Data-driven framework for the adaptive exit selection problem in pedestrian flow: Visual information based heuristics approach
Pedestrian behavior during evacuation has been formulated using various arbitrary microscopic methods to investigate the performance of crowd dynamics while their custom rules result in low visual realism in simulation due to the complexity of intrinsic decision logic of human. Statistical analysis...
Saved in:
Published in | Physica A Vol. 583; p. 126289 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0378-4371 1873-2119 |
DOI | 10.1016/j.physa.2021.126289 |
Cover
Loading…
Abstract | Pedestrian behavior during evacuation has been formulated using various arbitrary microscopic methods to investigate the performance of crowd dynamics while their custom rules result in low visual realism in simulation due to the complexity of intrinsic decision logic of human. Statistical analysis is an effective way to reveal the motion pattern and path planning behavior of pedestrians whose main idea is to approach the trajectory and social attributes data of pedestrians extracted from evacuation drills as much as possible. In this study, we present a data-driven based microscopic pedestrian-simulation model with continuous-space representation to explore the potential of integrating empirical analysis into crowd simulation to enhance the authenticity of decision making. This method extracts the pedestrian’s decision mode and smoothly applies it in the crowd dynamics model. Instead of navigating agents by arbitrary regulations, the desired direction of pedestrians during the motion is arranged by machine learning (ML) algorithms. The path decision module trained with actual pedestrian data improves the compatibility of the model in the application of various spatial scenarios and no longer suffers from tedious parameter fine-tuning work. To completely describe the information precepted by pedestrians, a polygon segmentation module is developed to divide the visual field of pedestrians and identify the mutual visibility among them. This module filters out the information that can be perceived by pedestrians in real situations, thereby bridges the gap between statistical analysis and numerical simulation methods. We compare different ML approaches for route-choice behavior prediction and discuss the relative importance of its influencing variables under different scenarios. Inferring the perception of social interactions from disaggregate choice data, the scope of effectiveness of conformity behavior and crowd-aversion are also discussed. The simulation results are compared with experimental data, illustrating the model’s capability to accurately reproduce the observed flow motion in various scenarios with moderate modification in physical environment initialization. |
---|---|
AbstractList | Pedestrian behavior during evacuation has been formulated using various arbitrary microscopic methods to investigate the performance of crowd dynamics while their custom rules result in low visual realism in simulation due to the complexity of intrinsic decision logic of human. Statistical analysis is an effective way to reveal the motion pattern and path planning behavior of pedestrians whose main idea is to approach the trajectory and social attributes data of pedestrians extracted from evacuation drills as much as possible. In this study, we present a data-driven based microscopic pedestrian-simulation model with continuous-space representation to explore the potential of integrating empirical analysis into crowd simulation to enhance the authenticity of decision making. This method extracts the pedestrian’s decision mode and smoothly applies it in the crowd dynamics model. Instead of navigating agents by arbitrary regulations, the desired direction of pedestrians during the motion is arranged by machine learning (ML) algorithms. The path decision module trained with actual pedestrian data improves the compatibility of the model in the application of various spatial scenarios and no longer suffers from tedious parameter fine-tuning work. To completely describe the information precepted by pedestrians, a polygon segmentation module is developed to divide the visual field of pedestrians and identify the mutual visibility among them. This module filters out the information that can be perceived by pedestrians in real situations, thereby bridges the gap between statistical analysis and numerical simulation methods. We compare different ML approaches for route-choice behavior prediction and discuss the relative importance of its influencing variables under different scenarios. Inferring the perception of social interactions from disaggregate choice data, the scope of effectiveness of conformity behavior and crowd-aversion are also discussed. The simulation results are compared with experimental data, illustrating the model’s capability to accurately reproduce the observed flow motion in various scenarios with moderate modification in physical environment initialization. |
ArticleNumber | 126289 |
Author | Asakura, Yasuo Nakanishi, Wataru Zhou, Zi-Xuan |
Author_xml | – sequence: 1 givenname: Zi-Xuan orcidid: 0000-0003-4782-3605 surname: Zhou fullname: Zhou, Zi-Xuan email: z.zhou@plan.cv.titech.ac.jp – sequence: 2 givenname: Wataru orcidid: 0000-0003-4009-4016 surname: Nakanishi fullname: Nakanishi, Wataru – sequence: 3 givenname: Yasuo surname: Asakura fullname: Asakura, Yasuo |
BookMark | eNqFkM9u2zAMh4UhA5ZkfYJd9AJORamx5AE7DP2zDSiwS9urQEs0osyxDUlN2suevWqy0w7tiQTI7wfyW7DZMA7E2BcQKxBQn29X0-Y54UoKCSuQtTTNBzYHo1UlAZoZmwulTXWhNHxii5S2QgjQSs7Z3yvMWPkY9jTwLuKODmP8w7sx8rwhjh6nXGacnkLmiXpyOYwDn-LY9rTjobTkKeUYsPD9ePjKH0J6xL6MSsgOj-stJvJ8Q48xpBxc4jiVBHSbz-xjh32is391ye5vru8uf1a3v3_8uvx-WzlVN7mSDl2rvSS4MJ0xWjQ1YKM1edUpA11TOzSEVOtat8KrFoTsQJKS67XRsFZL1pxyXRxTitRZF_Lxthwx9BaEfRVpt_Yo0r6KtCeRhVX_sVMMO4zP71DfThSVt_aBok0u0ODIh1gkWj-GN_kXGA-TUw |
CitedBy_id | crossref_primary_10_3233_JIFS_222587 crossref_primary_10_3390_fire6100380 crossref_primary_10_1016_j_simpat_2022_102707 crossref_primary_10_1016_j_jocm_2023_100463 crossref_primary_10_1080_19427867_2023_2195729 crossref_primary_10_3390_ijgi13050146 crossref_primary_10_3390_buildings14071945 crossref_primary_10_1016_j_ssci_2024_106520 |
Cites_doi | 10.1016/S0191-2615(03)00007-9 10.1016/j.trpro.2015.06.020 10.1016/j.physa.2020.125299 10.1016/S0378-4371(01)00141-8 10.1016/j.neucom.2019.10.062 10.1016/j.trc.2014.01.007 10.1016/j.neucom.2019.08.021 10.1016/j.physa.2021.126021 10.1016/j.physa.2014.07.050 10.1007/s12572-018-0204-2 10.1016/S0191-2615(01)00015-7 10.1109/ICRA.2017.7989037 10.1111/j.2517-6161.1974.tb00994.x 10.1016/j.physa.2004.01.043 10.1016/j.ssci.2019.02.034 10.1111/cgf.12403 10.1068/b2684 10.1016/j.ssci.2016.04.005 10.1016/j.apergo.2014.05.014 10.1287/trsc.1040.0108 10.1016/j.trb.2019.01.019 10.1016/j.trc.2016.05.012 10.3141/2316-11 10.1016/j.trc.2012.02.004 10.1016/j.apm.2020.08.075 10.1088/1742-5468/2011/06/P06004 10.1016/j.physleta.2015.11.028 10.1002/fam.2391 10.1103/PhysRevE.78.066117 10.1016/j.trb.2011.07.011 10.1103/PhysRevE.51.4282 10.1007/978-3-030-11015-4_16 10.1109/CVPR.2018.00553 10.1016/j.trb.2016.10.019 10.1177/0278364915619772 10.1073/pnas.1016507108 10.1126/science.1254295 10.1609/aaai.v32i1.11794 10.1016/j.trc.2020.102742 10.1109/IROS.2017.8202312 10.1016/j.physa.2017.07.004 10.1016/j.ssci.2015.07.003 10.1016/j.ssci.2011.08.020 10.1109/TAC.2017.2679487 10.1016/j.ssci.2015.11.015 10.1109/WACV.2018.00135 10.1016/S0377-2217(98)00051-4 10.1016/j.autcon.2007.06.005 10.1016/j.jenvp.2017.03.013 10.1016/j.physa.2020.125313 10.1016/j.physa.2015.01.008 10.1016/j.trc.2010.01.005 10.1016/S0191-2615(99)00052-1 10.1016/j.autcon.2020.103234 10.3141/2623-09 10.1007/s10694-017-0655-1 10.1109/LRA.2017.2651371 10.1016/j.firesaf.2016.07.003 10.1016/j.firesaf.2019.04.008 10.1016/j.trc.2014.03.009 10.1016/j.trc.2013.03.005 10.1016/j.trc.2019.06.012 10.1016/j.trc.2018.03.022 10.1016/j.ssci.2016.02.025 10.1016/j.trc.2016.08.018 10.1103/PhysRevE.67.067101 10.1068/b12850 10.1016/j.firesaf.2015.07.001 10.1109/ICRA.2018.8461113 10.1016/j.physa.2009.12.015 10.1016/j.simpat.2018.10.007 10.1016/j.trb.2014.11.001 10.1088/1742-5468/2012/02/P02002 10.1016/j.trc.2020.02.019 10.1016/j.aei.2020.101040 10.1068/b2697 10.1016/j.simpat.2011.11.002 10.1016/j.aei.2012.03.006 10.1137/17M1119196 10.1016/j.neucom.2020.04.141 10.1016/j.trc.2019.04.009 10.1016/j.anbehav.2016.11.024 10.1016/j.physa.2015.03.041 10.1016/j.physa.2019.03.087 10.1016/j.simpat.2018.02.007 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.physa.2021.126289 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1873-2119 |
ExternalDocumentID | 10_1016_j_physa_2021_126289 S0378437121005628 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 7-5 71M 8P~ 9JN 9JO AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAPFB AAXUO ABAOU ABMAC ABNEU ABYKQ ACAZW ACDAQ ACFVG ACGFS ACNCT ACRLP ADBBV ADEZE ADFHU ADGUI AEBSH AEKER AEYQN AFFNX AFKWA AFTJW AGHFR AGTHC AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIIAU AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR AXLSJ BKOJK BLXMC EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IXIXF J1W K-O KOM M38 M41 MHUIS MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSB SSF SSQ SSW SSZ T5K TN5 TWZ WH7 XPP YNT ZMT ~02 ~G- 29O 5VS 6TJ AAFFL AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABJNI ABWVN ABXDB ACNNM ACROA ACRPL ADMUD ADNMO ADVLN AEIPS AFJKZ AFODL AFXIZ AGCQF AGQPQ AGRNS AIIUN AJWLA ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BEHZQ BEZPJ BGSCR BNPGV BNTGB BPUDD BULVW BZJEE CITATION EJD FEDTE FGOYB HMV HVGLF HZ~ MVM NDZJH R2- RIG SEW SPG SSH VOH WUQ XJT XOL YYP ZY4 |
ID | FETCH-LOGICAL-c369t-2cacb7d2e148f8870961a977ed3f381f96ca8eae6767b0d3b102f12e325587153 |
IEDL.DBID | .~1 |
ISSN | 0378-4371 |
IngestDate | Tue Jul 01 01:32:28 EDT 2025 Thu Apr 24 23:10:54 EDT 2025 Fri Feb 23 02:44:35 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Data driven Visual information perception Path planning Microscopic model Pedestrian dynamics Obstacle detour |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c369t-2cacb7d2e148f8870961a977ed3f381f96ca8eae6767b0d3b102f12e325587153 |
ORCID | 0000-0003-4009-4016 0000-0003-4782-3605 |
ParticipantIDs | crossref_citationtrail_10_1016_j_physa_2021_126289 crossref_primary_10_1016_j_physa_2021_126289 elsevier_sciencedirect_doi_10_1016_j_physa_2021_126289 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 2021-12-00 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Physica A |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Lovreglio, Ronchi, Nilsson (b2) 2015; 78 Helbing, Molnár (b17) 1995; 51 Guo, Huang (b40) 2012; 24 Helbing, Isobe, Nagatani, Takimoto (b20) 2003; 67 Turner, Penn (b73) 2002; 29 Haghani, Sarvi (b84) 2017; 95 Huo, Song, Chen, Liu, Liew (b34) 2016; 86 Kneidl, Hartmann, Borrmann (b81) 2013; 37 Hoogendoorn, Van Wageningen-Kessels, Daamen, Duives, Sarvi (b11) 2015; 7 H. Xue, D.Q. Huynh, M. Reynolds, SS-LSTM: A hierarchical LSTM model for pedestrian trajectory prediction, in: 2018 IEEE Winter Conference on Applications of Computer Vision, WACV, 2018, pp. 1186–1194. Wang, Guo, Zheng (b23) 2016; 88 Hughes (b39) 2002; 36 Gavriilidou, Daamen, Yuan, Hoogendoorn (b6) 2019; 105 Rubenstein, Cornejo, Nagpal (b51) 2014; 345 Wang, Shi, Goh, Qian (b67) 2019; 106 Zhang, Jia (b16) 2020; 90 Aurell, Djehiche (b28) 2018; 56 . Helbing, Buzna, Johansson, Werner (b95) 2005; 39 Y.F. Chen, M. Liu, M. Everett, J.P. How, Decentralized non-communicating multiagent collision avoidance with deep reinforcement learning, in: 2017 IEEE International Conference on Robotics and Automation, ICRA, 2017, pp. 285–292. Hoogendoorn, Bovy (b1) 2004; 38 N. Nikhil, B. Tran Morris, Convolutional neural network for trajectory prediction, in: Proceedings of the European Conference on Computer Vision (ECCV) Workshops, 2018. Xi, Son (b9) 2012; 22 Zhang, Klingsch, Schadschneider, Seyfried (b30) 2011; 2011 Turner, Doxa, O’Sullivan, Penn (b72) 2001; 28 Li, Han (b25) 2015; 80 Ma, Chen, Wang, Zhu, Wang, Qiu (b57) 2019; 525 Feliciani, Murakami, Shimura, Nishinari (b93) 2020; 114 Kuang, Li, Song, Dai (b22) 2008; 78 Charalambous, Chrysanthou (b63) 2014; 33 Lachapelle, Wolfram (b27) 2011; 45 Kretzschmar, Spies, Sprunk, Burgard (b52) 2016; 35 Lu, Chan, Wang, Wang (b90) 2017; 81 Li, Li, Qu, Jia (b29) 2015; 432 Li, Zhai, Xie (b35) 2015; 424 Stubenschrott, Matyus, Schrom-Feiertag, Kogler, Seer (b10) 2017; 2623 Wang, Fu, Li, Qian (b68) 2020; 116 Stone (b88) 1974; 36 Haghani, Sarvi (b85) 2018; 116 Fu, Jia, Chen, Ma, Han, Luo (b15) 2018; 91 Burstedde, Klauck, Schadschneider, Zittartz (b13) 2001; 295 Haghani, Sarvi (b48) 2017; 124 Fabio, Rosario, Raffaele (b5) 2019 de Berg, van Kreveld, Overmars, Schwarzkopf (b83) 1997 Chen, Tang, Song, Huang, Guo (b92) 2019; 90 Y.F. Chen, M. Everett, M. Liu, J.P. How, Socially aware motion planning with deep reinforcement learning, in: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, 2017, pp. 1343–1350. Abdelghany, Abdelghany, Mahmassani, Al-Zahrani (b79) 2012; 2316 Zhang, Y. Hu, Eddy Patuwo, C. Indro (b89) 1999; 116 Chen, Liu, Wang, Chen (b36) 2017; 53 Cao, Song, Lv (b24) 2016; 380 Steffen, Seyfried (b42) 2010; 389 Sticco, Frank, Dorso (b19) 2021; 561 Yao, Zhang, Lu, Liu (b65) 2019; 366 Zhou, Nakanishi, Asakura (b82) 2021; 562 van den Berg Jur, Ming, Manocha (b87) 2008 Djehiche, Tcheukam, Tembine (b33) 2017; 62 Mahato, Klar, Tiwari (b26) 2018; 10 Martin, Parisi (b59) 2020; 379 Porter, Hamdar, Daamen (b18) 2018; 14 Helbing, Molnár, Farkas, Bolay (b94) 2001; 28 Liu, Liu, Zhang, Qin (b64) 2018; 84 P. Long, T. Fan, X. Liao, W. Liu, H. Zhang, J. Pan, Towards optimally decentralized multi-robot collision avoidance via deep reinforcement learning, in: 2018 IEEE International Conference on Robotics and Automation, ICRA, 2018, pp. 6252–6259. Kneidl, Borrmann, Hartmann (b80) 2012; 26 Abdelghany, Abdelghany, Mahmassani (b38) 2016; 86 Y. Xu, Z. Piao, S. Gao, Encoding crowd interaction with deep neural network for pedestrian trajectory prediction, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2018. Lin, Zhu, Li, Becerik-Gerber (b46) 2020; 43 Blue, Adler (b12) 2001; 35 Haghani, Sarvi (b91) 2016; 85 Yu (b7) 2020; 119 Kinateder, Müller, Jost, Mühlberger, Pauli (b45) 2014; 45 Moussaïd, Helbing, Theraulaz (b74) 2011; 108 Fang, El-Tawil, Aguirre (b44) 2016; 83 Lowe, Wu, Tamar, Harb, Pieter Abbeel, Mordatch (b70) 2017 Flötteröd, Lämmel (b14) 2015; 71 Yao, Zhang, Lu, Liu (b66) 2020; 404 Li, Shu, Xiao, Wang (b8) 2021; 574 Isobe, Adachi, Nagatani (b21) 2004; 336 Long, Liu, Pan (b55) 2017; 2 Gwynne, Kuligowski, Kinsey, Hulse (b77) 2017; 41 van den Berg Jur, J, Ming, Dinesh (b86) 2009 Xiao, Gao, Qu, Li (b43) 2016; 68 Zeng, Chen, Nakamura, Iryo-Asano (b75) 2014; 40 Pelechano, Malkawi (b32) 2008; 17 Haghani, Sarvi (b49) 2019; 115 Hu, You, Zhang, Wei, Guo (b41) 2018; 489 Zhang, Klingsch, Schadschneider, Seyfried (b96) 2012; 2012 Liang, Patel, Sathyamoorthy, Manocha (b58) 2020 Asano, Iryo, Kuwahara (b3) 2010; 18 Shahhoseini, Sarvi (b37) 2019; 122 Wang, Lo, Liu, Kuang (b76) 2014; 44 Hoogendoorn, van Wageningen-Kessels, Daamen, Duives (b4) 2014; 416 Heliövaara, Kuusinen, Rinne, Korhonen, Ehtamo (b31) 2012; 50 Haghani, Sarvi (b47) 2017; 51 J.N. Foerster, G. Farquhar, T. Afouras, N. Nardelli, S. Whiteson, Counterfactual multi-agent policy gradients, in: 32nd AAAI Conference on Artificial Intelligence, AAAI 2018, 2018, pp. 2974–2982 Foerster, Assael, de Freitas, Whiteson (b69) 2016 Lovreglio, Fonzone, dell’Olio (b50) 2016; 92 Haghani, Sarvi (b78) 2019; 103 Zhang (10.1016/j.physa.2021.126289_b30) 2011; 2011 Zhou (10.1016/j.physa.2021.126289_b82) 2021; 562 Hoogendoorn (10.1016/j.physa.2021.126289_b1) 2004; 38 Isobe (10.1016/j.physa.2021.126289_b21) 2004; 336 Steffen (10.1016/j.physa.2021.126289_b42) 2010; 389 Kretzschmar (10.1016/j.physa.2021.126289_b52) 2016; 35 Gwynne (10.1016/j.physa.2021.126289_b77) 2017; 41 Asano (10.1016/j.physa.2021.126289_b3) 2010; 18 Wang (10.1016/j.physa.2021.126289_b68) 2020; 116 Lowe (10.1016/j.physa.2021.126289_b70) 2017 Li (10.1016/j.physa.2021.126289_b25) 2015; 80 Wang (10.1016/j.physa.2021.126289_b67) 2019; 106 Djehiche (10.1016/j.physa.2021.126289_b33) 2017; 62 Hughes (10.1016/j.physa.2021.126289_b39) 2002; 36 Blue (10.1016/j.physa.2021.126289_b12) 2001; 35 Helbing (10.1016/j.physa.2021.126289_b17) 1995; 51 Helbing (10.1016/j.physa.2021.126289_b20) 2003; 67 Lovreglio (10.1016/j.physa.2021.126289_b2) 2015; 78 Cao (10.1016/j.physa.2021.126289_b24) 2016; 380 Huo (10.1016/j.physa.2021.126289_b34) 2016; 86 Xiao (10.1016/j.physa.2021.126289_b43) 2016; 68 Haghani (10.1016/j.physa.2021.126289_b78) 2019; 103 Flötteröd (10.1016/j.physa.2021.126289_b14) 2015; 71 Yu (10.1016/j.physa.2021.126289_b7) 2020; 119 Haghani (10.1016/j.physa.2021.126289_b48) 2017; 124 Abdelghany (10.1016/j.physa.2021.126289_b79) 2012; 2316 10.1016/j.physa.2021.126289_b62 Mahato (10.1016/j.physa.2021.126289_b26) 2018; 10 Kinateder (10.1016/j.physa.2021.126289_b45) 2014; 45 10.1016/j.physa.2021.126289_b61 Feliciani (10.1016/j.physa.2021.126289_b93) 2020; 114 10.1016/j.physa.2021.126289_b60 van den Berg Jur (10.1016/j.physa.2021.126289_b87) 2008 Yao (10.1016/j.physa.2021.126289_b66) 2020; 404 Li (10.1016/j.physa.2021.126289_b8) 2021; 574 Liang (10.1016/j.physa.2021.126289_b58) 2020 Porter (10.1016/j.physa.2021.126289_b18) 2018; 14 Sticco (10.1016/j.physa.2021.126289_b19) 2021; 561 Shahhoseini (10.1016/j.physa.2021.126289_b37) 2019; 122 Kneidl (10.1016/j.physa.2021.126289_b81) 2013; 37 Burstedde (10.1016/j.physa.2021.126289_b13) 2001; 295 Li (10.1016/j.physa.2021.126289_b35) 2015; 424 Stubenschrott (10.1016/j.physa.2021.126289_b10) 2017; 2623 Lovreglio (10.1016/j.physa.2021.126289_b50) 2016; 92 Hoogendoorn (10.1016/j.physa.2021.126289_b4) 2014; 416 Long (10.1016/j.physa.2021.126289_b55) 2017; 2 Haghani (10.1016/j.physa.2021.126289_b91) 2016; 85 Fang (10.1016/j.physa.2021.126289_b44) 2016; 83 10.1016/j.physa.2021.126289_b71 Stone (10.1016/j.physa.2021.126289_b88) 1974; 36 Chen (10.1016/j.physa.2021.126289_b92) 2019; 90 Zhang (10.1016/j.physa.2021.126289_b16) 2020; 90 Lachapelle (10.1016/j.physa.2021.126289_b27) 2011; 45 Moussaïd (10.1016/j.physa.2021.126289_b74) 2011; 108 Chen (10.1016/j.physa.2021.126289_b36) 2017; 53 Lin (10.1016/j.physa.2021.126289_b46) 2020; 43 Foerster (10.1016/j.physa.2021.126289_b69) 2016 Yao (10.1016/j.physa.2021.126289_b65) 2019; 366 Rubenstein (10.1016/j.physa.2021.126289_b51) 2014; 345 Zeng (10.1016/j.physa.2021.126289_b75) 2014; 40 Fabio (10.1016/j.physa.2021.126289_b5) 2019 Turner (10.1016/j.physa.2021.126289_b72) 2001; 28 Wang (10.1016/j.physa.2021.126289_b76) 2014; 44 Aurell (10.1016/j.physa.2021.126289_b28) 2018; 56 Haghani (10.1016/j.physa.2021.126289_b84) 2017; 95 Zhang (10.1016/j.physa.2021.126289_b96) 2012; 2012 Heliövaara (10.1016/j.physa.2021.126289_b31) 2012; 50 Martin (10.1016/j.physa.2021.126289_b59) 2020; 379 Charalambous (10.1016/j.physa.2021.126289_b63) 2014; 33 Li (10.1016/j.physa.2021.126289_b29) 2015; 432 Xi (10.1016/j.physa.2021.126289_b9) 2012; 22 10.1016/j.physa.2021.126289_b54 Helbing (10.1016/j.physa.2021.126289_b95) 2005; 39 Pelechano (10.1016/j.physa.2021.126289_b32) 2008; 17 10.1016/j.physa.2021.126289_b53 Turner (10.1016/j.physa.2021.126289_b73) 2002; 29 Zhang (10.1016/j.physa.2021.126289_b89) 1999; 116 Haghani (10.1016/j.physa.2021.126289_b85) 2018; 116 Hoogendoorn (10.1016/j.physa.2021.126289_b11) 2015; 7 10.1016/j.physa.2021.126289_b56 Helbing (10.1016/j.physa.2021.126289_b94) 2001; 28 Wang (10.1016/j.physa.2021.126289_b23) 2016; 88 Fu (10.1016/j.physa.2021.126289_b15) 2018; 91 Kuang (10.1016/j.physa.2021.126289_b22) 2008; 78 Liu (10.1016/j.physa.2021.126289_b64) 2018; 84 Lu (10.1016/j.physa.2021.126289_b90) 2017; 81 Haghani (10.1016/j.physa.2021.126289_b47) 2017; 51 Kneidl (10.1016/j.physa.2021.126289_b80) 2012; 26 Ma (10.1016/j.physa.2021.126289_b57) 2019; 525 Hu (10.1016/j.physa.2021.126289_b41) 2018; 489 de Berg (10.1016/j.physa.2021.126289_b83) 1997 van den Berg Jur (10.1016/j.physa.2021.126289_b86) 2009 Gavriilidou (10.1016/j.physa.2021.126289_b6) 2019; 105 Guo (10.1016/j.physa.2021.126289_b40) 2012; 24 Haghani (10.1016/j.physa.2021.126289_b49) 2019; 115 Abdelghany (10.1016/j.physa.2021.126289_b38) 2016; 86 |
References_xml | – year: 2019 ident: b5 article-title: A mean field approach to model flows of agents with path preferences over a network – volume: 10 start-page: 41 year: 2018 end-page: 53 ident: b26 article-title: A meshfree particle method for a vision-based macroscopic pedestrian model publication-title: Int. J. Adv. Eng. Sci. Appl. Math. – volume: 424 start-page: 152 year: 2015 end-page: 167 ident: b35 article-title: Occupant evacuation and casualty estimation in a building under earthquake using cellular automata publication-title: Physica A – volume: 22 start-page: 28 year: 2012 end-page: 46 ident: b9 article-title: Two-level modeling framework for pedestrian route choice and walking behaviors publication-title: Simul. Model. Pract. Theory – volume: 45 start-page: 1649 year: 2014 end-page: 1659 ident: b45 article-title: Social influence in a virtual tunnel fire - influence of conflicting information on evacuation behavior publication-title: Applied Ergon. – volume: 78 start-page: 168 year: 2015 end-page: 179 ident: b2 article-title: A model of the decision-making process during pre-evacuation publication-title: Fire Saf. J. – volume: 380 start-page: 540 year: 2016 end-page: 547 ident: b24 article-title: Modeling pedestrian evacuation with guiders based on a multi-grid model publication-title: Phys. Lett. A – volume: 36 start-page: 507 year: 2002 end-page: 535 ident: b39 article-title: A continuum theory for the flow of pedestrians publication-title: Transp. Res. B – volume: 81 start-page: 317 year: 2017 end-page: 329 ident: b90 article-title: A study of pedestrian group behaviors in crowd evacuation based on an extended floor field cellular automaton model publication-title: Transp. Res. C – volume: 24 start-page: 50 year: 2012 end-page: 61 ident: b40 article-title: Formulation of pedestrian movement in microscopic models with continuous space representation publication-title: Transp. Res. C – volume: 62 start-page: 5154 year: 2017 end-page: 5169 ident: b33 article-title: A mean-field game of evacuation in multilevel building publication-title: IEEE Trans. Automat. Control – volume: 124 start-page: 47 year: 2017 end-page: 56 ident: b48 article-title: Following the crowd or avoiding it? Empirical investigation of imitative behaviour in emergency escape of human crowds publication-title: Anim. Behav. – volume: 389 start-page: 1902 year: 2010 end-page: 1910 ident: b42 article-title: Methods for measuring pedestrian density, flow, speed and direction with minimal scatter publication-title: Physica A – volume: 7 start-page: 381 year: 2015 end-page: 397 ident: b11 article-title: Continuum theory for pedestrian traffic flow: Local route choice modelling and its implications publication-title: Transp. Res. Procedia – volume: 85 start-page: 1 year: 2016 end-page: 9 ident: b91 article-title: Human exit choice in crowded built environments: Investigating underlying behavioural differences between normal egress and emergency evacuations publication-title: Fire Saf. J. – volume: 38 start-page: 169 year: 2004 end-page: 190 ident: b1 article-title: Pedestrian route-choice and activity scheduling theory and models publication-title: Transp. Res. B – volume: 108 start-page: 6884 year: 2011 end-page: 6888 ident: b74 article-title: How simple rules determine pedestrian behavior and crowd disasters publication-title: Proc. Natl. Acad. Sci. USA – volume: 432 start-page: 337 year: 2015 end-page: 353 ident: b29 article-title: Block-based floor field model for pedestrian’s walking through corner publication-title: Physica A – volume: 562 year: 2021 ident: b82 article-title: Route choice in the pedestrian evacuation: Microscopic formulation based on visual information publication-title: Physica A – volume: 116 start-page: 361 year: 2018 end-page: 388 ident: b85 article-title: Hypothetical bias and decision-rule effect in modelling discrete directional choices publication-title: Transp. Res. A – volume: 50 start-page: 221 year: 2012 end-page: 227 ident: b31 article-title: Pedestrian behavior and exit selection in evacuation of a corridor - an experimental study publication-title: Saf. Sci. – volume: 18 start-page: 842 year: 2010 end-page: 855 ident: b3 article-title: Microscopic pedestrian simulation model combined with a tactical model for route choice behaviour publication-title: Transp. Res. C – volume: 103 start-page: 56 year: 2019 end-page: 82 ident: b78 article-title: Simulating dynamics of adaptive exit-choice changing in crowd evacuations: Model implementation and behavioural interpretations publication-title: Transp. Res. C – volume: 119 year: 2020 ident: b7 article-title: Consideration of tactical decisions in microscopic pedestrian simulation: Algorithm and experiments publication-title: Transp. Res. C – volume: 416 start-page: 684 year: 2014 end-page: 694 ident: b4 article-title: Continuum modelling of pedestrian flows: From microscopic principles to self-organised macroscopic phenomena publication-title: Physica A – reference: N. Nikhil, B. Tran Morris, Convolutional neural network for trajectory prediction, in: Proceedings of the European Conference on Computer Vision (ECCV) Workshops, 2018. – volume: 90 start-page: 488 year: 2020 end-page: 504 ident: b16 article-title: Optimal guidance strategy for crowd evacuation with multiple exits: A hybrid multiscale modeling approach publication-title: Appl. Math. Model. – volume: 14 start-page: 468 year: 2018 end-page: 483 ident: b18 article-title: Pedestrian dynamics at transit stations: an integrated pedestrian flow modeling approach publication-title: Transp. A: Transp. Sci. – volume: 26 start-page: 669 year: 2012 end-page: 680 ident: b80 article-title: Generation and use of sparse navigation graphs for microscopic pedestrian simulation models publication-title: Adv. Eng. Inf. – volume: 122 start-page: 57 year: 2019 end-page: 87 ident: b37 article-title: Pedestrian crowd flows in shared spaces: Investigating the impact of geometry based on micro and macro scale measures publication-title: Transp. Res. B – volume: 105 start-page: 468 year: 2019 end-page: 484 ident: b6 article-title: Modelling cyclist queue formation using a two-layer framework for operational cycling behaviour publication-title: Transp. Res. C – volume: 17 start-page: 377 year: 2008 end-page: 385 ident: b32 article-title: Evacuation simulation models: Challenges in modeling high rise building evacuation with cellular automata approaches publication-title: Autom. Constr. – volume: 92 start-page: 59 year: 2016 end-page: 75 ident: b50 article-title: A mixed logit model for predicting exit choice during building evacuations publication-title: Transp. Res. A – volume: 116 year: 2020 ident: b68 article-title: Influence of human-obstacle interaction on evacuation from classrooms publication-title: Autom. Constr. – volume: 90 start-page: 31 year: 2019 end-page: 44 ident: b92 article-title: Child behavior during evacuation under non-emergency situations: Experimental and simulation results publication-title: Simul. Model. Pract. Theory – volume: 88 start-page: 16 year: 2016 end-page: 25 ident: b23 article-title: Information guiding effect of evacuation assistants in a two-channel segregation process using multi-information communication field model publication-title: Saf. Sci. – start-page: 1928 year: 2008 end-page: 1935 ident: b87 article-title: Reciprocal velocity obstacles for real-time multi-agent navigation publication-title: IEEE International Conference on Robotics and Automation – reference: J.N. Foerster, G. Farquhar, T. Afouras, N. Nardelli, S. Whiteson, Counterfactual multi-agent policy gradients, in: 32nd AAAI Conference on Artificial Intelligence, AAAI 2018, 2018, pp. 2974–2982, – volume: 2316 start-page: 95 year: 2012 end-page: 105 ident: b79 article-title: Dynamic simulation assignment model for pedestrian movements in crowded networks publication-title: Transp. Res. Rec. – volume: 95 start-page: 238 year: 2017 end-page: 259 ident: b84 article-title: Stated and revealed exit choices of pedestrian crowd evacuees publication-title: Transp. Res. B – year: 1997 ident: b83 article-title: Computational Geometry – volume: 116 start-page: 16 year: 1999 end-page: 32 ident: b89 article-title: Artificial neural networks in bankruptcy prediction: General framework and cross-validation analysis publication-title: European J. Oper. Res. – volume: 114 start-page: 484 year: 2020 end-page: 503 ident: b93 article-title: Efficiently informing crowds - experiments and simulations on route choice and decision making in pedestrian crowds with wheelchair users publication-title: Transp. Res. C – volume: 2623 start-page: 82 year: 2017 end-page: 89 ident: b10 article-title: Route-choice modeling for pedestrian evacuation based on infrastructure knowledge and personal preferences publication-title: Transp. Res. Rec. – volume: 404 start-page: 173 year: 2020 end-page: 185 ident: b66 article-title: Learning crowd behavior from real data: A residual network method for crowd simulation publication-title: Neurocomputing – volume: 78 year: 2008 ident: b22 article-title: Analysis of pedestrian dynamics in counter flow via an extended lattice gas model publication-title: Phys. Rev. E – volume: 489 start-page: 112 year: 2018 end-page: 127 ident: b41 article-title: Study on queueing behavior in pedestrian evacuation by extended cellular automata model publication-title: Physica A – volume: 68 start-page: 566 year: 2016 end-page: 580 ident: b43 article-title: A pedestrian flow model considering the impact of local density: Voronoi diagram based heuristics approach publication-title: Transp. Res. C – volume: 35 start-page: 293 year: 2001 end-page: 312 ident: b12 article-title: Cellular automata microsimulation for modeling bi-directional pedestrian walkways publication-title: Transp. Res. B – volume: 86 start-page: 165 year: 2016 end-page: 173 ident: b34 article-title: Experimental study on characteristics of pedestrian evacuation on stairs in a high-rise building publication-title: Saf. Sci. – volume: 2 start-page: 656 year: 2017 end-page: 663 ident: b55 article-title: Deep-learned collision avoidance policy for distributed multiagent navigation publication-title: IEEE Robot. Autom. Lett. – volume: 336 start-page: 638 year: 2004 end-page: 650 ident: b21 article-title: Experiment and simulation of pedestrian counter flow publication-title: Physica A – volume: 51 start-page: 4282 year: 1995 end-page: 4286 ident: b17 article-title: Social force model for pedestrian dynamics publication-title: Phys. Rev. E – volume: 39 start-page: 1 year: 2005 end-page: 24 ident: b95 article-title: Self-organized pedestrian crowd dynamics: Experiments, simulations and design solutions publication-title: Transp. Sci. – start-page: 6379 year: 2017 end-page: 6390 ident: b70 article-title: Multi-agent actor-critic for mixed cooperative-competitive environments publication-title: Advances in Neural Information Processing Systems, vol. 30 – volume: 37 start-page: 223 year: 2013 end-page: 237 ident: b81 article-title: A hybrid multi-scale approach for simulation of pedestrian dynamics publication-title: Transp. Res. C – volume: 71 start-page: 194 year: 2015 end-page: 212 ident: b14 article-title: Bidirectional pedestrian fundamental diagram publication-title: Transp. Res. B – volume: 2011 year: 2011 ident: b30 article-title: Transitions in pedestrian fundamental diagrams of straight corridors and T-junctions publication-title: J. Stat. Mech. Theory Exp. – reference: H. Xue, D.Q. Huynh, M. Reynolds, SS-LSTM: A hierarchical LSTM model for pedestrian trajectory prediction, in: 2018 IEEE Winter Conference on Applications of Computer Vision, WACV, 2018, pp. 1186–1194. – reference: Y.F. Chen, M. Liu, M. Everett, J.P. How, Decentralized non-communicating multiagent collision avoidance with deep reinforcement learning, in: 2017 IEEE International Conference on Robotics and Automation, ICRA, 2017, pp. 285–292. – volume: 56 start-page: 434 year: 2018 end-page: 455 ident: b28 article-title: Mean-field type modeling of nonlocal crowd aversion in pedestrian crowd dynamics publication-title: SIAM J. Control Optim. – volume: 45 start-page: 1572 year: 2011 end-page: 1589 ident: b27 article-title: On a mean field game approach modeling congestion and aversion in pedestrian crowds publication-title: Transp. Res. B – volume: 44 start-page: 21 year: 2014 end-page: 33 ident: b76 article-title: Microscopic modeling of pedestrian movement behavior: Interacting with visual attractors in the environment publication-title: Transp. Res. C – volume: 91 start-page: 37 year: 2018 end-page: 61 ident: b15 article-title: A fine discrete field cellular automaton for pedestrian dynamics integrating pedestrian heterogeneity, anisotropy and time-dependent characteristics publication-title: Transp. Res. C – reference: Y. Xu, Z. Piao, S. Gao, Encoding crowd interaction with deep neural network for pedestrian trajectory prediction, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2018. – volume: 83 start-page: 40 year: 2016 end-page: 47 ident: b44 article-title: Leader-follower model for agent based simulation of social collective behavior during egress publication-title: Saf. Sci. – volume: 295 start-page: 507 year: 2001 end-page: 525 ident: b13 article-title: Simulation of pedestrian dynamics using a two-dimensional cellular automaton publication-title: Physica A – start-page: 2137 year: 2016 end-page: 2145 ident: b69 article-title: Learning to communicate with deep multi-agent reinforcement learning publication-title: Advances in Neural Information Processing Systems, vol. 29 – volume: 28 start-page: 361 year: 2001 end-page: 383 ident: b94 article-title: Self-organizing pedestrian movement publication-title: Environ. Plan. B: Plann. Des. – volume: 115 start-page: 362 year: 2019 end-page: 375 ident: b49 article-title: ‘Herding’ in direction choice-making during collective escape of crowds: How likely is it and what moderates it? publication-title: Saf. Sci. – start-page: 3 year: 2009 end-page: 19 ident: b86 article-title: Reciprocal n-body collision avoidance publication-title: Robot. Res. – volume: 525 start-page: 894 year: 2019 end-page: 911 ident: b57 article-title: The analysis on the desired speed in social force model using a data driven approach publication-title: Physica A – volume: 366 start-page: 314 year: 2019 end-page: 327 ident: b65 article-title: Data-driven crowd evacuation: A reinforcement learning method publication-title: Neurocomputing – volume: 41 start-page: 412 year: 2017 end-page: 430 ident: b77 article-title: Modelling and influencing human behaviour in fire publication-title: Fire Mater. – volume: 80 start-page: 41 year: 2015 end-page: 55 ident: b25 article-title: Behavioral effect on pedestrian evacuation simulation using cellular automata publication-title: Saf. Sci. – volume: 43 year: 2020 ident: b46 article-title: Do people follow the crowd in building emergency evacuation? A cross-cultural immersive virtual reality-based study publication-title: Adv. Eng. Inf. – volume: 53 start-page: 1745 year: 2017 end-page: 1763 ident: b36 article-title: Experimental influence of pedestrian load on individual and group evacuation speed in staircases publication-title: Fire Technol. – volume: 67 start-page: 4 year: 2003 ident: b20 article-title: Lattice gas simulation of experimentally studied evacuation dynamics publication-title: Phys. Rev. E – volume: 35 start-page: 1352 year: 2016 end-page: 1370 ident: b52 article-title: Socially compliant mobile robot navigation via inverse reinforcement learning publication-title: Int. J. Robot. Res. – volume: 86 start-page: 159 year: 2016 end-page: 176 ident: b38 article-title: A hybrid simulation-assignment modeling framework for crowd dynamics in large-scale pedestrian facilities publication-title: Transp. Res. A – volume: 28 start-page: 103 year: 2001 end-page: 121 ident: b72 article-title: From isovists to visibility graphs: A methodology for the analysis of architectural space publication-title: Environ. Plan. B: Plann. Des. – reference: Y.F. Chen, M. Everett, M. Liu, J.P. How, Socially aware motion planning with deep reinforcement learning, in: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, 2017, pp. 1343–1350. – volume: 379 start-page: 130 year: 2020 end-page: 140 ident: b59 article-title: Data-driven simulation of pedestrian collision avoidance with a nonparametric neural network publication-title: Neurocomputing – volume: 33 start-page: 95 year: 2014 end-page: 108 ident: b63 article-title: The PAG crowd: A graph based approach for efficient data-driven crowd simulation publication-title: Comput. Graph. Forum – volume: 106 start-page: 163 year: 2019 end-page: 176 ident: b67 article-title: A machine learning based study on pedestrian movement dynamics under emergency evacuation publication-title: Fire Saf. J. – volume: 36 start-page: 111 year: 1974 end-page: 133 ident: b88 article-title: Cross-validatory choice and assessment of statistical predictions publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. – volume: 345 start-page: 795 year: 2014 end-page: 799 ident: b51 article-title: Programmable self-assembly in a thousand-robot swarm publication-title: Science – reference: P. Long, T. Fan, X. Liao, W. Liu, H. Zhang, J. Pan, Towards optimally decentralized multi-robot collision avoidance via deep reinforcement learning, in: 2018 IEEE International Conference on Robotics and Automation, ICRA, 2018, pp. 6252–6259. – reference: . – volume: 574 year: 2021 ident: b8 article-title: Modeling detour decision combined the tactical and operational layer based on perceived density publication-title: Physica A – volume: 84 start-page: 190 year: 2018 end-page: 203 ident: b64 article-title: A social force evacuation model driven by video data publication-title: Simul. Model. Pract. Theory – volume: 561 year: 2021 ident: b19 article-title: Social force model parameter testing and optimization using a high stress real-life situation publication-title: Physica A – year: 2020 ident: b58 article-title: Realtime collision avoidance for mobile robots in dense crowds using implicit multi-sensor fusion and deep reinforcement learning – volume: 40 start-page: 143 year: 2014 end-page: 159 ident: b75 article-title: Application of social force model to pedestrian behavior analysis at signalized crosswalk publication-title: Transp. Res. C – volume: 2012 start-page: 1 year: 2012 end-page: 13 ident: b96 article-title: Ordering in bidirectional pedestrian flows and its influence on the fundamental diagram publication-title: J. Stat. Mech. Theory Exp. – volume: 29 start-page: 473 year: 2002 end-page: 490 ident: b73 article-title: Encoding natural movement as an agent-based system: An investigation into human pedestrian behaviour in the built environment publication-title: Environ. Plan. B: Plann. Des. – volume: 51 start-page: 141 year: 2017 end-page: 157 ident: b47 article-title: How perception of peer behaviour influences escape decision making: The role of individual differences publication-title: J. Environ. Psychol. – volume: 38 start-page: 169 issue: 2 year: 2004 ident: 10.1016/j.physa.2021.126289_b1 article-title: Pedestrian route-choice and activity scheduling theory and models publication-title: Transp. Res. B doi: 10.1016/S0191-2615(03)00007-9 – volume: 7 start-page: 381 issue: August year: 2015 ident: 10.1016/j.physa.2021.126289_b11 article-title: Continuum theory for pedestrian traffic flow: Local route choice modelling and its implications publication-title: Transp. Res. Procedia doi: 10.1016/j.trpro.2015.06.020 – volume: 561 year: 2021 ident: 10.1016/j.physa.2021.126289_b19 article-title: Social force model parameter testing and optimization using a high stress real-life situation publication-title: Physica A doi: 10.1016/j.physa.2020.125299 – volume: 295 start-page: 507 issue: 3 year: 2001 ident: 10.1016/j.physa.2021.126289_b13 article-title: Simulation of pedestrian dynamics using a two-dimensional cellular automaton publication-title: Physica A doi: 10.1016/S0378-4371(01)00141-8 – volume: 379 start-page: 130 year: 2020 ident: 10.1016/j.physa.2021.126289_b59 article-title: Data-driven simulation of pedestrian collision avoidance with a nonparametric neural network publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.10.062 – volume: 40 start-page: 143 year: 2014 ident: 10.1016/j.physa.2021.126289_b75 article-title: Application of social force model to pedestrian behavior analysis at signalized crosswalk publication-title: Transp. Res. C doi: 10.1016/j.trc.2014.01.007 – volume: 366 start-page: 314 year: 2019 ident: 10.1016/j.physa.2021.126289_b65 article-title: Data-driven crowd evacuation: A reinforcement learning method publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.08.021 – volume: 116 start-page: 361 year: 2018 ident: 10.1016/j.physa.2021.126289_b85 article-title: Hypothetical bias and decision-rule effect in modelling discrete directional choices publication-title: Transp. Res. A – volume: 574 year: 2021 ident: 10.1016/j.physa.2021.126289_b8 article-title: Modeling detour decision combined the tactical and operational layer based on perceived density publication-title: Physica A doi: 10.1016/j.physa.2021.126021 – volume: 416 start-page: 684 year: 2014 ident: 10.1016/j.physa.2021.126289_b4 article-title: Continuum modelling of pedestrian flows: From microscopic principles to self-organised macroscopic phenomena publication-title: Physica A doi: 10.1016/j.physa.2014.07.050 – volume: 10 start-page: 41 issue: 1 year: 2018 ident: 10.1016/j.physa.2021.126289_b26 article-title: A meshfree particle method for a vision-based macroscopic pedestrian model publication-title: Int. J. Adv. Eng. Sci. Appl. Math. doi: 10.1007/s12572-018-0204-2 – volume: 36 start-page: 507 issue: 6 year: 2002 ident: 10.1016/j.physa.2021.126289_b39 article-title: A continuum theory for the flow of pedestrians publication-title: Transp. Res. B doi: 10.1016/S0191-2615(01)00015-7 – ident: 10.1016/j.physa.2021.126289_b53 doi: 10.1109/ICRA.2017.7989037 – volume: 92 start-page: 59 year: 2016 ident: 10.1016/j.physa.2021.126289_b50 article-title: A mixed logit model for predicting exit choice during building evacuations publication-title: Transp. Res. A – volume: 36 start-page: 111 issue: 2 year: 1974 ident: 10.1016/j.physa.2021.126289_b88 article-title: Cross-validatory choice and assessment of statistical predictions publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. doi: 10.1111/j.2517-6161.1974.tb00994.x – volume: 336 start-page: 638 issue: 3–4 year: 2004 ident: 10.1016/j.physa.2021.126289_b21 article-title: Experiment and simulation of pedestrian counter flow publication-title: Physica A doi: 10.1016/j.physa.2004.01.043 – volume: 115 start-page: 362 year: 2019 ident: 10.1016/j.physa.2021.126289_b49 article-title: ‘Herding’ in direction choice-making during collective escape of crowds: How likely is it and what moderates it? publication-title: Saf. Sci. doi: 10.1016/j.ssci.2019.02.034 – volume: 33 start-page: 95 issue: 8 year: 2014 ident: 10.1016/j.physa.2021.126289_b63 article-title: The PAG crowd: A graph based approach for efficient data-driven crowd simulation publication-title: Comput. Graph. Forum doi: 10.1111/cgf.12403 – volume: 28 start-page: 103 issue: 1 year: 2001 ident: 10.1016/j.physa.2021.126289_b72 article-title: From isovists to visibility graphs: A methodology for the analysis of architectural space publication-title: Environ. Plan. B: Plann. Des. doi: 10.1068/b2684 – volume: 88 start-page: 16 year: 2016 ident: 10.1016/j.physa.2021.126289_b23 article-title: Information guiding effect of evacuation assistants in a two-channel segregation process using multi-information communication field model publication-title: Saf. Sci. doi: 10.1016/j.ssci.2016.04.005 – volume: 45 start-page: 1649 issue: 6 year: 2014 ident: 10.1016/j.physa.2021.126289_b45 article-title: Social influence in a virtual tunnel fire - influence of conflicting information on evacuation behavior publication-title: Applied Ergon. doi: 10.1016/j.apergo.2014.05.014 – volume: 39 start-page: 1 issue: 1 year: 2005 ident: 10.1016/j.physa.2021.126289_b95 article-title: Self-organized pedestrian crowd dynamics: Experiments, simulations and design solutions publication-title: Transp. Sci. doi: 10.1287/trsc.1040.0108 – volume: 122 start-page: 57 year: 2019 ident: 10.1016/j.physa.2021.126289_b37 article-title: Pedestrian crowd flows in shared spaces: Investigating the impact of geometry based on micro and macro scale measures publication-title: Transp. Res. B doi: 10.1016/j.trb.2019.01.019 – volume: 68 start-page: 566 year: 2016 ident: 10.1016/j.physa.2021.126289_b43 article-title: A pedestrian flow model considering the impact of local density: Voronoi diagram based heuristics approach publication-title: Transp. Res. C doi: 10.1016/j.trc.2016.05.012 – volume: 2316 start-page: 95 issue: 1 year: 2012 ident: 10.1016/j.physa.2021.126289_b79 article-title: Dynamic simulation assignment model for pedestrian movements in crowded networks publication-title: Transp. Res. Rec. doi: 10.3141/2316-11 – volume: 24 start-page: 50 year: 2012 ident: 10.1016/j.physa.2021.126289_b40 article-title: Formulation of pedestrian movement in microscopic models with continuous space representation publication-title: Transp. Res. C doi: 10.1016/j.trc.2012.02.004 – volume: 90 start-page: 488 year: 2020 ident: 10.1016/j.physa.2021.126289_b16 article-title: Optimal guidance strategy for crowd evacuation with multiple exits: A hybrid multiscale modeling approach publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2020.08.075 – volume: 2011 issue: 6 year: 2011 ident: 10.1016/j.physa.2021.126289_b30 article-title: Transitions in pedestrian fundamental diagrams of straight corridors and T-junctions publication-title: J. Stat. Mech. Theory Exp. doi: 10.1088/1742-5468/2011/06/P06004 – volume: 380 start-page: 540 issue: 4 year: 2016 ident: 10.1016/j.physa.2021.126289_b24 article-title: Modeling pedestrian evacuation with guiders based on a multi-grid model publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2015.11.028 – volume: 41 start-page: 412 issue: 5 year: 2017 ident: 10.1016/j.physa.2021.126289_b77 article-title: Modelling and influencing human behaviour in fire publication-title: Fire Mater. doi: 10.1002/fam.2391 – volume: 78 issue: 6 year: 2008 ident: 10.1016/j.physa.2021.126289_b22 article-title: Analysis of pedestrian dynamics in counter flow via an extended lattice gas model publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.78.066117 – volume: 45 start-page: 1572 issue: 10 year: 2011 ident: 10.1016/j.physa.2021.126289_b27 article-title: On a mean field game approach modeling congestion and aversion in pedestrian crowds publication-title: Transp. Res. B doi: 10.1016/j.trb.2011.07.011 – volume: 86 start-page: 159 year: 2016 ident: 10.1016/j.physa.2021.126289_b38 article-title: A hybrid simulation-assignment modeling framework for crowd dynamics in large-scale pedestrian facilities publication-title: Transp. Res. A – volume: 51 start-page: 4282 year: 1995 ident: 10.1016/j.physa.2021.126289_b17 article-title: Social force model for pedestrian dynamics publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.51.4282 – ident: 10.1016/j.physa.2021.126289_b60 doi: 10.1007/978-3-030-11015-4_16 – ident: 10.1016/j.physa.2021.126289_b61 doi: 10.1109/CVPR.2018.00553 – volume: 95 start-page: 238 year: 2017 ident: 10.1016/j.physa.2021.126289_b84 article-title: Stated and revealed exit choices of pedestrian crowd evacuees publication-title: Transp. Res. B doi: 10.1016/j.trb.2016.10.019 – volume: 35 start-page: 1352 issue: 11 year: 2016 ident: 10.1016/j.physa.2021.126289_b52 article-title: Socially compliant mobile robot navigation via inverse reinforcement learning publication-title: Int. J. Robot. Res. doi: 10.1177/0278364915619772 – volume: 108 start-page: 6884 issue: 17 year: 2011 ident: 10.1016/j.physa.2021.126289_b74 article-title: How simple rules determine pedestrian behavior and crowd disasters publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1016507108 – volume: 345 start-page: 795 issue: 6198 year: 2014 ident: 10.1016/j.physa.2021.126289_b51 article-title: Programmable self-assembly in a thousand-robot swarm publication-title: Science doi: 10.1126/science.1254295 – ident: 10.1016/j.physa.2021.126289_b71 doi: 10.1609/aaai.v32i1.11794 – volume: 119 year: 2020 ident: 10.1016/j.physa.2021.126289_b7 article-title: Consideration of tactical decisions in microscopic pedestrian simulation: Algorithm and experiments publication-title: Transp. Res. C doi: 10.1016/j.trc.2020.102742 – ident: 10.1016/j.physa.2021.126289_b54 doi: 10.1109/IROS.2017.8202312 – volume: 489 start-page: 112 year: 2018 ident: 10.1016/j.physa.2021.126289_b41 article-title: Study on queueing behavior in pedestrian evacuation by extended cellular automata model publication-title: Physica A doi: 10.1016/j.physa.2017.07.004 – year: 1997 ident: 10.1016/j.physa.2021.126289_b83 – volume: 80 start-page: 41 year: 2015 ident: 10.1016/j.physa.2021.126289_b25 article-title: Behavioral effect on pedestrian evacuation simulation using cellular automata publication-title: Saf. Sci. doi: 10.1016/j.ssci.2015.07.003 – volume: 50 start-page: 221 issue: 2 year: 2012 ident: 10.1016/j.physa.2021.126289_b31 article-title: Pedestrian behavior and exit selection in evacuation of a corridor - an experimental study publication-title: Saf. Sci. doi: 10.1016/j.ssci.2011.08.020 – volume: 62 start-page: 5154 issue: 10 year: 2017 ident: 10.1016/j.physa.2021.126289_b33 article-title: A mean-field game of evacuation in multilevel building publication-title: IEEE Trans. Automat. Control doi: 10.1109/TAC.2017.2679487 – volume: 83 start-page: 40 year: 2016 ident: 10.1016/j.physa.2021.126289_b44 article-title: Leader-follower model for agent based simulation of social collective behavior during egress publication-title: Saf. Sci. doi: 10.1016/j.ssci.2015.11.015 – ident: 10.1016/j.physa.2021.126289_b62 doi: 10.1109/WACV.2018.00135 – start-page: 2137 year: 2016 ident: 10.1016/j.physa.2021.126289_b69 article-title: Learning to communicate with deep multi-agent reinforcement learning – volume: 116 start-page: 16 issue: 1 year: 1999 ident: 10.1016/j.physa.2021.126289_b89 article-title: Artificial neural networks in bankruptcy prediction: General framework and cross-validation analysis publication-title: European J. Oper. Res. doi: 10.1016/S0377-2217(98)00051-4 – volume: 17 start-page: 377 issue: 4 year: 2008 ident: 10.1016/j.physa.2021.126289_b32 article-title: Evacuation simulation models: Challenges in modeling high rise building evacuation with cellular automata approaches publication-title: Autom. Constr. doi: 10.1016/j.autcon.2007.06.005 – volume: 51 start-page: 141 year: 2017 ident: 10.1016/j.physa.2021.126289_b47 article-title: How perception of peer behaviour influences escape decision making: The role of individual differences publication-title: J. Environ. Psychol. doi: 10.1016/j.jenvp.2017.03.013 – volume: 562 year: 2021 ident: 10.1016/j.physa.2021.126289_b82 article-title: Route choice in the pedestrian evacuation: Microscopic formulation based on visual information publication-title: Physica A doi: 10.1016/j.physa.2020.125313 – volume: 424 start-page: 152 issue: C year: 2015 ident: 10.1016/j.physa.2021.126289_b35 article-title: Occupant evacuation and casualty estimation in a building under earthquake using cellular automata publication-title: Physica A doi: 10.1016/j.physa.2015.01.008 – volume: 18 start-page: 842 issue: 6 year: 2010 ident: 10.1016/j.physa.2021.126289_b3 article-title: Microscopic pedestrian simulation model combined with a tactical model for route choice behaviour publication-title: Transp. Res. C doi: 10.1016/j.trc.2010.01.005 – volume: 35 start-page: 293 issue: 3 year: 2001 ident: 10.1016/j.physa.2021.126289_b12 article-title: Cellular automata microsimulation for modeling bi-directional pedestrian walkways publication-title: Transp. Res. B doi: 10.1016/S0191-2615(99)00052-1 – volume: 116 year: 2020 ident: 10.1016/j.physa.2021.126289_b68 article-title: Influence of human-obstacle interaction on evacuation from classrooms publication-title: Autom. Constr. doi: 10.1016/j.autcon.2020.103234 – volume: 2623 start-page: 82 issue: 1 year: 2017 ident: 10.1016/j.physa.2021.126289_b10 article-title: Route-choice modeling for pedestrian evacuation based on infrastructure knowledge and personal preferences publication-title: Transp. Res. Rec. doi: 10.3141/2623-09 – volume: 53 start-page: 1745 issue: 5 year: 2017 ident: 10.1016/j.physa.2021.126289_b36 article-title: Experimental influence of pedestrian load on individual and group evacuation speed in staircases publication-title: Fire Technol. doi: 10.1007/s10694-017-0655-1 – volume: 2 start-page: 656 issue: 2 year: 2017 ident: 10.1016/j.physa.2021.126289_b55 article-title: Deep-learned collision avoidance policy for distributed multiagent navigation publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2017.2651371 – volume: 85 start-page: 1 year: 2016 ident: 10.1016/j.physa.2021.126289_b91 article-title: Human exit choice in crowded built environments: Investigating underlying behavioural differences between normal egress and emergency evacuations publication-title: Fire Saf. J. doi: 10.1016/j.firesaf.2016.07.003 – volume: 106 start-page: 163 year: 2019 ident: 10.1016/j.physa.2021.126289_b67 article-title: A machine learning based study on pedestrian movement dynamics under emergency evacuation publication-title: Fire Saf. J. doi: 10.1016/j.firesaf.2019.04.008 – volume: 44 start-page: 21 year: 2014 ident: 10.1016/j.physa.2021.126289_b76 article-title: Microscopic modeling of pedestrian movement behavior: Interacting with visual attractors in the environment publication-title: Transp. Res. C doi: 10.1016/j.trc.2014.03.009 – volume: 37 start-page: 223 year: 2013 ident: 10.1016/j.physa.2021.126289_b81 article-title: A hybrid multi-scale approach for simulation of pedestrian dynamics publication-title: Transp. Res. C doi: 10.1016/j.trc.2013.03.005 – year: 2020 ident: 10.1016/j.physa.2021.126289_b58 – volume: 105 start-page: 468 year: 2019 ident: 10.1016/j.physa.2021.126289_b6 article-title: Modelling cyclist queue formation using a two-layer framework for operational cycling behaviour publication-title: Transp. Res. C doi: 10.1016/j.trc.2019.06.012 – volume: 91 start-page: 37 year: 2018 ident: 10.1016/j.physa.2021.126289_b15 article-title: A fine discrete field cellular automaton for pedestrian dynamics integrating pedestrian heterogeneity, anisotropy and time-dependent characteristics publication-title: Transp. Res. C doi: 10.1016/j.trc.2018.03.022 – volume: 86 start-page: 165 year: 2016 ident: 10.1016/j.physa.2021.126289_b34 article-title: Experimental study on characteristics of pedestrian evacuation on stairs in a high-rise building publication-title: Saf. Sci. doi: 10.1016/j.ssci.2016.02.025 – volume: 81 start-page: 317 year: 2017 ident: 10.1016/j.physa.2021.126289_b90 article-title: A study of pedestrian group behaviors in crowd evacuation based on an extended floor field cellular automaton model publication-title: Transp. Res. C doi: 10.1016/j.trc.2016.08.018 – volume: 67 start-page: 4 issue: 6 year: 2003 ident: 10.1016/j.physa.2021.126289_b20 article-title: Lattice gas simulation of experimentally studied evacuation dynamics publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.67.067101 – volume: 29 start-page: 473 issue: 4 year: 2002 ident: 10.1016/j.physa.2021.126289_b73 article-title: Encoding natural movement as an agent-based system: An investigation into human pedestrian behaviour in the built environment publication-title: Environ. Plan. B: Plann. Des. doi: 10.1068/b12850 – volume: 78 start-page: 168 year: 2015 ident: 10.1016/j.physa.2021.126289_b2 article-title: A model of the decision-making process during pre-evacuation publication-title: Fire Saf. J. doi: 10.1016/j.firesaf.2015.07.001 – volume: 14 start-page: 468 issue: 5 year: 2018 ident: 10.1016/j.physa.2021.126289_b18 article-title: Pedestrian dynamics at transit stations: an integrated pedestrian flow modeling approach publication-title: Transp. A: Transp. Sci. – ident: 10.1016/j.physa.2021.126289_b56 doi: 10.1109/ICRA.2018.8461113 – volume: 389 start-page: 1902 issue: 9 year: 2010 ident: 10.1016/j.physa.2021.126289_b42 article-title: Methods for measuring pedestrian density, flow, speed and direction with minimal scatter publication-title: Physica A doi: 10.1016/j.physa.2009.12.015 – volume: 90 start-page: 31 year: 2019 ident: 10.1016/j.physa.2021.126289_b92 article-title: Child behavior during evacuation under non-emergency situations: Experimental and simulation results publication-title: Simul. Model. Pract. Theory doi: 10.1016/j.simpat.2018.10.007 – volume: 71 start-page: 194 year: 2015 ident: 10.1016/j.physa.2021.126289_b14 article-title: Bidirectional pedestrian fundamental diagram publication-title: Transp. Res. B doi: 10.1016/j.trb.2014.11.001 – volume: 2012 start-page: 1 issue: 2 year: 2012 ident: 10.1016/j.physa.2021.126289_b96 article-title: Ordering in bidirectional pedestrian flows and its influence on the fundamental diagram publication-title: J. Stat. Mech. Theory Exp. doi: 10.1088/1742-5468/2012/02/P02002 – start-page: 6379 year: 2017 ident: 10.1016/j.physa.2021.126289_b70 article-title: Multi-agent actor-critic for mixed cooperative-competitive environments – volume: 114 start-page: 484 issue: March year: 2020 ident: 10.1016/j.physa.2021.126289_b93 article-title: Efficiently informing crowds - experiments and simulations on route choice and decision making in pedestrian crowds with wheelchair users publication-title: Transp. Res. C doi: 10.1016/j.trc.2020.02.019 – volume: 43 year: 2020 ident: 10.1016/j.physa.2021.126289_b46 article-title: Do people follow the crowd in building emergency evacuation? A cross-cultural immersive virtual reality-based study publication-title: Adv. Eng. Inf. doi: 10.1016/j.aei.2020.101040 – volume: 28 start-page: 361 issue: 3 year: 2001 ident: 10.1016/j.physa.2021.126289_b94 article-title: Self-organizing pedestrian movement publication-title: Environ. Plan. B: Plann. Des. doi: 10.1068/b2697 – volume: 22 start-page: 28 year: 2012 ident: 10.1016/j.physa.2021.126289_b9 article-title: Two-level modeling framework for pedestrian route choice and walking behaviors publication-title: Simul. Model. Pract. Theory doi: 10.1016/j.simpat.2011.11.002 – volume: 26 start-page: 669 issue: 4 year: 2012 ident: 10.1016/j.physa.2021.126289_b80 article-title: Generation and use of sparse navigation graphs for microscopic pedestrian simulation models publication-title: Adv. Eng. Inf. doi: 10.1016/j.aei.2012.03.006 – year: 2019 ident: 10.1016/j.physa.2021.126289_b5 – volume: 56 start-page: 434 issue: 1 year: 2018 ident: 10.1016/j.physa.2021.126289_b28 article-title: Mean-field type modeling of nonlocal crowd aversion in pedestrian crowd dynamics publication-title: SIAM J. Control Optim. doi: 10.1137/17M1119196 – start-page: 3 year: 2009 ident: 10.1016/j.physa.2021.126289_b86 article-title: Reciprocal n-body collision avoidance publication-title: Robot. Res. – volume: 404 start-page: 173 year: 2020 ident: 10.1016/j.physa.2021.126289_b66 article-title: Learning crowd behavior from real data: A residual network method for crowd simulation publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.04.141 – volume: 103 start-page: 56 year: 2019 ident: 10.1016/j.physa.2021.126289_b78 article-title: Simulating dynamics of adaptive exit-choice changing in crowd evacuations: Model implementation and behavioural interpretations publication-title: Transp. Res. C doi: 10.1016/j.trc.2019.04.009 – volume: 124 start-page: 47 year: 2017 ident: 10.1016/j.physa.2021.126289_b48 article-title: Following the crowd or avoiding it? Empirical investigation of imitative behaviour in emergency escape of human crowds publication-title: Anim. Behav. doi: 10.1016/j.anbehav.2016.11.024 – volume: 432 start-page: 337 year: 2015 ident: 10.1016/j.physa.2021.126289_b29 article-title: Block-based floor field model for pedestrian’s walking through corner publication-title: Physica A doi: 10.1016/j.physa.2015.03.041 – volume: 525 start-page: 894 year: 2019 ident: 10.1016/j.physa.2021.126289_b57 article-title: The analysis on the desired speed in social force model using a data driven approach publication-title: Physica A doi: 10.1016/j.physa.2019.03.087 – volume: 84 start-page: 190 year: 2018 ident: 10.1016/j.physa.2021.126289_b64 article-title: A social force evacuation model driven by video data publication-title: Simul. Model. Pract. Theory doi: 10.1016/j.simpat.2018.02.007 – start-page: 1928 year: 2008 ident: 10.1016/j.physa.2021.126289_b87 article-title: Reciprocal velocity obstacles for real-time multi-agent navigation |
SSID | ssj0001732 |
Score | 2.4157968 |
Snippet | Pedestrian behavior during evacuation has been formulated using various arbitrary microscopic methods to investigate the performance of crowd dynamics while... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 126289 |
SubjectTerms | Data driven Microscopic model Obstacle detour Path planning Pedestrian dynamics Visual information perception |
Title | Data-driven framework for the adaptive exit selection problem in pedestrian flow: Visual information based heuristics approach |
URI | https://dx.doi.org/10.1016/j.physa.2021.126289 |
Volume | 583 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KRfAiPrE-yh48mjbJ5lVvpVqqYi9a6S3sJrMYKW1pU_TU3-5MsvEB0oO3JMwkYXYz881m9hvGLsGzlYw8abmu1hZ-idqSIdhWJ3S0dsJE-UDrHY_DYDDy7sf-uMZ61V4YKqs0vr_06YW3NlfaxprteZa1n2wRRp4IiQGLojht-PW8kGZ5a_1d5uGEovyTgNkSSVfMQ0WNF60eEPmQ67QcF2_R-Ts6_Yg4_T22a6Ai75Zvs89qMD1g20XJZrI8ZOsbmUsrXZC74rqqseIIQjmCOi5TOSdXxuEjy_myaHeDY8BNBxme4SGkULTtQP3J7P2av2TLFT7RkKkW4hTlUv4KK8PozCsS8iM26t8-9waW6aZgJSLo5JabyESFqQuYAGl0LdTrRSL6g1RoDNu6EyQyAgnE4KbsVCiEHtpxQWDSgVmVL45ZfTqbwgnjQjrKFwCR8pUXCFuqSCJMVJ5IiJJKN5hbWTFODNU4dbyYxFVN2VtcmD4m08el6Rvs6ktpXjJtbBYPquGJf02YGGPBJsXT_yqesR06K2tZzlk9X6zgAhFJrprFlGuyre7dw2D4CSGp4p4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEJ7UGqMX4zO-3YNHscDyqjdTNfXVi494I7swGzFNbSyNnvztzsBiNDEevBHYATIL33yzDN8AHGDgapUEyvF9Yxx6E42jYnSdbuwZ48WZDpHXO24GUf8-uHwMH1vQa_6F4bJKi_01pldobfd0rDc746Lo3LoyTgIZswIWR_FkBmZZnSpsw-zJxVV_8AXIXizrjwmUMLFBIz5UlXnxAgLrD_nekefTWbq_B6hvQed8CRYtWxQn9Q0tQwtHKzBXVW1mk1X4OFWlcvJXRixhmjIrQTxUEK8TKldjRjOB70UpJlXHG5oGYZvIiII2MceqcwfZD1_ejsVDMZnSFa2eajWcA10unnBqRZ1Fo0O-BvfnZ3e9vmMbKjiZjLql42cq03HuI-VAhtCF270oIoCYS0OR23SjTCWokEXctJtLTezDeD5KyjsosQrlOrRHLyPcACGVp0OJmOhQB5F0lU4UMUUdyIxVqcwm-I0X08yqjXPTi2HalJU9p5XrU3Z9Wrt-Ew6_jMa12Mbfw6NmetIfz0xK4eAvw63_Gu7DfP_u5jq9vhhcbcMCH6lLW3agXb5OcZcISqn37AP4CenP5U8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+framework+for+the+adaptive+exit+selection+problem+in+pedestrian+flow%3A+Visual+information+based+heuristics+approach&rft.jtitle=Physica+A&rft.au=Zhou%2C+Zi-Xuan&rft.au=Nakanishi%2C+Wataru&rft.au=Asakura%2C+Yasuo&rft.date=2021-12-01&rft.issn=0378-4371&rft.volume=583&rft.spage=126289&rft_id=info:doi/10.1016%2Fj.physa.2021.126289&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_physa_2021_126289 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4371&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4371&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4371&client=summon |