR15 9031_CR20 |
References_xml | – ident: 9031_CR15 – ident: 9031_CR18 doi: 10.2118/62812-PA – ident: 9031_CR2 – ident: 9031_CR1 – ident: 9031_CR3 – ident: 9031_CR14 doi: 10.2118/74691-PA – ident: 9031_CR6 – ident: 9031_CR5 – ident: 9031_CR10 – ident: 9031_CR17 doi: 10.2118/69739-PA – ident: 9031_CR19 – ident: 9031_CR4 doi: 10.2118/83669-PA – ident: 9031_CR13 doi: 10.2118/75353-PA – ident: 9031_CR9 – ident: 9031_CR8 – ident: 9031_CR16 doi: 10.1017/CBO9780511812651 – ident: 9031_CR20 doi: 10.2118/86880-PA – ident: 9031_CR7 doi: 10.2118/78266-PA – ident: 9031_CR11 doi: 10.1007/978-1-4020-3610-1_72 – volume-title: Computational Statistics Handbook with Matlab year: 2002 ident: 9031_CR12 |
SSID | ssj0009731 |
Score | 2.0815582 |
Snippet | The determination of the optimal type and placement of a nonconventional well in a heterogeneous reservoir represents a challenging optimization problem. This... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 389 |
SubjectTerms | Objective function Operations research Optimization Reservoirs Studies |
Title | Optimization of nonconventional wells under uncertainty using statistical proxies |
URI | https://www.proquest.com/docview/751366247 https://www.proquest.com/docview/36426025 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgExIXxFOMx-iBE1JF0zRpckIMbSAkxkNM2q1Kk5YLbEDHgX-P3WUbu-zSS5OqcmLHjj_7AziPZC6c1C7kViYhWj8e5klKsB2GE5xVsaPi5Ie-vBsk90Mx9NicysMqZzaxNtRubOmO_DIVjEsZJ-nV51dIpFGUXPUMGuvQRAusVAOanW7_6WXRdTetCQlZElPGV6eztOa0dk4Q_hYDao0bO9TLB9OyXa4Pm942bHkvMbieLusOrBWjXdi4rVl4f_fg-REV_cNXUAbjMsAY_j98PKAbuSqg-rBvfNpp2n_yGxDK_S2gIqK6PzOOJBgLBsv7MOh1X2_uQs-NEFou9STkrrC6NMJwaTFkUVpwdGyctUznGCwLFUkTMdQp60xKDNPcyNwYciBsyUTKD6CB_1YcQoAqiKKRRVSWOjH4qdIpZQsjFGM8F6YF0UwwmfWNw4m_4j1btDwmWWYEkSNZZroFF_Mpn9OuGasGH8-knXkFqrL5crfgbP4Wdz6lM8yoGP9UGZfUXT8WRyvnH8Nm7LmGInYCjcn3T3GKfsQkb8O66t22oXnd63T6bb93_gDyYskU |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV05T8MwFH7iEIIFcYpyeoAFKSKOYyceEEJAW24hgcQWHDthgbbQItQfxX_kvRwFlm4sWWJb0cs7_Y4PYNdXqXRKO09YFXqo_YSXhhGV7XDc4GwcOGpOvr5R7Yfw4lE-TsBX3QtDZZW1TiwUtetauiM_iCQXSgVhdNR78wg0ipKrNYJGyRWX2fATI7b-4fkp_t69IGie3Z-0vQpUwLNC6YEnXGZ1bqQRyqKvH2sp0CNw1nKdYpQpY18ZnyMzWmcigmYWRqXGkOW1OZeRwHMnYToUaMipMb3Z-pnxGxXwhzwMKL-sozqJWnbqSar2xfBdoxh5-q8Z_GsFCtPWXID5yidlxyUTLcJE1lmCmVaB-TtchrtbVCuvVb8m6-as0-38LlZndP_XZ9SN9o5PWxYZDIaMauqfGbUsFdOgcSUVzWBovgIP_0K0VZjCb8vWgKHAI2lU5ue5Dg0elbs4tpmRMecilaYBfk2YxFZjygkt4yX5GbBMtEyoII9omegG7I-29MoZHeMWb9TUTipx7Scj5mrAzugtyhklT0wn6370E6Foln8g18fu34HZ9v31VXJ1fnO5AXNBhXLk802YGrx_ZFvowQzS7YJvGDz9N6N-AxnYAd8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5BIlAvqC1FDWmbPbQXJAuv17v2HqqqbZKGUlJagcTNrHftXooNSVCVn8a_Y8aPUC7ccvHFuytrPM-db2YA3vsqlU5p5wmrQg-1n_DSMCLYDscNzsaBo-Lkk6manIffL-TFBty1tTAEq2x1YqWoXWnpjvwwklwoFYTRYd6gIk6H40_XNx4NkKJEaztNo-aQ42z5D6O3-cejIf7qD0EwHp19nXjNgAHPCqUXnnCZ1bmRRiiLfn-spUDvwFnLdYoRp4x9ZXyOjGmdiWhMszAqNYassM25jASeuwndiIKiDnS_jKanvx86_kbVMEQeBpRt1lGbUq3r9iRhfzGY1yhUnn5sFB_bhMrQjZ_DTuOhss81S72Ajax4CVvfqgnAy1349ROVzFVTvcnKnBVl8T90ndFt4JxRbdoMn7aGHCyWjBD2fxgVMFW9oXElQWgwUH8F52sh2x508Nuy18BQ_JE0KvPzXIcGj8pdHNvMyJhzkUrTA78lTGKbpuU0O-Nv8tBumWiZEDyPaJnoHhystlzXHTueWtxvqZ00wjtPVqzWg8HqLUodpVJMkZW380Qo6uwfyP0n9w9gG5k0-XE0Pe7Ds6AZeeTzN9BZzG6zt-jOLNJ3DeMwuFw3r94DVWMHcQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+nonconventional+wells+under+uncertainty+using+statistical+proxies&rft.jtitle=Computational+geosciences&rft.au=Artus%2C+Vincent&rft.au=Durlofsky%2C+Louis+J&rft.au=Onwunalu%2C+Jerome&rft.au=Aziz%2C+Khalid&rft.date=2006-12-01&rft.issn=1420-0597&rft.volume=10&rft.issue=4&rft.spage=389&rft.epage=404&rft_id=info:doi/10.1007%2Fs10596-006-9031-9&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-0597&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-0597&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-0597&client=summon |