Complete Solution For The Time Fractional Diffusion Problem With Mixed Boundary Conditions by Operational Method
In this study, we present some new results for the time fractional mixed boundary value problems. We consider a generalization of the Heat - conduction problem in two dimensions that arises during the manufacturing of p - n junctions. Constructive examples are also provided throughout the paper. The...
Saved in:
Published in | Applied mathematics and nonlinear sciences Vol. 6; no. 1; pp. 9 - 20 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Beirut
Sciendo
01.01.2021
De Gruyter Poland |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this study, we present some new results for the time fractional mixed boundary value problems. We consider a generalization of the Heat - conduction problem in two dimensions that arises during the manufacturing of p - n junctions. Constructive examples are also provided throughout the paper. The main purpose of this article is to present mathematical results that are useful to researchers in a variety of fields. |
---|---|
AbstractList | In this study, we present some new results for the time fractional mixed boundary value problems. We consider a generalization of the Heat - conduction problem in two dimensions that arises during the manufacturing of p - n junctions. Constructive examples are also provided throughout the paper. The main purpose of this article is to present mathematical results that are useful to researchers in a variety of fields. |
Author | Aghili, A. |
Author_xml | – sequence: 1 givenname: A. surname: Aghili fullname: Aghili, A. email: arman.aghili@gmail.com organization: University of Guilan, Faculty of Mathematical Sciences, Department of Applied Mathematics, Iran - Rasht, P.O.BOX 1841 |
BookMark | eNp9kEFLAzEQhYNUsNb-AG8Bz62bZJtmwYtWq0JLBSseQ7pJbMruZk2yaP-92bagCDqXmQzvG17eKehUtlIAnKNkiNMxuxRl5Yc4wfE5TGLhI9DFaZoOGB3Rzo_5BPS937QKggiluAvqiS3rQgUFn23RBGMrOLUOLtcKLk2p4NSJvN2KAt4arRvfKp6cXRWqhK8mrOHcfCoJb2xTSeG2cGIraVrCw9UWLmrlxIGfq7C28gwca1F41T_0HniZ3i0nD4PZ4v5xcj0b5IRmYUCIFmMiRSqJzsaaSUVwnuaUCjbS8SdYxG2qGckIklJQxFKJNGVUISYFI6QHLvZ3a2ffG-UD39jGRR-eE5QhHMGkVY33qtxZ753SPDdhZzg4YQqOEt4mzNuEeZswx3yXcCTRL7J2powJ_Mtc7ZkPUQTlpHpzzTYO39b-ZCnKyBeL25YM |
CitedBy_id | crossref_primary_10_1007_s11082_024_07075_2 crossref_primary_10_2478_amns_2023_1_00308 crossref_primary_10_2478_amns_2023_1_00306 crossref_primary_10_2478_amns_2023_1_00305 crossref_primary_10_32604_cmc_2022_032087 crossref_primary_10_2478_amns_2022_2_00016 crossref_primary_10_2478_amns_2022_2_0064 crossref_primary_10_2478_amns_2022_2_0062 crossref_primary_10_2478_amns_2022_2_0188 crossref_primary_10_3390_axioms11090449 crossref_primary_10_3390_math8101849 crossref_primary_10_1016_j_rinp_2021_104339 crossref_primary_10_2478_amns_2022_2_00011 crossref_primary_10_1080_27690911_2022_2142219 crossref_primary_10_2478_amns_2021_2_00151 crossref_primary_10_2478_amns_2023_1_00422 crossref_primary_10_2478_amns_2021_2_00113 crossref_primary_10_2478_amns_2023_1_00144 crossref_primary_10_1140_epjp_s13360_024_05423_5 crossref_primary_10_1016_j_rinp_2022_106117 crossref_primary_10_2478_amns_2021_1_00106 crossref_primary_10_2478_amns_2022_2_0038 crossref_primary_10_1142_S0218348X22400539 crossref_primary_10_3390_axioms11060266 crossref_primary_10_2478_amns_2021_2_00149 crossref_primary_10_2478_amns_2022_2_0118 crossref_primary_10_33993_jnaat512_1269 crossref_primary_10_3390_axioms12050456 crossref_primary_10_2478_amns_2022_2_00007 crossref_primary_10_2478_amns_2022_2_0112 crossref_primary_10_2478_amns_2022_2_0156 crossref_primary_10_2478_amns_2022_2_0032 crossref_primary_10_3934_math_2022500 crossref_primary_10_33993_jnaat521_1316 crossref_primary_10_2478_amns_2021_2_00025 crossref_primary_10_1016_j_chaos_2021_111404 crossref_primary_10_2478_amns_2021_2_00147 crossref_primary_10_1016_j_rinp_2021_104366 crossref_primary_10_2478_amns_2021_2_00148 crossref_primary_10_2478_amns_2021_2_00141 crossref_primary_10_1016_j_arabjc_2022_104509 crossref_primary_10_2478_amns_2022_2_0126 crossref_primary_10_2478_amns_2022_2_0047 crossref_primary_10_1016_j_aej_2024_07_078 crossref_primary_10_1108_EC_10_2024_0932 crossref_primary_10_3390_fractalfract6100604 crossref_primary_10_2478_amns_2022_2_0128 crossref_primary_10_1016_j_chaos_2023_114047 crossref_primary_10_3390_fractalfract6020092 crossref_primary_10_2478_amns_2022_2_0086 crossref_primary_10_1016_j_chaos_2022_112660 crossref_primary_10_3390_math11040975 crossref_primary_10_2478_amns_2021_1_00081 crossref_primary_10_2478_amns_2021_1_00082 crossref_primary_10_2478_amns_2022_2_0120 crossref_primary_10_2478_amns_2022_2_0088 crossref_primary_10_2478_amns_2022_2_0092 crossref_primary_10_1080_27690911_2022_2159027 crossref_primary_10_1016_j_aej_2022_09_033 crossref_primary_10_1016_j_eswa_2023_121257 crossref_primary_10_2478_amns_2023_1_00441 crossref_primary_10_3390_math8081335 crossref_primary_10_1038_s41598_022_26566_4 crossref_primary_10_1007_s11071_022_07688_w crossref_primary_10_18311_jims_2022_28908 crossref_primary_10_2478_amns_2021_1_00054 crossref_primary_10_1088_1402_4896_ac7a6a crossref_primary_10_2478_amns_2022_2_00027 crossref_primary_10_2478_amns_2021_1_00095 crossref_primary_10_2478_amns_2022_2_0178 crossref_primary_10_2478_amns_2022_2_0098 crossref_primary_10_1016_j_aej_2023_12_052 crossref_primary_10_2478_amns_2023_1_00172 crossref_primary_10_2478_amns_2022_2_00022 crossref_primary_10_3390_sym13081542 crossref_primary_10_2478_amns_2022_2_00026 crossref_primary_10_3390_fractalfract6050231 crossref_primary_10_32604_cmc_2023_033352 |
Cites_doi | 10.1007/s40096-019-0276-6 10.1063/1.869735 10.1016/0013-7944(86)90141-4 10.12988/ijcms.2006.06031 10.32513/tbilisi/1553565624 10.1016/j.cjph.2019.05.009 10.1201/9781420011494 10.1002/cmm4.1021 10.1142/S2424786317500049 10.32513/tbilisi/1578020577 10.3934/math.2020054 10.1016/j.aej.2019.11.002 |
ContentType | Journal Article |
Copyright | 2021. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS |
DOI | 10.2478/amns.2020.2.00002 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 2444-8656 |
EndPage | 20 |
ExternalDocumentID | 10_2478_amns_2020_2_00002 10_2478_amns_2020_2_00002619 |
GroupedDBID | 9WM AATOW ABFKT ADBLJ AFKRA AHGSO ALMA_UNASSIGNED_HOLDINGS AMVHM ARCSS BENPR CCPQU EBS M~E OK1 PHGZM PHGZT PIMPY QD8 SLJYH AAYXX CITATION ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c369t-33fa73da4d3f97f8de32c4c66a85f6562a97f4f83931dda6184d1f686e18da833 |
IEDL.DBID | BENPR |
ISSN | 2444-8656 |
IngestDate | Mon Jun 30 11:41:37 EDT 2025 Tue Jul 01 03:14:25 EDT 2025 Thu Apr 24 23:00:57 EDT 2025 Thu Jul 10 10:36:25 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This work is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c369t-33fa73da4d3f97f8de32c4c66a85f6562a97f4f83931dda6184d1f686e18da833 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/3191239303?pq-origsite=%requestingapplication% |
PQID | 3191239303 |
PQPubID | 6761185 |
PageCount | 12 |
ParticipantIDs | proquest_journals_3191239303 crossref_citationtrail_10_2478_amns_2020_2_00002 crossref_primary_10_2478_amns_2020_2_00002 walterdegruyter_journals_10_2478_amns_2020_2_00002619 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Beirut |
PublicationPlace_xml | – name: Beirut |
PublicationTitle | Applied mathematics and nonlinear sciences |
PublicationYear | 2021 |
Publisher | Sciendo De Gruyter Poland |
Publisher_xml | – name: Sciendo – name: De Gruyter Poland |
References | 2024050100494024511_j_amns.2020.2.00002_ref_006 2024050100494024511_j_amns.2020.2.00002_ref_017 2024050100494024511_j_amns.2020.2.00002_ref_007 2024050100494024511_j_amns.2020.2.00002_ref_008 2024050100494024511_j_amns.2020.2.00002_ref_009 2024050100494024511_j_amns.2020.2.00002_ref_002 2024050100494024511_j_amns.2020.2.00002_ref_013 2024050100494024511_j_amns.2020.2.00002_ref_003 2024050100494024511_j_amns.2020.2.00002_ref_014 2024050100494024511_j_amns.2020.2.00002_ref_004 2024050100494024511_j_amns.2020.2.00002_ref_015 2024050100494024511_j_amns.2020.2.00002_ref_005 2024050100494024511_j_amns.2020.2.00002_ref_016 2024050100494024511_j_amns.2020.2.00002_ref_010 2024050100494024511_j_amns.2020.2.00002_ref_011 2024050100494024511_j_amns.2020.2.00002_ref_001 2024050100494024511_j_amns.2020.2.00002_ref_012 |
References_xml | – ident: 2024050100494024511_j_amns.2020.2.00002_ref_016 doi: 10.1007/s40096-019-0276-6 – ident: 2024050100494024511_j_amns.2020.2.00002_ref_004 – ident: 2024050100494024511_j_amns.2020.2.00002_ref_006 – ident: 2024050100494024511_j_amns.2020.2.00002_ref_007 – ident: 2024050100494024511_j_amns.2020.2.00002_ref_008 doi: 10.1063/1.869735 – ident: 2024050100494024511_j_amns.2020.2.00002_ref_014 – ident: 2024050100494024511_j_amns.2020.2.00002_ref_013 doi: 10.1016/0013-7944(86)90141-4 – ident: 2024050100494024511_j_amns.2020.2.00002_ref_011 – ident: 2024050100494024511_j_amns.2020.2.00002_ref_005 doi: 10.12988/ijcms.2006.06031 – ident: 2024050100494024511_j_amns.2020.2.00002_ref_002 doi: 10.32513/tbilisi/1553565624 – ident: 2024050100494024511_j_amns.2020.2.00002_ref_015 doi: 10.1016/j.cjph.2019.05.009 – ident: 2024050100494024511_j_amns.2020.2.00002_ref_010 doi: 10.1201/9781420011494 – ident: 2024050100494024511_j_amns.2020.2.00002_ref_012 doi: 10.1002/cmm4.1021 – ident: 2024050100494024511_j_amns.2020.2.00002_ref_003 doi: 10.1142/S2424786317500049 – ident: 2024050100494024511_j_amns.2020.2.00002_ref_001 doi: 10.32513/tbilisi/1578020577 – ident: 2024050100494024511_j_amns.2020.2.00002_ref_017 doi: 10.3934/math.2020054 – ident: 2024050100494024511_j_amns.2020.2.00002_ref_009 doi: 10.1016/j.aej.2019.11.002 |
SSID | ssj0002313662 |
Score | 2.4272559 |
Snippet | In this study, we present some new results for the time fractional mixed boundary value problems. We consider a generalization of the Heat - conduction problem... |
SourceID | proquest crossref walterdegruyter |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 9 |
SubjectTerms | 26A33 44A10 44A15 44A35 Caputo fractional derivative Fourier series Hankel transform Integral transform method Laplace transform Modified Bessel’s functions Newmann function P- N junctions |
Title | Complete Solution For The Time Fractional Diffusion Problem With Mixed Boundary Conditions by Operational Method |
URI | https://www.degruyter.com/doi/10.2478/amns.2020.2.00002 https://www.proquest.com/docview/3191239303 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagLCy8EeUlD0xIEY3tOu6EeFUIqYAQCLbIiW2oBG1JU0H_PXeOQwUSjImcG_Kdz5_v7PsIORBK6zjruCjhLImEdiLKdBZHmU06zAIlMP7eWu9aXj6Iq6f2U0i4jcOxyjom-kBthjnmyI_AVWJs19Xix6P3CFWjsLoaJDTmyQKEYKUaZOH04vr27jvLAuyFS8mqciYTiTrSbwPs0s3g0fcuZD8XpBnLXPrw9Wpjn4vJtKzro37Z6a6QpcAX6UkF8CqZs4M1shy4Iw0zc7xORjixAQNL60QX7Q4LCl5A8ZYH7RbVDQawdd53boJJMnpbqcnQx375Qnv9T7B46mWWiik9G2IxG52SZlN6M7JFSBvSnhed3iAP3Yv7s8soqClEOZedMuLc6YQbLQx3ncQpYznLRS6lVm0HrI5peCscECYeG6NRCMbETippY2W04nyTNAbDgd0i1AncNQqWGCuFssBhnMpb0mWijXJKokla9S9N89BqHBUvXlPYciAKKaKQIgopSz0KTXL4_cmo6rPx3-DdGqc0TLlxOnOQJmn_wm426k-bsJHc_t_sDllkeKDF5192SaMsJnYPGEmZ7UNgfeztB-f7Alid4jA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB5V6QEuBQqI0AI-wAVp1azteJ1DhegjSmkTKtSK3ox3bZdINEk3G5X8KX4jM_toVCR663FXu3PwjMffzHjmA3gvtbVx2gtRIngSSRtklNo0jlKf9LhHSODKvrXhSA3O5ZeL7sUa_Gl6YehaZeMTS0ftphnlyHfQVGIa19URn2bXEbFGUXW1odCozOLYL28wZJvvHh2gfj9w3j882x9ENatAlAnVKyIhgk2Es9KJ0EuCdl7wTGZKWd0NiG64xbcyIHAQsXOWCFFcHJRWPtbOakqAostfl0J1eAvW9w5Hp99uszqIloRSvCqfcpnoHXs1oangHB_LWYn87gG4QrUbN2V93PnLfLEsmnpsecz1n8JGjU_Z58qgnsGan2zCkxqrstoTzJ_DjBwJ6tyzJrHG-tOcodUx6iph_bzqmEBZB-MQFpSUY6cVew37Pi5-suH4N0rcK2md8iXbn1LxnDYBS5fs68zndZqSDUuS6xdw_iDr_BJak-nEvwIWJEWpkifOK6k9Yqags44KqewSfZNsQ6dZUpPVo82JYeOXwRCHtGBIC4a0YLgptdCGj7e_zKq5Hvd9vN3oydRbfG5WBtmG7j-6W331X5kYuL6-X-w7eDQ4G56Yk6PR8RY85nSZpsz9bEOryBf-DaKhIn1bmyCDHw9t9X8B-R4eNg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLZQK01c2MYP0a1sPnBCimhsx3GOXSF0jAISq-BmObENlaCt0lRb__s9OwkINDhwTOTngz__-Pye3_sQ2mdCqTBLbBBTEgdMWRZkKguDzMQJMUAJtM9bG53z4Zid3kQ3ayhscmH8vq99tPJwrq1_qsxicagepq64NoFPX3IQdt12HCUEJnW7Pzy5unh0rABhoZyTKoL5f9vnZ9ATsdz440PU2twWy1XZhET9SZN-Qhs1RcT9CtPPaM1MN9HHmi7iejEuttDcrWUYdoMb3xZOZwUG4LFL7MBpUSUtQF9HE2uXzi-GLysBGXw9Ke_waPIXevzhlZWKFR7MXPzazUOcrfDF3BS1pxCPvM70Nhqnx78Hw6AWUAhyypMyoNSqmGrFNLVJbIU2lOQs51yJyAKRIwr-MgsciYZaK6f9okPLBTeh0EpQuoNa09nU7CJsmbsoMhJrw5kwQFusyHvcZixyCkqsg3rNkMq8ri7uRC7uJdwyHArSoSAdCpJIj0IHHTyazKvSGm817jY4yXqVLSRsH6Er4dajHRS9wO6p1at9wt3xyzvtvqMPl0epPPt5_usrWifunYt3y3RRqyyWZg-ISpl9q6fmP4VU5DI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Complete+Solution+For+The+Time+Fractional+Diffusion+Problem+With+Mixed+Boundary+Conditions+by+Operational+Method&rft.jtitle=Applied+mathematics+and+nonlinear+sciences&rft.au=Aghili%2C+A.&rft.date=2021-01-01&rft.pub=Sciendo&rft.eissn=2444-8656&rft.volume=6&rft.issue=1&rft.spage=9&rft.epage=20&rft_id=info:doi/10.2478%2Famns.2020.2.00002&rft.externalDBID=n%2Fa&rft.externalDocID=10_2478_amns_2020_2_00002619 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2444-8656&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2444-8656&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2444-8656&client=summon |