Principal resonance responses of SDOF systems with small fractional derivative damping under narrow-band random parametric excitation

•The SDOF systems with fractional damping and the narrow-band random excitations.•Multiple scale method is developed to obtain the principal resonance responses.•Effects of the stability of trivial and non-trivial steady-state responses are discussed.•The stochastic jump is investigated for principa...

Full description

Saved in:
Bibliographic Details
Published inCommunications in nonlinear science & numerical simulation Vol. 19; no. 10; pp. 3642 - 3652
Main Authors Liu, Di, Li, Jing, Xu, Yong
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.10.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •The SDOF systems with fractional damping and the narrow-band random excitations.•Multiple scale method is developed to obtain the principal resonance responses.•Effects of the stability of trivial and non-trivial steady-state responses are discussed.•The stochastic jump is investigated for principal resonance responses. The principal resonance responses of nonlinear single-degree-of-freedom (SDOF) systems with lightly fractional derivative damping of order α (0<α<1) subject to the narrow-band random parametric excitation are investigated. The method of multiple scales is developed to derive two first order stochastic differential equation of amplitude and phase, and then to examine the influences of fractional order and intensity of random excitation on the first-order and second-order moment. As an example, the stochastic Duffing oscillator with fractional derivative damping is considered. The effects of detuning frequency parameter, the intensity of random excitation and the fractional order derivative damping on stability are studied through the largest Lyapunov exponent. The corresponding theoretical results are well verified through direct numerical simulations. In addition, the phenomenon of stochastic jump is analyzed for parametric principal resonance responses via finite differential method. The stochastic jump phenomena indicates that the most probable motion is around the larger non-trivial branch of the amplitude response when the intensity of excitation is very small, and the probable motion of amplitude responses will move from the larger non-trivial branch to trivial branch with the increasing of the intensity of excitation. Such stochastic jump can be considered as bifurcation.
AbstractList •The SDOF systems with fractional damping and the narrow-band random excitations.•Multiple scale method is developed to obtain the principal resonance responses.•Effects of the stability of trivial and non-trivial steady-state responses are discussed.•The stochastic jump is investigated for principal resonance responses. The principal resonance responses of nonlinear single-degree-of-freedom (SDOF) systems with lightly fractional derivative damping of order α (0<α<1) subject to the narrow-band random parametric excitation are investigated. The method of multiple scales is developed to derive two first order stochastic differential equation of amplitude and phase, and then to examine the influences of fractional order and intensity of random excitation on the first-order and second-order moment. As an example, the stochastic Duffing oscillator with fractional derivative damping is considered. The effects of detuning frequency parameter, the intensity of random excitation and the fractional order derivative damping on stability are studied through the largest Lyapunov exponent. The corresponding theoretical results are well verified through direct numerical simulations. In addition, the phenomenon of stochastic jump is analyzed for parametric principal resonance responses via finite differential method. The stochastic jump phenomena indicates that the most probable motion is around the larger non-trivial branch of the amplitude response when the intensity of excitation is very small, and the probable motion of amplitude responses will move from the larger non-trivial branch to trivial branch with the increasing of the intensity of excitation. Such stochastic jump can be considered as bifurcation.
The principal resonance responses of nonlinear single-degree-of-freedom (SDOF) systems with lightly fractional derivative damping of order [alpha] (0 < [alpha] < 1) subject to the narrow-band random parametric excitation are investigated. The method of multiple scales is developed to derive two first order stochastic differential equation of amplitude and phase, and then to examine the influences of fractional order and intensity of random excitation on the first-order and second-order moment. As an example, the stochastic Duffing oscillator with fractional derivative damping is considered. The effects of detuning frequency parameter, the intensity of random excitation and the fractional order derivative damping on stability are studied through the largest Lyapunov exponent. The corresponding theoretical results are well verified through direct numerical simulations. In addition, the phenomenon of stochastic jump is analyzed for parametric principal resonance responses via finite differential method. The stochastic jump phenomena indicates that the most probable motion is around the larger non-trivial branch of the amplitude response when the intensity of excitation is very small, and the probable motion of amplitude responses will move from the larger non-trivial branch to trivial branch with the increasing of the intensity of excitation. Such stochastic jump can be considered as bifurcation.
Author Xu, Yong
Liu, Di
Li, Jing
Author_xml – sequence: 1
  givenname: Di
  surname: Liu
  fullname: Liu, Di
  organization: School of Mathematical Sciences, Shanxi University, Taiyuan 030006, PR China
– sequence: 2
  givenname: Jing
  surname: Li
  fullname: Li, Jing
  email: di-lau@hotmail.com
  organization: School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, PR China
– sequence: 3
  givenname: Yong
  surname: Xu
  fullname: Xu, Yong
  organization: Department of Mathematics, Northwestern Polytechnical University, Xi’an 710072, PR China
BookMark eNqFkc1u1TAQRi3USvSHJ2DjJZsEO7bjZMECFQpIlYrUsrYmzgR8ldjB9r2lD8B743Bhw4JuZkbWd0Yan3Ny4oNHQl5yVnPG29e72vrkU90wLmsmasa7Z-SMd7qrdKPlSZkZ05XSTD4n5yntWKF6Jc_Iz8_ReetWmGnEFDx4i9u0Bp8w0TDRu3e31zQ9poxLog8uf6NpgXmmUwSbXSFmOmJ0B8jugHSEZXX-K9378kg9xBgeqgH8SGMpYaErRFgwR2cp_rAuw7bjkpxOMCd88adfkC_X7--vPlY3tx8-Xb29qaxo-1xxFKhFj9AOTLFusDhpKRnqoddWT6obFEDL0QquJVdtxxWXolETH1tspk5ckFfHvWsM3_eYsllcsjjP4DHsk-Gt1r2QTaGejCrVt71Qcov2x6iNIaWIk_l7V47gZsOZ2SyZnfltyWyWDBOmWCqs-Iddo1sgPj5BvTlSWD7r4DCaZB0WdaOLaLMZg_sv_wtkG7IS
CitedBy_id crossref_primary_10_1016_j_apm_2018_07_032
crossref_primary_10_1142_S0219455419501293
crossref_primary_10_1063_1_4943753
crossref_primary_10_1088_1674_1056_25_2_020201
crossref_primary_10_1016_j_chaos_2015_05_029
crossref_primary_10_1016_j_chaos_2018_05_009
crossref_primary_10_1155_vib_6631202
crossref_primary_10_1016_j_chaos_2016_03_008
crossref_primary_10_1063_1_5123179
crossref_primary_10_1016_j_cnsns_2017_01_023
crossref_primary_10_1016_j_cnsns_2017_01_033
crossref_primary_10_1155_2016_9638523
crossref_primary_10_4236_wjm_2019_94005
crossref_primary_10_1155_2015_208096
crossref_primary_10_1016_j_cnsns_2016_02_003
crossref_primary_10_1155_2016_6109062
crossref_primary_10_1007_s11071_016_2808_z
crossref_primary_10_1016_j_mechmachtheory_2016_10_015
crossref_primary_10_1155_2019_6737139
crossref_primary_10_1016_j_chaos_2017_09_019
crossref_primary_10_1155_2019_6341289
crossref_primary_10_1007_s11071_015_2482_6
crossref_primary_10_1016_j_cnsns_2015_04_018
crossref_primary_10_3390_e19070354
Cites_doi 10.1016/j.ijnonlinmec.2011.07.002
10.1016/j.ijnonlinmec.2005.08.002
10.1007/s11071-008-9395-6
10.2514/3.9007
10.1016/j.cnsns.2011.11.024
10.1115/1.1805003
10.1122/1.550823
10.1007/s11071-004-3755-7
10.1115/1.1471357
10.1007/s00707-008-0110-y
10.1115/1.4026068
10.1002/eqe.4290190207
10.1115/1.3101682
10.1016/j.probengmech.2011.08.017
10.1006/jsvi.2001.3682
10.1115/1.4000563
10.1006/jsvi.1996.0406
10.1016/j.jsv.2011.10.023
10.1007/s11071-013-1002-9
10.1016/j.mechrescom.2012.02.006
10.1155/2009/387676
10.1016/0167-4730(90)90028-N
10.1016/j.mechrescom.2012.07.001
10.2514/3.8142
10.1016/j.cnsns.2013.02.013
10.1007/BF00879562
10.1002/eqe.4290210801
10.1080/14786443808562036
10.1016/j.mechrescom.2006.09.003
10.1016/j.jsv.2008.06.026
10.1016/j.cnsns.2010.08.027
10.1016/S0020-7462(01)00082-8
10.1007/s11071-009-9543-7
10.1007/s10409-013-0029-y
10.1122/1.549724
10.1006/jsvi.1995.0457
ContentType Journal Article
Copyright 2014 Elsevier B.V.
Copyright_xml – notice: 2014 Elsevier B.V.
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.cnsns.2014.03.018
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1878-7274
EndPage 3652
ExternalDocumentID 10_1016_j_cnsns_2014_03_018
S1007570414001439
GroupedDBID --K
--M
-01
-0A
-0I
-0Y
-SA
-S~
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VR
5VS
7-5
71M
8P~
92M
9D9
9DA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABFNM
ABJNI
ABMAC
ABNEU
ABXDB
ABYKQ
ACAZW
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AFUIB
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAJEA
CAJUS
CCEZO
CCVFK
CHBEP
CS3
CUBFJ
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA0
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
JUIAU
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q--
Q-0
Q38
R-A
R-I
R2-
RIG
ROL
RPZ
RT1
RT9
S..
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SSQ
SST
SSW
SSZ
T5K
T8Q
T8Y
U1F
U1G
U5A
U5I
U5K
UHS
~G-
~LA
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SC
7TB
8FD
EFKBS
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c369t-1e3e739ea6b0508bcef7440e7b97c7f58b5aa61ec317415681514325f1d6e2f83
IEDL.DBID .~1
ISSN 1007-5704
IngestDate Mon Jul 21 11:49:15 EDT 2025
Tue Aug 05 08:51:35 EDT 2025
Tue Jul 01 01:08:58 EDT 2025
Thu Apr 24 22:59:23 EDT 2025
Fri Feb 23 02:25:45 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Fractional derivative damping
SDOF nonlinear systems
Narrow-band noise
Multiple scale method
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c369t-1e3e739ea6b0508bcef7440e7b97c7f58b5aa61ec317415681514325f1d6e2f83
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 1559693544
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_1677934214
proquest_miscellaneous_1559693544
crossref_citationtrail_10_1016_j_cnsns_2014_03_018
crossref_primary_10_1016_j_cnsns_2014_03_018
elsevier_sciencedirect_doi_10_1016_j_cnsns_2014_03_018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-10-01
PublicationDateYYYYMMDD 2014-10-01
PublicationDate_xml – month: 10
  year: 2014
  text: 2014-10-01
  day: 01
PublicationDecade 2010
PublicationTitle Communications in nonlinear science & numerical simulation
PublicationYear 2014
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Leung, Yang, Guo (b0080) 2012; 331
Rong, Xu, Wang, Meng, Fang (b0190) 2003; 38
Leung, Guo, Yang (b0085) 2013; 18
Makris, Constantinou (b0035) 1992; 21
Qi, Xu (b0070) 2007; 34
Bagley, Torvik (b0015) 1983; 27
Rossikhin, Shitikova (b0110) 2009; 16
Pritz (b0045) 1996; 195
Leung, Guo (b0075) 2011; 16
Chen, Zhu (b0160) 2011; 46
Chen, Zhu (b0150) 2009; 56
Huang, Jin (b0145) 2009; 319
Bagley, Torvik (b0025) 1985; 23
Huang, Jin, Lim, Wang (b0130) 2010; 59
Agrawal (b0050) 2004; 38
Paola, Failla, Pirrotta (b0135) 2012; 28
Oseledec (b0195) 1968; 19
Rossikhin, Shitikova (b0105) 2006; 41
Caputo, Mainardi (b0010) 1971; 91
Koh, Kelly (b0030) 1990; 19
Agrawal (b0125) 2004; 126
Xu, Li, Liu (b0200) 2014; 9
Agrawal (b0115) 2001; 247
Wedig (b0175) 1990; 8
Makris (b0040) 1997; 41
Shen, Yang, Xing, Gao (b0095) 2012; 17
Agrawal (b0120) 2002; 124
Kovacic, Zukovic (b0090) 2012; 41
Lin, Cai (b0185) 1995
Rossikhin, Shitikova (b0100) 1995; 186
Liu, Xu, Xu (b0140) 2013; 29
Gemant (b0005) 1938; 25
Rossikhin, Shitikova (b0060) 1997; 50
Rossikhin, Shitikova (b0180) 2012; 45
Mainardi (b0055) 2010
Xu, Li, Liu, Jia, Huang (b0165) 2013; 74
Bagley, Torvik (b0020) 1983; 21
Chen, Zhu (b0155) 2009; 207
Rossikhin, Shitikova (b0065) 2010; 63
Rossikhin (10.1016/j.cnsns.2014.03.018_b0060) 1997; 50
Chen (10.1016/j.cnsns.2014.03.018_b0155) 2009; 207
Shen (10.1016/j.cnsns.2014.03.018_b0095) 2012; 17
Paola (10.1016/j.cnsns.2014.03.018_b0135) 2012; 28
Agrawal (10.1016/j.cnsns.2014.03.018_b0120) 2002; 124
Rossikhin (10.1016/j.cnsns.2014.03.018_b0105) 2006; 41
Xu (10.1016/j.cnsns.2014.03.018_b0200) 2014; 9
Rossikhin (10.1016/j.cnsns.2014.03.018_b0180) 2012; 45
Huang (10.1016/j.cnsns.2014.03.018_b0145) 2009; 319
Rong (10.1016/j.cnsns.2014.03.018_b0190) 2003; 38
Rossikhin (10.1016/j.cnsns.2014.03.018_b0065) 2010; 63
Chen (10.1016/j.cnsns.2014.03.018_b0150) 2009; 56
Huang (10.1016/j.cnsns.2014.03.018_b0130) 2010; 59
Bagley (10.1016/j.cnsns.2014.03.018_b0015) 1983; 27
Gemant (10.1016/j.cnsns.2014.03.018_b0005) 1938; 25
Bagley (10.1016/j.cnsns.2014.03.018_b0020) 1983; 21
Chen (10.1016/j.cnsns.2014.03.018_b0160) 2011; 46
Makris (10.1016/j.cnsns.2014.03.018_b0040) 1997; 41
Agrawal (10.1016/j.cnsns.2014.03.018_b0115) 2001; 247
Agrawal (10.1016/j.cnsns.2014.03.018_b0125) 2004; 126
Rossikhin (10.1016/j.cnsns.2014.03.018_b0100) 1995; 186
Liu (10.1016/j.cnsns.2014.03.018_b0140) 2013; 29
Mainardi (10.1016/j.cnsns.2014.03.018_b0055) 2010
Leung (10.1016/j.cnsns.2014.03.018_b0075) 2011; 16
Agrawal (10.1016/j.cnsns.2014.03.018_b0050) 2004; 38
Wedig (10.1016/j.cnsns.2014.03.018_b0175) 1990; 8
Qi (10.1016/j.cnsns.2014.03.018_b0070) 2007; 34
Caputo (10.1016/j.cnsns.2014.03.018_b0010) 1971; 91
Oseledec (10.1016/j.cnsns.2014.03.018_b0195) 1968; 19
Leung (10.1016/j.cnsns.2014.03.018_b0080) 2012; 331
Leung (10.1016/j.cnsns.2014.03.018_b0085) 2013; 18
Koh (10.1016/j.cnsns.2014.03.018_b0030) 1990; 19
Pritz (10.1016/j.cnsns.2014.03.018_b0045) 1996; 195
Makris (10.1016/j.cnsns.2014.03.018_b0035) 1992; 21
Bagley (10.1016/j.cnsns.2014.03.018_b0025) 1985; 23
Rossikhin (10.1016/j.cnsns.2014.03.018_b0110) 2009; 16
Xu (10.1016/j.cnsns.2014.03.018_b0165) 2013; 74
Kovacic (10.1016/j.cnsns.2014.03.018_b0090) 2012; 41
Lin (10.1016/j.cnsns.2014.03.018_b0185) 1995
References_xml – volume: 41
  start-page: 1007
  year: 1997
  end-page: 1020
  ident: b0040
  article-title: Three-dimensional constitutive viscoelastic law with fractional order time derivatives
  publication-title: J Rheol
– volume: 19
  start-page: 197
  year: 1968
  end-page: 231
  ident: b0195
  article-title: A multiplicative Ergodic theorem–Lyapunov characteristic numbers for dynamical systems
  publication-title: Trans Moscow Math Soc
– volume: 21
  start-page: 649
  year: 1992
  end-page: 664
  ident: b0035
  article-title: Spring-viscous damper systems of combined seismic and vibration isolation
  publication-title: Earthquake Eng Struct D
– volume: 41
  start-page: 313
  year: 2006
  end-page: 325
  ident: b0105
  article-title: Analysis of free non-linear vibrations of a viscoelastic plate under the conditions of different internal resonances
  publication-title: Int J Non-Linear Mech
– volume: 8
  start-page: 13
  year: 1990
  end-page: 25
  ident: b0175
  article-title: Invariant measures and Lyapunov exponents for generalized parameter fluctuations
  publication-title: Struct Safety
– volume: 74
  start-page: 745
  year: 2013
  end-page: 753
  ident: b0165
  article-title: Responses of Duffing oscillator with fractional damping and random phase
  publication-title: Nonlinear Dyn
– volume: 16
  start-page: 365
  year: 2009
  end-page: 387
  ident: b0110
  article-title: New approach for the analysis of damped vibrations of fractional oscillators
  publication-title: Shock Vib
– volume: 16
  start-page: 2169
  year: 2011
  end-page: 2183
  ident: b0075
  article-title: Forward residue harmonic balance for autonomous and non-autonomous systems with fractional derivative damping
  publication-title: Commun Nonlinear Sci Numer Simul
– volume: 38
  start-page: 191
  year: 2004
  end-page: 206
  ident: b0050
  article-title: Application of fractional derivatives in thermal analysis of disk brakes
  publication-title: Nonlinear Dyn
– volume: 46
  start-page: 1324
  year: 2011
  end-page: 1329
  ident: b0160
  article-title: Stochastic jump and bifurcation of Duffing oscillator with fractional derivative damping under combined harmonic and white noise excitations
  publication-title: Int J Non-Linear Mech
– volume: 23
  start-page: 918
  year: 1985
  end-page: 925
  ident: b0025
  article-title: Fractional calculus in the transient analysis of viscoelastically damped structures
  publication-title: AIAA J
– volume: 91
  start-page: 134
  year: 1971
  end-page: 147
  ident: b0010
  article-title: A new dissipation model based on memory mechanism
  publication-title: Pure Appl Geophys
– volume: 195
  start-page: 103
  year: 1996
  end-page: 115
  ident: b0045
  article-title: Analysis of four-parameter fractional derivative model of real solid materials
  publication-title: J Sound Vib
– volume: 56
  start-page: 231
  year: 2009
  end-page: 241
  ident: b0150
  article-title: Stochastic averaging of strongly nonlinear oscillators with small fractional derivative damping under combined harmonic and white noise excitations
  publication-title: Nonlinear Dyn
– volume: 34
  start-page: 210
  year: 2007
  end-page: 212
  ident: b0070
  article-title: Unsteady flow of viscoelastic fluid with fractional Maxwell model in a channel
  publication-title: Mech Res Commun
– volume: 45
  start-page: 22
  year: 2012
  end-page: 27
  ident: b0180
  article-title: On fallacies in the decision between the Caputo and Riemann–Liouville fractional derivatives for the analysis of the dynamic response of a nonlinear viscoelastic oscillator
  publication-title: Mech Res Commun
– volume: 207
  start-page: 109
  year: 2009
  end-page: 120
  ident: b0155
  article-title: Stochastic stability of Duffing oscillator with fractional derivative damping under combined harmonic and white noise parametric excitations
  publication-title: Acta Mech
– volume: 41
  start-page: 37
  year: 2012
  end-page: 43
  ident: b0090
  article-title: Oscillator with a power-form restoring force and fractional derivative damping: application of averaging
  publication-title: Mech Res Commun
– volume: 63
  year: 2010
  ident: b0065
  article-title: Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results
  publication-title: Appl Mech Rev
– year: 2010
  ident: b0055
  article-title: Fractional calculus and wave in linear viscoelasticity
– volume: 21
  start-page: 741
  year: 1983
  end-page: 748
  ident: b0020
  article-title: Fractional calculus-a different approach to the analysis of viscoelastically damped structures
  publication-title: AIAA J
– year: 1995
  ident: b0185
  article-title: Probabilistic structural dynamics advanced theory and applications
– volume: 18
  start-page: 2900
  year: 2013
  end-page: 2915
  ident: b0085
  article-title: Fractional derivative and time delay damper characteristics in Duffing–van der Pol oscillators
  publication-title: Commun Nonlinear Sci Numer Simul
– volume: 28
  start-page: 85
  year: 2012
  end-page: 90
  ident: b0135
  article-title: Stationary and non-stationary stochastic response of linear fractional viscoelastic systems
  publication-title: Probab Eng Mech
– volume: 124
  start-page: 454
  year: 2002
  end-page: 460
  ident: b0120
  article-title: Stochastic analysis of a 1-D system with fractional damping of order 1/2
  publication-title: ASME J Vib Acoust
– volume: 50
  start-page: 15
  year: 1997
  end-page: 67
  ident: b0060
  article-title: Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids
  publication-title: Appl Mech Rev
– volume: 247
  start-page: 927
  year: 2001
  end-page: 938
  ident: b0115
  article-title: Stochastic analysis of dynamic systems containing fractional derivatives
  publication-title: J Sound Vib
– volume: 38
  start-page: 609
  year: 2003
  end-page: 614
  ident: b0190
  article-title: Maximal Lyapunov exponent and almost-sure sample stability for second order linear stochastic system
  publication-title: Int J Non-Linear Mech
– volume: 19
  start-page: 229
  year: 1990
  end-page: 241
  ident: b0030
  article-title: Application of fractional derivatives to seismic analysis of base-isolated models
  publication-title: Earthquake Eng Struct D
– volume: 25
  start-page: 540
  year: 1938
  end-page: 549
  ident: b0005
  article-title: On fractional differentials
  publication-title: Philos Mag
– volume: 126
  start-page: 561
  year: 2004
  end-page: 566
  ident: b0125
  article-title: Analytical solution for stochastic response of a fractionally damped beam
  publication-title: ASME J Vib Acoust
– volume: 331
  start-page: 1115
  year: 2012
  end-page: 1126
  ident: b0080
  article-title: The residue harmonic balance for fractional order van der Pol like oscillators
  publication-title: J Sound Vib
– volume: 29
  start-page: 443
  year: 2013
  end-page: 451
  ident: b0140
  article-title: Stochastic response of an axially moving viscoelastic beam with fractional order constitutive relation and random excitations
  publication-title: Acta Mech Sin
– volume: 17
  start-page: 3092
  year: 2012
  end-page: 3100
  ident: b0095
  article-title: Primary resonance of Duffing oscillator with fractional-order derivative
  publication-title: Commun Nonlinear Sci Numer Simul
– volume: 27
  start-page: 201
  year: 1983
  end-page: 210
  ident: b0015
  article-title: A theoretical basis for the application of fractional calculus
  publication-title: J Rheol
– volume: 186
  start-page: 369
  year: 1995
  end-page: 393
  ident: b0100
  article-title: Analysis of nonlinear free vibrations of suspension bridges
  publication-title: J Sound Vib
– volume: 59
  start-page: 339
  year: 2010
  end-page: 349
  ident: b0130
  article-title: Statistical analysis for stochastic systems including fractional derivatives
  publication-title: Nonlinear Dyn
– volume: 319
  start-page: 1121
  year: 2009
  end-page: 1135
  ident: b0145
  article-title: Response and stability of a SDOF strongly nonlinear stochastic system with light damping modeled by a fractional derivative
  publication-title: J Sound Vib
– volume: 9
  start-page: 031015
  year: 2014
  ident: b0200
  article-title: Response of fractional oscillators with viscoelastic term under random excitation
  publication-title: J Comput Nonlinear Dyn.
– volume: 46
  start-page: 1324
  year: 2011
  ident: 10.1016/j.cnsns.2014.03.018_b0160
  article-title: Stochastic jump and bifurcation of Duffing oscillator with fractional derivative damping under combined harmonic and white noise excitations
  publication-title: Int J Non-Linear Mech
  doi: 10.1016/j.ijnonlinmec.2011.07.002
– volume: 41
  start-page: 313
  year: 2006
  ident: 10.1016/j.cnsns.2014.03.018_b0105
  article-title: Analysis of free non-linear vibrations of a viscoelastic plate under the conditions of different internal resonances
  publication-title: Int J Non-Linear Mech
  doi: 10.1016/j.ijnonlinmec.2005.08.002
– volume: 56
  start-page: 231
  year: 2009
  ident: 10.1016/j.cnsns.2014.03.018_b0150
  article-title: Stochastic averaging of strongly nonlinear oscillators with small fractional derivative damping under combined harmonic and white noise excitations
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-008-9395-6
– volume: 23
  start-page: 918
  year: 1985
  ident: 10.1016/j.cnsns.2014.03.018_b0025
  article-title: Fractional calculus in the transient analysis of viscoelastically damped structures
  publication-title: AIAA J
  doi: 10.2514/3.9007
– volume: 17
  start-page: 3092
  year: 2012
  ident: 10.1016/j.cnsns.2014.03.018_b0095
  article-title: Primary resonance of Duffing oscillator with fractional-order derivative
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2011.11.024
– volume: 126
  start-page: 561
  year: 2004
  ident: 10.1016/j.cnsns.2014.03.018_b0125
  article-title: Analytical solution for stochastic response of a fractionally damped beam
  publication-title: ASME J Vib Acoust
  doi: 10.1115/1.1805003
– volume: 41
  start-page: 1007
  year: 1997
  ident: 10.1016/j.cnsns.2014.03.018_b0040
  article-title: Three-dimensional constitutive viscoelastic law with fractional order time derivatives
  publication-title: J Rheol
  doi: 10.1122/1.550823
– volume: 38
  start-page: 191
  year: 2004
  ident: 10.1016/j.cnsns.2014.03.018_b0050
  article-title: Application of fractional derivatives in thermal analysis of disk brakes
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-004-3755-7
– volume: 124
  start-page: 454
  year: 2002
  ident: 10.1016/j.cnsns.2014.03.018_b0120
  article-title: Stochastic analysis of a 1-D system with fractional damping of order 1/2
  publication-title: ASME J Vib Acoust
  doi: 10.1115/1.1471357
– volume: 207
  start-page: 109
  year: 2009
  ident: 10.1016/j.cnsns.2014.03.018_b0155
  article-title: Stochastic stability of Duffing oscillator with fractional derivative damping under combined harmonic and white noise parametric excitations
  publication-title: Acta Mech
  doi: 10.1007/s00707-008-0110-y
– volume: 9
  start-page: 031015
  year: 2014
  ident: 10.1016/j.cnsns.2014.03.018_b0200
  article-title: Response of fractional oscillators with viscoelastic term under random excitation
  publication-title: J Comput Nonlinear Dyn.
  doi: 10.1115/1.4026068
– volume: 19
  start-page: 229
  year: 1990
  ident: 10.1016/j.cnsns.2014.03.018_b0030
  article-title: Application of fractional derivatives to seismic analysis of base-isolated models
  publication-title: Earthquake Eng Struct D
  doi: 10.1002/eqe.4290190207
– volume: 50
  start-page: 15
  year: 1997
  ident: 10.1016/j.cnsns.2014.03.018_b0060
  article-title: Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids
  publication-title: Appl Mech Rev
  doi: 10.1115/1.3101682
– volume: 28
  start-page: 85
  year: 2012
  ident: 10.1016/j.cnsns.2014.03.018_b0135
  article-title: Stationary and non-stationary stochastic response of linear fractional viscoelastic systems
  publication-title: Probab Eng Mech
  doi: 10.1016/j.probengmech.2011.08.017
– year: 1995
  ident: 10.1016/j.cnsns.2014.03.018_b0185
– volume: 247
  start-page: 927
  year: 2001
  ident: 10.1016/j.cnsns.2014.03.018_b0115
  article-title: Stochastic analysis of dynamic systems containing fractional derivatives
  publication-title: J Sound Vib
  doi: 10.1006/jsvi.2001.3682
– volume: 63
  year: 2010
  ident: 10.1016/j.cnsns.2014.03.018_b0065
  article-title: Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results
  publication-title: Appl Mech Rev
  doi: 10.1115/1.4000563
– volume: 195
  start-page: 103
  year: 1996
  ident: 10.1016/j.cnsns.2014.03.018_b0045
  article-title: Analysis of four-parameter fractional derivative model of real solid materials
  publication-title: J Sound Vib
  doi: 10.1006/jsvi.1996.0406
– volume: 331
  start-page: 1115
  year: 2012
  ident: 10.1016/j.cnsns.2014.03.018_b0080
  article-title: The residue harmonic balance for fractional order van der Pol like oscillators
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2011.10.023
– volume: 74
  start-page: 745
  year: 2013
  ident: 10.1016/j.cnsns.2014.03.018_b0165
  article-title: Responses of Duffing oscillator with fractional damping and random phase
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-013-1002-9
– volume: 41
  start-page: 37
  year: 2012
  ident: 10.1016/j.cnsns.2014.03.018_b0090
  article-title: Oscillator with a power-form restoring force and fractional derivative damping: application of averaging
  publication-title: Mech Res Commun
  doi: 10.1016/j.mechrescom.2012.02.006
– volume: 16
  start-page: 365
  year: 2009
  ident: 10.1016/j.cnsns.2014.03.018_b0110
  article-title: New approach for the analysis of damped vibrations of fractional oscillators
  publication-title: Shock Vib
  doi: 10.1155/2009/387676
– volume: 8
  start-page: 13
  year: 1990
  ident: 10.1016/j.cnsns.2014.03.018_b0175
  article-title: Invariant measures and Lyapunov exponents for generalized parameter fluctuations
  publication-title: Struct Safety
  doi: 10.1016/0167-4730(90)90028-N
– volume: 45
  start-page: 22
  year: 2012
  ident: 10.1016/j.cnsns.2014.03.018_b0180
  article-title: On fallacies in the decision between the Caputo and Riemann–Liouville fractional derivatives for the analysis of the dynamic response of a nonlinear viscoelastic oscillator
  publication-title: Mech Res Commun
  doi: 10.1016/j.mechrescom.2012.07.001
– year: 2010
  ident: 10.1016/j.cnsns.2014.03.018_b0055
– volume: 21
  start-page: 741
  year: 1983
  ident: 10.1016/j.cnsns.2014.03.018_b0020
  article-title: Fractional calculus-a different approach to the analysis of viscoelastically damped structures
  publication-title: AIAA J
  doi: 10.2514/3.8142
– volume: 18
  start-page: 2900
  year: 2013
  ident: 10.1016/j.cnsns.2014.03.018_b0085
  article-title: Fractional derivative and time delay damper characteristics in Duffing–van der Pol oscillators
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2013.02.013
– volume: 91
  start-page: 134
  year: 1971
  ident: 10.1016/j.cnsns.2014.03.018_b0010
  article-title: A new dissipation model based on memory mechanism
  publication-title: Pure Appl Geophys
  doi: 10.1007/BF00879562
– volume: 21
  start-page: 649
  year: 1992
  ident: 10.1016/j.cnsns.2014.03.018_b0035
  article-title: Spring-viscous damper systems of combined seismic and vibration isolation
  publication-title: Earthquake Eng Struct D
  doi: 10.1002/eqe.4290210801
– volume: 25
  start-page: 540
  year: 1938
  ident: 10.1016/j.cnsns.2014.03.018_b0005
  article-title: On fractional differentials
  publication-title: Philos Mag
  doi: 10.1080/14786443808562036
– volume: 34
  start-page: 210
  year: 2007
  ident: 10.1016/j.cnsns.2014.03.018_b0070
  article-title: Unsteady flow of viscoelastic fluid with fractional Maxwell model in a channel
  publication-title: Mech Res Commun
  doi: 10.1016/j.mechrescom.2006.09.003
– volume: 319
  start-page: 1121
  year: 2009
  ident: 10.1016/j.cnsns.2014.03.018_b0145
  article-title: Response and stability of a SDOF strongly nonlinear stochastic system with light damping modeled by a fractional derivative
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2008.06.026
– volume: 16
  start-page: 2169
  year: 2011
  ident: 10.1016/j.cnsns.2014.03.018_b0075
  article-title: Forward residue harmonic balance for autonomous and non-autonomous systems with fractional derivative damping
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2010.08.027
– volume: 38
  start-page: 609
  year: 2003
  ident: 10.1016/j.cnsns.2014.03.018_b0190
  article-title: Maximal Lyapunov exponent and almost-sure sample stability for second order linear stochastic system
  publication-title: Int J Non-Linear Mech
  doi: 10.1016/S0020-7462(01)00082-8
– volume: 59
  start-page: 339
  year: 2010
  ident: 10.1016/j.cnsns.2014.03.018_b0130
  article-title: Statistical analysis for stochastic systems including fractional derivatives
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-009-9543-7
– volume: 29
  start-page: 443
  issue: 3
  year: 2013
  ident: 10.1016/j.cnsns.2014.03.018_b0140
  article-title: Stochastic response of an axially moving viscoelastic beam with fractional order constitutive relation and random excitations
  publication-title: Acta Mech Sin
  doi: 10.1007/s10409-013-0029-y
– volume: 19
  start-page: 197
  year: 1968
  ident: 10.1016/j.cnsns.2014.03.018_b0195
  article-title: A multiplicative Ergodic theorem–Lyapunov characteristic numbers for dynamical systems
  publication-title: Trans Moscow Math Soc
– volume: 27
  start-page: 201
  year: 1983
  ident: 10.1016/j.cnsns.2014.03.018_b0015
  article-title: A theoretical basis for the application of fractional calculus
  publication-title: J Rheol
  doi: 10.1122/1.549724
– volume: 186
  start-page: 369
  year: 1995
  ident: 10.1016/j.cnsns.2014.03.018_b0100
  article-title: Analysis of nonlinear free vibrations of suspension bridges
  publication-title: J Sound Vib
  doi: 10.1006/jsvi.1995.0457
SSID ssj0016954
Score 2.2073863
Snippet •The SDOF systems with fractional damping and the narrow-band random excitations.•Multiple scale method is developed to obtain the principal resonance...
The principal resonance responses of nonlinear single-degree-of-freedom (SDOF) systems with lightly fractional derivative damping of order [alpha] (0 < [alpha]...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3642
SubjectTerms Amplitudes
Damping
Derivatives
Excitation
Fractional derivative damping
Mathematical models
Multiple scale method
Narrow-band noise
Nonlinearity
Random excitation
SDOF nonlinear systems
Stochasticity
Title Principal resonance responses of SDOF systems with small fractional derivative damping under narrow-band random parametric excitation
URI https://dx.doi.org/10.1016/j.cnsns.2014.03.018
https://www.proquest.com/docview/1559693544
https://www.proquest.com/docview/1677934214
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxUxEA-lvXhR6wdWbYng0fg2m4_dHEv18VSsQi30FpLsBCrv7Za3r9JTb_7fzWR3C4q8g7fNMgMhM5mZJDO_IeQth7r2QStmqkIx2ZiCmag4Cy4o7UztnMPi5K-nenEuP1-oix1yMtXCYFrlaPsHm56t9fhnNq7m7OrycnaG7_uqKmQ6IiBIHRbxSVmhlr-_vU_z4NrkTmhIzJB6Qh7KOV6h7VvE7OYyI51i549_e6e_7HR2PvPH5OEYNdLjYWL7ZAfaJ-TRGEHScX_2T8nv78PdeaJNx-gOwTQAvzANFnraRXr24ducDvDNPcVLWNqv3HJJ43qocEicTVLKXxkPnDZuhfVUFCvN1rTNgI3Mu7ahycU13YoicvgKm3IFCjdhxPt-Rs7nH3-cLNjYaIEFoc2GcRBQCQNO-yIFbD5ARNxAqLypQhVV7ZVzmkNIwQYe-GqOYVapIm80lLEWz8lu27XwgtDk3QQUrgAvS-zi4V0MIvrEzJ1QHA5IOS2wnWaFzTCWdko3-2mzVCxKxRbCJqkckHf3TFcDCMd2cj1Jzv6hSza5ie2MbyY527TL8OnEtdBd9xYfb7URSsotNLpKxk6WXL783wm8Ig9wNCQLvia7m_U1HKagZ-OPslYfkb3jT18Wp3dJ5wTD
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbp5tBe-i5Nnyr0WLGW9bB1DGmXTZNsC0kgNyHJY0jYtcN6U_IH8r-rseVAS9lDb0aeAaGRZkaamW8I-cyhLH3QipkiU0xWJmOmVpwFF5R2pnTOYXHyyULPz-X3C3WxQw7GWhhMq0y6f9DpvbZOI9O0mtPry8vpKcb3VZHJeEVAkDrzgOwiOpWakN39w6P54j6YoE3fDA3pGTKM4EN9mldougZhu7nswU6x-ce_DdRfqrq3P7On5HFyHOn-MLdnZAea5-RJciJpOqLdC3L3c3g-j7TxJt0ingbgF2bCQkfbmp5-_TGjA4JzR_EdlnYrt1zSej0UOUTOKu7LXz0kOK3cCkuqKBabrWnTYzYy75qKRitXtSuK4OEr7MsVKNyGBPn9kpzPvp0dzFnqtcCC0GbDOAgohAGnfRZ9Nh-gRuhAKLwpQlGr0ivnNIcQ_Q2885UcPa1c1bzSkNeleEUmTdvAa0KjgROQuQy8zLGRh3d1ELWPzNwJxWGP5OMC23FW2A9jaceMsyvbS8WiVGwmbJTKHvlyz3Q94HBsJ9ej5Owf28lGS7Gd8dMoZxsPGkZPXAPtTWcxfquNUFJuodFF1Hcy5_LN_07gI3k4Pzs5tseHi6O35BH-GXIH35HJZn0D76MPtPEf0h7_DSo2B3Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Principal+resonance+responses+of+SDOF+systems+with+small+fractional+derivative+damping+under+narrow-band+random+parametric+excitation&rft.jtitle=Communications+in+nonlinear+science+%26+numerical+simulation&rft.au=Liu%2C+Di&rft.au=Li%2C+Jing&rft.au=Xu%2C+Yong&rft.date=2014-10-01&rft.issn=1007-5704&rft.volume=19&rft.issue=10&rft.spage=3642&rft.epage=3652&rft_id=info:doi/10.1016%2Fj.cnsns.2014.03.018&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cnsns_2014_03_018
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1007-5704&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1007-5704&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1007-5704&client=summon