Roller compaction/Dry granulation: Use of the thin layer model for predicting densities and forces during roller compaction

The thin layer model is based on the assumption that the deformation of powder during tableting can be transferred to the roller compaction process, provided that it was established with sufficient accuracy in the tableting experiments. In particular, the process of compaction between the rolls is p...

Full description

Saved in:
Bibliographic Details
Published inPowder technology Vol. 199; no. 2; pp. 165 - 175
Main Authors Peter, Stefanie, Lammens, Robert F., Steffens, Klaus-Jürgen
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 23.04.2010
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The thin layer model is based on the assumption that the deformation of powder during tableting can be transferred to the roller compaction process, provided that it was established with sufficient accuracy in the tableting experiments. In particular, the process of compaction between the rolls is presumed to consist of three parts, a rearrangement, an “exponential” and an elastic recovery phase. The rearrangement and “exponential” phases are used to calculate the densification of the material. The forces between the rolls during elastic recovery, the third phase, proved to be essential to the prediction, because 20% to 30% of the total roller compaction force is required to counteract ribbon recovery. Four different excipients and one powder blend were tested in the model. For two materials, the density and force predictions turned out to be accurate within ± 2.5% and ± 10%, respectively. For one excipient and the model blend, the predictions deviated systematically whereas those for the remaining excipient were within the above mentioned limits in ca. 50% of the experiments. For explaining these differences, we evaluated both the influence of the course of the force–time profile, at comparable densification times, and the influence of different compression times, for comparable force–time profiles. Finally, the impact of density distributions within ribbons on the prediction was estimated. The thin layer model is based on the assumption that the deformation of powder during tableting can be transferred to the roller compaction process. The validity of this simple model will be investigated with respect to predicting ribbon densities as a function of roll compaction forces (and vice versa) for different excipients and for a model powder blend. [Display omitted]
AbstractList The thin layer model is based on the assumption that the deformation of powder during tableting can be transferred to the roller compaction process, provided that it was established with sufficient accuracy in the tableting experiments. In particular, the process of compaction between the rolls is presumed to consist of three parts, a rearrangement, an "exponential" and an elastic recovery phase. The rearrangement and "exponential" phases are used to calculate the densification of the material. The forces between the rolls during elastic recovery, the third phase, proved to be essential to the prediction, because 20% to 30% of the total roller compaction force is required to counteract ribbon recovery. Four different excipients and one powder blend were tested in the model. For two materials, the density and force predictions turned out to be accurate within Ac2.5% and Ac10%, respectively. For one excipient and the model blend, the predictions deviated systematically whereas those for the remaining excipient were within the above mentioned limits in ca. 50% of the experiments. For explaining these differences, we evaluated both the influence of the course of the force-time profile, at comparable densification times, and the influence of different compression times, for comparable force-time profiles. Finally, the impact of density distributions within ribbons on the prediction was estimated. The thin layer model is based on the assumption that the deformation of powder during tableting can be transferred to the roller compaction process. The validity of this simple model will be investigated with respect to predicting ribbon densities as a function of roll compaction forces (and vice versa) for different excipients and for a model powder blend. Display Omitted
The thin layer model is based on the assumption that the deformation of powder during tableting can be transferred to the roller compaction process, provided that it was established with sufficient accuracy in the tableting experiments. In particular, the process of compaction between the rolls is presumed to consist of three parts, a rearrangement, an “exponential” and an elastic recovery phase. The rearrangement and “exponential” phases are used to calculate the densification of the material. The forces between the rolls during elastic recovery, the third phase, proved to be essential to the prediction, because 20% to 30% of the total roller compaction force is required to counteract ribbon recovery. Four different excipients and one powder blend were tested in the model. For two materials, the density and force predictions turned out to be accurate within ± 2.5% and ± 10%, respectively. For one excipient and the model blend, the predictions deviated systematically whereas those for the remaining excipient were within the above mentioned limits in ca. 50% of the experiments. For explaining these differences, we evaluated both the influence of the course of the force–time profile, at comparable densification times, and the influence of different compression times, for comparable force–time profiles. Finally, the impact of density distributions within ribbons on the prediction was estimated. The thin layer model is based on the assumption that the deformation of powder during tableting can be transferred to the roller compaction process. The validity of this simple model will be investigated with respect to predicting ribbon densities as a function of roll compaction forces (and vice versa) for different excipients and for a model powder blend. [Display omitted]
Author Lammens, Robert F.
Steffens, Klaus-Jürgen
Peter, Stefanie
Author_xml – sequence: 1
  givenname: Stefanie
  surname: Peter
  fullname: Peter, Stefanie
  email: stefanie.peter@uni-bonn.de
  organization: Department of Pharmaceutical Technology, Rheinische-Friedrich-Wilhelms-University of Bonn, Germany
– sequence: 2
  givenname: Robert F.
  surname: Lammens
  fullname: Lammens, Robert F.
  email: rob.lammens@web.de
  organization: Technical Services Consult Lammens, Heymannstr. 50, D-51373 Leverkusen, Germany
– sequence: 3
  givenname: Klaus-Jürgen
  surname: Steffens
  fullname: Steffens, Klaus-Jürgen
  organization: Department of Pharmaceutical Technology, Rheinische-Friedrich-Wilhelms-University of Bonn, Germany
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22546086$$DView record in Pascal Francis
BookMark eNp9kM9rFDEUx4NUcNv6H3jIRfAy25efM-NBkFq1UCiIBW8hm3lTs2STMZlVlv7zzbDFQw895CUv7_vNl3xOyUlMEQl5x2DNgOmL7XpK_2Z0aw71CtgagL8iK9a1ohG8-3VCVgCCN6pn8IaclrIFAC0YrMjDjxQCZurSbrJu9ilefMkHep9t3Ae79B_pXUGaRjr_xrp8pMEeqmOXBgx0TJlOGQdfvfGeDhiLnz0WauOwDF09Dvu8zPLzpHPyerSh4Nun_Yzcfb36efm9ubn9dn35-aZxQvdzw1FttOyRtxxk10shWlmrdRLGjdxs1Oi0s51WMPSoeuEUtE5xXn0DKMbFGflwfHfK6c8ey2x2vjgMwUZM-2IY17qVQnGoUnmUupxKyTiaKfudzQfDwCyszdYcWZuFtQFmKutqe_-UYIuzYaz0nC__vZwrqaHTVffpqMP63b8esynOY3SVX0Y3myH5l4MeASrwmbc
CODEN POTEBX
CitedBy_id crossref_primary_10_1016_j_powtec_2018_02_052
crossref_primary_10_1016_j_compchemeng_2017_04_018
crossref_primary_10_1517_17425247_2011_548382
crossref_primary_10_3390_pharmaceutics11120662
crossref_primary_10_1007_s11095_022_03192_3
crossref_primary_10_1002_cite_201300181
crossref_primary_10_1016_j_ejps_2017_02_024
crossref_primary_10_1016_j_ijpharm_2019_118765
crossref_primary_10_1016_j_ijpharm_2019_05_011
crossref_primary_10_3109_03639045_2014_958754
crossref_primary_10_1016_j_powtec_2017_02_045
crossref_primary_10_3390_pharmaceutics14112399
crossref_primary_10_1016_j_conbuildmat_2021_125296
crossref_primary_10_1016_j_ijpharm_2016_09_052
crossref_primary_10_1016_j_ejpb_2016_06_005
crossref_primary_10_1016_j_minpro_2016_05_010
crossref_primary_10_1016_j_powtec_2018_07_009
crossref_primary_10_3109_03639045_2015_1029937
crossref_primary_10_1016_j_ijpharm_2019_118810
crossref_primary_10_1208_s12249_017_0778_1
crossref_primary_10_1016_j_ijpharm_2023_123165
crossref_primary_10_1016_j_xphs_2020_05_004
crossref_primary_10_1016_j_ijpharm_2017_06_038
crossref_primary_10_1002_jps_23659
crossref_primary_10_1016_j_ijpharm_2023_123281
crossref_primary_10_1080_03639045_2018_1446444
crossref_primary_10_1016_j_ijpx_2019_100005
crossref_primary_10_1016_j_powtec_2020_04_022
crossref_primary_10_1002_ceat_201600229
crossref_primary_10_1016_j_xphs_2021_09_024
crossref_primary_10_1016_j_ces_2013_09_031
Cites_doi 10.1023/A:1016364613722
10.1115/1.3627325
10.1016/j.ejps.2004.04.001
10.1111/j.2042-7158.1979.tb13556.x
10.1016/j.ces.2005.02.022
10.1111/j.2042-7158.1978.tb13340.x
10.1016/j.powtec.2007.02.011
10.1016/j.ijpharm.2003.09.034
10.1016/S0032-5910(02)00203-6
10.3109/03639047709055633
10.1016/S0939-6411(98)00093-9
10.1016/S0378-5173(94)04837-1
10.1023/A:1018944724083
10.4164/sptj.38.150
10.1016/S0928-0987(03)00133-7
10.1016/0032-5910(86)80100-0
ContentType Journal Article
Copyright 2010 Elsevier B.V.
2015 INIST-CNRS
Copyright_xml – notice: 2010 Elsevier B.V.
– notice: 2015 INIST-CNRS
DBID IQODW
AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1016/j.powtec.2010.01.002
DatabaseName Pascal-Francis
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1873-328X
EndPage 175
ExternalDocumentID 10_1016_j_powtec_2010_01_002
22546086
S0032591010000185
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
29O
4.4
457
4G.
5VS
7-5
71M
8P~
8WZ
9JN
A6W
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABTAH
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HLY
HVGLF
HZ~
IHE
J1W
KOM
LX7
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SCB
SCE
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSM
SSZ
T5K
T9H
WUQ
XPP
ZY4
~02
~G-
ABPIF
ABPTK
IQODW
AAHBH
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c369t-2e5b649e272048943374943ac40fb4bb5fc6ca8650d9e593c507c5222e5d05123
IEDL.DBID AIKHN
ISSN 0032-5910
IngestDate Sat Aug 17 04:13:54 EDT 2024
Thu Sep 26 15:49:41 EDT 2024
Sun Oct 22 16:10:00 EDT 2023
Fri Feb 23 02:32:32 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Roller compaction
Ribbon density
Compression speed
Force-displacement measurements
Elastic recovery
Prediction model
Compression
Densification
Deformation
Granulation
Prediction
Compaction
Density distribution
Forecast model
Density
Modeling
Powder
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c369t-2e5b649e272048943374943ac40fb4bb5fc6ca8650d9e593c507c5222e5d05123
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1266743520
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_1266743520
crossref_primary_10_1016_j_powtec_2010_01_002
pascalfrancis_primary_22546086
elsevier_sciencedirect_doi_10_1016_j_powtec_2010_01_002
PublicationCentury 2000
PublicationDate 2010-04-23
PublicationDateYYYYMMDD 2010-04-23
PublicationDate_xml – month: 04
  year: 2010
  text: 2010-04-23
  day: 23
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Powder technology
PublicationYear 2010
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References S. Erling, Trockengranulation: Entwicklung einer Basisrezeptur für die Walzenkompaktierung mit Hilfe von Exzenterpresse, Mikropaktor und Produktionskompaktor, Diploma thesis, University of Bonn, Germany (2001).
Mansa, Bridson, Greenwood, Barker, Seville (bib10) 2008; 181
Inghelbrecht, Remon (bib11) 1997; 148
Dec, Zavaliangos, Cunningham (bib13) 2003; 130
de Blaey, Polderman (bib25) 1970; 105
R.F. Lammens, C.Pörtner, Control of Production Quality During Dry Granulation with Roller Compactors, Proceedings of 3rd World Meeting APV/APGI, 3rd to 6th of April 2000, Berlin, Germany.
U. Caspar, Viskoelastische Phänomene bei der Tablettierung, PhD thesis, University of Bonn, Germany (1983).
Leuenberger, Rohera (bib28) 1986; 3
F. Bicane, Trockengranulation mit Hilfe des Micropactor, PhD thesis, University of Bonn, Germany (2003).
Johanson (bib6) 1965; 32
Shlieout, Lammens, Kleinebudde (bib1) 2000; 12
Heckel (bib22) 1961; 221
Funakoshi, Asogawa, Satake (bib31) 1977; 3
Freitag, Kleinebudde (bib4) 2004; 22
Heckel (bib23) 1961; 221
Duberg, Nyström (bib24) 1986; 46
Belda, Mielck (bib18) 1999; 47
Rees, Rue (bib29) 1978; 30
Katashinskii (bib9) 1986; 10
S. Körschgen, Porositätsberechnung der Schülpe während der Kompaktierung mit einer 3-W-Polygran Walzenpresse und Qualifizierung/Kalibrierung dieses Kompaktors, Diploma thesis, University of Applied Sciences of Düsseldorf, Germany (1996).
J. Cunningham, Experimental Studies and Modeling of the Roller Compaction of Pharmaceutical Powders, PhD thesis, Drexel University, Philadelphia, PA, USA (2005).
H. Busies, Dichteverteilungen in Schülpen, PhD thesis, University of Bonn, Germany (2004).
Holman, Marshall (bib17) 1993; 6
Michel, B., Contribution à l'étude de l'agglomération des poudres en press à rouleaux lisses, Thèse de doctorat (PhD thesis), Université de Technologie de Compiègne, France, (1994).
Odagi, Tanaka, Tsuji (bib12) 2001; 38
Bindhumadhavan, Seville, Adams, Greenwood, Fitzpatrick (bib7) 2005; 60
R.F. Lammens, The evaluation of force-displacement measurements during one-sided powder compaction in cylindrical dies, PhD thesis, University of Leiden, Netherlands (1980).
Freitag, Kleinebudde (bib3) 2003; 19
Ho, Barker, Spence, Jones (bib16) 1979; 31
Zinchuk, Mullarney, Hancock (bib2) 2004; 269
Bindhumadhavan Gururajan, Roll Compaction of pharmaceutical powders, PhD thesis, University of Birmingham, United Kingdom (2004).
Shlieout (10.1016/j.powtec.2010.01.002_bib1) 2000; 12
Freitag (10.1016/j.powtec.2010.01.002_bib4) 2004; 22
Heckel (10.1016/j.powtec.2010.01.002_bib22) 1961; 221
Inghelbrecht (10.1016/j.powtec.2010.01.002_bib11) 1997; 148
Rees (10.1016/j.powtec.2010.01.002_bib29) 1978; 30
10.1016/j.powtec.2010.01.002_bib21
10.1016/j.powtec.2010.01.002_bib20
10.1016/j.powtec.2010.01.002_bib15
10.1016/j.powtec.2010.01.002_bib14
10.1016/j.powtec.2010.01.002_bib19
Ho (10.1016/j.powtec.2010.01.002_bib16) 1979; 31
Katashinskii (10.1016/j.powtec.2010.01.002_bib9) 1986; 10
Heckel (10.1016/j.powtec.2010.01.002_bib23) 1961; 221
10.1016/j.powtec.2010.01.002_bib5
Zinchuk (10.1016/j.powtec.2010.01.002_bib2) 2004; 269
10.1016/j.powtec.2010.01.002_bib30
Johanson (10.1016/j.powtec.2010.01.002_bib6) 1965; 32
10.1016/j.powtec.2010.01.002_bib8
Mansa (10.1016/j.powtec.2010.01.002_bib10) 2008; 181
Holman (10.1016/j.powtec.2010.01.002_bib17) 1993; 6
Leuenberger (10.1016/j.powtec.2010.01.002_bib28) 1986; 3
Bindhumadhavan (10.1016/j.powtec.2010.01.002_bib7) 2005; 60
Belda (10.1016/j.powtec.2010.01.002_bib18) 1999; 47
10.1016/j.powtec.2010.01.002_bib27
10.1016/j.powtec.2010.01.002_bib26
Duberg (10.1016/j.powtec.2010.01.002_bib24) 1986; 46
Odagi (10.1016/j.powtec.2010.01.002_bib12) 2001; 38
Funakoshi (10.1016/j.powtec.2010.01.002_bib31) 1977; 3
Freitag (10.1016/j.powtec.2010.01.002_bib3) 2003; 19
de Blaey (10.1016/j.powtec.2010.01.002_bib25) 1970; 105
Dec (10.1016/j.powtec.2010.01.002_bib13) 2003; 130
References_xml – volume: 269
  start-page: 403
  year: 2004
  end-page: 415
  ident: bib2
  article-title: Simulation of roller compaction using a laboratory scale compaction simulator
  publication-title: Int. J. Pharm.
  contributor:
    fullname: Hancock
– volume: 22
  start-page: 325
  year: 2004
  end-page: 333
  ident: bib4
  article-title: How do roll compaction/dry granulation affect the tableting behaviour of inorganic materials? Microhardness of ribbons and mercury porosimetry measurements of tablets
  publication-title: Eur. J. Pharm. Sci.
  contributor:
    fullname: Kleinebudde
– volume: 3
  start-page: 555
  year: 1977
  end-page: 573
  ident: bib31
  article-title: The use of a novel roller compactor with a concavo-convex roller pair to obtain uniform compacting pressure
  publication-title: Drug Dev. Ind. Pharm.
  contributor:
    fullname: Satake
– volume: 46
  start-page: 67
  year: 1986
  end-page: 75
  ident: bib24
  article-title: Studies in direct compression of tablets—XVII. porosity–pressure curves for the characterisation of volume reduction mechanism in powder compression
  publication-title: Powder Technol.
  contributor:
    fullname: Nyström
– volume: 19
  start-page: 281
  year: 2003
  end-page: 289
  ident: bib3
  article-title: How do roll compaction/dry granulation affect the tableting behaviour of inorganic materials? Comparison of four magnesium carbonates
  publication-title: Eur. J. Pharm. Sci.
  contributor:
    fullname: Kleinebudde
– volume: 38
  start-page: 150
  year: 2001
  end-page: 159
  ident: bib12
  article-title: Compressive flow property of powder in roll-type presses—Numerical simulation by discrete element method (in Japanese)
  publication-title: J. Soc. Powder Technol., Japan
  contributor:
    fullname: Tsuji
– volume: 3
  start-page: 12
  year: 1986
  end-page: 22
  ident: bib28
  article-title: Fundamentals of powder compression. I. The compactibility and compressibility of pharmaceutical powders
  publication-title: Pharm. Res.
  contributor:
    fullname: Rohera
– volume: 30
  start-page: 601
  year: 1978
  end-page: 607
  ident: bib29
  article-title: Time-dependent deformation of some direct compression excipients
  publication-title: J Pharm. Pharmacol.
  contributor:
    fullname: Rue
– volume: 10
  start-page: 765
  year: 1986
  end-page: 772
  ident: bib9
  article-title: Analytical determination of specific pressure during the rolling of metal powders (in Russian)
  publication-title: Sov. Powder Metal Ceram.
  contributor:
    fullname: Katashinskii
– volume: 47
  start-page: 231
  year: 1999
  end-page: 245
  ident: bib18
  article-title: The tableting machine as an analytical instrument: qualification of the tableting machine and the instrumentation with respect to the determination of punch separation and validation of the calibration procedures
  publication-title: Eur. J. Pharm. Biopharm.
  contributor:
    fullname: Mielck
– volume: 60
  start-page: 3891
  year: 2005
  end-page: 3897
  ident: bib7
  article-title: Roll compaction of a pharmaceutical excipient: experimental validation of rolling theory for granular solids
  publication-title: Chem. Eng. Sci.
  contributor:
    fullname: Fitzpatrick
– volume: 32
  start-page: 842
  year: 1965
  end-page: 848
  ident: bib6
  article-title: A rolling theory for granular solids
  publication-title: J. Appl. Mech., Trans. ASME
  contributor:
    fullname: Johanson
– volume: 105
  start-page: 241
  year: 1970
  end-page: 250
  ident: bib25
  article-title: Compression of pharmaceuticals I. The quantitative Interpretation of force–displacement curves
  publication-title: Pharm. Weekblad
  contributor:
    fullname: Polderman
– volume: 12
  start-page: 24
  year: 2000
  end-page: 35
  ident: bib1
  article-title: Dry granulation with a roller compactor—part I: the functional units and operation modes
  publication-title: Pharm. Tech. Europe
  contributor:
    fullname: Kleinebudde
– volume: 130
  start-page: 265
  year: 2003
  end-page: 271
  ident: bib13
  article-title: Comparison of various modelling methods for analysis of powder compaction in roller press
  publication-title: Powder Technol.
  contributor:
    fullname: Cunningham
– volume: 181
  start-page: 217
  year: 2008
  end-page: 225
  ident: bib10
  article-title: Using intelligent software to predict the effects of formulation and processing parameters on roller compaction
  publication-title: Powder Technol.
  contributor:
    fullname: Seville
– volume: 221
  start-page: 671
  year: 1961
  end-page: 675
  ident: bib22
  article-title: Pressure–density relationships in powder compaction
  publication-title: Trans. Metall. Soc. of AIME.
  contributor:
    fullname: Heckel
– volume: 6
  start-page: 816
  year: 1993
  end-page: 822
  ident: bib17
  article-title: Calibration of a compaction simulator for the measurement of tablet thickness during compression
  publication-title: Pharm. Research
  contributor:
    fullname: Marshall
– volume: 31
  start-page: 471
  year: 1979
  ident: bib16
  article-title: A comparison of three methods of mounting a linear variable displacement transducer on an instrumented tablet machine
  publication-title: J. Pharm. Pharmacol.
  contributor:
    fullname: Jones
– volume: 221
  start-page: 1001
  year: 1961
  end-page: 1008
  ident: bib23
  article-title: An analysis of powder compaction phenomena
  publication-title: Trans. Metall. Soc. of AIME
  contributor:
    fullname: Heckel
– volume: 148
  start-page: 103
  year: 1997
  end-page: 115
  ident: bib11
  article-title: Instrumentation of a roll compactor and evaluation of the parameter settings by neural networks
  publication-title: Int. J. Pharm.
  contributor:
    fullname: Remon
– volume: 12
  start-page: 24
  year: 2000
  ident: 10.1016/j.powtec.2010.01.002_bib1
  article-title: Dry granulation with a roller compactor—part I: the functional units and operation modes
  publication-title: Pharm. Tech. Europe
  contributor:
    fullname: Shlieout
– volume: 3
  start-page: 12
  issue: 1
  year: 1986
  ident: 10.1016/j.powtec.2010.01.002_bib28
  article-title: Fundamentals of powder compression. I. The compactibility and compressibility of pharmaceutical powders
  publication-title: Pharm. Res.
  doi: 10.1023/A:1016364613722
  contributor:
    fullname: Leuenberger
– volume: 32
  start-page: 842
  year: 1965
  ident: 10.1016/j.powtec.2010.01.002_bib6
  article-title: A rolling theory for granular solids
  publication-title: J. Appl. Mech., Trans. ASME
  doi: 10.1115/1.3627325
  contributor:
    fullname: Johanson
– volume: 22
  start-page: 325
  year: 2004
  ident: 10.1016/j.powtec.2010.01.002_bib4
  article-title: How do roll compaction/dry granulation affect the tableting behaviour of inorganic materials? Microhardness of ribbons and mercury porosimetry measurements of tablets
  publication-title: Eur. J. Pharm. Sci.
  doi: 10.1016/j.ejps.2004.04.001
  contributor:
    fullname: Freitag
– ident: 10.1016/j.powtec.2010.01.002_bib27
– ident: 10.1016/j.powtec.2010.01.002_bib20
– volume: 31
  start-page: 471
  year: 1979
  ident: 10.1016/j.powtec.2010.01.002_bib16
  article-title: A comparison of three methods of mounting a linear variable displacement transducer on an instrumented tablet machine
  publication-title: J. Pharm. Pharmacol.
  doi: 10.1111/j.2042-7158.1979.tb13556.x
  contributor:
    fullname: Ho
– volume: 60
  start-page: 3891
  year: 2005
  ident: 10.1016/j.powtec.2010.01.002_bib7
  article-title: Roll compaction of a pharmaceutical excipient: experimental validation of rolling theory for granular solids
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2005.02.022
  contributor:
    fullname: Bindhumadhavan
– volume: 30
  start-page: 601
  year: 1978
  ident: 10.1016/j.powtec.2010.01.002_bib29
  article-title: Time-dependent deformation of some direct compression excipients
  publication-title: J Pharm. Pharmacol.
  doi: 10.1111/j.2042-7158.1978.tb13340.x
  contributor:
    fullname: Rees
– volume: 181
  start-page: 217
  issue: 2
  year: 2008
  ident: 10.1016/j.powtec.2010.01.002_bib10
  article-title: Using intelligent software to predict the effects of formulation and processing parameters on roller compaction
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2007.02.011
  contributor:
    fullname: Mansa
– volume: 269
  start-page: 403
  year: 2004
  ident: 10.1016/j.powtec.2010.01.002_bib2
  article-title: Simulation of roller compaction using a laboratory scale compaction simulator
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2003.09.034
  contributor:
    fullname: Zinchuk
– volume: 130
  start-page: 265
  year: 2003
  ident: 10.1016/j.powtec.2010.01.002_bib13
  article-title: Comparison of various modelling methods for analysis of powder compaction in roller press
  publication-title: Powder Technol.
  doi: 10.1016/S0032-5910(02)00203-6
  contributor:
    fullname: Dec
– volume: 3
  start-page: 555
  issue: 6
  year: 1977
  ident: 10.1016/j.powtec.2010.01.002_bib31
  article-title: The use of a novel roller compactor with a concavo-convex roller pair to obtain uniform compacting pressure
  publication-title: Drug Dev. Ind. Pharm.
  doi: 10.3109/03639047709055633
  contributor:
    fullname: Funakoshi
– ident: 10.1016/j.powtec.2010.01.002_bib8
– volume: 47
  start-page: 231
  year: 1999
  ident: 10.1016/j.powtec.2010.01.002_bib18
  article-title: The tableting machine as an analytical instrument: qualification of the tableting machine and the instrumentation with respect to the determination of punch separation and validation of the calibration procedures
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/S0939-6411(98)00093-9
  contributor:
    fullname: Belda
– ident: 10.1016/j.powtec.2010.01.002_bib14
– volume: 148
  start-page: 103
  year: 1997
  ident: 10.1016/j.powtec.2010.01.002_bib11
  article-title: Instrumentation of a roll compactor and evaluation of the parameter settings by neural networks
  publication-title: Int. J. Pharm.
  doi: 10.1016/S0378-5173(94)04837-1
  contributor:
    fullname: Inghelbrecht
– volume: 6
  start-page: 816
  issue: 10
  year: 1993
  ident: 10.1016/j.powtec.2010.01.002_bib17
  article-title: Calibration of a compaction simulator for the measurement of tablet thickness during compression
  publication-title: Pharm. Research
  doi: 10.1023/A:1018944724083
  contributor:
    fullname: Holman
– volume: 10
  start-page: 765
  issue: 6
  year: 1986
  ident: 10.1016/j.powtec.2010.01.002_bib9
  article-title: Analytical determination of specific pressure during the rolling of metal powders (in Russian)
  publication-title: Sov. Powder Metal Ceram.
  contributor:
    fullname: Katashinskii
– volume: 221
  start-page: 1001
  year: 1961
  ident: 10.1016/j.powtec.2010.01.002_bib23
  article-title: An analysis of powder compaction phenomena
  publication-title: Trans. Metall. Soc. of AIME
  contributor:
    fullname: Heckel
– volume: 38
  start-page: 150
  year: 2001
  ident: 10.1016/j.powtec.2010.01.002_bib12
  article-title: Compressive flow property of powder in roll-type presses—Numerical simulation by discrete element method (in Japanese)
  publication-title: J. Soc. Powder Technol., Japan
  doi: 10.4164/sptj.38.150
  contributor:
    fullname: Odagi
– volume: 221
  start-page: 671
  year: 1961
  ident: 10.1016/j.powtec.2010.01.002_bib22
  article-title: Pressure–density relationships in powder compaction
  publication-title: Trans. Metall. Soc. of AIME.
  contributor:
    fullname: Heckel
– ident: 10.1016/j.powtec.2010.01.002_bib26
– ident: 10.1016/j.powtec.2010.01.002_bib21
– ident: 10.1016/j.powtec.2010.01.002_bib5
– volume: 19
  start-page: 281
  year: 2003
  ident: 10.1016/j.powtec.2010.01.002_bib3
  article-title: How do roll compaction/dry granulation affect the tableting behaviour of inorganic materials? Comparison of four magnesium carbonates
  publication-title: Eur. J. Pharm. Sci.
  doi: 10.1016/S0928-0987(03)00133-7
  contributor:
    fullname: Freitag
– ident: 10.1016/j.powtec.2010.01.002_bib19
– volume: 46
  start-page: 67
  year: 1986
  ident: 10.1016/j.powtec.2010.01.002_bib24
  article-title: Studies in direct compression of tablets—XVII. porosity–pressure curves for the characterisation of volume reduction mechanism in powder compression
  publication-title: Powder Technol.
  doi: 10.1016/0032-5910(86)80100-0
  contributor:
    fullname: Duberg
– ident: 10.1016/j.powtec.2010.01.002_bib30
– ident: 10.1016/j.powtec.2010.01.002_bib15
– volume: 105
  start-page: 241
  year: 1970
  ident: 10.1016/j.powtec.2010.01.002_bib25
  article-title: Compression of pharmaceuticals I. The quantitative Interpretation of force–displacement curves
  publication-title: Pharm. Weekblad
  contributor:
    fullname: de Blaey
SSID ssj0006310
Score 2.161096
Snippet The thin layer model is based on the assumption that the deformation of powder during tableting can be transferred to the roller compaction process, provided...
SourceID proquest
crossref
pascalfrancis
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 165
SubjectTerms Applied sciences
Blends
Chemical engineering
Compression speed
Density
Elastic recovery
Exact sciences and technology
Excipients
Force-displacement measurements
Mathematical models
Miscellaneous
Prediction model
Ribbon density
Ribbons
Roller compaction
Rollers
Rolls
Sintering, pelletization, granulation
Solid-solid systems
Thin films
Title Roller compaction/Dry granulation: Use of the thin layer model for predicting densities and forces during roller compaction
URI https://dx.doi.org/10.1016/j.powtec.2010.01.002
https://search.proquest.com/docview/1266743520
Volume 199
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7ofFFEvOK8jAi-xq1p0rW-iRemok8OfAtJmspEutJNRAR_uydtOryB4MP2sJKl5CTf-ZJ85xyAwyB1aec0oyrq9yhXKqCJsTHVKfobxUwUa3cOeXMbDYb86l7cz8FpEwvjZJUe-2tMr9Da_9L1o9ktRiMX4xsid8cpVZ1Qx2IeFtAdcd6ChZPL68HtDJCjMPDZGXHfhQ2aCLpK5lWMX6bWeI1XMDtf-cVDLRdqguOW1QUvfmB35ZAuVmHFM0lyUr_sGszZfB2WPuUX3IA3l3LblqQSmlcBDN2z8pU84H_7ql3HZDixZJwR5IH4GeXkSSEJJ1WBHIKElhSlu8px4miSOrG7S8BKVJ66h4gxpI5zJOX3njZheHF-dzqgvtoCNWGUTCmzQkc8se5ilrus7GGf47cyvJdprrXITGRUjIwuTaxIQoNM0iB7w3YprmwWbkErH-d2G0gaJdq4raPopzwWLGEGoSQT6AhVyDLbBtqMsCzqpBqyUZs9ytoi0llE9gKJFmlDvzGD_DI5JOL-Hy07X6w26465OgC4nWvDQWNGiQvL3Zao3I6fJzJA6oL0SrDezr-734XFWm3AKQv3oDUtn-0-kpip7sD80XvQ8VP1A_HF8e0
link.rule.ids 315,786,790,4521,24144,27955,27956,45618,45712
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-y9GEbo3QfZenaToO9aollybH3NvpBuiV5aqBvQpLlkVFs46SUMtjf3jt_pOtWKPTBfrAtS-iku5-k390BfA5SCjtnBTfReMSlMQFPnI-5TdHeGOGi2NI-5GweTRby-4W66MFR5wtDtMpW9zc6vdbW7ZNh25vDcrkkH98QsTsOqXqHOlbPYIvQAPG6vvy543lEYdDGZsRVF37e-c_VJK-yuF571zK8gs3uygP26VVpVthrWZPu4j_NXZuj0x3YbnEk-9Y09TX0fP4GXv4VXfAt_KaA275iNc28dl8YHlc37Cf-u83Z9ZUtVp4VGUMUiNcyZ5cGITir0-MwhLOsrOggh6jRLCWqO4VfZSZP6SVqGNZ4ObLq35reweL05PxowttcC9yFUbLmwisbycTTsaykmOzhWOLdODnKrLRWZS5yJkY8lyZeJaFDHOkQu2G5FOe1CHehnxe5fw8sjRLraOGoxqmMlUiEQ0WSKTSDJhSZHwDveliXTUgN3XHNfulGIpokokeBRokMYNyJQd8bGhq1_iMlD-9JbVOdoCwAuJgbwKdOjBqnFZ2VmNwXVysdIHBBcKXEaO_J1X-E55Pz2VRPz-Y_PsCLhncguQj3ob-urvwBwpm1PayH6y0aofLC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Roller+compaction%2FDry+granulation%3A+Use+of+the+thin+layer+model+for+predicting+densities+and+forces+during+roller+compaction&rft.jtitle=Powder+technology&rft.au=Peter%2C+Stefanie&rft.au=Lammens%2C+Robert+F.&rft.au=Steffens%2C+Klaus-J%C3%BCrgen&rft.date=2010-04-23&rft.issn=0032-5910&rft.volume=199&rft.issue=2&rft.spage=165&rft.epage=175&rft_id=info:doi/10.1016%2Fj.powtec.2010.01.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_powtec_2010_01_002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-5910&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-5910&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-5910&client=summon