Direct Collapse Accretion Disks within Dark Matter Halos: Saturation of the Magnetorotational Instability and the Field Expulsion

We have used high-resolution zoom-in simulations of direct collapse to supermassive black hole (SMBH) seeds within dark mater halos in the presence of magnetic fields generated during the collapse, down to 10 −5 pc or 2 au. We confirm an efficient amplification of magnetic field during collapse, the...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal Vol. 976; no. 1; pp. 85 - 98
Main Authors Luo, Yang, Shlosman, Isaac
Format Journal Article
LanguageEnglish
Published Philadelphia The American Astronomical Society 01.11.2024
IOP Publishing
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We have used high-resolution zoom-in simulations of direct collapse to supermassive black hole (SMBH) seeds within dark mater halos in the presence of magnetic fields generated during the collapse, down to 10 −5 pc or 2 au. We confirm an efficient amplification of magnetic field during collapse, the formation of a geometrically thick self-gravitating accretion disk inside 0.1 pc, and damping of fragmentation in the disk by the field. This disk differs profoundly from SMBH accretion disks. We find the following: (1) The accretion disk is subject to the magnetorotational instability, which further amplifies the field to near equipartition. No artificial seeding of the disk field has been used. (2) The equipartition toroidal field changes its polarity in the midplane. (3) The nonlinear Parker instability develops, accompanied by the vertical buckling of the field lines, which injects material above the disk, leading to an increase in the disk scale height. (4) With the Coriolis force producing a coherent helicity above the disk, the vertical poloidal field has been generated and amplified. (5) We estimate that the associated outflow will be most probably squashed by accretion. The resulting configuration consists of a magnetized disk with β ≳ 0.1 and its magnetosphere with β ≪ 1, where β = P th / P B is the ratio of thermal to magnetic energy density. (6) The disk is highly variable, due to feeding by variable accretion flow, and strong vortical motions are present. (7) Finally, the negative gradient of the total vertical stress drives an equatorial outflow sandwiched by an inward accretion flow.
AbstractList We have used high-resolution zoom-in simulations of direct collapse to supermassive black hole (SMBH) seeds within dark mater halos in the presence of magnetic fields generated during the collapse, down to 10 ^−5 pc or 2 au. We confirm an efficient amplification of magnetic field during collapse, the formation of a geometrically thick self-gravitating accretion disk inside 0.1 pc, and damping of fragmentation in the disk by the field. This disk differs profoundly from SMBH accretion disks. We find the following: (1) The accretion disk is subject to the magnetorotational instability, which further amplifies the field to near equipartition. No artificial seeding of the disk field has been used. (2) The equipartition toroidal field changes its polarity in the midplane. (3) The nonlinear Parker instability develops, accompanied by the vertical buckling of the field lines, which injects material above the disk, leading to an increase in the disk scale height. (4) With the Coriolis force producing a coherent helicity above the disk, the vertical poloidal field has been generated and amplified. (5) We estimate that the associated outflow will be most probably squashed by accretion. The resulting configuration consists of a magnetized disk with β ≳ 0.1 and its magnetosphere with β ≪ 1, where β = P _th / P _B is the ratio of thermal to magnetic energy density. (6) The disk is highly variable, due to feeding by variable accretion flow, and strong vortical motions are present. (7) Finally, the negative gradient of the total vertical stress drives an equatorial outflow sandwiched by an inward accretion flow.
We have used high-resolution zoom-in simulations of direct collapse to supermassive black hole (SMBH) seeds within dark mater halos in the presence of magnetic fields generated during the collapse, down to 10 −5 pc or 2 au. We confirm an efficient amplification of magnetic field during collapse, the formation of a geometrically thick self-gravitating accretion disk inside 0.1 pc, and damping of fragmentation in the disk by the field. This disk differs profoundly from SMBH accretion disks. We find the following: (1) The accretion disk is subject to the magnetorotational instability, which further amplifies the field to near equipartition. No artificial seeding of the disk field has been used. (2) The equipartition toroidal field changes its polarity in the midplane. (3) The nonlinear Parker instability develops, accompanied by the vertical buckling of the field lines, which injects material above the disk, leading to an increase in the disk scale height. (4) With the Coriolis force producing a coherent helicity above the disk, the vertical poloidal field has been generated and amplified. (5) We estimate that the associated outflow will be most probably squashed by accretion. The resulting configuration consists of a magnetized disk with β ≳ 0.1 and its magnetosphere with β ≪ 1, where β = P th / P B is the ratio of thermal to magnetic energy density. (6) The disk is highly variable, due to feeding by variable accretion flow, and strong vortical motions are present. (7) Finally, the negative gradient of the total vertical stress drives an equatorial outflow sandwiched by an inward accretion flow.
We have used high-resolution zoom-in simulations of direct collapse to supermassive black hole (SMBH) seeds within dark mater halos in the presence of magnetic fields generated during the collapse, down to 10−5 pc or 2 au. We confirm an efficient amplification of magnetic field during collapse, the formation of a geometrically thick self-gravitating accretion disk inside 0.1 pc, and damping of fragmentation in the disk by the field. This disk differs profoundly from SMBH accretion disks. We find the following: (1) The accretion disk is subject to the magnetorotational instability, which further amplifies the field to near equipartition. No artificial seeding of the disk field has been used. (2) The equipartition toroidal field changes its polarity in the midplane. (3) The nonlinear Parker instability develops, accompanied by the vertical buckling of the field lines, which injects material above the disk, leading to an increase in the disk scale height. (4) With the Coriolis force producing a coherent helicity above the disk, the vertical poloidal field has been generated and amplified. (5) We estimate that the associated outflow will be most probably squashed by accretion. The resulting configuration consists of a magnetized disk with β ≳ 0.1 and its magnetosphere with β ≪ 1, where β = Pth/PB is the ratio of thermal to magnetic energy density. (6) The disk is highly variable, due to feeding by variable accretion flow, and strong vortical motions are present. (7) Finally, the negative gradient of the total vertical stress drives an equatorial outflow sandwiched by an inward accretion flow.
Author Shlosman, Isaac
Luo, Yang
Author_xml – sequence: 1
  givenname: Yang
  orcidid: 0000-0002-2243-2790
  surname: Luo
  fullname: Luo, Yang
  organization: Yunnan University Department of Astronomy, Kunming, Yunnan 650091, People's Republic of China
– sequence: 2
  givenname: Isaac
  orcidid: 0000-0002-1233-445X
  surname: Shlosman
  fullname: Shlosman, Isaac
  organization: Osaka University Theoretical Astrophysics, Department of Earth & Space Science, Osaka 560-0043, Japan
BookMark eNp1kc1PGzEQxS1EJQLlztFSr92yXtvxbm8ofCRSEAeo1Js1_gIHd721HbUc-5-zySJ64jSaN795o9E7Rod97C1CZ6T-RlsmzgmnbcUoF-dghLP6AM3epUM0q-uaVXMqfh6h45w3u7bpuhn6d-mT1QUvYggwZIsvtE62-NjjS5-fM_7jy5MfG0jP-BZKsQkvIcT8Hd9D2SbYo9Hh8mTH-WNvS0yx7GUIeNXnAsoHX14w9GZPXXsbDL76O2xDHqnP6JODkO3pWz1BP66vHhbLan13s1pcrCtN512pCIiWGd4qTjSFzqiOKKcazZQimtfcWNNQYqAxytVMASdg1bwTSrTzloyzE7SafE2EjRyS_wXpRUbwci_E9CghFa-DlVrwjgmuhHGWATDoaGucAk0d4drR0evL5DWk-Htrc5GbuE3jw1lS0rSCcs7ISNUTpVPMOVn3fpXUchea3CUkdwnJKbRx5eu04uPw3_ND_BXAX53q
Cites_doi 10.1088/0067-0049/211/2/19
10.1086/170270
10.1093/mnras/stad572
10.1111/j.1365-8711.1998.01284.x
10.1093/mnras/stv694
10.1111/j.1365-2966.2011.18820.x
10.1086/167625
10.1111/j.1365-2966.2006.10689.x
10.3847/1538-4357/abfaf9
10.1038/nature14241
10.1086/171743
10.1093/mnras/stz3572
10.3847/1538-4357/aba4b7
10.1073/pnas.46.2.253
10.1038/s41550-023-02111-9
10.3847/2041-8213/ace34f
10.1086/146087
10.1007/BF00650011
10.1016/0021-9991(79)90145-1
10.1086/381668
10.1038/s41586-024-07052-5
10.1093/mnras/sty3083
10.1063/1.1692063
10.1038/nature25180
10.1093/mnras/278.1.236
10.1086/305535
10.1393/ncr/i2007-10022-x
10.1086/167526
10.1051/0004-6361:20000404
10.1051/0004-6361/202040109
10.1088/0067-0049/192/1/9
10.1086/170955
10.3847/1538-4357/ad054a
10.1038/356041a0
10.1088/0004-637X/702/1/L5
10.1088/0004-637X/784/2/121
10.1126/science.1173540
10.1086/148828
10.1126/science.aai9119
10.1088/0004-637X/731/1/62
10.1088/0004-637X/774/2/149
10.1051/0004-6361/201525830
10.3847/1538-4357/aaafc9
10.1093/mnras/199.4.883
10.1103/RevModPhys.70.1
10.1093/mnras/stab531
10.1093/mnras/stv2700
10.1088/0004-637X/711/2/959
10.1137/1025002
10.3847/1538-4357/acefb9
10.1007/978-94-009-2835-0
10.3847/1538-4357/acbcc2
10.1017/S0022112096001322
10.1086/310975
10.1046/j.1365-8711.2003.06241.x
10.1111/j.1745-3933.2008.00423.x
10.1111/j.1365-2966.2009.15916.x
10.1146/annurev-astro-120419-014455
10.1093/mnras/sty362
10.1051/0004-6361/202348903
10.1093/pasj/58.1.193
10.3847/2041-8213/aa943a
10.1038/329810a0
10.1093/mnrasl/slad124
10.1038/s41550-024-02273-0
10.1088/0004-637X/738/1/84
10.1086/147861
10.1093/mnras/stw3291
10.1093/mnras/stad914
10.1038/345679a0
10.1093/mnras/sty1657
10.1093/mnras/stae780
10.1016/j.physrep.2005.06.005
10.1006/jcph.2001.6961
10.1086/175311
10.1086/430940
10.1038/338045a0
10.3847/2041-8213/ace619
10.21105/astro.2310.04506
ContentType Journal Article
Copyright 2024. The Author(s). Published by the American Astronomical Society.
2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. The Author(s). Published by the American Astronomical Society.
– notice: 2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
DOA
DOI 10.3847/1538-4357/ad7fec
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList
CrossRef
Aerospace Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: O3W
  name: Institute of Physics Open Access Journals (Activated by CARLI)
  url: http://iopscience.iop.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1538-4357
ExternalDocumentID oai_doaj_org_article_c759475b7dfe4aa4a938dfbac3f15cf3
10_3847_1538_4357_ad7fec
apjad7fec
GroupedDBID -DZ
-~X
123
1JI
23N
2FS
4.4
6J9
85S
AAFWJ
AAGCD
AAJIO
ABHWH
ACBEA
ACGFS
ACHIP
ACNCT
ADACN
AEFHF
AENEX
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
CS3
EBS
F5P
FRP
GROUPED_DOAJ
IJHAN
IOP
KOT
M~E
N5L
O3W
O43
OK1
PJBAE
RIN
RNS
ROL
SJN
SY9
T37
TN5
TR2
TSCCA
WH7
XSW
AAYXX
CITATION
7TG
8FD
AEINN
H8D
KL.
L7M
ID FETCH-LOGICAL-c369t-1a784d58b51c3a9db91bfb2c4bb1c505ded231da2dbf04ba51aeb697b78681d23
IEDL.DBID IOP
ISSN 0004-637X
IngestDate Wed Aug 27 01:28:45 EDT 2025
Wed Aug 13 04:41:51 EDT 2025
Tue Jul 01 03:40:06 EDT 2025
Tue Nov 19 23:08:27 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c369t-1a784d58b51c3a9db91bfb2c4bb1c505ded231da2dbf04ba51aeb697b78681d23
Notes Galaxies and Cosmology
AAS55719
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1233-445X
0000-0002-2243-2790
OpenAccessLink https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.3847/1538-4357/ad7fec
PQID 3128735541
PQPubID 4562441
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_c759475b7dfe4aa4a938dfbac3f15cf3
proquest_journals_3128735541
crossref_primary_10_3847_1538_4357_ad7fec
iop_journals_10_3847_1538_4357_ad7fec
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle The Astrophysical journal
PublicationTitleAbbrev APJ
PublicationTitleAlternate Astrophys. J
PublicationYear 2024
Publisher The American Astronomical Society
IOP Publishing
Publisher_xml – name: The American Astronomical Society
– name: IOP Publishing
References Wu (apjad7fecbib89) 2015; 518
Pudritz (apjad7fecbib63) 1989; 342
Begelman (apjad7fecbib9) 2023; 526
Jiang (apjad7fecbib37) 2020; 900
Planck Collaboration (apjad7fecbib61) 2016; 594
Kraichnan (apjad7fecbib41) 1968; 11
Suzuki (apjad7fecbib78) 2014; 784
Brandenburg (apjad7fecbib15) 2005; 417
Emmering (apjad7fecbib22) 1992; 385
Turk (apjad7fecbib82) 2009; 325
Woods (apjad7fecbib87) 2021; 915
Matsumoto (apjad7fecbib52) 1988; 40
Hahn (apjad7fecbib25) 2011; 415
Harten (apjad7fecbib26) 1983; 25
Hawley (apjad7fecbib28) 2011; 738
Igumenshchev (apjad7fecbib34) 1996; 278
Venemans (apjad7fecbib86) 2017; 851
Tan (apjad7fecbib79) 2004; 603
Noble (apjad7fecbib54) 2010; 711
Pessah (apjad7fecbib60) 2005; 628
Ruzmaikin (apjad7fecbib65) 1979; 66
Bogdan (apjad7fecbib12) 2024; 8
Latif (apjad7fecbib45) 2023; 945
Begelman (apjad7fecbib6) 2010; 402
Federrath (apjad7fecbib23) 2011; 731
Hopkins (apjad7fecbib32) 2024; 7
Latif (apjad7fecbib44) 2023; 952
Bañados (apjad7fecbib5) 2018; 553
Blandford (apjad7fecbib11) 1982; 199
van Leer (apjad7fecbib84) 1979; 32
Velihov (apjad7fecbib85) 1959; 36
Herrington (apjad7fecbib29) 2023; 521
Machida (apjad7fecbib50) 2006; 58
Luo (apjad7fecbib49) 2023; 955
Norman (apjad7fecbib55) 1999
Prole (apjad7fecbib62) 2024; 685
Abramowicz (apjad7fecbib1) 1992; 356
Dedner (apjad7fecbib20) 2002; 175
Lodato (apjad7fecbib47) 2007; 30
Luo (apjad7fecbib48) 2018; 476
Truelove (apjad7fecbib81) 1997; 489
Steinwandel (apjad7fecbib75) 2019; 483
Eisenstein (apjad7fecbib21) 1998; 498
Balbus (apjad7fecbib3) 1991; 376
Lesur (apjad7fecbib46) 2021; 650
Turk (apjad7fecbib83) 2011; 192
Zhu (apjad7fecbib91) 2018; 857
Bhowmick (apjad7fecbib10) 2024; 529
Woods (apjad7fecbib88) 2024; 960
Zeldovich (apjad7fecbib90) 1983
Choi (apjad7fecbib18) 2013; 774
Kulsrud (apjad7fecbib42) 1992; 396
Novikov (apjad7fecbib56) 1973
Shlosman (apjad7fecbib71) 2016; 456
Chandrasekhar (apjad7fecbib17) 1960; 46
Parker (apjad7fecbib58) 1955; 122
Bryan (apjad7fecbib16) 2014; 211
Smith (apjad7fecbib74) 2017; 466
Toomre (apjad7fecbib80) 1964; 139
Choi (apjad7fecbib19) 2015; 450
Brandenburg (apjad7fecbib14) 1996; 306
Ardaneh (apjad7fecbib2) 2018; 479
Kazantsev (apjad7fecbib39) 1968; 26
Iroshnikov (apjad7fecbib36) 1963; 40
Larson (apjad7fecbib43) 2023; 953
Ziegler (apjad7fecbib92) 2001; 367
Shakura (apjad7fecbib66); 24
Pariev (apjad7fecbib57) 2001
Hirano (apjad7fecbib30) 2017; 357
Shlosman (apjad7fecbib70) 1990; 345
Kato (apjad7fecbib38) 1998
Silk (apjad7fecbib73) 2006; 371
Hawley (apjad7fecbib27) 1995; 440
Hockney (apjad7fecbib31) 1988
Inayoshi (apjad7fecbib35) 2020; 58
Maiolino (apjad7fecbib51) 2024; 627
Subramanian (apjad7fecbib76) 1998; 294
Begelman (apjad7fecbib8) 2009; 702
Kluzniak (apjad7fecbib40) 2000
Horiuchi (apjad7fecbib33) 1988; 40
Goodman (apjad7fecbib24) 2003; 339
Shlosman (apjad7fecbib72) 1989; 338
Sharda (apjad7fecbib67) 2021; 503
Begelman (apjad7fecbib7) 2023; 521
Balbus (apjad7fecbib4) 1998; 70
Mishra (apjad7fecbib53) 2020; 492
Parker (apjad7fecbib59) 1966; 145
Shlosman (apjad7fecbib69) 1989; 341
Bosman (apjad7fecbib13) 2024; 8
Sur (apjad7fecbib77) 2008; 385
Ruzmaikin (apjad7fecbib64) 1988; 133
Shlosman (apjad7fecbib68) 1987; 329
References_xml – volume: 211
  start-page: 19
  year: 2014
  ident: apjad7fecbib16
  publication-title: ApJS
  doi: 10.1088/0067-0049/211/2/19
– volume: 376
  start-page: 214
  year: 1991
  ident: apjad7fecbib3
  publication-title: ApJ
  doi: 10.1086/170270
– volume: 521
  start-page: 463
  year: 2023
  ident: apjad7fecbib29
  publication-title: MNRAS
  doi: 10.1093/mnras/stad572
– volume: 294
  start-page: 718
  year: 1998
  ident: apjad7fecbib76
  publication-title: MNRAS
  doi: 10.1111/j.1365-8711.1998.01284.x
– start-page: 343
  year: 1973
  ident: apjad7fecbib56
– volume: 450
  start-page: 4411
  year: 2015
  ident: apjad7fecbib19
  publication-title: MNRAS
  doi: 10.1093/mnras/stv694
– volume: 415
  start-page: 2101
  year: 2011
  ident: apjad7fecbib25
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2011.18820.x
– volume: 342
  start-page: 650
  year: 1989
  ident: apjad7fecbib63
  publication-title: ApJ
  doi: 10.1086/167625
– volume: 36
  start-page: 1398
  year: 1959
  ident: apjad7fecbib85
  publication-title: ZhETF
– volume: 371
  start-page: 444
  year: 2006
  ident: apjad7fecbib73
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2006.10689.x
– volume: 915
  start-page: 110
  year: 2021
  ident: apjad7fecbib87
  publication-title: ApJ
  doi: 10.3847/1538-4357/abfaf9
– volume: 518
  start-page: 512
  year: 2015
  ident: apjad7fecbib89
  publication-title: Natur
  doi: 10.1038/nature14241
– year: 2000
  ident: apjad7fecbib40
– volume: 396
  start-page: 606
  year: 1992
  ident: apjad7fecbib42
  publication-title: ApJ
  doi: 10.1086/171743
– volume: 492
  start-page: 1855
  year: 2020
  ident: apjad7fecbib53
  publication-title: MNRAS
  doi: 10.1093/mnras/stz3572
– volume: 900
  start-page: 25
  year: 2020
  ident: apjad7fecbib37
  publication-title: ApJ
  doi: 10.3847/1538-4357/aba4b7
– volume: 40
  start-page: 171
  year: 1988
  ident: apjad7fecbib52
  publication-title: PASJ
– volume: 46
  start-page: 253
  year: 1960
  ident: apjad7fecbib17
  publication-title: PNAS
  doi: 10.1073/pnas.46.2.253
– volume: 8
  start-page: 126
  year: 2024
  ident: apjad7fecbib12
  publication-title: NatAs
  doi: 10.1038/s41550-023-02111-9
– volume: 952
  start-page: L9
  year: 2023
  ident: apjad7fecbib44
  publication-title: ApJL
  doi: 10.3847/2041-8213/ace34f
– volume: 122
  start-page: 293
  year: 1955
  ident: apjad7fecbib58
  publication-title: ApJ
  doi: 10.1086/146087
– volume: 66
  start-page: 369
  year: 1979
  ident: apjad7fecbib65
  publication-title: Ap&SS
  doi: 10.1007/BF00650011
– volume: 32
  start-page: 101
  year: 1979
  ident: apjad7fecbib84
  publication-title: JCoPh
  doi: 10.1016/0021-9991(79)90145-1
– volume: 603
  start-page: 401
  year: 2004
  ident: apjad7fecbib79
  publication-title: ApJ
  doi: 10.1086/381668
– volume: 627
  start-page: 59
  year: 2024
  ident: apjad7fecbib51
  publication-title: Natur
  doi: 10.1038/s41586-024-07052-5
– volume: 483
  start-page: 1008
  year: 2019
  ident: apjad7fecbib75
  publication-title: MNRAS
  doi: 10.1093/mnras/sty3083
– volume: 11
  start-page: 945
  year: 1968
  ident: apjad7fecbib41
  publication-title: PhFl
  doi: 10.1063/1.1692063
– volume: 553
  start-page: 473
  year: 2018
  ident: apjad7fecbib5
  publication-title: Natur
  doi: 10.1038/nature25180
– volume: 278
  start-page: 236
  year: 1996
  ident: apjad7fecbib34
  publication-title: MNRAS
  doi: 10.1093/mnras/278.1.236
– volume: 498
  start-page: 137
  year: 1998
  ident: apjad7fecbib21
  publication-title: ApJ
  doi: 10.1086/305535
– volume: 30
  start-page: 293
  year: 2007
  ident: apjad7fecbib47
  publication-title: NCimR
  doi: 10.1393/ncr/i2007-10022-x
– volume: 341
  start-page: 685
  year: 1989
  ident: apjad7fecbib69
  publication-title: ApJ
  doi: 10.1086/167526
– volume: 367
  start-page: 170
  year: 2001
  ident: apjad7fecbib92
  publication-title: A&A
  doi: 10.1051/0004-6361:20000404
– volume: 650
  start-page: A35
  year: 2021
  ident: apjad7fecbib46
  publication-title: A&A
  doi: 10.1051/0004-6361/202040109
– volume: 192
  start-page: 9
  year: 2011
  ident: apjad7fecbib83
  publication-title: ApJS
  doi: 10.1088/0067-0049/192/1/9
– volume: 385
  start-page: 460
  year: 1992
  ident: apjad7fecbib22
  publication-title: ApJ
  doi: 10.1086/170955
– volume: 960
  start-page: 59
  year: 2024
  ident: apjad7fecbib88
  publication-title: ApJ
  doi: 10.3847/1538-4357/ad054a
– volume: 356
  start-page: 41
  year: 1992
  ident: apjad7fecbib1
  publication-title: Natur
  doi: 10.1038/356041a0
– volume: 702
  start-page: L5
  year: 2009
  ident: apjad7fecbib8
  publication-title: ApJL
  doi: 10.1088/0004-637X/702/1/L5
– volume: 784
  start-page: 121
  year: 2014
  ident: apjad7fecbib78
  publication-title: ApJ
  doi: 10.1088/0004-637X/784/2/121
– volume: 325
  start-page: 601
  year: 2009
  ident: apjad7fecbib82
  publication-title: Sci
  doi: 10.1126/science.1173540
– year: 1983
  ident: apjad7fecbib90
– volume: 145
  start-page: 811
  year: 1966
  ident: apjad7fecbib59
  publication-title: ApJ
  doi: 10.1086/148828
– volume: 357
  start-page: 1375
  year: 2017
  ident: apjad7fecbib30
  publication-title: Sci
  doi: 10.1126/science.aai9119
– volume: 40
  start-page: 742
  year: 1963
  ident: apjad7fecbib36
  publication-title: AZh
– volume: 731
  start-page: 62
  year: 2011
  ident: apjad7fecbib23
  publication-title: ApJ
  doi: 10.1088/0004-637X/731/1/62
– volume: 774
  start-page: 149
  year: 2013
  ident: apjad7fecbib18
  publication-title: ApJ
  doi: 10.1088/0004-637X/774/2/149
– volume: 26
  start-page: 1031
  year: 1968
  ident: apjad7fecbib39
  publication-title: JETP
– volume: 594
  start-page: A13
  year: 2016
  ident: apjad7fecbib61
  publication-title: A&A
  doi: 10.1051/0004-6361/201525830
– volume: 857
  start-page: 34
  year: 2018
  ident: apjad7fecbib91
  publication-title: ApJ
  doi: 10.3847/1538-4357/aaafc9
– volume: 199
  start-page: 883
  year: 1982
  ident: apjad7fecbib11
  publication-title: MNRAS
  doi: 10.1093/mnras/199.4.883
– volume: 70
  start-page: 1
  year: 1998
  ident: apjad7fecbib4
  publication-title: RvMP
  doi: 10.1103/RevModPhys.70.1
– volume: 503
  start-page: 2014
  year: 2021
  ident: apjad7fecbib67
  publication-title: MNRAS
  doi: 10.1093/mnras/stab531
– volume: 456
  start-page: 500
  year: 2016
  ident: apjad7fecbib71
  publication-title: MNRAS
  doi: 10.1093/mnras/stv2700
– volume: 711
  start-page: 959
  year: 2010
  ident: apjad7fecbib54
  publication-title: ApJ
  doi: 10.1088/0004-637X/711/2/959
– volume: 25
  start-page: 35
  year: 1983
  ident: apjad7fecbib26
  publication-title: SIAMR
  doi: 10.1137/1025002
– volume: 955
  start-page: 99
  year: 2023
  ident: apjad7fecbib49
  publication-title: ApJ
  doi: 10.3847/1538-4357/acefb9
– year: 2001
  ident: apjad7fecbib57
– year: 1998
  ident: apjad7fecbib38
– volume: 133
  year: 1988
  ident: apjad7fecbib64
  doi: 10.1007/978-94-009-2835-0
– volume: 24
  start-page: 337
  ident: apjad7fecbib66
  publication-title: A&A
– volume: 945
  start-page: 137
  year: 2023
  ident: apjad7fecbib45
  publication-title: ApJ
  doi: 10.3847/1538-4357/acbcc2
– volume: 306
  start-page: 325
  year: 1996
  ident: apjad7fecbib14
  publication-title: JFM
  doi: 10.1017/S0022112096001322
– volume: 489
  start-page: L179
  year: 1997
  ident: apjad7fecbib81
  publication-title: ApJ
  doi: 10.1086/310975
– volume: 339
  start-page: 937
  year: 2003
  ident: apjad7fecbib24
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2003.06241.x
– volume: 385
  start-page: L15
  year: 2008
  ident: apjad7fecbib77
  publication-title: MNRAS
  doi: 10.1111/j.1745-3933.2008.00423.x
– volume: 402
  start-page: 673
  year: 2010
  ident: apjad7fecbib6
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2009.15916.x
– volume: 58
  start-page: 27
  year: 2020
  ident: apjad7fecbib35
  publication-title: ARA&A
  doi: 10.1146/annurev-astro-120419-014455
– volume: 476
  start-page: 3523
  year: 2018
  ident: apjad7fecbib48
  publication-title: MNRAS
  doi: 10.1093/mnras/sty362
– volume: 685
  start-page: A31
  year: 2024
  ident: apjad7fecbib62
  publication-title: A&A
  doi: 10.1051/0004-6361/202348903
– volume: 58
  start-page: 193
  year: 2006
  ident: apjad7fecbib50
  publication-title: PASJ
  doi: 10.1093/pasj/58.1.193
– volume: 851
  start-page: L8
  year: 2017
  ident: apjad7fecbib86
  publication-title: ApJL
  doi: 10.3847/2041-8213/aa943a
– volume: 329
  start-page: 810
  year: 1987
  ident: apjad7fecbib68
  publication-title: Natur
  doi: 10.1038/329810a0
– start-page: 19
  year: 1999
  ident: apjad7fecbib55
– year: 1988
  ident: apjad7fecbib31
– volume: 526
  start-page: L94
  year: 2023
  ident: apjad7fecbib9
  publication-title: MNRAS
  doi: 10.1093/mnrasl/slad124
– volume: 8
  start-page: 1054
  year: 2024
  ident: apjad7fecbib13
  publication-title: NatAs
  doi: 10.1038/s41550-024-02273-0
– volume: 40
  start-page: 147
  year: 1988
  ident: apjad7fecbib33
  publication-title: PASJ
– volume: 738
  start-page: 84
  year: 2011
  ident: apjad7fecbib28
  publication-title: ApJ
  doi: 10.1088/0004-637X/738/1/84
– volume: 139
  start-page: 1217
  year: 1964
  ident: apjad7fecbib80
  publication-title: ApJ
  doi: 10.1086/147861
– volume: 466
  start-page: 2217
  year: 2017
  ident: apjad7fecbib74
  publication-title: MNRAS
  doi: 10.1093/mnras/stw3291
– volume: 521
  start-page: 5952
  year: 2023
  ident: apjad7fecbib7
  publication-title: MNRAS
  doi: 10.1093/mnras/stad914
– volume: 345
  start-page: 679
  year: 1990
  ident: apjad7fecbib70
  publication-title: Natur
  doi: 10.1038/345679a0
– volume: 479
  start-page: 2277
  year: 2018
  ident: apjad7fecbib2
  publication-title: MNRAS
  doi: 10.1093/mnras/sty1657
– volume: 529
  start-page: 3768
  year: 2024
  ident: apjad7fecbib10
  publication-title: MNRAS
  doi: 10.1093/mnras/stae780
– volume: 417
  start-page: 1
  year: 2005
  ident: apjad7fecbib15
  publication-title: PhR
  doi: 10.1016/j.physrep.2005.06.005
– volume: 175
  start-page: 645
  year: 2002
  ident: apjad7fecbib20
  publication-title: JCoPh
  doi: 10.1006/jcph.2001.6961
– volume: 440
  start-page: 742
  year: 1995
  ident: apjad7fecbib27
  publication-title: ApJ
  doi: 10.1086/175311
– volume: 628
  start-page: 879
  year: 2005
  ident: apjad7fecbib60
  publication-title: ApJ
  doi: 10.1086/430940
– volume: 338
  start-page: 45
  year: 1989
  ident: apjad7fecbib72
  publication-title: Natur
  doi: 10.1038/338045a0
– volume: 953
  start-page: L29
  year: 2023
  ident: apjad7fecbib43
  publication-title: ApJL
  doi: 10.3847/2041-8213/ace619
– volume: 7
  start-page: 19
  year: 2024
  ident: apjad7fecbib32
  publication-title: OJAp
  doi: 10.21105/astro.2310.04506
SSID ssj0004299
Score 2.4692035
Snippet We have used high-resolution zoom-in simulations of direct collapse to supermassive black hole (SMBH) seeds within dark mater halos in the presence of magnetic...
SourceID doaj
proquest
crossref
iop
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 85
SubjectTerms Accretion
Accretion disks
Active galactic nuclei
Black holes
Collapse
Coriolis force
Damping
Dark matter
Early universe
Expulsion
Gravitation
Gravitational collapse
Gravitational instability
Helicity
Instability
Magnetic fields
Magnetohydrodynamics
Magnetospheres
Outflow
Population III stars
Scale height
Seeds
Solar dynamo
Supermassive black holes
Vertical forces
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fi9QwEA5yIPgieiq3ekoeVPCh7LVNmsa3VW9ZhBNBD-6tzOSHLHfXLtc98B79z51Juv5A0Bff0jbQkm8y82Wa-SLE8zZqWvY0oUDEUChtmwIqpwsAohdeeXCW651PPjSrU_X-TJ_9ctQX7wnL8sB54ObOaKuMRuNjUAAKbN36iODqWGoXk84nxbzdYmpXEUleNv-UrMn9ztO0JmJg5uBNDO63IJS0-im0rIfNHw45RZnlPXF3oodykT_rvrgV-n1xsBg5YT1c3siXMrVzPmLcF7c_5tYD8S07L8mZANiMQS6c4wrFoZfv1uP5KDnjuqYLuDqXJ0lVU67gYhhfy08s7pkQkkOUxAjp-Zc-sLjBdsoVSt5UkCW9byT0PvVa8u43efx1c33BObeH4nR5_PntqpjOVyhc3dhtUYJpldct6tLVYD3aEiNWTiGWjpiRD57Yn4fKYzxSCLqEgI01aNqGaG5VPxJ7_dCHAyGt1whovQmeAK40ECs8irFC0zStizgTr3YD3m2yjEZHyw8Gp2NwOgany-DMxBtG5Ec_FsBON8gsusksun-ZxUy8IDy7aUKOf3nZ4Q7xn51rCtqGiVj5-H98yxNxpyIqlCsYD8Xe9uo6PCUqs8VnyWq_A1Wy9ng
  priority: 102
  providerName: Directory of Open Access Journals
Title Direct Collapse Accretion Disks within Dark Matter Halos: Saturation of the Magnetorotational Instability and the Field Expulsion
URI https://iopscience.iop.org/article/10.3847/1538-4357/ad7fec
https://www.proquest.com/docview/3128735541
https://doaj.org/article/c759475b7dfe4aa4a938dfbac3f15cf3
Volume 976
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKERIXHgXUhVL5AEgcsm1iO47htEBXK6TSSlCxB6TI4weqtiSrJitRbvxzxna2FQ8hxCVykpGdzNiezxPPF0KeVF7gsqd0GQC4jAtVZrowItMa4YXlVhsV8p0P35WzE_52LuYb5OVlLky7HKb-MRYTUXBSYRjfDOfSvThG0cvLPW2ld-Yauc4qdJwhe-_o-CopslAD9uVZyeQ8faP8Yw0_-aRI3Y-eBpv_bX6OTmd6m3xaP27aa7IYr3oYm2-_MDn-5_vcIbcGMEonSfQu2XDNFtmedCE83n65oM9oLKfoR7dFbhyn0j3yPU2VNMQd9LJzdGJMyIdsG_rmtFt0NMR3T_FEny_oYeTwpDN91nYv6PtAJRr7A209RfyJ9z83LlAp9ENkkoYtDIlA_ILqxkapadhrRw--LldnIcJ3n5xMDz68nmXD3xwyw0rVZ7mWFbeiApEbppUFlYOHwnCA3CAOs84i1rS6sOD3OWiRawelkiCrEkF1wR6QzaZt3DahygrQoKx0FrtTITRi0H3vC5BlWRkPI_J8bc96mUg7alzsBG3XQdt10HadtD0ir4LBL-UC3Xa8gKaqB1PVRgrFpQBpveNac61YZT1ow3wujGcj8hStWw_Dv_tLYzvrDnUlzBAiyAD78of_WM0jcrNAbJVSInfIZn--co8RG_WwG2MKu3Ek4PGIffwBOy0O-g
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqIhAXHgXUhQI-UCQO2W0ejmMkDgvb1ZbSshJU2lvq8QNVW5KoyQqWG7-Iv8JPYhxnW_EQ4tIDNyexEscz9nwez3wm5ElmGS57UhMAgAkSJtJARooFUiK80ImWSrh854PDdHKUvJ6x2Rr5dp4LU1bd1N_HoicK9l3oxneMc-mgHaNo5flAam6NGlTadlGV-2b5Cdds9Yu9EQp4O4rGu-9fTYLuWIFAxaloglDyLNEsAxaqWAoNIgQLkUoAQoWAQBuNoEfLSIPdSUCyUBpIBQeepYjuHNMBzvlXWIy22mUMvp1eJGJGosPbSZDGfOb3Rf_Y6p_sYHtcAFo3_OXfbEJr6MY3yfdVF_n4lnl_0UBfffmFPfI_6sNb5EYHuunQN-82WTPFBtkc1m4boPy4pE9pW_ZennqDXJ360h3y1ZsE6vwrsqoNHSrl8j7Lgo5O6nlNnR_7BC_k2ZwetFyldCJPy_o5fecoU1u9p6WliLPx-YfCOMqIpvPAUheq4YnSl1QWuq01djGFdPdztTh1nsy75OhSuuYeWS_KwmwSKjQDCUJzo3HYREwi1t6xNgKeppmy0CPPVjqUV56cJMdFnZNw7iScOwnnXsI98tIp2Xk9Ryve3kD1yDv1yBVnIuEMuLYmkTKRIs60BaliGzJl4x7ZRo3Ku2mu_svHtlZKfFE5RijEHbwN7__jax6Ta9PROH-zd7j_gFyPEE76LNAtst6cLcxDhIMNPGqHICXHl62vPwAsS27h
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+Collapse+Accretion+Disks+within+Dark+Matter+Halos%3A+Saturation+of+the+Magnetorotational+Instability+and+the+Field+Expulsion&rft.jtitle=The+Astrophysical+journal&rft.au=Luo%2C+Yang&rft.au=Shlosman%2C+Isaac&rft.date=2024-11-01&rft.pub=The+American+Astronomical+Society&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=976&rft.issue=1&rft_id=info:doi/10.3847%2F1538-4357%2Fad7fec&rft.externalDocID=apjad7fec
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon