GPI-anchored complement regulatory proteins in seminal plasma. An analysis of their physical condition and the mechanisms of their binding to exogenous cells
We analyzed and compared the properties of three glycosylphosphatidylinositol (GPI)-anchored proteins. CD59, CD55 (both C regulators), and CDw52, and of the transmembrane C regulator CD46 in seminal plasma (SP). We demonstrated previously that anchor-intact SP CD59 is present on the membranes of ves...
Saved in:
Published in | The Journal of clinical investigation Vol. 97; no. 7; pp. 1675 - 1686 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
01.04.1996
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We analyzed and compared the properties of three glycosylphosphatidylinositol (GPI)-anchored proteins. CD59, CD55 (both C regulators), and CDw52, and of the transmembrane C regulator CD46 in seminal plasma (SP). We demonstrated previously that anchor-intact SP CD59 is present on the membranes of vesicles (prostasomes) and that cells acquire this protein during incubation with SP. We now report that this acquisition is due partly to adherence of prostasomes to cells and partly to a second mechanism which may involve micellar intermediates. Using fluorescent labeling, ultracentrifugation, and density gradient centrifugation, virtually all CD46 was present on prostasomes whereas CD59, CD55, AND CDw52 were also detected in a form which remained in the 200,000 g supernatant and equilibrated at higher density than prostasomes in gradients. All three GPI-linked proteins eluted at high molecular mass during size exclusion chromatography of this nonprostasome fraction. As documented by videomicroscopy and biochemical analysis, cells acquired new copies of the GPI-linked proteins during incubation with the nonprostasome fraction as well as with prostasomes. These data demonstrate the presence in SP of a stable population of membrane-free, GPI-linked proteins available for transfer to cells. Binding of these proteins to spermatozoa and pathogens in SP may confer new properties on their membranes including increased resistance to C attack. Finally, our data raise the possibility that lipid-associated GPI-linked proteins may be suitable for therapeutic applications. |
---|---|
AbstractList | We analyzed and compared the properties of three glycosylphosphatidylinositol (GPI)-anchored proteins. CD59, CD55 (both C regulators), and CDw52, and of the transmembrane C regulator CD46 in seminal plasma (SP). We demonstrated previously that anchor-intact SP CD59 is present on the membranes of vesicles (prostasomes) and that cells acquire this protein during incubation with SP. We now report that this acquisition is due partly to adherence of prostasomes to cells and partly to a second mechanism which may involve micellar intermediates. Using fluorescent labeling, ultracentrifugation, and density gradient centrifugation, virtually all CD46 was present on prostasomes whereas CD59, CD55, AND CDw52 were also detected in a form which remained in the 200,000 g supernatant and equilibrated at higher density than prostasomes in gradients. All three GPI-linked proteins eluted at high molecular mass during size exclusion chromatography of this nonprostasome fraction. As documented by videomicroscopy and biochemical analysis, cells acquired new copies of the GPI-linked proteins during incubation with the nonprostasome fraction as well as with prostasomes. These data demonstrate the presence in SP of a stable population of membrane-free, GPI-linked proteins available for transfer to cells. Binding of these proteins to spermatozoa and pathogens in SP may confer new properties on their membranes including increased resistance to C attack. Finally, our data raise the possibility that lipid-associated GPI-linked proteins may be suitable for therapeutic applications. We analyzed and compared the properties of three glycosylphosphatidylinositol (GPI)-anchored proteins. CD59, CD55 (both C regulators), and CDw52, and of the transmembrane C regulator CD46 in seminal plasma (SP). We demonstrated previously that anchor-intact SP CD59 is present on the membranes of vesicles (prostasomes) and that cells acquire this protein during incubation with SP. We now report that this acquisition is due partly to adherence of prostasomes to cells and partly to a second mechanism which may involve micellar intermediates. Using fluorescent labeling, ultracentrifugation, and density gradient centrifugation, virtually all CD46 was present on prostasomes whereas CD59, CD55, AND CDw52 were also detected in a form which remained in the 200,000 g supernatant and equilibrated at higher density than prostasomes in gradients. All three GPI-linked proteins eluted at high molecular mass during size exclusion chromatography of this nonprostasome fraction. As documented by videomicroscopy and biochemical analysis, cells acquired new copies of the GPI-linked proteins during incubation with the nonprostasome fraction as well as with prostasomes. These data demonstrate the presence in SP of a stable population of membrane-free, GPI-linked proteins available for transfer to cells. Binding of these proteins to spermatozoa and pathogens in SP may confer new properties on their membranes including increased resistance to C attack. Finally, our data raise the possibility that lipid-associated GPI-linked proteins may be suitable for therapeutic applications.We analyzed and compared the properties of three glycosylphosphatidylinositol (GPI)-anchored proteins. CD59, CD55 (both C regulators), and CDw52, and of the transmembrane C regulator CD46 in seminal plasma (SP). We demonstrated previously that anchor-intact SP CD59 is present on the membranes of vesicles (prostasomes) and that cells acquire this protein during incubation with SP. We now report that this acquisition is due partly to adherence of prostasomes to cells and partly to a second mechanism which may involve micellar intermediates. Using fluorescent labeling, ultracentrifugation, and density gradient centrifugation, virtually all CD46 was present on prostasomes whereas CD59, CD55, AND CDw52 were also detected in a form which remained in the 200,000 g supernatant and equilibrated at higher density than prostasomes in gradients. All three GPI-linked proteins eluted at high molecular mass during size exclusion chromatography of this nonprostasome fraction. As documented by videomicroscopy and biochemical analysis, cells acquired new copies of the GPI-linked proteins during incubation with the nonprostasome fraction as well as with prostasomes. These data demonstrate the presence in SP of a stable population of membrane-free, GPI-linked proteins available for transfer to cells. Binding of these proteins to spermatozoa and pathogens in SP may confer new properties on their membranes including increased resistance to C attack. Finally, our data raise the possibility that lipid-associated GPI-linked proteins may be suitable for therapeutic applications. |
Author | Heuser, J E Rooney, I A Atkinson, J P |
AuthorAffiliation | Department of Medical Biochemistry, University of Wales College of Medicine, Heath Park, UK |
AuthorAffiliation_xml | – name: Department of Medical Biochemistry, University of Wales College of Medicine, Heath Park, UK |
Author_xml | – sequence: 1 givenname: I A surname: Rooney fullname: Rooney, I A – sequence: 2 givenname: J E surname: Heuser fullname: Heuser, J E – sequence: 3 givenname: J P surname: Atkinson fullname: Atkinson, J P |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/8601633$$D View this record in MEDLINE/PubMed |
BookMark | eNplkcFu1DAQhn0oKm3hwAMg-YTEIa2dxEl84FCtoGxVCQ5wtibOZGPk2MH2VuzD8K446rYqcLJH__fPr5k5JyfOOyTkDWeXnLfl1e1my3knZH1CzhgreSHbqntJzmP8wRiva1GfktOuYbypqjPy--brtgCnJx9woNrPi8UZXaIBd3sLyYcDXYJPaFykxtGIs3Fg6WIhznBJrx2FXB-iidSPNE1oAl2mXOtMae8Gk4xfoWEV6Yx6Amfi_AzvTabcjiZP8ZffofP7SDVaG1-RFyPYiK-P7wX5_unjt83n4u7LzXZzfVfoqpGpKPu248OoUYpRSJA9jGULQpSdxqETI0OWRZ0_A1RMykb3jZBcaNADdiNUF-TDQ99l38846LyAAFYtwcwQDsqDUX8rzkxq5--VYG1Zldn_7ugP_uceY1KziesE4DAPo9pWtmXX1Bl8-zzoKeF4j6xfPeg6-BgDjkqbBOsGc6yxijO1Hlk9HTk73v_jeOz5P_sHSNWu9A |
CitedBy_id | crossref_primary_10_1152_ajpendo_00504_2019 crossref_primary_10_1182_blood_V91_7_2573 crossref_primary_10_1074_jbc_M206357200 crossref_primary_10_1002_mrd_23180 crossref_primary_10_1002_ange_201203912 crossref_primary_10_1006_mgme_2000_3054 crossref_primary_10_1016_j_gyobfe_2012_07_028 crossref_primary_10_1111_j_1365_2605_2005_00543_x crossref_primary_10_1007_s12610_008_0006_7 crossref_primary_10_1021_acs_jproteome_9b00795 crossref_primary_10_1111_j_1439_0272_2009_00948_x crossref_primary_10_1016_S0022_2143_98_90092_0 crossref_primary_10_3389_fimmu_2021_689435 crossref_primary_10_4061_2011_757194 crossref_primary_10_1016_j_bcmd_2005_03_005 crossref_primary_10_3390_biomedicines9101452 crossref_primary_10_1099_jgv_0_001193 crossref_primary_10_1095_biolreprod_105_049304 crossref_primary_10_1002_mrd_10136 crossref_primary_10_3109_01485019708987900 crossref_primary_10_1002_pros_20268 crossref_primary_10_1016_S0304_4157_97_00005_1 crossref_primary_10_1016_j_ijbiomac_2019_09_218 crossref_primary_10_3389_fmolb_2024_1347397 crossref_primary_10_1016_S0014_5793_97_00655_8 crossref_primary_10_3389_fimmu_2024_1497889 crossref_primary_10_1002__SICI_1097_0045_20000515_43_3_169__AID_PROS2_3_0_CO_2_D crossref_primary_10_1095_biolreprod61_3_802 crossref_primary_10_1182_blood_2005_02_0782 crossref_primary_10_1016_S0304_4165_97_00036_6 crossref_primary_10_1007_BF03035465 crossref_primary_10_1016_j_bbagen_2005_11_014 crossref_primary_10_1016_j_mad_2020_111307 crossref_primary_10_1016_j_mce_2005_12_033 crossref_primary_10_1095_biolreprod_108_075739 crossref_primary_10_1034_j_1600_0897_2002_1o023_x crossref_primary_10_3109_03009739609178919 crossref_primary_10_1093_glycob_cwm076 crossref_primary_10_3390_cancers5041522 crossref_primary_10_1016_j_fertnstert_2005_07_1302 crossref_primary_10_1016_j_bbrc_2005_10_082 crossref_primary_10_1046_j_1365_2249_2001_01523_x crossref_primary_10_1182_blood_V92_11_4439 crossref_primary_10_1016_j_jri_2012_01_002 crossref_primary_10_1038_s41585_022_00660_8 crossref_primary_10_1155_2013_253521 crossref_primary_10_1016_j_molimm_2005_06_026 crossref_primary_10_1152_ajpendo_00079_2019 crossref_primary_10_1016_j_smim_2018_02_009 crossref_primary_10_1002_em_22109 crossref_primary_10_1074_jbc_M705601200 crossref_primary_10_3192_jsirib_24_1 crossref_primary_10_1016_j_rbmo_2022_03_033 crossref_primary_10_1186_1477_7827_1_54 crossref_primary_10_3390_biomed4010002 crossref_primary_10_1002__SICI_1098_2795_199902_52_2_225__AID_MRD14_3_0_CO_2_M crossref_primary_10_1111_j_1365_2567_2006_02374_x crossref_primary_10_1016_j_theriogenology_2015_07_033 crossref_primary_10_1002_mrd_10193 crossref_primary_10_3390_biom13060994 crossref_primary_10_1007_BF03034393 crossref_primary_10_1002__SICI_1098_2795_199710_48_2_267__AID_MRD15_3_0_CO_2_V crossref_primary_10_1111_j_1600_0854_2006_00532_x crossref_primary_10_1530_REP_13_0358 crossref_primary_10_1002_mrd_1065 crossref_primary_10_1371_journal_pone_0028386 crossref_primary_10_1002_j_1939_4640_2003_tb02640_x crossref_primary_10_1007_BF03402070 crossref_primary_10_1093_humrep_den181 crossref_primary_10_1016_j_bbapap_2020_140466 crossref_primary_10_1046_j_1432_1327_2000_01036_x crossref_primary_10_1016_j_jri_2009_06_263 crossref_primary_10_1111_j_1365_2567_2008_02821_x crossref_primary_10_1002_cncr_20477 crossref_primary_10_1002_anie_201203912 crossref_primary_10_1007_s10555_008_9129_8 crossref_primary_10_1016_j_anireprosci_2008_04_011 crossref_primary_10_1016_S0304_4165_97_00071_8 crossref_primary_10_1016_0962_8924_96_90046_X crossref_primary_10_1080_13813455_2018_1498904 crossref_primary_10_1093_molehr_7_7_617 crossref_primary_10_1002__SICI_1097_0045_19990401_39_1_36__AID_PROS6_3_0_CO_2_6 crossref_primary_10_1002_1098_2795_200011_57_3_280__AID_MRD10_3_0_CO_2_5 crossref_primary_10_1002_pros_20860 crossref_primary_10_1002_pros_20102 crossref_primary_10_1016_j_virol_2008_09_014 crossref_primary_10_1016_j_imlet_2003_07_001 crossref_primary_10_1182_blood_2004_02_0645 crossref_primary_10_1002__SICI_1097_0045_19980515_35_3_178__AID_PROS3_3_0_CO_2_D crossref_primary_10_1074_jbc_274_42_29862 crossref_primary_10_3390_ijms23137418 crossref_primary_10_1095_biolreprod_105_048587 crossref_primary_10_20935_AcadMolBioGen7401 crossref_primary_10_1016_S0304_4157_00_00018_6 crossref_primary_10_1016_S0022_2143_98_90152_4 crossref_primary_10_1002_jev2_70006 crossref_primary_10_1111_j_1365_2605_2011_01227_x crossref_primary_10_1016_j_febslet_2012_01_039 crossref_primary_10_1111_j_1365_2605_2004_00458_x crossref_primary_10_1002_mrd_1013 crossref_primary_10_1016_j_abb_2018_08_009 crossref_primary_10_1002_pros_20090 crossref_primary_10_1016_S0304_4165_98_00047_6 crossref_primary_10_1182_blood_V92_11_4439_423k24_4439_4445 crossref_primary_10_1002_j_1939_4640_2003_tb02653_x crossref_primary_10_1182_blood_V91_7_2573_2573_2573_2580 crossref_primary_10_1002_mrd_20907 crossref_primary_10_3390_biom13050855 crossref_primary_10_1046_j_1365_2567_2001_01312_x crossref_primary_10_1080_19420862_2017_1288770 crossref_primary_10_1038_aja_2011_133 crossref_primary_10_1002__SICI_1097_0045_19990101_38_1_35__AID_PROS4_3_0_CO_2_J |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1172/JCI118594 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EndPage | 1686 |
ExternalDocumentID | PMC507232 8601633 10_1172_JCI118594 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Wellcome Trust |
GroupedDBID | --- -~X .55 .GJ .XZ 08P 29K 2WC 354 3O- 53G 5GY 5RE 5RS 8F7 AAWTL AAYOK AAYXX ABOCM ABPMR ACGFO ACIHN ACNCT ACPRK ADBBV AEAQA AENEX AFCHL AFFNX AHMBA AI. ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ASPBG AVWKF AZFZN BAWUL CITATION CS3 D-I DIK DU5 E3Z EBS EJD EMB F5P FRP GROUPED_DOAJ GX1 HYE H~9 IAO IEA IHR INH IOF IPO J5H KQ8 L7B M1P M5~ MVM N4W OBH OCB ODZKP OFXIZ OGEVE OHH OK1 OVD OVIDX OVT P2P P6G RPM TEORI TR2 TVE UHU VH1 VVN W2D WH7 WOQ WOW X7M XSB YFH YHG YKV YOC ZGI ZXP ZY1 ~H1 CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c369t-2b781dfce95f59a9baf27a5528ced85f0e0fcec5f0da30996cb65915cacde8fa3 |
ISSN | 0021-9738 |
IngestDate | Thu Aug 21 14:13:01 EDT 2025 Fri Jul 11 08:52:38 EDT 2025 Sun Jul 13 02:56:50 EDT 2025 Tue Jul 01 00:54:00 EDT 2025 Thu Apr 24 23:08:24 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c369t-2b781dfce95f59a9baf27a5528ced85f0e0fcec5f0da30996cb65915cacde8fa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://www.jci.org/articles/view/118594/files/pdf |
PMID | 8601633 |
PQID | 77972864 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_507232 proquest_miscellaneous_77972864 pubmed_primary_8601633 crossref_citationtrail_10_1172_JCI118594 crossref_primary_10_1172_JCI118594 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 1900 |
PublicationDate | 1996-4-1 1996-Apr-01 19960401 |
PublicationDateYYYYMMDD | 1996-04-01 |
PublicationDate_xml | – month: 04 year: 1996 text: 1996-4-1 day: 01 |
PublicationDecade | 1990 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of clinical investigation |
PublicationTitleAlternate | J Clin Invest |
PublicationYear | 1996 |
SSID | ssj0014454 |
Score | 1.8763608 |
Snippet | We analyzed and compared the properties of three glycosylphosphatidylinositol (GPI)-anchored proteins. CD59, CD55 (both C regulators), and CDw52, and of the... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1675 |
SubjectTerms | Animals Antigens, CD - metabolism Antigens, Neoplasm CD52 Antigen CD55 Antigens - metabolism CD59 Antigens - metabolism CHO Cells Complement System Proteins - metabolism Cricetinae Erythrocytes - immunology Erythrocytes - metabolism Glycoproteins Glycosylphosphatidylinositols - metabolism Humans In Vitro Techniques Macrophages, Peritoneal - immunology Macrophages, Peritoneal - metabolism Male Membrane Cofactor Protein Membrane Glycoproteins - metabolism Mice Microscopy, Electron Organelles - immunology Organelles - metabolism Organelles - ultrastructure Protein Binding Rats Semen - cytology Semen - immunology Semen - metabolism |
Title | GPI-anchored complement regulatory proteins in seminal plasma. An analysis of their physical condition and the mechanisms of their binding to exogenous cells |
URI | https://www.ncbi.nlm.nih.gov/pubmed/8601633 https://www.proquest.com/docview/77972864 https://pubmed.ncbi.nlm.nih.gov/PMC507232 |
Volume | 97 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZZx0Zfxm5l2VWMPQyGu9ixJOsxZJckI6MPLfQtSLJMTRc7NC6M_ZTB_uuOLpadtg9bX4KxZDvO90U6RzrnOwi9IwKmFcJVNEphCExpkkdSJUUE3GBcc54wG-2-_E5nJ-nilJwOBr97UUuXjTxUv27MK7kNqnAOcDVZsv-BbLgpnIBjwBc-AWH4_CeMvx7NI0DtrDZB5DY43C72fbhwBebN9rnVYShdtPhWuwpeG7CY1-LQLAiKniaJ2zPYtMCBo5yXTRutbOzTtTZpwuV23esuS5cWAyas_ll7xVezG7Dtm71dApo1fUM6ZtmpfNS9lLTah6DNu5XWmTbLKZZzXfLEpDkPyWsLn6mW-5Q-2gt8aTMK4ogzp_LSjsouatezj_WG2Ji6Uit-uo6pk9K-PhUwIy27mM7BhSKukHKPEpu15URm1GicEscV2e2j5RRMZbA376C7CbggpjrGp_m3sEOVpsQrfLvv7lWr4KkfwzP30T3_gF2r55orczUit2fiHD9EDzxAeOKI9ggNdPUY3V_66Isn6E-fb7jjG-74hlu-4bLCnm_Y8w1PKtzyDdcFtgTCLd9w4Bt0yk0j7vjWdfd8w02NA9-w5dtTdPLl8_F0FvnyHpEaU95EiWTgLBVKc1IQLrgURcIEIUmmdJ6RYqRH0KjgIBdjcGSokpTwmCihcp0VYnyA9iog5DOEJZyVisEUkmeplrmI4VoJxhkY1BmMUkP0vv35V8pr35sSLD9W1gdmySpgNkRvQ9eNE3y5qdObFsMVDMfmLUWl4YVXMMKxJKPQ48AhGm7imTBEdAfq0G503ndbqvLM6r07Hj6_7YUv0H73r3uJ9pqLS_0KLOlGvraU_gssv9Sc |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GPI-anchored+complement+regulatory+proteins+in+seminal+plasma.+An+analysis+of+their+physical+condition+and+the+mechanisms+of+their+binding+to+exogenous+cells&rft.jtitle=The+Journal+of+clinical+investigation&rft.au=Rooney%2C+I+A&rft.au=Heuser%2C+J+E&rft.au=Atkinson%2C+J+P&rft.date=1996-04-01&rft.issn=0021-9738&rft.volume=97&rft.issue=7&rft.spage=1675&rft.epage=1686&rft_id=info:doi/10.1172%2FJCI118594&rft_id=info%3Apmid%2F8601633&rft.externalDocID=PMC507232 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9738&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9738&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9738&client=summon |