Data-driven framework for the adaptive exit selection problem in pedestrian flow: Visual information based heuristics approach

Pedestrian behavior during evacuation has been formulated using various arbitrary microscopic methods to investigate the performance of crowd dynamics while their custom rules result in low visual realism in simulation due to the complexity of intrinsic decision logic of human. Statistical analysis...

Full description

Saved in:
Bibliographic Details
Published inPhysica A Vol. 583; p. 126289
Main Authors Zhou, Zi-Xuan, Nakanishi, Wataru, Asakura, Yasuo
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2021
Subjects
Online AccessGet full text
ISSN0378-4371
1873-2119
DOI10.1016/j.physa.2021.126289

Cover

Loading…
Abstract Pedestrian behavior during evacuation has been formulated using various arbitrary microscopic methods to investigate the performance of crowd dynamics while their custom rules result in low visual realism in simulation due to the complexity of intrinsic decision logic of human. Statistical analysis is an effective way to reveal the motion pattern and path planning behavior of pedestrians whose main idea is to approach the trajectory and social attributes data of pedestrians extracted from evacuation drills as much as possible. In this study, we present a data-driven based microscopic pedestrian-simulation model with continuous-space representation to explore the potential of integrating empirical analysis into crowd simulation to enhance the authenticity of decision making. This method extracts the pedestrian’s decision mode and smoothly applies it in the crowd dynamics model. Instead of navigating agents by arbitrary regulations, the desired direction of pedestrians during the motion is arranged by machine learning (ML) algorithms. The path decision module trained with actual pedestrian data improves the compatibility of the model in the application of various spatial scenarios and no longer suffers from tedious parameter fine-tuning work. To completely describe the information precepted by pedestrians, a polygon segmentation module is developed to divide the visual field of pedestrians and identify the mutual visibility among them. This module filters out the information that can be perceived by pedestrians in real situations, thereby bridges the gap between statistical analysis and numerical simulation methods. We compare different ML approaches for route-choice behavior prediction and discuss the relative importance of its influencing variables under different scenarios. Inferring the perception of social interactions from disaggregate choice data, the scope of effectiveness of conformity behavior and crowd-aversion are also discussed. The simulation results are compared with experimental data, illustrating the model’s capability to accurately reproduce the observed flow motion in various scenarios with moderate modification in physical environment initialization.
AbstractList Pedestrian behavior during evacuation has been formulated using various arbitrary microscopic methods to investigate the performance of crowd dynamics while their custom rules result in low visual realism in simulation due to the complexity of intrinsic decision logic of human. Statistical analysis is an effective way to reveal the motion pattern and path planning behavior of pedestrians whose main idea is to approach the trajectory and social attributes data of pedestrians extracted from evacuation drills as much as possible. In this study, we present a data-driven based microscopic pedestrian-simulation model with continuous-space representation to explore the potential of integrating empirical analysis into crowd simulation to enhance the authenticity of decision making. This method extracts the pedestrian’s decision mode and smoothly applies it in the crowd dynamics model. Instead of navigating agents by arbitrary regulations, the desired direction of pedestrians during the motion is arranged by machine learning (ML) algorithms. The path decision module trained with actual pedestrian data improves the compatibility of the model in the application of various spatial scenarios and no longer suffers from tedious parameter fine-tuning work. To completely describe the information precepted by pedestrians, a polygon segmentation module is developed to divide the visual field of pedestrians and identify the mutual visibility among them. This module filters out the information that can be perceived by pedestrians in real situations, thereby bridges the gap between statistical analysis and numerical simulation methods. We compare different ML approaches for route-choice behavior prediction and discuss the relative importance of its influencing variables under different scenarios. Inferring the perception of social interactions from disaggregate choice data, the scope of effectiveness of conformity behavior and crowd-aversion are also discussed. The simulation results are compared with experimental data, illustrating the model’s capability to accurately reproduce the observed flow motion in various scenarios with moderate modification in physical environment initialization.
ArticleNumber 126289
Author Asakura, Yasuo
Nakanishi, Wataru
Zhou, Zi-Xuan
Author_xml – sequence: 1
  givenname: Zi-Xuan
  orcidid: 0000-0003-4782-3605
  surname: Zhou
  fullname: Zhou, Zi-Xuan
  email: z.zhou@plan.cv.titech.ac.jp
– sequence: 2
  givenname: Wataru
  orcidid: 0000-0003-4009-4016
  surname: Nakanishi
  fullname: Nakanishi, Wataru
– sequence: 3
  givenname: Yasuo
  surname: Asakura
  fullname: Asakura, Yasuo
BookMark eNqFkM9u2zAMh4UhA5ZkfYJd9AJORamx5AE7DP2zDSiwS9urQEs0osyxDUlN2suevWqy0w7tiQTI7wfyW7DZMA7E2BcQKxBQn29X0-Y54UoKCSuQtTTNBzYHo1UlAZoZmwulTXWhNHxii5S2QgjQSs7Z3yvMWPkY9jTwLuKODmP8w7sx8rwhjh6nXGacnkLmiXpyOYwDn-LY9rTjobTkKeUYsPD9ePjKH0J6xL6MSsgOj-stJvJ8Q48xpBxc4jiVBHSbz-xjh32is391ye5vru8uf1a3v3_8uvx-WzlVN7mSDl2rvSS4MJ0xWjQ1YKM1edUpA11TOzSEVOtat8KrFoTsQJKS67XRsFZL1pxyXRxTitRZF_Lxthwx9BaEfRVpt_Yo0r6KtCeRhVX_sVMMO4zP71DfThSVt_aBok0u0ODIh1gkWj-GN_kXGA-TUw
CitedBy_id crossref_primary_10_3233_JIFS_222587
crossref_primary_10_3390_fire6100380
crossref_primary_10_1016_j_simpat_2022_102707
crossref_primary_10_1016_j_jocm_2023_100463
crossref_primary_10_1080_19427867_2023_2195729
crossref_primary_10_3390_ijgi13050146
crossref_primary_10_3390_buildings14071945
crossref_primary_10_1016_j_ssci_2024_106520
Cites_doi 10.1016/S0191-2615(03)00007-9
10.1016/j.trpro.2015.06.020
10.1016/j.physa.2020.125299
10.1016/S0378-4371(01)00141-8
10.1016/j.neucom.2019.10.062
10.1016/j.trc.2014.01.007
10.1016/j.neucom.2019.08.021
10.1016/j.physa.2021.126021
10.1016/j.physa.2014.07.050
10.1007/s12572-018-0204-2
10.1016/S0191-2615(01)00015-7
10.1109/ICRA.2017.7989037
10.1111/j.2517-6161.1974.tb00994.x
10.1016/j.physa.2004.01.043
10.1016/j.ssci.2019.02.034
10.1111/cgf.12403
10.1068/b2684
10.1016/j.ssci.2016.04.005
10.1016/j.apergo.2014.05.014
10.1287/trsc.1040.0108
10.1016/j.trb.2019.01.019
10.1016/j.trc.2016.05.012
10.3141/2316-11
10.1016/j.trc.2012.02.004
10.1016/j.apm.2020.08.075
10.1088/1742-5468/2011/06/P06004
10.1016/j.physleta.2015.11.028
10.1002/fam.2391
10.1103/PhysRevE.78.066117
10.1016/j.trb.2011.07.011
10.1103/PhysRevE.51.4282
10.1007/978-3-030-11015-4_16
10.1109/CVPR.2018.00553
10.1016/j.trb.2016.10.019
10.1177/0278364915619772
10.1073/pnas.1016507108
10.1126/science.1254295
10.1609/aaai.v32i1.11794
10.1016/j.trc.2020.102742
10.1109/IROS.2017.8202312
10.1016/j.physa.2017.07.004
10.1016/j.ssci.2015.07.003
10.1016/j.ssci.2011.08.020
10.1109/TAC.2017.2679487
10.1016/j.ssci.2015.11.015
10.1109/WACV.2018.00135
10.1016/S0377-2217(98)00051-4
10.1016/j.autcon.2007.06.005
10.1016/j.jenvp.2017.03.013
10.1016/j.physa.2020.125313
10.1016/j.physa.2015.01.008
10.1016/j.trc.2010.01.005
10.1016/S0191-2615(99)00052-1
10.1016/j.autcon.2020.103234
10.3141/2623-09
10.1007/s10694-017-0655-1
10.1109/LRA.2017.2651371
10.1016/j.firesaf.2016.07.003
10.1016/j.firesaf.2019.04.008
10.1016/j.trc.2014.03.009
10.1016/j.trc.2013.03.005
10.1016/j.trc.2019.06.012
10.1016/j.trc.2018.03.022
10.1016/j.ssci.2016.02.025
10.1016/j.trc.2016.08.018
10.1103/PhysRevE.67.067101
10.1068/b12850
10.1016/j.firesaf.2015.07.001
10.1109/ICRA.2018.8461113
10.1016/j.physa.2009.12.015
10.1016/j.simpat.2018.10.007
10.1016/j.trb.2014.11.001
10.1088/1742-5468/2012/02/P02002
10.1016/j.trc.2020.02.019
10.1016/j.aei.2020.101040
10.1068/b2697
10.1016/j.simpat.2011.11.002
10.1016/j.aei.2012.03.006
10.1137/17M1119196
10.1016/j.neucom.2020.04.141
10.1016/j.trc.2019.04.009
10.1016/j.anbehav.2016.11.024
10.1016/j.physa.2015.03.041
10.1016/j.physa.2019.03.087
10.1016/j.simpat.2018.02.007
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.physa.2021.126289
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1873-2119
ExternalDocumentID 10_1016_j_physa_2021_126289
S0378437121005628
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAPFB
AAXUO
ABAOU
ABMAC
ABNEU
ABYKQ
ACAZW
ACDAQ
ACFVG
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADFHU
ADGUI
AEBSH
AEKER
AEYQN
AFFNX
AFKWA
AFTJW
AGHFR
AGTHC
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIIAU
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
AXLSJ
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IXIXF
J1W
K-O
KOM
M38
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSB
SSF
SSQ
SSW
SSZ
T5K
TN5
TWZ
WH7
XPP
YNT
ZMT
~02
~G-
29O
5VS
6TJ
AAFFL
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABJNI
ABWVN
ABXDB
ACNNM
ACROA
ACRPL
ADMUD
ADNMO
ADVLN
AEIPS
AFJKZ
AFODL
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
AJWLA
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BEHZQ
BEZPJ
BGSCR
BNPGV
BNTGB
BPUDD
BULVW
BZJEE
CITATION
EJD
FEDTE
FGOYB
HMV
HVGLF
HZ~
MVM
NDZJH
R2-
RIG
SEW
SPG
SSH
VOH
WUQ
XJT
XOL
YYP
ZY4
ID FETCH-LOGICAL-c369t-2cacb7d2e148f8870961a977ed3f381f96ca8eae6767b0d3b102f12e325587153
IEDL.DBID .~1
ISSN 0378-4371
IngestDate Tue Jul 01 01:32:28 EDT 2025
Thu Apr 24 23:10:54 EDT 2025
Fri Feb 23 02:44:35 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Data driven
Visual information perception
Path planning
Microscopic model
Pedestrian dynamics
Obstacle detour
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c369t-2cacb7d2e148f8870961a977ed3f381f96ca8eae6767b0d3b102f12e325587153
ORCID 0000-0003-4009-4016
0000-0003-4782-3605
ParticipantIDs crossref_citationtrail_10_1016_j_physa_2021_126289
crossref_primary_10_1016_j_physa_2021_126289
elsevier_sciencedirect_doi_10_1016_j_physa_2021_126289
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-01
2021-12-00
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Physica A
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Lovreglio, Ronchi, Nilsson (b2) 2015; 78
Helbing, Molnár (b17) 1995; 51
Guo, Huang (b40) 2012; 24
Helbing, Isobe, Nagatani, Takimoto (b20) 2003; 67
Turner, Penn (b73) 2002; 29
Haghani, Sarvi (b84) 2017; 95
Huo, Song, Chen, Liu, Liew (b34) 2016; 86
Kneidl, Hartmann, Borrmann (b81) 2013; 37
Hoogendoorn, Van Wageningen-Kessels, Daamen, Duives, Sarvi (b11) 2015; 7
H. Xue, D.Q. Huynh, M. Reynolds, SS-LSTM: A hierarchical LSTM model for pedestrian trajectory prediction, in: 2018 IEEE Winter Conference on Applications of Computer Vision, WACV, 2018, pp. 1186–1194.
Wang, Guo, Zheng (b23) 2016; 88
Hughes (b39) 2002; 36
Gavriilidou, Daamen, Yuan, Hoogendoorn (b6) 2019; 105
Rubenstein, Cornejo, Nagpal (b51) 2014; 345
Wang, Shi, Goh, Qian (b67) 2019; 106
Zhang, Jia (b16) 2020; 90
Aurell, Djehiche (b28) 2018; 56
.
Helbing, Buzna, Johansson, Werner (b95) 2005; 39
Y.F. Chen, M. Liu, M. Everett, J.P. How, Decentralized non-communicating multiagent collision avoidance with deep reinforcement learning, in: 2017 IEEE International Conference on Robotics and Automation, ICRA, 2017, pp. 285–292.
Hoogendoorn, Bovy (b1) 2004; 38
N. Nikhil, B. Tran Morris, Convolutional neural network for trajectory prediction, in: Proceedings of the European Conference on Computer Vision (ECCV) Workshops, 2018.
Xi, Son (b9) 2012; 22
Zhang, Klingsch, Schadschneider, Seyfried (b30) 2011; 2011
Turner, Doxa, O’Sullivan, Penn (b72) 2001; 28
Li, Han (b25) 2015; 80
Ma, Chen, Wang, Zhu, Wang, Qiu (b57) 2019; 525
Feliciani, Murakami, Shimura, Nishinari (b93) 2020; 114
Kuang, Li, Song, Dai (b22) 2008; 78
Charalambous, Chrysanthou (b63) 2014; 33
Lachapelle, Wolfram (b27) 2011; 45
Kretzschmar, Spies, Sprunk, Burgard (b52) 2016; 35
Lu, Chan, Wang, Wang (b90) 2017; 81
Li, Li, Qu, Jia (b29) 2015; 432
Li, Zhai, Xie (b35) 2015; 424
Stubenschrott, Matyus, Schrom-Feiertag, Kogler, Seer (b10) 2017; 2623
Wang, Fu, Li, Qian (b68) 2020; 116
Stone (b88) 1974; 36
Haghani, Sarvi (b85) 2018; 116
Fu, Jia, Chen, Ma, Han, Luo (b15) 2018; 91
Burstedde, Klauck, Schadschneider, Zittartz (b13) 2001; 295
Haghani, Sarvi (b48) 2017; 124
Fabio, Rosario, Raffaele (b5) 2019
de Berg, van Kreveld, Overmars, Schwarzkopf (b83) 1997
Chen, Tang, Song, Huang, Guo (b92) 2019; 90
Y.F. Chen, M. Everett, M. Liu, J.P. How, Socially aware motion planning with deep reinforcement learning, in: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, 2017, pp. 1343–1350.
Abdelghany, Abdelghany, Mahmassani, Al-Zahrani (b79) 2012; 2316
Zhang, Y. Hu, Eddy Patuwo, C. Indro (b89) 1999; 116
Chen, Liu, Wang, Chen (b36) 2017; 53
Cao, Song, Lv (b24) 2016; 380
Steffen, Seyfried (b42) 2010; 389
Sticco, Frank, Dorso (b19) 2021; 561
Yao, Zhang, Lu, Liu (b65) 2019; 366
Zhou, Nakanishi, Asakura (b82) 2021; 562
van den Berg Jur, Ming, Manocha (b87) 2008
Djehiche, Tcheukam, Tembine (b33) 2017; 62
Mahato, Klar, Tiwari (b26) 2018; 10
Martin, Parisi (b59) 2020; 379
Porter, Hamdar, Daamen (b18) 2018; 14
Helbing, Molnár, Farkas, Bolay (b94) 2001; 28
Liu, Liu, Zhang, Qin (b64) 2018; 84
P. Long, T. Fan, X. Liao, W. Liu, H. Zhang, J. Pan, Towards optimally decentralized multi-robot collision avoidance via deep reinforcement learning, in: 2018 IEEE International Conference on Robotics and Automation, ICRA, 2018, pp. 6252–6259.
Kneidl, Borrmann, Hartmann (b80) 2012; 26
Abdelghany, Abdelghany, Mahmassani (b38) 2016; 86
Y. Xu, Z. Piao, S. Gao, Encoding crowd interaction with deep neural network for pedestrian trajectory prediction, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2018.
Lin, Zhu, Li, Becerik-Gerber (b46) 2020; 43
Blue, Adler (b12) 2001; 35
Haghani, Sarvi (b91) 2016; 85
Yu (b7) 2020; 119
Kinateder, Müller, Jost, Mühlberger, Pauli (b45) 2014; 45
Moussaïd, Helbing, Theraulaz (b74) 2011; 108
Fang, El-Tawil, Aguirre (b44) 2016; 83
Lowe, Wu, Tamar, Harb, Pieter Abbeel, Mordatch (b70) 2017
Flötteröd, Lämmel (b14) 2015; 71
Yao, Zhang, Lu, Liu (b66) 2020; 404
Li, Shu, Xiao, Wang (b8) 2021; 574
Isobe, Adachi, Nagatani (b21) 2004; 336
Long, Liu, Pan (b55) 2017; 2
Gwynne, Kuligowski, Kinsey, Hulse (b77) 2017; 41
van den Berg Jur, J, Ming, Dinesh (b86) 2009
Xiao, Gao, Qu, Li (b43) 2016; 68
Zeng, Chen, Nakamura, Iryo-Asano (b75) 2014; 40
Pelechano, Malkawi (b32) 2008; 17
Haghani, Sarvi (b49) 2019; 115
Hu, You, Zhang, Wei, Guo (b41) 2018; 489
Zhang, Klingsch, Schadschneider, Seyfried (b96) 2012; 2012
Liang, Patel, Sathyamoorthy, Manocha (b58) 2020
Asano, Iryo, Kuwahara (b3) 2010; 18
Shahhoseini, Sarvi (b37) 2019; 122
Wang, Lo, Liu, Kuang (b76) 2014; 44
Hoogendoorn, van Wageningen-Kessels, Daamen, Duives (b4) 2014; 416
Heliövaara, Kuusinen, Rinne, Korhonen, Ehtamo (b31) 2012; 50
Haghani, Sarvi (b47) 2017; 51
J.N. Foerster, G. Farquhar, T. Afouras, N. Nardelli, S. Whiteson, Counterfactual multi-agent policy gradients, in: 32nd AAAI Conference on Artificial Intelligence, AAAI 2018, 2018, pp. 2974–2982
Foerster, Assael, de Freitas, Whiteson (b69) 2016
Lovreglio, Fonzone, dell’Olio (b50) 2016; 92
Haghani, Sarvi (b78) 2019; 103
Zhang (10.1016/j.physa.2021.126289_b30) 2011; 2011
Zhou (10.1016/j.physa.2021.126289_b82) 2021; 562
Hoogendoorn (10.1016/j.physa.2021.126289_b1) 2004; 38
Isobe (10.1016/j.physa.2021.126289_b21) 2004; 336
Steffen (10.1016/j.physa.2021.126289_b42) 2010; 389
Kretzschmar (10.1016/j.physa.2021.126289_b52) 2016; 35
Gwynne (10.1016/j.physa.2021.126289_b77) 2017; 41
Asano (10.1016/j.physa.2021.126289_b3) 2010; 18
Wang (10.1016/j.physa.2021.126289_b68) 2020; 116
Lowe (10.1016/j.physa.2021.126289_b70) 2017
Li (10.1016/j.physa.2021.126289_b25) 2015; 80
Wang (10.1016/j.physa.2021.126289_b67) 2019; 106
Djehiche (10.1016/j.physa.2021.126289_b33) 2017; 62
Hughes (10.1016/j.physa.2021.126289_b39) 2002; 36
Blue (10.1016/j.physa.2021.126289_b12) 2001; 35
Helbing (10.1016/j.physa.2021.126289_b17) 1995; 51
Helbing (10.1016/j.physa.2021.126289_b20) 2003; 67
Lovreglio (10.1016/j.physa.2021.126289_b2) 2015; 78
Cao (10.1016/j.physa.2021.126289_b24) 2016; 380
Huo (10.1016/j.physa.2021.126289_b34) 2016; 86
Xiao (10.1016/j.physa.2021.126289_b43) 2016; 68
Haghani (10.1016/j.physa.2021.126289_b78) 2019; 103
Flötteröd (10.1016/j.physa.2021.126289_b14) 2015; 71
Yu (10.1016/j.physa.2021.126289_b7) 2020; 119
Haghani (10.1016/j.physa.2021.126289_b48) 2017; 124
Abdelghany (10.1016/j.physa.2021.126289_b79) 2012; 2316
10.1016/j.physa.2021.126289_b62
Mahato (10.1016/j.physa.2021.126289_b26) 2018; 10
Kinateder (10.1016/j.physa.2021.126289_b45) 2014; 45
10.1016/j.physa.2021.126289_b61
Feliciani (10.1016/j.physa.2021.126289_b93) 2020; 114
10.1016/j.physa.2021.126289_b60
van den Berg Jur (10.1016/j.physa.2021.126289_b87) 2008
Yao (10.1016/j.physa.2021.126289_b66) 2020; 404
Li (10.1016/j.physa.2021.126289_b8) 2021; 574
Liang (10.1016/j.physa.2021.126289_b58) 2020
Porter (10.1016/j.physa.2021.126289_b18) 2018; 14
Sticco (10.1016/j.physa.2021.126289_b19) 2021; 561
Shahhoseini (10.1016/j.physa.2021.126289_b37) 2019; 122
Kneidl (10.1016/j.physa.2021.126289_b81) 2013; 37
Burstedde (10.1016/j.physa.2021.126289_b13) 2001; 295
Li (10.1016/j.physa.2021.126289_b35) 2015; 424
Stubenschrott (10.1016/j.physa.2021.126289_b10) 2017; 2623
Lovreglio (10.1016/j.physa.2021.126289_b50) 2016; 92
Hoogendoorn (10.1016/j.physa.2021.126289_b4) 2014; 416
Long (10.1016/j.physa.2021.126289_b55) 2017; 2
Haghani (10.1016/j.physa.2021.126289_b91) 2016; 85
Fang (10.1016/j.physa.2021.126289_b44) 2016; 83
10.1016/j.physa.2021.126289_b71
Stone (10.1016/j.physa.2021.126289_b88) 1974; 36
Chen (10.1016/j.physa.2021.126289_b92) 2019; 90
Zhang (10.1016/j.physa.2021.126289_b16) 2020; 90
Lachapelle (10.1016/j.physa.2021.126289_b27) 2011; 45
Moussaïd (10.1016/j.physa.2021.126289_b74) 2011; 108
Chen (10.1016/j.physa.2021.126289_b36) 2017; 53
Lin (10.1016/j.physa.2021.126289_b46) 2020; 43
Foerster (10.1016/j.physa.2021.126289_b69) 2016
Yao (10.1016/j.physa.2021.126289_b65) 2019; 366
Rubenstein (10.1016/j.physa.2021.126289_b51) 2014; 345
Zeng (10.1016/j.physa.2021.126289_b75) 2014; 40
Fabio (10.1016/j.physa.2021.126289_b5) 2019
Turner (10.1016/j.physa.2021.126289_b72) 2001; 28
Wang (10.1016/j.physa.2021.126289_b76) 2014; 44
Aurell (10.1016/j.physa.2021.126289_b28) 2018; 56
Haghani (10.1016/j.physa.2021.126289_b84) 2017; 95
Zhang (10.1016/j.physa.2021.126289_b96) 2012; 2012
Heliövaara (10.1016/j.physa.2021.126289_b31) 2012; 50
Martin (10.1016/j.physa.2021.126289_b59) 2020; 379
Charalambous (10.1016/j.physa.2021.126289_b63) 2014; 33
Li (10.1016/j.physa.2021.126289_b29) 2015; 432
Xi (10.1016/j.physa.2021.126289_b9) 2012; 22
10.1016/j.physa.2021.126289_b54
Helbing (10.1016/j.physa.2021.126289_b95) 2005; 39
Pelechano (10.1016/j.physa.2021.126289_b32) 2008; 17
10.1016/j.physa.2021.126289_b53
Turner (10.1016/j.physa.2021.126289_b73) 2002; 29
Zhang (10.1016/j.physa.2021.126289_b89) 1999; 116
Haghani (10.1016/j.physa.2021.126289_b85) 2018; 116
Hoogendoorn (10.1016/j.physa.2021.126289_b11) 2015; 7
10.1016/j.physa.2021.126289_b56
Helbing (10.1016/j.physa.2021.126289_b94) 2001; 28
Wang (10.1016/j.physa.2021.126289_b23) 2016; 88
Fu (10.1016/j.physa.2021.126289_b15) 2018; 91
Kuang (10.1016/j.physa.2021.126289_b22) 2008; 78
Liu (10.1016/j.physa.2021.126289_b64) 2018; 84
Lu (10.1016/j.physa.2021.126289_b90) 2017; 81
Haghani (10.1016/j.physa.2021.126289_b47) 2017; 51
Kneidl (10.1016/j.physa.2021.126289_b80) 2012; 26
Ma (10.1016/j.physa.2021.126289_b57) 2019; 525
Hu (10.1016/j.physa.2021.126289_b41) 2018; 489
de Berg (10.1016/j.physa.2021.126289_b83) 1997
van den Berg Jur (10.1016/j.physa.2021.126289_b86) 2009
Gavriilidou (10.1016/j.physa.2021.126289_b6) 2019; 105
Guo (10.1016/j.physa.2021.126289_b40) 2012; 24
Haghani (10.1016/j.physa.2021.126289_b49) 2019; 115
Abdelghany (10.1016/j.physa.2021.126289_b38) 2016; 86
References_xml – year: 2019
  ident: b5
  article-title: A mean field approach to model flows of agents with path preferences over a network
– volume: 10
  start-page: 41
  year: 2018
  end-page: 53
  ident: b26
  article-title: A meshfree particle method for a vision-based macroscopic pedestrian model
  publication-title: Int. J. Adv. Eng. Sci. Appl. Math.
– volume: 424
  start-page: 152
  year: 2015
  end-page: 167
  ident: b35
  article-title: Occupant evacuation and casualty estimation in a building under earthquake using cellular automata
  publication-title: Physica A
– volume: 22
  start-page: 28
  year: 2012
  end-page: 46
  ident: b9
  article-title: Two-level modeling framework for pedestrian route choice and walking behaviors
  publication-title: Simul. Model. Pract. Theory
– volume: 45
  start-page: 1649
  year: 2014
  end-page: 1659
  ident: b45
  article-title: Social influence in a virtual tunnel fire - influence of conflicting information on evacuation behavior
  publication-title: Applied Ergon.
– volume: 78
  start-page: 168
  year: 2015
  end-page: 179
  ident: b2
  article-title: A model of the decision-making process during pre-evacuation
  publication-title: Fire Saf. J.
– volume: 380
  start-page: 540
  year: 2016
  end-page: 547
  ident: b24
  article-title: Modeling pedestrian evacuation with guiders based on a multi-grid model
  publication-title: Phys. Lett. A
– volume: 36
  start-page: 507
  year: 2002
  end-page: 535
  ident: b39
  article-title: A continuum theory for the flow of pedestrians
  publication-title: Transp. Res. B
– volume: 81
  start-page: 317
  year: 2017
  end-page: 329
  ident: b90
  article-title: A study of pedestrian group behaviors in crowd evacuation based on an extended floor field cellular automaton model
  publication-title: Transp. Res. C
– volume: 24
  start-page: 50
  year: 2012
  end-page: 61
  ident: b40
  article-title: Formulation of pedestrian movement in microscopic models with continuous space representation
  publication-title: Transp. Res. C
– volume: 62
  start-page: 5154
  year: 2017
  end-page: 5169
  ident: b33
  article-title: A mean-field game of evacuation in multilevel building
  publication-title: IEEE Trans. Automat. Control
– volume: 124
  start-page: 47
  year: 2017
  end-page: 56
  ident: b48
  article-title: Following the crowd or avoiding it? Empirical investigation of imitative behaviour in emergency escape of human crowds
  publication-title: Anim. Behav.
– volume: 389
  start-page: 1902
  year: 2010
  end-page: 1910
  ident: b42
  article-title: Methods for measuring pedestrian density, flow, speed and direction with minimal scatter
  publication-title: Physica A
– volume: 7
  start-page: 381
  year: 2015
  end-page: 397
  ident: b11
  article-title: Continuum theory for pedestrian traffic flow: Local route choice modelling and its implications
  publication-title: Transp. Res. Procedia
– volume: 85
  start-page: 1
  year: 2016
  end-page: 9
  ident: b91
  article-title: Human exit choice in crowded built environments: Investigating underlying behavioural differences between normal egress and emergency evacuations
  publication-title: Fire Saf. J.
– volume: 38
  start-page: 169
  year: 2004
  end-page: 190
  ident: b1
  article-title: Pedestrian route-choice and activity scheduling theory and models
  publication-title: Transp. Res. B
– volume: 108
  start-page: 6884
  year: 2011
  end-page: 6888
  ident: b74
  article-title: How simple rules determine pedestrian behavior and crowd disasters
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 432
  start-page: 337
  year: 2015
  end-page: 353
  ident: b29
  article-title: Block-based floor field model for pedestrian’s walking through corner
  publication-title: Physica A
– volume: 562
  year: 2021
  ident: b82
  article-title: Route choice in the pedestrian evacuation: Microscopic formulation based on visual information
  publication-title: Physica A
– volume: 116
  start-page: 361
  year: 2018
  end-page: 388
  ident: b85
  article-title: Hypothetical bias and decision-rule effect in modelling discrete directional choices
  publication-title: Transp. Res. A
– volume: 50
  start-page: 221
  year: 2012
  end-page: 227
  ident: b31
  article-title: Pedestrian behavior and exit selection in evacuation of a corridor - an experimental study
  publication-title: Saf. Sci.
– volume: 18
  start-page: 842
  year: 2010
  end-page: 855
  ident: b3
  article-title: Microscopic pedestrian simulation model combined with a tactical model for route choice behaviour
  publication-title: Transp. Res. C
– volume: 103
  start-page: 56
  year: 2019
  end-page: 82
  ident: b78
  article-title: Simulating dynamics of adaptive exit-choice changing in crowd evacuations: Model implementation and behavioural interpretations
  publication-title: Transp. Res. C
– volume: 119
  year: 2020
  ident: b7
  article-title: Consideration of tactical decisions in microscopic pedestrian simulation: Algorithm and experiments
  publication-title: Transp. Res. C
– volume: 416
  start-page: 684
  year: 2014
  end-page: 694
  ident: b4
  article-title: Continuum modelling of pedestrian flows: From microscopic principles to self-organised macroscopic phenomena
  publication-title: Physica A
– reference: N. Nikhil, B. Tran Morris, Convolutional neural network for trajectory prediction, in: Proceedings of the European Conference on Computer Vision (ECCV) Workshops, 2018.
– volume: 90
  start-page: 488
  year: 2020
  end-page: 504
  ident: b16
  article-title: Optimal guidance strategy for crowd evacuation with multiple exits: A hybrid multiscale modeling approach
  publication-title: Appl. Math. Model.
– volume: 14
  start-page: 468
  year: 2018
  end-page: 483
  ident: b18
  article-title: Pedestrian dynamics at transit stations: an integrated pedestrian flow modeling approach
  publication-title: Transp. A: Transp. Sci.
– volume: 26
  start-page: 669
  year: 2012
  end-page: 680
  ident: b80
  article-title: Generation and use of sparse navigation graphs for microscopic pedestrian simulation models
  publication-title: Adv. Eng. Inf.
– volume: 122
  start-page: 57
  year: 2019
  end-page: 87
  ident: b37
  article-title: Pedestrian crowd flows in shared spaces: Investigating the impact of geometry based on micro and macro scale measures
  publication-title: Transp. Res. B
– volume: 105
  start-page: 468
  year: 2019
  end-page: 484
  ident: b6
  article-title: Modelling cyclist queue formation using a two-layer framework for operational cycling behaviour
  publication-title: Transp. Res. C
– volume: 17
  start-page: 377
  year: 2008
  end-page: 385
  ident: b32
  article-title: Evacuation simulation models: Challenges in modeling high rise building evacuation with cellular automata approaches
  publication-title: Autom. Constr.
– volume: 92
  start-page: 59
  year: 2016
  end-page: 75
  ident: b50
  article-title: A mixed logit model for predicting exit choice during building evacuations
  publication-title: Transp. Res. A
– volume: 116
  year: 2020
  ident: b68
  article-title: Influence of human-obstacle interaction on evacuation from classrooms
  publication-title: Autom. Constr.
– volume: 90
  start-page: 31
  year: 2019
  end-page: 44
  ident: b92
  article-title: Child behavior during evacuation under non-emergency situations: Experimental and simulation results
  publication-title: Simul. Model. Pract. Theory
– volume: 88
  start-page: 16
  year: 2016
  end-page: 25
  ident: b23
  article-title: Information guiding effect of evacuation assistants in a two-channel segregation process using multi-information communication field model
  publication-title: Saf. Sci.
– start-page: 1928
  year: 2008
  end-page: 1935
  ident: b87
  article-title: Reciprocal velocity obstacles for real-time multi-agent navigation
  publication-title: IEEE International Conference on Robotics and Automation
– reference: J.N. Foerster, G. Farquhar, T. Afouras, N. Nardelli, S. Whiteson, Counterfactual multi-agent policy gradients, in: 32nd AAAI Conference on Artificial Intelligence, AAAI 2018, 2018, pp. 2974–2982,
– volume: 2316
  start-page: 95
  year: 2012
  end-page: 105
  ident: b79
  article-title: Dynamic simulation assignment model for pedestrian movements in crowded networks
  publication-title: Transp. Res. Rec.
– volume: 95
  start-page: 238
  year: 2017
  end-page: 259
  ident: b84
  article-title: Stated and revealed exit choices of pedestrian crowd evacuees
  publication-title: Transp. Res. B
– year: 1997
  ident: b83
  article-title: Computational Geometry
– volume: 116
  start-page: 16
  year: 1999
  end-page: 32
  ident: b89
  article-title: Artificial neural networks in bankruptcy prediction: General framework and cross-validation analysis
  publication-title: European J. Oper. Res.
– volume: 114
  start-page: 484
  year: 2020
  end-page: 503
  ident: b93
  article-title: Efficiently informing crowds - experiments and simulations on route choice and decision making in pedestrian crowds with wheelchair users
  publication-title: Transp. Res. C
– volume: 2623
  start-page: 82
  year: 2017
  end-page: 89
  ident: b10
  article-title: Route-choice modeling for pedestrian evacuation based on infrastructure knowledge and personal preferences
  publication-title: Transp. Res. Rec.
– volume: 404
  start-page: 173
  year: 2020
  end-page: 185
  ident: b66
  article-title: Learning crowd behavior from real data: A residual network method for crowd simulation
  publication-title: Neurocomputing
– volume: 78
  year: 2008
  ident: b22
  article-title: Analysis of pedestrian dynamics in counter flow via an extended lattice gas model
  publication-title: Phys. Rev. E
– volume: 489
  start-page: 112
  year: 2018
  end-page: 127
  ident: b41
  article-title: Study on queueing behavior in pedestrian evacuation by extended cellular automata model
  publication-title: Physica A
– volume: 68
  start-page: 566
  year: 2016
  end-page: 580
  ident: b43
  article-title: A pedestrian flow model considering the impact of local density: Voronoi diagram based heuristics approach
  publication-title: Transp. Res. C
– volume: 35
  start-page: 293
  year: 2001
  end-page: 312
  ident: b12
  article-title: Cellular automata microsimulation for modeling bi-directional pedestrian walkways
  publication-title: Transp. Res. B
– volume: 86
  start-page: 165
  year: 2016
  end-page: 173
  ident: b34
  article-title: Experimental study on characteristics of pedestrian evacuation on stairs in a high-rise building
  publication-title: Saf. Sci.
– volume: 2
  start-page: 656
  year: 2017
  end-page: 663
  ident: b55
  article-title: Deep-learned collision avoidance policy for distributed multiagent navigation
  publication-title: IEEE Robot. Autom. Lett.
– volume: 336
  start-page: 638
  year: 2004
  end-page: 650
  ident: b21
  article-title: Experiment and simulation of pedestrian counter flow
  publication-title: Physica A
– volume: 51
  start-page: 4282
  year: 1995
  end-page: 4286
  ident: b17
  article-title: Social force model for pedestrian dynamics
  publication-title: Phys. Rev. E
– volume: 39
  start-page: 1
  year: 2005
  end-page: 24
  ident: b95
  article-title: Self-organized pedestrian crowd dynamics: Experiments, simulations and design solutions
  publication-title: Transp. Sci.
– start-page: 6379
  year: 2017
  end-page: 6390
  ident: b70
  article-title: Multi-agent actor-critic for mixed cooperative-competitive environments
  publication-title: Advances in Neural Information Processing Systems, vol. 30
– volume: 37
  start-page: 223
  year: 2013
  end-page: 237
  ident: b81
  article-title: A hybrid multi-scale approach for simulation of pedestrian dynamics
  publication-title: Transp. Res. C
– volume: 71
  start-page: 194
  year: 2015
  end-page: 212
  ident: b14
  article-title: Bidirectional pedestrian fundamental diagram
  publication-title: Transp. Res. B
– volume: 2011
  year: 2011
  ident: b30
  article-title: Transitions in pedestrian fundamental diagrams of straight corridors and T-junctions
  publication-title: J. Stat. Mech. Theory Exp.
– reference: H. Xue, D.Q. Huynh, M. Reynolds, SS-LSTM: A hierarchical LSTM model for pedestrian trajectory prediction, in: 2018 IEEE Winter Conference on Applications of Computer Vision, WACV, 2018, pp. 1186–1194.
– reference: Y.F. Chen, M. Liu, M. Everett, J.P. How, Decentralized non-communicating multiagent collision avoidance with deep reinforcement learning, in: 2017 IEEE International Conference on Robotics and Automation, ICRA, 2017, pp. 285–292.
– volume: 56
  start-page: 434
  year: 2018
  end-page: 455
  ident: b28
  article-title: Mean-field type modeling of nonlocal crowd aversion in pedestrian crowd dynamics
  publication-title: SIAM J. Control Optim.
– volume: 45
  start-page: 1572
  year: 2011
  end-page: 1589
  ident: b27
  article-title: On a mean field game approach modeling congestion and aversion in pedestrian crowds
  publication-title: Transp. Res. B
– volume: 44
  start-page: 21
  year: 2014
  end-page: 33
  ident: b76
  article-title: Microscopic modeling of pedestrian movement behavior: Interacting with visual attractors in the environment
  publication-title: Transp. Res. C
– volume: 91
  start-page: 37
  year: 2018
  end-page: 61
  ident: b15
  article-title: A fine discrete field cellular automaton for pedestrian dynamics integrating pedestrian heterogeneity, anisotropy and time-dependent characteristics
  publication-title: Transp. Res. C
– reference: Y. Xu, Z. Piao, S. Gao, Encoding crowd interaction with deep neural network for pedestrian trajectory prediction, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2018.
– volume: 83
  start-page: 40
  year: 2016
  end-page: 47
  ident: b44
  article-title: Leader-follower model for agent based simulation of social collective behavior during egress
  publication-title: Saf. Sci.
– volume: 295
  start-page: 507
  year: 2001
  end-page: 525
  ident: b13
  article-title: Simulation of pedestrian dynamics using a two-dimensional cellular automaton
  publication-title: Physica A
– start-page: 2137
  year: 2016
  end-page: 2145
  ident: b69
  article-title: Learning to communicate with deep multi-agent reinforcement learning
  publication-title: Advances in Neural Information Processing Systems, vol. 29
– volume: 28
  start-page: 361
  year: 2001
  end-page: 383
  ident: b94
  article-title: Self-organizing pedestrian movement
  publication-title: Environ. Plan. B: Plann. Des.
– volume: 115
  start-page: 362
  year: 2019
  end-page: 375
  ident: b49
  article-title: ‘Herding’ in direction choice-making during collective escape of crowds: How likely is it and what moderates it?
  publication-title: Saf. Sci.
– start-page: 3
  year: 2009
  end-page: 19
  ident: b86
  article-title: Reciprocal n-body collision avoidance
  publication-title: Robot. Res.
– volume: 525
  start-page: 894
  year: 2019
  end-page: 911
  ident: b57
  article-title: The analysis on the desired speed in social force model using a data driven approach
  publication-title: Physica A
– volume: 366
  start-page: 314
  year: 2019
  end-page: 327
  ident: b65
  article-title: Data-driven crowd evacuation: A reinforcement learning method
  publication-title: Neurocomputing
– volume: 41
  start-page: 412
  year: 2017
  end-page: 430
  ident: b77
  article-title: Modelling and influencing human behaviour in fire
  publication-title: Fire Mater.
– volume: 80
  start-page: 41
  year: 2015
  end-page: 55
  ident: b25
  article-title: Behavioral effect on pedestrian evacuation simulation using cellular automata
  publication-title: Saf. Sci.
– volume: 43
  year: 2020
  ident: b46
  article-title: Do people follow the crowd in building emergency evacuation? A cross-cultural immersive virtual reality-based study
  publication-title: Adv. Eng. Inf.
– volume: 53
  start-page: 1745
  year: 2017
  end-page: 1763
  ident: b36
  article-title: Experimental influence of pedestrian load on individual and group evacuation speed in staircases
  publication-title: Fire Technol.
– volume: 67
  start-page: 4
  year: 2003
  ident: b20
  article-title: Lattice gas simulation of experimentally studied evacuation dynamics
  publication-title: Phys. Rev. E
– volume: 35
  start-page: 1352
  year: 2016
  end-page: 1370
  ident: b52
  article-title: Socially compliant mobile robot navigation via inverse reinforcement learning
  publication-title: Int. J. Robot. Res.
– volume: 86
  start-page: 159
  year: 2016
  end-page: 176
  ident: b38
  article-title: A hybrid simulation-assignment modeling framework for crowd dynamics in large-scale pedestrian facilities
  publication-title: Transp. Res. A
– volume: 28
  start-page: 103
  year: 2001
  end-page: 121
  ident: b72
  article-title: From isovists to visibility graphs: A methodology for the analysis of architectural space
  publication-title: Environ. Plan. B: Plann. Des.
– reference: Y.F. Chen, M. Everett, M. Liu, J.P. How, Socially aware motion planning with deep reinforcement learning, in: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, 2017, pp. 1343–1350.
– volume: 379
  start-page: 130
  year: 2020
  end-page: 140
  ident: b59
  article-title: Data-driven simulation of pedestrian collision avoidance with a nonparametric neural network
  publication-title: Neurocomputing
– volume: 33
  start-page: 95
  year: 2014
  end-page: 108
  ident: b63
  article-title: The PAG crowd: A graph based approach for efficient data-driven crowd simulation
  publication-title: Comput. Graph. Forum
– volume: 106
  start-page: 163
  year: 2019
  end-page: 176
  ident: b67
  article-title: A machine learning based study on pedestrian movement dynamics under emergency evacuation
  publication-title: Fire Saf. J.
– volume: 36
  start-page: 111
  year: 1974
  end-page: 133
  ident: b88
  article-title: Cross-validatory choice and assessment of statistical predictions
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
– volume: 345
  start-page: 795
  year: 2014
  end-page: 799
  ident: b51
  article-title: Programmable self-assembly in a thousand-robot swarm
  publication-title: Science
– reference: P. Long, T. Fan, X. Liao, W. Liu, H. Zhang, J. Pan, Towards optimally decentralized multi-robot collision avoidance via deep reinforcement learning, in: 2018 IEEE International Conference on Robotics and Automation, ICRA, 2018, pp. 6252–6259.
– reference: .
– volume: 574
  year: 2021
  ident: b8
  article-title: Modeling detour decision combined the tactical and operational layer based on perceived density
  publication-title: Physica A
– volume: 84
  start-page: 190
  year: 2018
  end-page: 203
  ident: b64
  article-title: A social force evacuation model driven by video data
  publication-title: Simul. Model. Pract. Theory
– volume: 561
  year: 2021
  ident: b19
  article-title: Social force model parameter testing and optimization using a high stress real-life situation
  publication-title: Physica A
– year: 2020
  ident: b58
  article-title: Realtime collision avoidance for mobile robots in dense crowds using implicit multi-sensor fusion and deep reinforcement learning
– volume: 40
  start-page: 143
  year: 2014
  end-page: 159
  ident: b75
  article-title: Application of social force model to pedestrian behavior analysis at signalized crosswalk
  publication-title: Transp. Res. C
– volume: 2012
  start-page: 1
  year: 2012
  end-page: 13
  ident: b96
  article-title: Ordering in bidirectional pedestrian flows and its influence on the fundamental diagram
  publication-title: J. Stat. Mech. Theory Exp.
– volume: 29
  start-page: 473
  year: 2002
  end-page: 490
  ident: b73
  article-title: Encoding natural movement as an agent-based system: An investigation into human pedestrian behaviour in the built environment
  publication-title: Environ. Plan. B: Plann. Des.
– volume: 51
  start-page: 141
  year: 2017
  end-page: 157
  ident: b47
  article-title: How perception of peer behaviour influences escape decision making: The role of individual differences
  publication-title: J. Environ. Psychol.
– volume: 38
  start-page: 169
  issue: 2
  year: 2004
  ident: 10.1016/j.physa.2021.126289_b1
  article-title: Pedestrian route-choice and activity scheduling theory and models
  publication-title: Transp. Res. B
  doi: 10.1016/S0191-2615(03)00007-9
– volume: 7
  start-page: 381
  issue: August
  year: 2015
  ident: 10.1016/j.physa.2021.126289_b11
  article-title: Continuum theory for pedestrian traffic flow: Local route choice modelling and its implications
  publication-title: Transp. Res. Procedia
  doi: 10.1016/j.trpro.2015.06.020
– volume: 561
  year: 2021
  ident: 10.1016/j.physa.2021.126289_b19
  article-title: Social force model parameter testing and optimization using a high stress real-life situation
  publication-title: Physica A
  doi: 10.1016/j.physa.2020.125299
– volume: 295
  start-page: 507
  issue: 3
  year: 2001
  ident: 10.1016/j.physa.2021.126289_b13
  article-title: Simulation of pedestrian dynamics using a two-dimensional cellular automaton
  publication-title: Physica A
  doi: 10.1016/S0378-4371(01)00141-8
– volume: 379
  start-page: 130
  year: 2020
  ident: 10.1016/j.physa.2021.126289_b59
  article-title: Data-driven simulation of pedestrian collision avoidance with a nonparametric neural network
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.10.062
– volume: 40
  start-page: 143
  year: 2014
  ident: 10.1016/j.physa.2021.126289_b75
  article-title: Application of social force model to pedestrian behavior analysis at signalized crosswalk
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2014.01.007
– volume: 366
  start-page: 314
  year: 2019
  ident: 10.1016/j.physa.2021.126289_b65
  article-title: Data-driven crowd evacuation: A reinforcement learning method
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.08.021
– volume: 116
  start-page: 361
  year: 2018
  ident: 10.1016/j.physa.2021.126289_b85
  article-title: Hypothetical bias and decision-rule effect in modelling discrete directional choices
  publication-title: Transp. Res. A
– volume: 574
  year: 2021
  ident: 10.1016/j.physa.2021.126289_b8
  article-title: Modeling detour decision combined the tactical and operational layer based on perceived density
  publication-title: Physica A
  doi: 10.1016/j.physa.2021.126021
– volume: 416
  start-page: 684
  year: 2014
  ident: 10.1016/j.physa.2021.126289_b4
  article-title: Continuum modelling of pedestrian flows: From microscopic principles to self-organised macroscopic phenomena
  publication-title: Physica A
  doi: 10.1016/j.physa.2014.07.050
– volume: 10
  start-page: 41
  issue: 1
  year: 2018
  ident: 10.1016/j.physa.2021.126289_b26
  article-title: A meshfree particle method for a vision-based macroscopic pedestrian model
  publication-title: Int. J. Adv. Eng. Sci. Appl. Math.
  doi: 10.1007/s12572-018-0204-2
– volume: 36
  start-page: 507
  issue: 6
  year: 2002
  ident: 10.1016/j.physa.2021.126289_b39
  article-title: A continuum theory for the flow of pedestrians
  publication-title: Transp. Res. B
  doi: 10.1016/S0191-2615(01)00015-7
– ident: 10.1016/j.physa.2021.126289_b53
  doi: 10.1109/ICRA.2017.7989037
– volume: 92
  start-page: 59
  year: 2016
  ident: 10.1016/j.physa.2021.126289_b50
  article-title: A mixed logit model for predicting exit choice during building evacuations
  publication-title: Transp. Res. A
– volume: 36
  start-page: 111
  issue: 2
  year: 1974
  ident: 10.1016/j.physa.2021.126289_b88
  article-title: Cross-validatory choice and assessment of statistical predictions
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/j.2517-6161.1974.tb00994.x
– volume: 336
  start-page: 638
  issue: 3–4
  year: 2004
  ident: 10.1016/j.physa.2021.126289_b21
  article-title: Experiment and simulation of pedestrian counter flow
  publication-title: Physica A
  doi: 10.1016/j.physa.2004.01.043
– volume: 115
  start-page: 362
  year: 2019
  ident: 10.1016/j.physa.2021.126289_b49
  article-title: ‘Herding’ in direction choice-making during collective escape of crowds: How likely is it and what moderates it?
  publication-title: Saf. Sci.
  doi: 10.1016/j.ssci.2019.02.034
– volume: 33
  start-page: 95
  issue: 8
  year: 2014
  ident: 10.1016/j.physa.2021.126289_b63
  article-title: The PAG crowd: A graph based approach for efficient data-driven crowd simulation
  publication-title: Comput. Graph. Forum
  doi: 10.1111/cgf.12403
– volume: 28
  start-page: 103
  issue: 1
  year: 2001
  ident: 10.1016/j.physa.2021.126289_b72
  article-title: From isovists to visibility graphs: A methodology for the analysis of architectural space
  publication-title: Environ. Plan. B: Plann. Des.
  doi: 10.1068/b2684
– volume: 88
  start-page: 16
  year: 2016
  ident: 10.1016/j.physa.2021.126289_b23
  article-title: Information guiding effect of evacuation assistants in a two-channel segregation process using multi-information communication field model
  publication-title: Saf. Sci.
  doi: 10.1016/j.ssci.2016.04.005
– volume: 45
  start-page: 1649
  issue: 6
  year: 2014
  ident: 10.1016/j.physa.2021.126289_b45
  article-title: Social influence in a virtual tunnel fire - influence of conflicting information on evacuation behavior
  publication-title: Applied Ergon.
  doi: 10.1016/j.apergo.2014.05.014
– volume: 39
  start-page: 1
  issue: 1
  year: 2005
  ident: 10.1016/j.physa.2021.126289_b95
  article-title: Self-organized pedestrian crowd dynamics: Experiments, simulations and design solutions
  publication-title: Transp. Sci.
  doi: 10.1287/trsc.1040.0108
– volume: 122
  start-page: 57
  year: 2019
  ident: 10.1016/j.physa.2021.126289_b37
  article-title: Pedestrian crowd flows in shared spaces: Investigating the impact of geometry based on micro and macro scale measures
  publication-title: Transp. Res. B
  doi: 10.1016/j.trb.2019.01.019
– volume: 68
  start-page: 566
  year: 2016
  ident: 10.1016/j.physa.2021.126289_b43
  article-title: A pedestrian flow model considering the impact of local density: Voronoi diagram based heuristics approach
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2016.05.012
– volume: 2316
  start-page: 95
  issue: 1
  year: 2012
  ident: 10.1016/j.physa.2021.126289_b79
  article-title: Dynamic simulation assignment model for pedestrian movements in crowded networks
  publication-title: Transp. Res. Rec.
  doi: 10.3141/2316-11
– volume: 24
  start-page: 50
  year: 2012
  ident: 10.1016/j.physa.2021.126289_b40
  article-title: Formulation of pedestrian movement in microscopic models with continuous space representation
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2012.02.004
– volume: 90
  start-page: 488
  year: 2020
  ident: 10.1016/j.physa.2021.126289_b16
  article-title: Optimal guidance strategy for crowd evacuation with multiple exits: A hybrid multiscale modeling approach
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2020.08.075
– volume: 2011
  issue: 6
  year: 2011
  ident: 10.1016/j.physa.2021.126289_b30
  article-title: Transitions in pedestrian fundamental diagrams of straight corridors and T-junctions
  publication-title: J. Stat. Mech. Theory Exp.
  doi: 10.1088/1742-5468/2011/06/P06004
– volume: 380
  start-page: 540
  issue: 4
  year: 2016
  ident: 10.1016/j.physa.2021.126289_b24
  article-title: Modeling pedestrian evacuation with guiders based on a multi-grid model
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2015.11.028
– volume: 41
  start-page: 412
  issue: 5
  year: 2017
  ident: 10.1016/j.physa.2021.126289_b77
  article-title: Modelling and influencing human behaviour in fire
  publication-title: Fire Mater.
  doi: 10.1002/fam.2391
– volume: 78
  issue: 6
  year: 2008
  ident: 10.1016/j.physa.2021.126289_b22
  article-title: Analysis of pedestrian dynamics in counter flow via an extended lattice gas model
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.78.066117
– volume: 45
  start-page: 1572
  issue: 10
  year: 2011
  ident: 10.1016/j.physa.2021.126289_b27
  article-title: On a mean field game approach modeling congestion and aversion in pedestrian crowds
  publication-title: Transp. Res. B
  doi: 10.1016/j.trb.2011.07.011
– volume: 86
  start-page: 159
  year: 2016
  ident: 10.1016/j.physa.2021.126289_b38
  article-title: A hybrid simulation-assignment modeling framework for crowd dynamics in large-scale pedestrian facilities
  publication-title: Transp. Res. A
– volume: 51
  start-page: 4282
  year: 1995
  ident: 10.1016/j.physa.2021.126289_b17
  article-title: Social force model for pedestrian dynamics
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.51.4282
– ident: 10.1016/j.physa.2021.126289_b60
  doi: 10.1007/978-3-030-11015-4_16
– ident: 10.1016/j.physa.2021.126289_b61
  doi: 10.1109/CVPR.2018.00553
– volume: 95
  start-page: 238
  year: 2017
  ident: 10.1016/j.physa.2021.126289_b84
  article-title: Stated and revealed exit choices of pedestrian crowd evacuees
  publication-title: Transp. Res. B
  doi: 10.1016/j.trb.2016.10.019
– volume: 35
  start-page: 1352
  issue: 11
  year: 2016
  ident: 10.1016/j.physa.2021.126289_b52
  article-title: Socially compliant mobile robot navigation via inverse reinforcement learning
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364915619772
– volume: 108
  start-page: 6884
  issue: 17
  year: 2011
  ident: 10.1016/j.physa.2021.126289_b74
  article-title: How simple rules determine pedestrian behavior and crowd disasters
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1016507108
– volume: 345
  start-page: 795
  issue: 6198
  year: 2014
  ident: 10.1016/j.physa.2021.126289_b51
  article-title: Programmable self-assembly in a thousand-robot swarm
  publication-title: Science
  doi: 10.1126/science.1254295
– ident: 10.1016/j.physa.2021.126289_b71
  doi: 10.1609/aaai.v32i1.11794
– volume: 119
  year: 2020
  ident: 10.1016/j.physa.2021.126289_b7
  article-title: Consideration of tactical decisions in microscopic pedestrian simulation: Algorithm and experiments
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2020.102742
– ident: 10.1016/j.physa.2021.126289_b54
  doi: 10.1109/IROS.2017.8202312
– volume: 489
  start-page: 112
  year: 2018
  ident: 10.1016/j.physa.2021.126289_b41
  article-title: Study on queueing behavior in pedestrian evacuation by extended cellular automata model
  publication-title: Physica A
  doi: 10.1016/j.physa.2017.07.004
– year: 1997
  ident: 10.1016/j.physa.2021.126289_b83
– volume: 80
  start-page: 41
  year: 2015
  ident: 10.1016/j.physa.2021.126289_b25
  article-title: Behavioral effect on pedestrian evacuation simulation using cellular automata
  publication-title: Saf. Sci.
  doi: 10.1016/j.ssci.2015.07.003
– volume: 50
  start-page: 221
  issue: 2
  year: 2012
  ident: 10.1016/j.physa.2021.126289_b31
  article-title: Pedestrian behavior and exit selection in evacuation of a corridor - an experimental study
  publication-title: Saf. Sci.
  doi: 10.1016/j.ssci.2011.08.020
– volume: 62
  start-page: 5154
  issue: 10
  year: 2017
  ident: 10.1016/j.physa.2021.126289_b33
  article-title: A mean-field game of evacuation in multilevel building
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2017.2679487
– volume: 83
  start-page: 40
  year: 2016
  ident: 10.1016/j.physa.2021.126289_b44
  article-title: Leader-follower model for agent based simulation of social collective behavior during egress
  publication-title: Saf. Sci.
  doi: 10.1016/j.ssci.2015.11.015
– ident: 10.1016/j.physa.2021.126289_b62
  doi: 10.1109/WACV.2018.00135
– start-page: 2137
  year: 2016
  ident: 10.1016/j.physa.2021.126289_b69
  article-title: Learning to communicate with deep multi-agent reinforcement learning
– volume: 116
  start-page: 16
  issue: 1
  year: 1999
  ident: 10.1016/j.physa.2021.126289_b89
  article-title: Artificial neural networks in bankruptcy prediction: General framework and cross-validation analysis
  publication-title: European J. Oper. Res.
  doi: 10.1016/S0377-2217(98)00051-4
– volume: 17
  start-page: 377
  issue: 4
  year: 2008
  ident: 10.1016/j.physa.2021.126289_b32
  article-title: Evacuation simulation models: Challenges in modeling high rise building evacuation with cellular automata approaches
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2007.06.005
– volume: 51
  start-page: 141
  year: 2017
  ident: 10.1016/j.physa.2021.126289_b47
  article-title: How perception of peer behaviour influences escape decision making: The role of individual differences
  publication-title: J. Environ. Psychol.
  doi: 10.1016/j.jenvp.2017.03.013
– volume: 562
  year: 2021
  ident: 10.1016/j.physa.2021.126289_b82
  article-title: Route choice in the pedestrian evacuation: Microscopic formulation based on visual information
  publication-title: Physica A
  doi: 10.1016/j.physa.2020.125313
– volume: 424
  start-page: 152
  issue: C
  year: 2015
  ident: 10.1016/j.physa.2021.126289_b35
  article-title: Occupant evacuation and casualty estimation in a building under earthquake using cellular automata
  publication-title: Physica A
  doi: 10.1016/j.physa.2015.01.008
– volume: 18
  start-page: 842
  issue: 6
  year: 2010
  ident: 10.1016/j.physa.2021.126289_b3
  article-title: Microscopic pedestrian simulation model combined with a tactical model for route choice behaviour
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2010.01.005
– volume: 35
  start-page: 293
  issue: 3
  year: 2001
  ident: 10.1016/j.physa.2021.126289_b12
  article-title: Cellular automata microsimulation for modeling bi-directional pedestrian walkways
  publication-title: Transp. Res. B
  doi: 10.1016/S0191-2615(99)00052-1
– volume: 116
  year: 2020
  ident: 10.1016/j.physa.2021.126289_b68
  article-title: Influence of human-obstacle interaction on evacuation from classrooms
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2020.103234
– volume: 2623
  start-page: 82
  issue: 1
  year: 2017
  ident: 10.1016/j.physa.2021.126289_b10
  article-title: Route-choice modeling for pedestrian evacuation based on infrastructure knowledge and personal preferences
  publication-title: Transp. Res. Rec.
  doi: 10.3141/2623-09
– volume: 53
  start-page: 1745
  issue: 5
  year: 2017
  ident: 10.1016/j.physa.2021.126289_b36
  article-title: Experimental influence of pedestrian load on individual and group evacuation speed in staircases
  publication-title: Fire Technol.
  doi: 10.1007/s10694-017-0655-1
– volume: 2
  start-page: 656
  issue: 2
  year: 2017
  ident: 10.1016/j.physa.2021.126289_b55
  article-title: Deep-learned collision avoidance policy for distributed multiagent navigation
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2017.2651371
– volume: 85
  start-page: 1
  year: 2016
  ident: 10.1016/j.physa.2021.126289_b91
  article-title: Human exit choice in crowded built environments: Investigating underlying behavioural differences between normal egress and emergency evacuations
  publication-title: Fire Saf. J.
  doi: 10.1016/j.firesaf.2016.07.003
– volume: 106
  start-page: 163
  year: 2019
  ident: 10.1016/j.physa.2021.126289_b67
  article-title: A machine learning based study on pedestrian movement dynamics under emergency evacuation
  publication-title: Fire Saf. J.
  doi: 10.1016/j.firesaf.2019.04.008
– volume: 44
  start-page: 21
  year: 2014
  ident: 10.1016/j.physa.2021.126289_b76
  article-title: Microscopic modeling of pedestrian movement behavior: Interacting with visual attractors in the environment
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2014.03.009
– volume: 37
  start-page: 223
  year: 2013
  ident: 10.1016/j.physa.2021.126289_b81
  article-title: A hybrid multi-scale approach for simulation of pedestrian dynamics
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2013.03.005
– year: 2020
  ident: 10.1016/j.physa.2021.126289_b58
– volume: 105
  start-page: 468
  year: 2019
  ident: 10.1016/j.physa.2021.126289_b6
  article-title: Modelling cyclist queue formation using a two-layer framework for operational cycling behaviour
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2019.06.012
– volume: 91
  start-page: 37
  year: 2018
  ident: 10.1016/j.physa.2021.126289_b15
  article-title: A fine discrete field cellular automaton for pedestrian dynamics integrating pedestrian heterogeneity, anisotropy and time-dependent characteristics
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2018.03.022
– volume: 86
  start-page: 165
  year: 2016
  ident: 10.1016/j.physa.2021.126289_b34
  article-title: Experimental study on characteristics of pedestrian evacuation on stairs in a high-rise building
  publication-title: Saf. Sci.
  doi: 10.1016/j.ssci.2016.02.025
– volume: 81
  start-page: 317
  year: 2017
  ident: 10.1016/j.physa.2021.126289_b90
  article-title: A study of pedestrian group behaviors in crowd evacuation based on an extended floor field cellular automaton model
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2016.08.018
– volume: 67
  start-page: 4
  issue: 6
  year: 2003
  ident: 10.1016/j.physa.2021.126289_b20
  article-title: Lattice gas simulation of experimentally studied evacuation dynamics
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.67.067101
– volume: 29
  start-page: 473
  issue: 4
  year: 2002
  ident: 10.1016/j.physa.2021.126289_b73
  article-title: Encoding natural movement as an agent-based system: An investigation into human pedestrian behaviour in the built environment
  publication-title: Environ. Plan. B: Plann. Des.
  doi: 10.1068/b12850
– volume: 78
  start-page: 168
  year: 2015
  ident: 10.1016/j.physa.2021.126289_b2
  article-title: A model of the decision-making process during pre-evacuation
  publication-title: Fire Saf. J.
  doi: 10.1016/j.firesaf.2015.07.001
– volume: 14
  start-page: 468
  issue: 5
  year: 2018
  ident: 10.1016/j.physa.2021.126289_b18
  article-title: Pedestrian dynamics at transit stations: an integrated pedestrian flow modeling approach
  publication-title: Transp. A: Transp. Sci.
– ident: 10.1016/j.physa.2021.126289_b56
  doi: 10.1109/ICRA.2018.8461113
– volume: 389
  start-page: 1902
  issue: 9
  year: 2010
  ident: 10.1016/j.physa.2021.126289_b42
  article-title: Methods for measuring pedestrian density, flow, speed and direction with minimal scatter
  publication-title: Physica A
  doi: 10.1016/j.physa.2009.12.015
– volume: 90
  start-page: 31
  year: 2019
  ident: 10.1016/j.physa.2021.126289_b92
  article-title: Child behavior during evacuation under non-emergency situations: Experimental and simulation results
  publication-title: Simul. Model. Pract. Theory
  doi: 10.1016/j.simpat.2018.10.007
– volume: 71
  start-page: 194
  year: 2015
  ident: 10.1016/j.physa.2021.126289_b14
  article-title: Bidirectional pedestrian fundamental diagram
  publication-title: Transp. Res. B
  doi: 10.1016/j.trb.2014.11.001
– volume: 2012
  start-page: 1
  issue: 2
  year: 2012
  ident: 10.1016/j.physa.2021.126289_b96
  article-title: Ordering in bidirectional pedestrian flows and its influence on the fundamental diagram
  publication-title: J. Stat. Mech. Theory Exp.
  doi: 10.1088/1742-5468/2012/02/P02002
– start-page: 6379
  year: 2017
  ident: 10.1016/j.physa.2021.126289_b70
  article-title: Multi-agent actor-critic for mixed cooperative-competitive environments
– volume: 114
  start-page: 484
  issue: March
  year: 2020
  ident: 10.1016/j.physa.2021.126289_b93
  article-title: Efficiently informing crowds - experiments and simulations on route choice and decision making in pedestrian crowds with wheelchair users
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2020.02.019
– volume: 43
  year: 2020
  ident: 10.1016/j.physa.2021.126289_b46
  article-title: Do people follow the crowd in building emergency evacuation? A cross-cultural immersive virtual reality-based study
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2020.101040
– volume: 28
  start-page: 361
  issue: 3
  year: 2001
  ident: 10.1016/j.physa.2021.126289_b94
  article-title: Self-organizing pedestrian movement
  publication-title: Environ. Plan. B: Plann. Des.
  doi: 10.1068/b2697
– volume: 22
  start-page: 28
  year: 2012
  ident: 10.1016/j.physa.2021.126289_b9
  article-title: Two-level modeling framework for pedestrian route choice and walking behaviors
  publication-title: Simul. Model. Pract. Theory
  doi: 10.1016/j.simpat.2011.11.002
– volume: 26
  start-page: 669
  issue: 4
  year: 2012
  ident: 10.1016/j.physa.2021.126289_b80
  article-title: Generation and use of sparse navigation graphs for microscopic pedestrian simulation models
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2012.03.006
– year: 2019
  ident: 10.1016/j.physa.2021.126289_b5
– volume: 56
  start-page: 434
  issue: 1
  year: 2018
  ident: 10.1016/j.physa.2021.126289_b28
  article-title: Mean-field type modeling of nonlocal crowd aversion in pedestrian crowd dynamics
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/17M1119196
– start-page: 3
  year: 2009
  ident: 10.1016/j.physa.2021.126289_b86
  article-title: Reciprocal n-body collision avoidance
  publication-title: Robot. Res.
– volume: 404
  start-page: 173
  year: 2020
  ident: 10.1016/j.physa.2021.126289_b66
  article-title: Learning crowd behavior from real data: A residual network method for crowd simulation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.04.141
– volume: 103
  start-page: 56
  year: 2019
  ident: 10.1016/j.physa.2021.126289_b78
  article-title: Simulating dynamics of adaptive exit-choice changing in crowd evacuations: Model implementation and behavioural interpretations
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2019.04.009
– volume: 124
  start-page: 47
  year: 2017
  ident: 10.1016/j.physa.2021.126289_b48
  article-title: Following the crowd or avoiding it? Empirical investigation of imitative behaviour in emergency escape of human crowds
  publication-title: Anim. Behav.
  doi: 10.1016/j.anbehav.2016.11.024
– volume: 432
  start-page: 337
  year: 2015
  ident: 10.1016/j.physa.2021.126289_b29
  article-title: Block-based floor field model for pedestrian’s walking through corner
  publication-title: Physica A
  doi: 10.1016/j.physa.2015.03.041
– volume: 525
  start-page: 894
  year: 2019
  ident: 10.1016/j.physa.2021.126289_b57
  article-title: The analysis on the desired speed in social force model using a data driven approach
  publication-title: Physica A
  doi: 10.1016/j.physa.2019.03.087
– volume: 84
  start-page: 190
  year: 2018
  ident: 10.1016/j.physa.2021.126289_b64
  article-title: A social force evacuation model driven by video data
  publication-title: Simul. Model. Pract. Theory
  doi: 10.1016/j.simpat.2018.02.007
– start-page: 1928
  year: 2008
  ident: 10.1016/j.physa.2021.126289_b87
  article-title: Reciprocal velocity obstacles for real-time multi-agent navigation
SSID ssj0001732
Score 2.4157968
Snippet Pedestrian behavior during evacuation has been formulated using various arbitrary microscopic methods to investigate the performance of crowd dynamics while...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 126289
SubjectTerms Data driven
Microscopic model
Obstacle detour
Path planning
Pedestrian dynamics
Visual information perception
Title Data-driven framework for the adaptive exit selection problem in pedestrian flow: Visual information based heuristics approach
URI https://dx.doi.org/10.1016/j.physa.2021.126289
Volume 583
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KRfAiPrE-yh48mjbJ5lVvpVqqYi9a6S3sJrMYKW1pU_TU3-5MsvEB0oO3JMwkYXYz881m9hvGLsGzlYw8abmu1hZ-idqSIdhWJ3S0dsJE-UDrHY_DYDDy7sf-uMZ61V4YKqs0vr_06YW3NlfaxprteZa1n2wRRp4IiQGLojht-PW8kGZ5a_1d5uGEovyTgNkSSVfMQ0WNF60eEPmQ67QcF2_R-Ts6_Yg4_T22a6Ai75Zvs89qMD1g20XJZrI8ZOsbmUsrXZC74rqqseIIQjmCOi5TOSdXxuEjy_myaHeDY8BNBxme4SGkULTtQP3J7P2av2TLFT7RkKkW4hTlUv4KK8PozCsS8iM26t8-9waW6aZgJSLo5JabyESFqQuYAGl0LdTrRSL6g1RoDNu6EyQyAgnE4KbsVCiEHtpxQWDSgVmVL45ZfTqbwgnjQjrKFwCR8pUXCFuqSCJMVJ5IiJJKN5hbWTFODNU4dbyYxFVN2VtcmD4m08el6Rvs6ktpXjJtbBYPquGJf02YGGPBJsXT_yqesR06K2tZzlk9X6zgAhFJrprFlGuyre7dw2D4CSGp4p4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEJ7UGqMX4zO-3YNHscDyqjdTNfXVi494I7swGzFNbSyNnvztzsBiNDEevBHYATIL33yzDN8AHGDgapUEyvF9Yxx6E42jYnSdbuwZ48WZDpHXO24GUf8-uHwMH1vQa_6F4bJKi_01pldobfd0rDc746Lo3LoyTgIZswIWR_FkBmZZnSpsw-zJxVV_8AXIXizrjwmUMLFBIz5UlXnxAgLrD_nekefTWbq_B6hvQed8CRYtWxQn9Q0tQwtHKzBXVW1mk1X4OFWlcvJXRixhmjIrQTxUEK8TKldjRjOB70UpJlXHG5oGYZvIiII2MceqcwfZD1_ejsVDMZnSFa2eajWcA10unnBqRZ1Fo0O-BvfnZ3e9vmMbKjiZjLql42cq03HuI-VAhtCF270oIoCYS0OR23SjTCWokEXctJtLTezDeD5KyjsosQrlOrRHLyPcACGVp0OJmOhQB5F0lU4UMUUdyIxVqcwm-I0X08yqjXPTi2HalJU9p5XrU3Z9Wrt-Ew6_jMa12Mbfw6NmetIfz0xK4eAvw63_Gu7DfP_u5jq9vhhcbcMCH6lLW3agXb5OcZcISqn37AP4CenP5U8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+framework+for+the+adaptive+exit+selection+problem+in+pedestrian+flow%3A+Visual+information+based+heuristics+approach&rft.jtitle=Physica+A&rft.au=Zhou%2C+Zi-Xuan&rft.au=Nakanishi%2C+Wataru&rft.au=Asakura%2C+Yasuo&rft.date=2021-12-01&rft.issn=0378-4371&rft.volume=583&rft.spage=126289&rft_id=info:doi/10.1016%2Fj.physa.2021.126289&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_physa_2021_126289
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4371&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4371&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4371&client=summon