Principal resonance responses of SDOF systems with small fractional derivative damping under narrow-band random parametric excitation
•The SDOF systems with fractional damping and the narrow-band random excitations.•Multiple scale method is developed to obtain the principal resonance responses.•Effects of the stability of trivial and non-trivial steady-state responses are discussed.•The stochastic jump is investigated for principa...
Saved in:
Published in | Communications in nonlinear science & numerical simulation Vol. 19; no. 10; pp. 3642 - 3652 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.10.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The SDOF systems with fractional damping and the narrow-band random excitations.•Multiple scale method is developed to obtain the principal resonance responses.•Effects of the stability of trivial and non-trivial steady-state responses are discussed.•The stochastic jump is investigated for principal resonance responses.
The principal resonance responses of nonlinear single-degree-of-freedom (SDOF) systems with lightly fractional derivative damping of order α (0<α<1) subject to the narrow-band random parametric excitation are investigated. The method of multiple scales is developed to derive two first order stochastic differential equation of amplitude and phase, and then to examine the influences of fractional order and intensity of random excitation on the first-order and second-order moment. As an example, the stochastic Duffing oscillator with fractional derivative damping is considered. The effects of detuning frequency parameter, the intensity of random excitation and the fractional order derivative damping on stability are studied through the largest Lyapunov exponent. The corresponding theoretical results are well verified through direct numerical simulations. In addition, the phenomenon of stochastic jump is analyzed for parametric principal resonance responses via finite differential method. The stochastic jump phenomena indicates that the most probable motion is around the larger non-trivial branch of the amplitude response when the intensity of excitation is very small, and the probable motion of amplitude responses will move from the larger non-trivial branch to trivial branch with the increasing of the intensity of excitation. Such stochastic jump can be considered as bifurcation. |
---|---|
AbstractList | •The SDOF systems with fractional damping and the narrow-band random excitations.•Multiple scale method is developed to obtain the principal resonance responses.•Effects of the stability of trivial and non-trivial steady-state responses are discussed.•The stochastic jump is investigated for principal resonance responses.
The principal resonance responses of nonlinear single-degree-of-freedom (SDOF) systems with lightly fractional derivative damping of order α (0<α<1) subject to the narrow-band random parametric excitation are investigated. The method of multiple scales is developed to derive two first order stochastic differential equation of amplitude and phase, and then to examine the influences of fractional order and intensity of random excitation on the first-order and second-order moment. As an example, the stochastic Duffing oscillator with fractional derivative damping is considered. The effects of detuning frequency parameter, the intensity of random excitation and the fractional order derivative damping on stability are studied through the largest Lyapunov exponent. The corresponding theoretical results are well verified through direct numerical simulations. In addition, the phenomenon of stochastic jump is analyzed for parametric principal resonance responses via finite differential method. The stochastic jump phenomena indicates that the most probable motion is around the larger non-trivial branch of the amplitude response when the intensity of excitation is very small, and the probable motion of amplitude responses will move from the larger non-trivial branch to trivial branch with the increasing of the intensity of excitation. Such stochastic jump can be considered as bifurcation. The principal resonance responses of nonlinear single-degree-of-freedom (SDOF) systems with lightly fractional derivative damping of order [alpha] (0 < [alpha] < 1) subject to the narrow-band random parametric excitation are investigated. The method of multiple scales is developed to derive two first order stochastic differential equation of amplitude and phase, and then to examine the influences of fractional order and intensity of random excitation on the first-order and second-order moment. As an example, the stochastic Duffing oscillator with fractional derivative damping is considered. The effects of detuning frequency parameter, the intensity of random excitation and the fractional order derivative damping on stability are studied through the largest Lyapunov exponent. The corresponding theoretical results are well verified through direct numerical simulations. In addition, the phenomenon of stochastic jump is analyzed for parametric principal resonance responses via finite differential method. The stochastic jump phenomena indicates that the most probable motion is around the larger non-trivial branch of the amplitude response when the intensity of excitation is very small, and the probable motion of amplitude responses will move from the larger non-trivial branch to trivial branch with the increasing of the intensity of excitation. Such stochastic jump can be considered as bifurcation. |
Author | Xu, Yong Liu, Di Li, Jing |
Author_xml | – sequence: 1 givenname: Di surname: Liu fullname: Liu, Di organization: School of Mathematical Sciences, Shanxi University, Taiyuan 030006, PR China – sequence: 2 givenname: Jing surname: Li fullname: Li, Jing email: di-lau@hotmail.com organization: School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, PR China – sequence: 3 givenname: Yong surname: Xu fullname: Xu, Yong organization: Department of Mathematics, Northwestern Polytechnical University, Xi’an 710072, PR China |
BookMark | eNqFkc1u1TAQRi3USvSHJ2DjJZsEO7bjZMECFQpIlYrUsrYmzgR8ldjB9r2lD8B743Bhw4JuZkbWd0Yan3Ny4oNHQl5yVnPG29e72vrkU90wLmsmasa7Z-SMd7qrdKPlSZkZ05XSTD4n5yntWKF6Jc_Iz8_ReetWmGnEFDx4i9u0Bp8w0TDRu3e31zQ9poxLog8uf6NpgXmmUwSbXSFmOmJ0B8jugHSEZXX-K9378kg9xBgeqgH8SGMpYaErRFgwR2cp_rAuw7bjkpxOMCd88adfkC_X7--vPlY3tx8-Xb29qaxo-1xxFKhFj9AOTLFusDhpKRnqoddWT6obFEDL0QquJVdtxxWXolETH1tspk5ckFfHvWsM3_eYsllcsjjP4DHsk-Gt1r2QTaGejCrVt71Qcov2x6iNIaWIk_l7V47gZsOZ2SyZnfltyWyWDBOmWCqs-Iddo1sgPj5BvTlSWD7r4DCaZB0WdaOLaLMZg_sv_wtkG7IS |
CitedBy_id | crossref_primary_10_1016_j_apm_2018_07_032 crossref_primary_10_1142_S0219455419501293 crossref_primary_10_1063_1_4943753 crossref_primary_10_1088_1674_1056_25_2_020201 crossref_primary_10_1016_j_chaos_2015_05_029 crossref_primary_10_1016_j_chaos_2018_05_009 crossref_primary_10_1155_vib_6631202 crossref_primary_10_1016_j_chaos_2016_03_008 crossref_primary_10_1063_1_5123179 crossref_primary_10_1016_j_cnsns_2017_01_023 crossref_primary_10_1016_j_cnsns_2017_01_033 crossref_primary_10_1155_2016_9638523 crossref_primary_10_4236_wjm_2019_94005 crossref_primary_10_1155_2015_208096 crossref_primary_10_1016_j_cnsns_2016_02_003 crossref_primary_10_1155_2016_6109062 crossref_primary_10_1007_s11071_016_2808_z crossref_primary_10_1016_j_mechmachtheory_2016_10_015 crossref_primary_10_1155_2019_6737139 crossref_primary_10_1016_j_chaos_2017_09_019 crossref_primary_10_1155_2019_6341289 crossref_primary_10_1007_s11071_015_2482_6 crossref_primary_10_1016_j_cnsns_2015_04_018 crossref_primary_10_3390_e19070354 |
Cites_doi | 10.1016/j.ijnonlinmec.2011.07.002 10.1016/j.ijnonlinmec.2005.08.002 10.1007/s11071-008-9395-6 10.2514/3.9007 10.1016/j.cnsns.2011.11.024 10.1115/1.1805003 10.1122/1.550823 10.1007/s11071-004-3755-7 10.1115/1.1471357 10.1007/s00707-008-0110-y 10.1115/1.4026068 10.1002/eqe.4290190207 10.1115/1.3101682 10.1016/j.probengmech.2011.08.017 10.1006/jsvi.2001.3682 10.1115/1.4000563 10.1006/jsvi.1996.0406 10.1016/j.jsv.2011.10.023 10.1007/s11071-013-1002-9 10.1016/j.mechrescom.2012.02.006 10.1155/2009/387676 10.1016/0167-4730(90)90028-N 10.1016/j.mechrescom.2012.07.001 10.2514/3.8142 10.1016/j.cnsns.2013.02.013 10.1007/BF00879562 10.1002/eqe.4290210801 10.1080/14786443808562036 10.1016/j.mechrescom.2006.09.003 10.1016/j.jsv.2008.06.026 10.1016/j.cnsns.2010.08.027 10.1016/S0020-7462(01)00082-8 10.1007/s11071-009-9543-7 10.1007/s10409-013-0029-y 10.1122/1.549724 10.1006/jsvi.1995.0457 |
ContentType | Journal Article |
Copyright | 2014 Elsevier B.V. |
Copyright_xml | – notice: 2014 Elsevier B.V. |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1016/j.cnsns.2014.03.018 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1878-7274 |
EndPage | 3652 |
ExternalDocumentID | 10_1016_j_cnsns_2014_03_018 S1007570414001439 |
GroupedDBID | --K --M -01 -0A -0I -0Y -SA -S~ .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VR 5VS 7-5 71M 8P~ 92M 9D9 9DA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABFNM ABJNI ABMAC ABNEU ABXDB ABYKQ ACAZW ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADGUI ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AFUIB AGHFR AGUBO AGYEJ AHJVU AIEXJ AIGVJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CAJEA CAJUS CCEZO CCVFK CHBEP CS3 CUBFJ DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FA0 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA JUIAU KOM M41 MHUIS MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q-- Q-0 Q38 R-A R-I R2- RIG ROL RPZ RT1 RT9 S.. SDF SDG SES SEW SPC SPCBC SPD SSQ SST SSW SSZ T5K T8Q T8Y U1F U1G U5A U5I U5K UHS ~G- ~LA AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SC 7TB 8FD EFKBS FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c369t-1e3e739ea6b0508bcef7440e7b97c7f58b5aa61ec317415681514325f1d6e2f83 |
IEDL.DBID | .~1 |
ISSN | 1007-5704 |
IngestDate | Mon Jul 21 11:49:15 EDT 2025 Tue Aug 05 08:51:35 EDT 2025 Tue Jul 01 01:08:58 EDT 2025 Thu Apr 24 22:59:23 EDT 2025 Fri Feb 23 02:25:45 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Fractional derivative damping SDOF nonlinear systems Narrow-band noise Multiple scale method |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c369t-1e3e739ea6b0508bcef7440e7b97c7f58b5aa61ec317415681514325f1d6e2f83 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PQID | 1559693544 |
PQPubID | 23500 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1677934214 proquest_miscellaneous_1559693544 crossref_citationtrail_10_1016_j_cnsns_2014_03_018 crossref_primary_10_1016_j_cnsns_2014_03_018 elsevier_sciencedirect_doi_10_1016_j_cnsns_2014_03_018 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-10-01 |
PublicationDateYYYYMMDD | 2014-10-01 |
PublicationDate_xml | – month: 10 year: 2014 text: 2014-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Communications in nonlinear science & numerical simulation |
PublicationYear | 2014 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Leung, Yang, Guo (b0080) 2012; 331 Rong, Xu, Wang, Meng, Fang (b0190) 2003; 38 Leung, Guo, Yang (b0085) 2013; 18 Makris, Constantinou (b0035) 1992; 21 Qi, Xu (b0070) 2007; 34 Bagley, Torvik (b0015) 1983; 27 Rossikhin, Shitikova (b0110) 2009; 16 Pritz (b0045) 1996; 195 Leung, Guo (b0075) 2011; 16 Chen, Zhu (b0160) 2011; 46 Chen, Zhu (b0150) 2009; 56 Huang, Jin (b0145) 2009; 319 Bagley, Torvik (b0025) 1985; 23 Huang, Jin, Lim, Wang (b0130) 2010; 59 Agrawal (b0050) 2004; 38 Paola, Failla, Pirrotta (b0135) 2012; 28 Oseledec (b0195) 1968; 19 Rossikhin, Shitikova (b0105) 2006; 41 Caputo, Mainardi (b0010) 1971; 91 Koh, Kelly (b0030) 1990; 19 Agrawal (b0125) 2004; 126 Xu, Li, Liu (b0200) 2014; 9 Agrawal (b0115) 2001; 247 Wedig (b0175) 1990; 8 Makris (b0040) 1997; 41 Shen, Yang, Xing, Gao (b0095) 2012; 17 Agrawal (b0120) 2002; 124 Kovacic, Zukovic (b0090) 2012; 41 Lin, Cai (b0185) 1995 Rossikhin, Shitikova (b0100) 1995; 186 Liu, Xu, Xu (b0140) 2013; 29 Gemant (b0005) 1938; 25 Rossikhin, Shitikova (b0060) 1997; 50 Rossikhin, Shitikova (b0180) 2012; 45 Mainardi (b0055) 2010 Xu, Li, Liu, Jia, Huang (b0165) 2013; 74 Bagley, Torvik (b0020) 1983; 21 Chen, Zhu (b0155) 2009; 207 Rossikhin, Shitikova (b0065) 2010; 63 Rossikhin (10.1016/j.cnsns.2014.03.018_b0060) 1997; 50 Chen (10.1016/j.cnsns.2014.03.018_b0155) 2009; 207 Shen (10.1016/j.cnsns.2014.03.018_b0095) 2012; 17 Paola (10.1016/j.cnsns.2014.03.018_b0135) 2012; 28 Agrawal (10.1016/j.cnsns.2014.03.018_b0120) 2002; 124 Rossikhin (10.1016/j.cnsns.2014.03.018_b0105) 2006; 41 Xu (10.1016/j.cnsns.2014.03.018_b0200) 2014; 9 Rossikhin (10.1016/j.cnsns.2014.03.018_b0180) 2012; 45 Huang (10.1016/j.cnsns.2014.03.018_b0145) 2009; 319 Rong (10.1016/j.cnsns.2014.03.018_b0190) 2003; 38 Rossikhin (10.1016/j.cnsns.2014.03.018_b0065) 2010; 63 Chen (10.1016/j.cnsns.2014.03.018_b0150) 2009; 56 Huang (10.1016/j.cnsns.2014.03.018_b0130) 2010; 59 Bagley (10.1016/j.cnsns.2014.03.018_b0015) 1983; 27 Gemant (10.1016/j.cnsns.2014.03.018_b0005) 1938; 25 Bagley (10.1016/j.cnsns.2014.03.018_b0020) 1983; 21 Chen (10.1016/j.cnsns.2014.03.018_b0160) 2011; 46 Makris (10.1016/j.cnsns.2014.03.018_b0040) 1997; 41 Agrawal (10.1016/j.cnsns.2014.03.018_b0115) 2001; 247 Agrawal (10.1016/j.cnsns.2014.03.018_b0125) 2004; 126 Rossikhin (10.1016/j.cnsns.2014.03.018_b0100) 1995; 186 Liu (10.1016/j.cnsns.2014.03.018_b0140) 2013; 29 Mainardi (10.1016/j.cnsns.2014.03.018_b0055) 2010 Leung (10.1016/j.cnsns.2014.03.018_b0075) 2011; 16 Agrawal (10.1016/j.cnsns.2014.03.018_b0050) 2004; 38 Wedig (10.1016/j.cnsns.2014.03.018_b0175) 1990; 8 Qi (10.1016/j.cnsns.2014.03.018_b0070) 2007; 34 Caputo (10.1016/j.cnsns.2014.03.018_b0010) 1971; 91 Oseledec (10.1016/j.cnsns.2014.03.018_b0195) 1968; 19 Leung (10.1016/j.cnsns.2014.03.018_b0080) 2012; 331 Leung (10.1016/j.cnsns.2014.03.018_b0085) 2013; 18 Koh (10.1016/j.cnsns.2014.03.018_b0030) 1990; 19 Pritz (10.1016/j.cnsns.2014.03.018_b0045) 1996; 195 Makris (10.1016/j.cnsns.2014.03.018_b0035) 1992; 21 Bagley (10.1016/j.cnsns.2014.03.018_b0025) 1985; 23 Rossikhin (10.1016/j.cnsns.2014.03.018_b0110) 2009; 16 Xu (10.1016/j.cnsns.2014.03.018_b0165) 2013; 74 Kovacic (10.1016/j.cnsns.2014.03.018_b0090) 2012; 41 Lin (10.1016/j.cnsns.2014.03.018_b0185) 1995 |
References_xml | – volume: 41 start-page: 1007 year: 1997 end-page: 1020 ident: b0040 article-title: Three-dimensional constitutive viscoelastic law with fractional order time derivatives publication-title: J Rheol – volume: 19 start-page: 197 year: 1968 end-page: 231 ident: b0195 article-title: A multiplicative Ergodic theorem–Lyapunov characteristic numbers for dynamical systems publication-title: Trans Moscow Math Soc – volume: 21 start-page: 649 year: 1992 end-page: 664 ident: b0035 article-title: Spring-viscous damper systems of combined seismic and vibration isolation publication-title: Earthquake Eng Struct D – volume: 41 start-page: 313 year: 2006 end-page: 325 ident: b0105 article-title: Analysis of free non-linear vibrations of a viscoelastic plate under the conditions of different internal resonances publication-title: Int J Non-Linear Mech – volume: 8 start-page: 13 year: 1990 end-page: 25 ident: b0175 article-title: Invariant measures and Lyapunov exponents for generalized parameter fluctuations publication-title: Struct Safety – volume: 74 start-page: 745 year: 2013 end-page: 753 ident: b0165 article-title: Responses of Duffing oscillator with fractional damping and random phase publication-title: Nonlinear Dyn – volume: 16 start-page: 365 year: 2009 end-page: 387 ident: b0110 article-title: New approach for the analysis of damped vibrations of fractional oscillators publication-title: Shock Vib – volume: 16 start-page: 2169 year: 2011 end-page: 2183 ident: b0075 article-title: Forward residue harmonic balance for autonomous and non-autonomous systems with fractional derivative damping publication-title: Commun Nonlinear Sci Numer Simul – volume: 38 start-page: 191 year: 2004 end-page: 206 ident: b0050 article-title: Application of fractional derivatives in thermal analysis of disk brakes publication-title: Nonlinear Dyn – volume: 46 start-page: 1324 year: 2011 end-page: 1329 ident: b0160 article-title: Stochastic jump and bifurcation of Duffing oscillator with fractional derivative damping under combined harmonic and white noise excitations publication-title: Int J Non-Linear Mech – volume: 23 start-page: 918 year: 1985 end-page: 925 ident: b0025 article-title: Fractional calculus in the transient analysis of viscoelastically damped structures publication-title: AIAA J – volume: 91 start-page: 134 year: 1971 end-page: 147 ident: b0010 article-title: A new dissipation model based on memory mechanism publication-title: Pure Appl Geophys – volume: 195 start-page: 103 year: 1996 end-page: 115 ident: b0045 article-title: Analysis of four-parameter fractional derivative model of real solid materials publication-title: J Sound Vib – volume: 56 start-page: 231 year: 2009 end-page: 241 ident: b0150 article-title: Stochastic averaging of strongly nonlinear oscillators with small fractional derivative damping under combined harmonic and white noise excitations publication-title: Nonlinear Dyn – volume: 34 start-page: 210 year: 2007 end-page: 212 ident: b0070 article-title: Unsteady flow of viscoelastic fluid with fractional Maxwell model in a channel publication-title: Mech Res Commun – volume: 45 start-page: 22 year: 2012 end-page: 27 ident: b0180 article-title: On fallacies in the decision between the Caputo and Riemann–Liouville fractional derivatives for the analysis of the dynamic response of a nonlinear viscoelastic oscillator publication-title: Mech Res Commun – volume: 207 start-page: 109 year: 2009 end-page: 120 ident: b0155 article-title: Stochastic stability of Duffing oscillator with fractional derivative damping under combined harmonic and white noise parametric excitations publication-title: Acta Mech – volume: 41 start-page: 37 year: 2012 end-page: 43 ident: b0090 article-title: Oscillator with a power-form restoring force and fractional derivative damping: application of averaging publication-title: Mech Res Commun – volume: 63 year: 2010 ident: b0065 article-title: Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results publication-title: Appl Mech Rev – year: 2010 ident: b0055 article-title: Fractional calculus and wave in linear viscoelasticity – volume: 21 start-page: 741 year: 1983 end-page: 748 ident: b0020 article-title: Fractional calculus-a different approach to the analysis of viscoelastically damped structures publication-title: AIAA J – year: 1995 ident: b0185 article-title: Probabilistic structural dynamics advanced theory and applications – volume: 18 start-page: 2900 year: 2013 end-page: 2915 ident: b0085 article-title: Fractional derivative and time delay damper characteristics in Duffing–van der Pol oscillators publication-title: Commun Nonlinear Sci Numer Simul – volume: 28 start-page: 85 year: 2012 end-page: 90 ident: b0135 article-title: Stationary and non-stationary stochastic response of linear fractional viscoelastic systems publication-title: Probab Eng Mech – volume: 124 start-page: 454 year: 2002 end-page: 460 ident: b0120 article-title: Stochastic analysis of a 1-D system with fractional damping of order 1/2 publication-title: ASME J Vib Acoust – volume: 50 start-page: 15 year: 1997 end-page: 67 ident: b0060 article-title: Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids publication-title: Appl Mech Rev – volume: 247 start-page: 927 year: 2001 end-page: 938 ident: b0115 article-title: Stochastic analysis of dynamic systems containing fractional derivatives publication-title: J Sound Vib – volume: 38 start-page: 609 year: 2003 end-page: 614 ident: b0190 article-title: Maximal Lyapunov exponent and almost-sure sample stability for second order linear stochastic system publication-title: Int J Non-Linear Mech – volume: 19 start-page: 229 year: 1990 end-page: 241 ident: b0030 article-title: Application of fractional derivatives to seismic analysis of base-isolated models publication-title: Earthquake Eng Struct D – volume: 25 start-page: 540 year: 1938 end-page: 549 ident: b0005 article-title: On fractional differentials publication-title: Philos Mag – volume: 126 start-page: 561 year: 2004 end-page: 566 ident: b0125 article-title: Analytical solution for stochastic response of a fractionally damped beam publication-title: ASME J Vib Acoust – volume: 331 start-page: 1115 year: 2012 end-page: 1126 ident: b0080 article-title: The residue harmonic balance for fractional order van der Pol like oscillators publication-title: J Sound Vib – volume: 29 start-page: 443 year: 2013 end-page: 451 ident: b0140 article-title: Stochastic response of an axially moving viscoelastic beam with fractional order constitutive relation and random excitations publication-title: Acta Mech Sin – volume: 17 start-page: 3092 year: 2012 end-page: 3100 ident: b0095 article-title: Primary resonance of Duffing oscillator with fractional-order derivative publication-title: Commun Nonlinear Sci Numer Simul – volume: 27 start-page: 201 year: 1983 end-page: 210 ident: b0015 article-title: A theoretical basis for the application of fractional calculus publication-title: J Rheol – volume: 186 start-page: 369 year: 1995 end-page: 393 ident: b0100 article-title: Analysis of nonlinear free vibrations of suspension bridges publication-title: J Sound Vib – volume: 59 start-page: 339 year: 2010 end-page: 349 ident: b0130 article-title: Statistical analysis for stochastic systems including fractional derivatives publication-title: Nonlinear Dyn – volume: 319 start-page: 1121 year: 2009 end-page: 1135 ident: b0145 article-title: Response and stability of a SDOF strongly nonlinear stochastic system with light damping modeled by a fractional derivative publication-title: J Sound Vib – volume: 9 start-page: 031015 year: 2014 ident: b0200 article-title: Response of fractional oscillators with viscoelastic term under random excitation publication-title: J Comput Nonlinear Dyn. – volume: 46 start-page: 1324 year: 2011 ident: 10.1016/j.cnsns.2014.03.018_b0160 article-title: Stochastic jump and bifurcation of Duffing oscillator with fractional derivative damping under combined harmonic and white noise excitations publication-title: Int J Non-Linear Mech doi: 10.1016/j.ijnonlinmec.2011.07.002 – volume: 41 start-page: 313 year: 2006 ident: 10.1016/j.cnsns.2014.03.018_b0105 article-title: Analysis of free non-linear vibrations of a viscoelastic plate under the conditions of different internal resonances publication-title: Int J Non-Linear Mech doi: 10.1016/j.ijnonlinmec.2005.08.002 – volume: 56 start-page: 231 year: 2009 ident: 10.1016/j.cnsns.2014.03.018_b0150 article-title: Stochastic averaging of strongly nonlinear oscillators with small fractional derivative damping under combined harmonic and white noise excitations publication-title: Nonlinear Dyn doi: 10.1007/s11071-008-9395-6 – volume: 23 start-page: 918 year: 1985 ident: 10.1016/j.cnsns.2014.03.018_b0025 article-title: Fractional calculus in the transient analysis of viscoelastically damped structures publication-title: AIAA J doi: 10.2514/3.9007 – volume: 17 start-page: 3092 year: 2012 ident: 10.1016/j.cnsns.2014.03.018_b0095 article-title: Primary resonance of Duffing oscillator with fractional-order derivative publication-title: Commun Nonlinear Sci Numer Simul doi: 10.1016/j.cnsns.2011.11.024 – volume: 126 start-page: 561 year: 2004 ident: 10.1016/j.cnsns.2014.03.018_b0125 article-title: Analytical solution for stochastic response of a fractionally damped beam publication-title: ASME J Vib Acoust doi: 10.1115/1.1805003 – volume: 41 start-page: 1007 year: 1997 ident: 10.1016/j.cnsns.2014.03.018_b0040 article-title: Three-dimensional constitutive viscoelastic law with fractional order time derivatives publication-title: J Rheol doi: 10.1122/1.550823 – volume: 38 start-page: 191 year: 2004 ident: 10.1016/j.cnsns.2014.03.018_b0050 article-title: Application of fractional derivatives in thermal analysis of disk brakes publication-title: Nonlinear Dyn doi: 10.1007/s11071-004-3755-7 – volume: 124 start-page: 454 year: 2002 ident: 10.1016/j.cnsns.2014.03.018_b0120 article-title: Stochastic analysis of a 1-D system with fractional damping of order 1/2 publication-title: ASME J Vib Acoust doi: 10.1115/1.1471357 – volume: 207 start-page: 109 year: 2009 ident: 10.1016/j.cnsns.2014.03.018_b0155 article-title: Stochastic stability of Duffing oscillator with fractional derivative damping under combined harmonic and white noise parametric excitations publication-title: Acta Mech doi: 10.1007/s00707-008-0110-y – volume: 9 start-page: 031015 year: 2014 ident: 10.1016/j.cnsns.2014.03.018_b0200 article-title: Response of fractional oscillators with viscoelastic term under random excitation publication-title: J Comput Nonlinear Dyn. doi: 10.1115/1.4026068 – volume: 19 start-page: 229 year: 1990 ident: 10.1016/j.cnsns.2014.03.018_b0030 article-title: Application of fractional derivatives to seismic analysis of base-isolated models publication-title: Earthquake Eng Struct D doi: 10.1002/eqe.4290190207 – volume: 50 start-page: 15 year: 1997 ident: 10.1016/j.cnsns.2014.03.018_b0060 article-title: Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids publication-title: Appl Mech Rev doi: 10.1115/1.3101682 – volume: 28 start-page: 85 year: 2012 ident: 10.1016/j.cnsns.2014.03.018_b0135 article-title: Stationary and non-stationary stochastic response of linear fractional viscoelastic systems publication-title: Probab Eng Mech doi: 10.1016/j.probengmech.2011.08.017 – year: 1995 ident: 10.1016/j.cnsns.2014.03.018_b0185 – volume: 247 start-page: 927 year: 2001 ident: 10.1016/j.cnsns.2014.03.018_b0115 article-title: Stochastic analysis of dynamic systems containing fractional derivatives publication-title: J Sound Vib doi: 10.1006/jsvi.2001.3682 – volume: 63 year: 2010 ident: 10.1016/j.cnsns.2014.03.018_b0065 article-title: Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results publication-title: Appl Mech Rev doi: 10.1115/1.4000563 – volume: 195 start-page: 103 year: 1996 ident: 10.1016/j.cnsns.2014.03.018_b0045 article-title: Analysis of four-parameter fractional derivative model of real solid materials publication-title: J Sound Vib doi: 10.1006/jsvi.1996.0406 – volume: 331 start-page: 1115 year: 2012 ident: 10.1016/j.cnsns.2014.03.018_b0080 article-title: The residue harmonic balance for fractional order van der Pol like oscillators publication-title: J Sound Vib doi: 10.1016/j.jsv.2011.10.023 – volume: 74 start-page: 745 year: 2013 ident: 10.1016/j.cnsns.2014.03.018_b0165 article-title: Responses of Duffing oscillator with fractional damping and random phase publication-title: Nonlinear Dyn doi: 10.1007/s11071-013-1002-9 – volume: 41 start-page: 37 year: 2012 ident: 10.1016/j.cnsns.2014.03.018_b0090 article-title: Oscillator with a power-form restoring force and fractional derivative damping: application of averaging publication-title: Mech Res Commun doi: 10.1016/j.mechrescom.2012.02.006 – volume: 16 start-page: 365 year: 2009 ident: 10.1016/j.cnsns.2014.03.018_b0110 article-title: New approach for the analysis of damped vibrations of fractional oscillators publication-title: Shock Vib doi: 10.1155/2009/387676 – volume: 8 start-page: 13 year: 1990 ident: 10.1016/j.cnsns.2014.03.018_b0175 article-title: Invariant measures and Lyapunov exponents for generalized parameter fluctuations publication-title: Struct Safety doi: 10.1016/0167-4730(90)90028-N – volume: 45 start-page: 22 year: 2012 ident: 10.1016/j.cnsns.2014.03.018_b0180 article-title: On fallacies in the decision between the Caputo and Riemann–Liouville fractional derivatives for the analysis of the dynamic response of a nonlinear viscoelastic oscillator publication-title: Mech Res Commun doi: 10.1016/j.mechrescom.2012.07.001 – year: 2010 ident: 10.1016/j.cnsns.2014.03.018_b0055 – volume: 21 start-page: 741 year: 1983 ident: 10.1016/j.cnsns.2014.03.018_b0020 article-title: Fractional calculus-a different approach to the analysis of viscoelastically damped structures publication-title: AIAA J doi: 10.2514/3.8142 – volume: 18 start-page: 2900 year: 2013 ident: 10.1016/j.cnsns.2014.03.018_b0085 article-title: Fractional derivative and time delay damper characteristics in Duffing–van der Pol oscillators publication-title: Commun Nonlinear Sci Numer Simul doi: 10.1016/j.cnsns.2013.02.013 – volume: 91 start-page: 134 year: 1971 ident: 10.1016/j.cnsns.2014.03.018_b0010 article-title: A new dissipation model based on memory mechanism publication-title: Pure Appl Geophys doi: 10.1007/BF00879562 – volume: 21 start-page: 649 year: 1992 ident: 10.1016/j.cnsns.2014.03.018_b0035 article-title: Spring-viscous damper systems of combined seismic and vibration isolation publication-title: Earthquake Eng Struct D doi: 10.1002/eqe.4290210801 – volume: 25 start-page: 540 year: 1938 ident: 10.1016/j.cnsns.2014.03.018_b0005 article-title: On fractional differentials publication-title: Philos Mag doi: 10.1080/14786443808562036 – volume: 34 start-page: 210 year: 2007 ident: 10.1016/j.cnsns.2014.03.018_b0070 article-title: Unsteady flow of viscoelastic fluid with fractional Maxwell model in a channel publication-title: Mech Res Commun doi: 10.1016/j.mechrescom.2006.09.003 – volume: 319 start-page: 1121 year: 2009 ident: 10.1016/j.cnsns.2014.03.018_b0145 article-title: Response and stability of a SDOF strongly nonlinear stochastic system with light damping modeled by a fractional derivative publication-title: J Sound Vib doi: 10.1016/j.jsv.2008.06.026 – volume: 16 start-page: 2169 year: 2011 ident: 10.1016/j.cnsns.2014.03.018_b0075 article-title: Forward residue harmonic balance for autonomous and non-autonomous systems with fractional derivative damping publication-title: Commun Nonlinear Sci Numer Simul doi: 10.1016/j.cnsns.2010.08.027 – volume: 38 start-page: 609 year: 2003 ident: 10.1016/j.cnsns.2014.03.018_b0190 article-title: Maximal Lyapunov exponent and almost-sure sample stability for second order linear stochastic system publication-title: Int J Non-Linear Mech doi: 10.1016/S0020-7462(01)00082-8 – volume: 59 start-page: 339 year: 2010 ident: 10.1016/j.cnsns.2014.03.018_b0130 article-title: Statistical analysis for stochastic systems including fractional derivatives publication-title: Nonlinear Dyn doi: 10.1007/s11071-009-9543-7 – volume: 29 start-page: 443 issue: 3 year: 2013 ident: 10.1016/j.cnsns.2014.03.018_b0140 article-title: Stochastic response of an axially moving viscoelastic beam with fractional order constitutive relation and random excitations publication-title: Acta Mech Sin doi: 10.1007/s10409-013-0029-y – volume: 19 start-page: 197 year: 1968 ident: 10.1016/j.cnsns.2014.03.018_b0195 article-title: A multiplicative Ergodic theorem–Lyapunov characteristic numbers for dynamical systems publication-title: Trans Moscow Math Soc – volume: 27 start-page: 201 year: 1983 ident: 10.1016/j.cnsns.2014.03.018_b0015 article-title: A theoretical basis for the application of fractional calculus publication-title: J Rheol doi: 10.1122/1.549724 – volume: 186 start-page: 369 year: 1995 ident: 10.1016/j.cnsns.2014.03.018_b0100 article-title: Analysis of nonlinear free vibrations of suspension bridges publication-title: J Sound Vib doi: 10.1006/jsvi.1995.0457 |
SSID | ssj0016954 |
Score | 2.2073863 |
Snippet | •The SDOF systems with fractional damping and the narrow-band random excitations.•Multiple scale method is developed to obtain the principal resonance... The principal resonance responses of nonlinear single-degree-of-freedom (SDOF) systems with lightly fractional derivative damping of order [alpha] (0 < [alpha]... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3642 |
SubjectTerms | Amplitudes Damping Derivatives Excitation Fractional derivative damping Mathematical models Multiple scale method Narrow-band noise Nonlinearity Random excitation SDOF nonlinear systems Stochasticity |
Title | Principal resonance responses of SDOF systems with small fractional derivative damping under narrow-band random parametric excitation |
URI | https://dx.doi.org/10.1016/j.cnsns.2014.03.018 https://www.proquest.com/docview/1559693544 https://www.proquest.com/docview/1677934214 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxUxEA-lvXhR6wdWbYng0fg2m4_dHEv18VSsQi30FpLsBCrv7Za3r9JTb_7fzWR3C4q8g7fNMgMhM5mZJDO_IeQth7r2QStmqkIx2ZiCmag4Cy4o7UztnMPi5K-nenEuP1-oix1yMtXCYFrlaPsHm56t9fhnNq7m7OrycnaG7_uqKmQ6IiBIHRbxSVmhlr-_vU_z4NrkTmhIzJB6Qh7KOV6h7VvE7OYyI51i549_e6e_7HR2PvPH5OEYNdLjYWL7ZAfaJ-TRGEHScX_2T8nv78PdeaJNx-gOwTQAvzANFnraRXr24ducDvDNPcVLWNqv3HJJ43qocEicTVLKXxkPnDZuhfVUFCvN1rTNgI3Mu7ahycU13YoicvgKm3IFCjdhxPt-Rs7nH3-cLNjYaIEFoc2GcRBQCQNO-yIFbD5ARNxAqLypQhVV7ZVzmkNIwQYe-GqOYVapIm80lLEWz8lu27XwgtDk3QQUrgAvS-zi4V0MIvrEzJ1QHA5IOS2wnWaFzTCWdko3-2mzVCxKxRbCJqkckHf3TFcDCMd2cj1Jzv6hSza5ie2MbyY527TL8OnEtdBd9xYfb7URSsotNLpKxk6WXL783wm8Ig9wNCQLvia7m_U1HKagZ-OPslYfkb3jT18Wp3dJ5wTD |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbp5tBe-i5Nnyr0WLGW9bB1DGmXTZNsC0kgNyHJY0jYtcN6U_IH8r-rseVAS9lDb0aeAaGRZkaamW8I-cyhLH3QipkiU0xWJmOmVpwFF5R2pnTOYXHyyULPz-X3C3WxQw7GWhhMq0y6f9DpvbZOI9O0mtPry8vpKcb3VZHJeEVAkDrzgOwiOpWakN39w6P54j6YoE3fDA3pGTKM4EN9mldougZhu7nswU6x-ce_DdRfqrq3P7On5HFyHOn-MLdnZAea5-RJciJpOqLdC3L3c3g-j7TxJt0ingbgF2bCQkfbmp5-_TGjA4JzR_EdlnYrt1zSej0UOUTOKu7LXz0kOK3cCkuqKBabrWnTYzYy75qKRitXtSuK4OEr7MsVKNyGBPn9kpzPvp0dzFnqtcCC0GbDOAgohAGnfRZ9Nh-gRuhAKLwpQlGr0ivnNIcQ_Q2885UcPa1c1bzSkNeleEUmTdvAa0KjgROQuQy8zLGRh3d1ELWPzNwJxWGP5OMC23FW2A9jaceMsyvbS8WiVGwmbJTKHvlyz3Q94HBsJ9ej5Owf28lGS7Gd8dMoZxsPGkZPXAPtTWcxfquNUFJuodFF1Hcy5_LN_07gI3k4Pzs5tseHi6O35BH-GXIH35HJZn0D76MPtPEf0h7_DSo2B3Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Principal+resonance+responses+of+SDOF+systems+with+small+fractional+derivative+damping+under+narrow-band+random+parametric+excitation&rft.jtitle=Communications+in+nonlinear+science+%26+numerical+simulation&rft.au=Liu%2C+Di&rft.au=Li%2C+Jing&rft.au=Xu%2C+Yong&rft.date=2014-10-01&rft.issn=1007-5704&rft.volume=19&rft.issue=10&rft.spage=3642&rft.epage=3652&rft_id=info:doi/10.1016%2Fj.cnsns.2014.03.018&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cnsns_2014_03_018 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1007-5704&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1007-5704&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1007-5704&client=summon |