Direct Collapse Accretion Disks within Dark Matter Halos: Saturation of the Magnetorotational Instability and the Field Expulsion
We have used high-resolution zoom-in simulations of direct collapse to supermassive black hole (SMBH) seeds within dark mater halos in the presence of magnetic fields generated during the collapse, down to 10 −5 pc or 2 au. We confirm an efficient amplification of magnetic field during collapse, the...
Saved in:
Published in | The Astrophysical journal Vol. 976; no. 1; pp. 85 - 98 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
The American Astronomical Society
01.11.2024
IOP Publishing |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We have used high-resolution zoom-in simulations of direct collapse to supermassive black hole (SMBH) seeds within dark mater halos in the presence of magnetic fields generated during the collapse, down to 10
−5
pc or 2 au. We confirm an efficient amplification of magnetic field during collapse, the formation of a geometrically thick self-gravitating accretion disk inside 0.1 pc, and damping of fragmentation in the disk by the field. This disk differs profoundly from SMBH accretion disks. We find the following: (1) The accretion disk is subject to the magnetorotational instability, which further amplifies the field to near equipartition. No artificial seeding of the disk field has been used. (2) The equipartition toroidal field changes its polarity in the midplane. (3) The nonlinear Parker instability develops, accompanied by the vertical buckling of the field lines, which injects material above the disk, leading to an increase in the disk scale height. (4) With the Coriolis force producing a coherent helicity above the disk, the vertical poloidal field has been generated and amplified. (5) We estimate that the associated outflow will be most probably squashed by accretion. The resulting configuration consists of a magnetized disk with
β
≳ 0.1 and its magnetosphere with
β
≪ 1, where
β
=
P
th
/
P
B
is the ratio of thermal to magnetic energy density. (6) The disk is highly variable, due to feeding by variable accretion flow, and strong vortical motions are present. (7) Finally, the negative gradient of the total vertical stress drives an
equatorial
outflow sandwiched by an inward accretion flow. |
---|---|
AbstractList | We have used high-resolution zoom-in simulations of direct collapse to supermassive black hole (SMBH) seeds within dark mater halos in the presence of magnetic fields generated during the collapse, down to 10 ^−5 pc or 2 au. We confirm an efficient amplification of magnetic field during collapse, the formation of a geometrically thick self-gravitating accretion disk inside 0.1 pc, and damping of fragmentation in the disk by the field. This disk differs profoundly from SMBH accretion disks. We find the following: (1) The accretion disk is subject to the magnetorotational instability, which further amplifies the field to near equipartition. No artificial seeding of the disk field has been used. (2) The equipartition toroidal field changes its polarity in the midplane. (3) The nonlinear Parker instability develops, accompanied by the vertical buckling of the field lines, which injects material above the disk, leading to an increase in the disk scale height. (4) With the Coriolis force producing a coherent helicity above the disk, the vertical poloidal field has been generated and amplified. (5) We estimate that the associated outflow will be most probably squashed by accretion. The resulting configuration consists of a magnetized disk with β ≳ 0.1 and its magnetosphere with β ≪ 1, where β = P _th / P _B is the ratio of thermal to magnetic energy density. (6) The disk is highly variable, due to feeding by variable accretion flow, and strong vortical motions are present. (7) Finally, the negative gradient of the total vertical stress drives an equatorial outflow sandwiched by an inward accretion flow. We have used high-resolution zoom-in simulations of direct collapse to supermassive black hole (SMBH) seeds within dark mater halos in the presence of magnetic fields generated during the collapse, down to 10 −5 pc or 2 au. We confirm an efficient amplification of magnetic field during collapse, the formation of a geometrically thick self-gravitating accretion disk inside 0.1 pc, and damping of fragmentation in the disk by the field. This disk differs profoundly from SMBH accretion disks. We find the following: (1) The accretion disk is subject to the magnetorotational instability, which further amplifies the field to near equipartition. No artificial seeding of the disk field has been used. (2) The equipartition toroidal field changes its polarity in the midplane. (3) The nonlinear Parker instability develops, accompanied by the vertical buckling of the field lines, which injects material above the disk, leading to an increase in the disk scale height. (4) With the Coriolis force producing a coherent helicity above the disk, the vertical poloidal field has been generated and amplified. (5) We estimate that the associated outflow will be most probably squashed by accretion. The resulting configuration consists of a magnetized disk with β ≳ 0.1 and its magnetosphere with β ≪ 1, where β = P th / P B is the ratio of thermal to magnetic energy density. (6) The disk is highly variable, due to feeding by variable accretion flow, and strong vortical motions are present. (7) Finally, the negative gradient of the total vertical stress drives an equatorial outflow sandwiched by an inward accretion flow. We have used high-resolution zoom-in simulations of direct collapse to supermassive black hole (SMBH) seeds within dark mater halos in the presence of magnetic fields generated during the collapse, down to 10−5 pc or 2 au. We confirm an efficient amplification of magnetic field during collapse, the formation of a geometrically thick self-gravitating accretion disk inside 0.1 pc, and damping of fragmentation in the disk by the field. This disk differs profoundly from SMBH accretion disks. We find the following: (1) The accretion disk is subject to the magnetorotational instability, which further amplifies the field to near equipartition. No artificial seeding of the disk field has been used. (2) The equipartition toroidal field changes its polarity in the midplane. (3) The nonlinear Parker instability develops, accompanied by the vertical buckling of the field lines, which injects material above the disk, leading to an increase in the disk scale height. (4) With the Coriolis force producing a coherent helicity above the disk, the vertical poloidal field has been generated and amplified. (5) We estimate that the associated outflow will be most probably squashed by accretion. The resulting configuration consists of a magnetized disk with β ≳ 0.1 and its magnetosphere with β ≪ 1, where β = Pth/PB is the ratio of thermal to magnetic energy density. (6) The disk is highly variable, due to feeding by variable accretion flow, and strong vortical motions are present. (7) Finally, the negative gradient of the total vertical stress drives an equatorial outflow sandwiched by an inward accretion flow. |
Author | Shlosman, Isaac Luo, Yang |
Author_xml | – sequence: 1 givenname: Yang orcidid: 0000-0002-2243-2790 surname: Luo fullname: Luo, Yang organization: Yunnan University Department of Astronomy, Kunming, Yunnan 650091, People's Republic of China – sequence: 2 givenname: Isaac orcidid: 0000-0002-1233-445X surname: Shlosman fullname: Shlosman, Isaac organization: Osaka University Theoretical Astrophysics, Department of Earth & Space Science, Osaka 560-0043, Japan |
BookMark | eNp1kc1PGzEQxS1EJQLlztFSr92yXtvxbm8ofCRSEAeo1Js1_gIHd721HbUc-5-zySJ64jSaN795o9E7Rod97C1CZ6T-RlsmzgmnbcUoF-dghLP6AM3epUM0q-uaVXMqfh6h45w3u7bpuhn6d-mT1QUvYggwZIsvtE62-NjjS5-fM_7jy5MfG0jP-BZKsQkvIcT8Hd9D2SbYo9Hh8mTH-WNvS0yx7GUIeNXnAsoHX14w9GZPXXsbDL76O2xDHqnP6JODkO3pWz1BP66vHhbLan13s1pcrCtN512pCIiWGd4qTjSFzqiOKKcazZQimtfcWNNQYqAxytVMASdg1bwTSrTzloyzE7SafE2EjRyS_wXpRUbwci_E9CghFa-DlVrwjgmuhHGWATDoaGucAk0d4drR0evL5DWk-Htrc5GbuE3jw1lS0rSCcs7ISNUTpVPMOVn3fpXUchea3CUkdwnJKbRx5eu04uPw3_ND_BXAX53q |
Cites_doi | 10.1088/0067-0049/211/2/19 10.1086/170270 10.1093/mnras/stad572 10.1111/j.1365-8711.1998.01284.x 10.1093/mnras/stv694 10.1111/j.1365-2966.2011.18820.x 10.1086/167625 10.1111/j.1365-2966.2006.10689.x 10.3847/1538-4357/abfaf9 10.1038/nature14241 10.1086/171743 10.1093/mnras/stz3572 10.3847/1538-4357/aba4b7 10.1073/pnas.46.2.253 10.1038/s41550-023-02111-9 10.3847/2041-8213/ace34f 10.1086/146087 10.1007/BF00650011 10.1016/0021-9991(79)90145-1 10.1086/381668 10.1038/s41586-024-07052-5 10.1093/mnras/sty3083 10.1063/1.1692063 10.1038/nature25180 10.1093/mnras/278.1.236 10.1086/305535 10.1393/ncr/i2007-10022-x 10.1086/167526 10.1051/0004-6361:20000404 10.1051/0004-6361/202040109 10.1088/0067-0049/192/1/9 10.1086/170955 10.3847/1538-4357/ad054a 10.1038/356041a0 10.1088/0004-637X/702/1/L5 10.1088/0004-637X/784/2/121 10.1126/science.1173540 10.1086/148828 10.1126/science.aai9119 10.1088/0004-637X/731/1/62 10.1088/0004-637X/774/2/149 10.1051/0004-6361/201525830 10.3847/1538-4357/aaafc9 10.1093/mnras/199.4.883 10.1103/RevModPhys.70.1 10.1093/mnras/stab531 10.1093/mnras/stv2700 10.1088/0004-637X/711/2/959 10.1137/1025002 10.3847/1538-4357/acefb9 10.1007/978-94-009-2835-0 10.3847/1538-4357/acbcc2 10.1017/S0022112096001322 10.1086/310975 10.1046/j.1365-8711.2003.06241.x 10.1111/j.1745-3933.2008.00423.x 10.1111/j.1365-2966.2009.15916.x 10.1146/annurev-astro-120419-014455 10.1093/mnras/sty362 10.1051/0004-6361/202348903 10.1093/pasj/58.1.193 10.3847/2041-8213/aa943a 10.1038/329810a0 10.1093/mnrasl/slad124 10.1038/s41550-024-02273-0 10.1088/0004-637X/738/1/84 10.1086/147861 10.1093/mnras/stw3291 10.1093/mnras/stad914 10.1038/345679a0 10.1093/mnras/sty1657 10.1093/mnras/stae780 10.1016/j.physrep.2005.06.005 10.1006/jcph.2001.6961 10.1086/175311 10.1086/430940 10.1038/338045a0 10.3847/2041-8213/ace619 10.21105/astro.2310.04506 |
ContentType | Journal Article |
Copyright | 2024. The Author(s). Published by the American Astronomical Society. 2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024. The Author(s). Published by the American Astronomical Society. – notice: 2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | O3W TSCCA AAYXX CITATION 7TG 8FD H8D KL. L7M DOA |
DOI | 10.3847/1538-4357/ad7fec |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | CrossRef Aerospace Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: O3W name: Institute of Physics Open Access Journals (Activated by CARLI) url: http://iopscience.iop.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
EISSN | 1538-4357 |
ExternalDocumentID | oai_doaj_org_article_c759475b7dfe4aa4a938dfbac3f15cf3 10_3847_1538_4357_ad7fec apjad7fec |
GroupedDBID | -DZ -~X 123 1JI 23N 2FS 4.4 6J9 85S AAFWJ AAGCD AAJIO ABHWH ACBEA ACGFS ACHIP ACNCT ADACN AEFHF AENEX AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU CS3 EBS F5P FRP GROUPED_DOAJ IJHAN IOP KOT M~E N5L O3W O43 OK1 PJBAE RIN RNS ROL SJN SY9 T37 TN5 TR2 TSCCA WH7 XSW AAYXX CITATION 7TG 8FD AEINN H8D KL. L7M |
ID | FETCH-LOGICAL-c369t-1a784d58b51c3a9db91bfb2c4bb1c505ded231da2dbf04ba51aeb697b78681d23 |
IEDL.DBID | IOP |
ISSN | 0004-637X |
IngestDate | Wed Aug 27 01:28:45 EDT 2025 Wed Aug 13 04:41:51 EDT 2025 Tue Jul 01 03:40:06 EDT 2025 Tue Nov 19 23:08:27 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c369t-1a784d58b51c3a9db91bfb2c4bb1c505ded231da2dbf04ba51aeb697b78681d23 |
Notes | Galaxies and Cosmology AAS55719 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1233-445X 0000-0002-2243-2790 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.3847/1538-4357/ad7fec |
PQID | 3128735541 |
PQPubID | 4562441 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c759475b7dfe4aa4a938dfbac3f15cf3 proquest_journals_3128735541 crossref_primary_10_3847_1538_4357_ad7fec iop_journals_10_3847_1538_4357_ad7fec |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-11-01 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | The Astrophysical journal |
PublicationTitleAbbrev | APJ |
PublicationTitleAlternate | Astrophys. J |
PublicationYear | 2024 |
Publisher | The American Astronomical Society IOP Publishing |
Publisher_xml | – name: The American Astronomical Society – name: IOP Publishing |
References | Wu (apjad7fecbib89) 2015; 518 Pudritz (apjad7fecbib63) 1989; 342 Begelman (apjad7fecbib9) 2023; 526 Jiang (apjad7fecbib37) 2020; 900 Planck Collaboration (apjad7fecbib61) 2016; 594 Kraichnan (apjad7fecbib41) 1968; 11 Suzuki (apjad7fecbib78) 2014; 784 Brandenburg (apjad7fecbib15) 2005; 417 Emmering (apjad7fecbib22) 1992; 385 Turk (apjad7fecbib82) 2009; 325 Woods (apjad7fecbib87) 2021; 915 Matsumoto (apjad7fecbib52) 1988; 40 Hahn (apjad7fecbib25) 2011; 415 Harten (apjad7fecbib26) 1983; 25 Hawley (apjad7fecbib28) 2011; 738 Igumenshchev (apjad7fecbib34) 1996; 278 Venemans (apjad7fecbib86) 2017; 851 Tan (apjad7fecbib79) 2004; 603 Noble (apjad7fecbib54) 2010; 711 Pessah (apjad7fecbib60) 2005; 628 Ruzmaikin (apjad7fecbib65) 1979; 66 Bogdan (apjad7fecbib12) 2024; 8 Latif (apjad7fecbib45) 2023; 945 Begelman (apjad7fecbib6) 2010; 402 Federrath (apjad7fecbib23) 2011; 731 Hopkins (apjad7fecbib32) 2024; 7 Latif (apjad7fecbib44) 2023; 952 Bañados (apjad7fecbib5) 2018; 553 Blandford (apjad7fecbib11) 1982; 199 van Leer (apjad7fecbib84) 1979; 32 Velihov (apjad7fecbib85) 1959; 36 Herrington (apjad7fecbib29) 2023; 521 Machida (apjad7fecbib50) 2006; 58 Luo (apjad7fecbib49) 2023; 955 Norman (apjad7fecbib55) 1999 Prole (apjad7fecbib62) 2024; 685 Abramowicz (apjad7fecbib1) 1992; 356 Dedner (apjad7fecbib20) 2002; 175 Lodato (apjad7fecbib47) 2007; 30 Luo (apjad7fecbib48) 2018; 476 Truelove (apjad7fecbib81) 1997; 489 Steinwandel (apjad7fecbib75) 2019; 483 Eisenstein (apjad7fecbib21) 1998; 498 Balbus (apjad7fecbib3) 1991; 376 Lesur (apjad7fecbib46) 2021; 650 Turk (apjad7fecbib83) 2011; 192 Zhu (apjad7fecbib91) 2018; 857 Bhowmick (apjad7fecbib10) 2024; 529 Woods (apjad7fecbib88) 2024; 960 Zeldovich (apjad7fecbib90) 1983 Choi (apjad7fecbib18) 2013; 774 Kulsrud (apjad7fecbib42) 1992; 396 Novikov (apjad7fecbib56) 1973 Shlosman (apjad7fecbib71) 2016; 456 Chandrasekhar (apjad7fecbib17) 1960; 46 Parker (apjad7fecbib58) 1955; 122 Bryan (apjad7fecbib16) 2014; 211 Smith (apjad7fecbib74) 2017; 466 Toomre (apjad7fecbib80) 1964; 139 Choi (apjad7fecbib19) 2015; 450 Brandenburg (apjad7fecbib14) 1996; 306 Ardaneh (apjad7fecbib2) 2018; 479 Kazantsev (apjad7fecbib39) 1968; 26 Iroshnikov (apjad7fecbib36) 1963; 40 Larson (apjad7fecbib43) 2023; 953 Ziegler (apjad7fecbib92) 2001; 367 Shakura (apjad7fecbib66); 24 Pariev (apjad7fecbib57) 2001 Hirano (apjad7fecbib30) 2017; 357 Shlosman (apjad7fecbib70) 1990; 345 Kato (apjad7fecbib38) 1998 Silk (apjad7fecbib73) 2006; 371 Hawley (apjad7fecbib27) 1995; 440 Hockney (apjad7fecbib31) 1988 Inayoshi (apjad7fecbib35) 2020; 58 Maiolino (apjad7fecbib51) 2024; 627 Subramanian (apjad7fecbib76) 1998; 294 Begelman (apjad7fecbib8) 2009; 702 Kluzniak (apjad7fecbib40) 2000 Horiuchi (apjad7fecbib33) 1988; 40 Goodman (apjad7fecbib24) 2003; 339 Shlosman (apjad7fecbib72) 1989; 338 Sharda (apjad7fecbib67) 2021; 503 Begelman (apjad7fecbib7) 2023; 521 Balbus (apjad7fecbib4) 1998; 70 Mishra (apjad7fecbib53) 2020; 492 Parker (apjad7fecbib59) 1966; 145 Shlosman (apjad7fecbib69) 1989; 341 Bosman (apjad7fecbib13) 2024; 8 Sur (apjad7fecbib77) 2008; 385 Ruzmaikin (apjad7fecbib64) 1988; 133 Shlosman (apjad7fecbib68) 1987; 329 |
References_xml | – volume: 211 start-page: 19 year: 2014 ident: apjad7fecbib16 publication-title: ApJS doi: 10.1088/0067-0049/211/2/19 – volume: 376 start-page: 214 year: 1991 ident: apjad7fecbib3 publication-title: ApJ doi: 10.1086/170270 – volume: 521 start-page: 463 year: 2023 ident: apjad7fecbib29 publication-title: MNRAS doi: 10.1093/mnras/stad572 – volume: 294 start-page: 718 year: 1998 ident: apjad7fecbib76 publication-title: MNRAS doi: 10.1111/j.1365-8711.1998.01284.x – start-page: 343 year: 1973 ident: apjad7fecbib56 – volume: 450 start-page: 4411 year: 2015 ident: apjad7fecbib19 publication-title: MNRAS doi: 10.1093/mnras/stv694 – volume: 415 start-page: 2101 year: 2011 ident: apjad7fecbib25 publication-title: MNRAS doi: 10.1111/j.1365-2966.2011.18820.x – volume: 342 start-page: 650 year: 1989 ident: apjad7fecbib63 publication-title: ApJ doi: 10.1086/167625 – volume: 36 start-page: 1398 year: 1959 ident: apjad7fecbib85 publication-title: ZhETF – volume: 371 start-page: 444 year: 2006 ident: apjad7fecbib73 publication-title: MNRAS doi: 10.1111/j.1365-2966.2006.10689.x – volume: 915 start-page: 110 year: 2021 ident: apjad7fecbib87 publication-title: ApJ doi: 10.3847/1538-4357/abfaf9 – volume: 518 start-page: 512 year: 2015 ident: apjad7fecbib89 publication-title: Natur doi: 10.1038/nature14241 – year: 2000 ident: apjad7fecbib40 – volume: 396 start-page: 606 year: 1992 ident: apjad7fecbib42 publication-title: ApJ doi: 10.1086/171743 – volume: 492 start-page: 1855 year: 2020 ident: apjad7fecbib53 publication-title: MNRAS doi: 10.1093/mnras/stz3572 – volume: 900 start-page: 25 year: 2020 ident: apjad7fecbib37 publication-title: ApJ doi: 10.3847/1538-4357/aba4b7 – volume: 40 start-page: 171 year: 1988 ident: apjad7fecbib52 publication-title: PASJ – volume: 46 start-page: 253 year: 1960 ident: apjad7fecbib17 publication-title: PNAS doi: 10.1073/pnas.46.2.253 – volume: 8 start-page: 126 year: 2024 ident: apjad7fecbib12 publication-title: NatAs doi: 10.1038/s41550-023-02111-9 – volume: 952 start-page: L9 year: 2023 ident: apjad7fecbib44 publication-title: ApJL doi: 10.3847/2041-8213/ace34f – volume: 122 start-page: 293 year: 1955 ident: apjad7fecbib58 publication-title: ApJ doi: 10.1086/146087 – volume: 66 start-page: 369 year: 1979 ident: apjad7fecbib65 publication-title: Ap&SS doi: 10.1007/BF00650011 – volume: 32 start-page: 101 year: 1979 ident: apjad7fecbib84 publication-title: JCoPh doi: 10.1016/0021-9991(79)90145-1 – volume: 603 start-page: 401 year: 2004 ident: apjad7fecbib79 publication-title: ApJ doi: 10.1086/381668 – volume: 627 start-page: 59 year: 2024 ident: apjad7fecbib51 publication-title: Natur doi: 10.1038/s41586-024-07052-5 – volume: 483 start-page: 1008 year: 2019 ident: apjad7fecbib75 publication-title: MNRAS doi: 10.1093/mnras/sty3083 – volume: 11 start-page: 945 year: 1968 ident: apjad7fecbib41 publication-title: PhFl doi: 10.1063/1.1692063 – volume: 553 start-page: 473 year: 2018 ident: apjad7fecbib5 publication-title: Natur doi: 10.1038/nature25180 – volume: 278 start-page: 236 year: 1996 ident: apjad7fecbib34 publication-title: MNRAS doi: 10.1093/mnras/278.1.236 – volume: 498 start-page: 137 year: 1998 ident: apjad7fecbib21 publication-title: ApJ doi: 10.1086/305535 – volume: 30 start-page: 293 year: 2007 ident: apjad7fecbib47 publication-title: NCimR doi: 10.1393/ncr/i2007-10022-x – volume: 341 start-page: 685 year: 1989 ident: apjad7fecbib69 publication-title: ApJ doi: 10.1086/167526 – volume: 367 start-page: 170 year: 2001 ident: apjad7fecbib92 publication-title: A&A doi: 10.1051/0004-6361:20000404 – volume: 650 start-page: A35 year: 2021 ident: apjad7fecbib46 publication-title: A&A doi: 10.1051/0004-6361/202040109 – volume: 192 start-page: 9 year: 2011 ident: apjad7fecbib83 publication-title: ApJS doi: 10.1088/0067-0049/192/1/9 – volume: 385 start-page: 460 year: 1992 ident: apjad7fecbib22 publication-title: ApJ doi: 10.1086/170955 – volume: 960 start-page: 59 year: 2024 ident: apjad7fecbib88 publication-title: ApJ doi: 10.3847/1538-4357/ad054a – volume: 356 start-page: 41 year: 1992 ident: apjad7fecbib1 publication-title: Natur doi: 10.1038/356041a0 – volume: 702 start-page: L5 year: 2009 ident: apjad7fecbib8 publication-title: ApJL doi: 10.1088/0004-637X/702/1/L5 – volume: 784 start-page: 121 year: 2014 ident: apjad7fecbib78 publication-title: ApJ doi: 10.1088/0004-637X/784/2/121 – volume: 325 start-page: 601 year: 2009 ident: apjad7fecbib82 publication-title: Sci doi: 10.1126/science.1173540 – year: 1983 ident: apjad7fecbib90 – volume: 145 start-page: 811 year: 1966 ident: apjad7fecbib59 publication-title: ApJ doi: 10.1086/148828 – volume: 357 start-page: 1375 year: 2017 ident: apjad7fecbib30 publication-title: Sci doi: 10.1126/science.aai9119 – volume: 40 start-page: 742 year: 1963 ident: apjad7fecbib36 publication-title: AZh – volume: 731 start-page: 62 year: 2011 ident: apjad7fecbib23 publication-title: ApJ doi: 10.1088/0004-637X/731/1/62 – volume: 774 start-page: 149 year: 2013 ident: apjad7fecbib18 publication-title: ApJ doi: 10.1088/0004-637X/774/2/149 – volume: 26 start-page: 1031 year: 1968 ident: apjad7fecbib39 publication-title: JETP – volume: 594 start-page: A13 year: 2016 ident: apjad7fecbib61 publication-title: A&A doi: 10.1051/0004-6361/201525830 – volume: 857 start-page: 34 year: 2018 ident: apjad7fecbib91 publication-title: ApJ doi: 10.3847/1538-4357/aaafc9 – volume: 199 start-page: 883 year: 1982 ident: apjad7fecbib11 publication-title: MNRAS doi: 10.1093/mnras/199.4.883 – volume: 70 start-page: 1 year: 1998 ident: apjad7fecbib4 publication-title: RvMP doi: 10.1103/RevModPhys.70.1 – volume: 503 start-page: 2014 year: 2021 ident: apjad7fecbib67 publication-title: MNRAS doi: 10.1093/mnras/stab531 – volume: 456 start-page: 500 year: 2016 ident: apjad7fecbib71 publication-title: MNRAS doi: 10.1093/mnras/stv2700 – volume: 711 start-page: 959 year: 2010 ident: apjad7fecbib54 publication-title: ApJ doi: 10.1088/0004-637X/711/2/959 – volume: 25 start-page: 35 year: 1983 ident: apjad7fecbib26 publication-title: SIAMR doi: 10.1137/1025002 – volume: 955 start-page: 99 year: 2023 ident: apjad7fecbib49 publication-title: ApJ doi: 10.3847/1538-4357/acefb9 – year: 2001 ident: apjad7fecbib57 – year: 1998 ident: apjad7fecbib38 – volume: 133 year: 1988 ident: apjad7fecbib64 doi: 10.1007/978-94-009-2835-0 – volume: 24 start-page: 337 ident: apjad7fecbib66 publication-title: A&A – volume: 945 start-page: 137 year: 2023 ident: apjad7fecbib45 publication-title: ApJ doi: 10.3847/1538-4357/acbcc2 – volume: 306 start-page: 325 year: 1996 ident: apjad7fecbib14 publication-title: JFM doi: 10.1017/S0022112096001322 – volume: 489 start-page: L179 year: 1997 ident: apjad7fecbib81 publication-title: ApJ doi: 10.1086/310975 – volume: 339 start-page: 937 year: 2003 ident: apjad7fecbib24 publication-title: MNRAS doi: 10.1046/j.1365-8711.2003.06241.x – volume: 385 start-page: L15 year: 2008 ident: apjad7fecbib77 publication-title: MNRAS doi: 10.1111/j.1745-3933.2008.00423.x – volume: 402 start-page: 673 year: 2010 ident: apjad7fecbib6 publication-title: MNRAS doi: 10.1111/j.1365-2966.2009.15916.x – volume: 58 start-page: 27 year: 2020 ident: apjad7fecbib35 publication-title: ARA&A doi: 10.1146/annurev-astro-120419-014455 – volume: 476 start-page: 3523 year: 2018 ident: apjad7fecbib48 publication-title: MNRAS doi: 10.1093/mnras/sty362 – volume: 685 start-page: A31 year: 2024 ident: apjad7fecbib62 publication-title: A&A doi: 10.1051/0004-6361/202348903 – volume: 58 start-page: 193 year: 2006 ident: apjad7fecbib50 publication-title: PASJ doi: 10.1093/pasj/58.1.193 – volume: 851 start-page: L8 year: 2017 ident: apjad7fecbib86 publication-title: ApJL doi: 10.3847/2041-8213/aa943a – volume: 329 start-page: 810 year: 1987 ident: apjad7fecbib68 publication-title: Natur doi: 10.1038/329810a0 – start-page: 19 year: 1999 ident: apjad7fecbib55 – year: 1988 ident: apjad7fecbib31 – volume: 526 start-page: L94 year: 2023 ident: apjad7fecbib9 publication-title: MNRAS doi: 10.1093/mnrasl/slad124 – volume: 8 start-page: 1054 year: 2024 ident: apjad7fecbib13 publication-title: NatAs doi: 10.1038/s41550-024-02273-0 – volume: 40 start-page: 147 year: 1988 ident: apjad7fecbib33 publication-title: PASJ – volume: 738 start-page: 84 year: 2011 ident: apjad7fecbib28 publication-title: ApJ doi: 10.1088/0004-637X/738/1/84 – volume: 139 start-page: 1217 year: 1964 ident: apjad7fecbib80 publication-title: ApJ doi: 10.1086/147861 – volume: 466 start-page: 2217 year: 2017 ident: apjad7fecbib74 publication-title: MNRAS doi: 10.1093/mnras/stw3291 – volume: 521 start-page: 5952 year: 2023 ident: apjad7fecbib7 publication-title: MNRAS doi: 10.1093/mnras/stad914 – volume: 345 start-page: 679 year: 1990 ident: apjad7fecbib70 publication-title: Natur doi: 10.1038/345679a0 – volume: 479 start-page: 2277 year: 2018 ident: apjad7fecbib2 publication-title: MNRAS doi: 10.1093/mnras/sty1657 – volume: 529 start-page: 3768 year: 2024 ident: apjad7fecbib10 publication-title: MNRAS doi: 10.1093/mnras/stae780 – volume: 417 start-page: 1 year: 2005 ident: apjad7fecbib15 publication-title: PhR doi: 10.1016/j.physrep.2005.06.005 – volume: 175 start-page: 645 year: 2002 ident: apjad7fecbib20 publication-title: JCoPh doi: 10.1006/jcph.2001.6961 – volume: 440 start-page: 742 year: 1995 ident: apjad7fecbib27 publication-title: ApJ doi: 10.1086/175311 – volume: 628 start-page: 879 year: 2005 ident: apjad7fecbib60 publication-title: ApJ doi: 10.1086/430940 – volume: 338 start-page: 45 year: 1989 ident: apjad7fecbib72 publication-title: Natur doi: 10.1038/338045a0 – volume: 953 start-page: L29 year: 2023 ident: apjad7fecbib43 publication-title: ApJL doi: 10.3847/2041-8213/ace619 – volume: 7 start-page: 19 year: 2024 ident: apjad7fecbib32 publication-title: OJAp doi: 10.21105/astro.2310.04506 |
SSID | ssj0004299 |
Score | 2.4692035 |
Snippet | We have used high-resolution zoom-in simulations of direct collapse to supermassive black hole (SMBH) seeds within dark mater halos in the presence of magnetic... |
SourceID | doaj proquest crossref iop |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 85 |
SubjectTerms | Accretion Accretion disks Active galactic nuclei Black holes Collapse Coriolis force Damping Dark matter Early universe Expulsion Gravitation Gravitational collapse Gravitational instability Helicity Instability Magnetic fields Magnetohydrodynamics Magnetospheres Outflow Population III stars Scale height Seeds Solar dynamo Supermassive black holes Vertical forces |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fi9QwEA5yIPgieiq3ekoeVPCh7LVNmsa3VW9ZhBNBD-6tzOSHLHfXLtc98B79z51Juv5A0Bff0jbQkm8y82Wa-SLE8zZqWvY0oUDEUChtmwIqpwsAohdeeXCW651PPjSrU_X-TJ_9ctQX7wnL8sB54ObOaKuMRuNjUAAKbN36iODqWGoXk84nxbzdYmpXEUleNv-UrMn9ztO0JmJg5uBNDO63IJS0-im0rIfNHw45RZnlPXF3oodykT_rvrgV-n1xsBg5YT1c3siXMrVzPmLcF7c_5tYD8S07L8mZANiMQS6c4wrFoZfv1uP5KDnjuqYLuDqXJ0lVU67gYhhfy08s7pkQkkOUxAjp-Zc-sLjBdsoVSt5UkCW9byT0PvVa8u43efx1c33BObeH4nR5_PntqpjOVyhc3dhtUYJpldct6tLVYD3aEiNWTiGWjpiRD57Yn4fKYzxSCLqEgI01aNqGaG5VPxJ7_dCHAyGt1whovQmeAK40ECs8irFC0zStizgTr3YD3m2yjEZHyw8Gp2NwOgany-DMxBtG5Ec_FsBON8gsusksun-ZxUy8IDy7aUKOf3nZ4Q7xn51rCtqGiVj5-H98yxNxpyIqlCsYD8Xe9uo6PCUqs8VnyWq_A1Wy9ng priority: 102 providerName: Directory of Open Access Journals |
Title | Direct Collapse Accretion Disks within Dark Matter Halos: Saturation of the Magnetorotational Instability and the Field Expulsion |
URI | https://iopscience.iop.org/article/10.3847/1538-4357/ad7fec https://www.proquest.com/docview/3128735541 https://doaj.org/article/c759475b7dfe4aa4a938dfbac3f15cf3 |
Volume | 976 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKERIXHgXUhVL5AEgcsm1iO47htEBXK6TSSlCxB6TI4weqtiSrJitRbvxzxna2FQ8hxCVykpGdzNiezxPPF0KeVF7gsqd0GQC4jAtVZrowItMa4YXlVhsV8p0P35WzE_52LuYb5OVlLky7HKb-MRYTUXBSYRjfDOfSvThG0cvLPW2ld-Yauc4qdJwhe-_o-CopslAD9uVZyeQ8faP8Yw0_-aRI3Y-eBpv_bX6OTmd6m3xaP27aa7IYr3oYm2-_MDn-5_vcIbcGMEonSfQu2XDNFtmedCE83n65oM9oLKfoR7dFbhyn0j3yPU2VNMQd9LJzdGJMyIdsG_rmtFt0NMR3T_FEny_oYeTwpDN91nYv6PtAJRr7A209RfyJ9z83LlAp9ENkkoYtDIlA_ILqxkapadhrRw--LldnIcJ3n5xMDz68nmXD3xwyw0rVZ7mWFbeiApEbppUFlYOHwnCA3CAOs84i1rS6sOD3OWiRawelkiCrEkF1wR6QzaZt3DahygrQoKx0FrtTITRi0H3vC5BlWRkPI_J8bc96mUg7alzsBG3XQdt10HadtD0ir4LBL-UC3Xa8gKaqB1PVRgrFpQBpveNac61YZT1ow3wujGcj8hStWw_Dv_tLYzvrDnUlzBAiyAD78of_WM0jcrNAbJVSInfIZn--co8RG_WwG2MKu3Ek4PGIffwBOy0O-g |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqIhAXHgXUhQI-UCQO2W0ejmMkDgvb1ZbSshJU2lvq8QNVW5KoyQqWG7-Iv8JPYhxnW_EQ4tIDNyexEscz9nwez3wm5ElmGS57UhMAgAkSJtJARooFUiK80ImWSrh854PDdHKUvJ6x2Rr5dp4LU1bd1N_HoicK9l3oxneMc-mgHaNo5flAam6NGlTadlGV-2b5Cdds9Yu9EQp4O4rGu-9fTYLuWIFAxaloglDyLNEsAxaqWAoNIgQLkUoAQoWAQBuNoEfLSIPdSUCyUBpIBQeepYjuHNMBzvlXWIy22mUMvp1eJGJGosPbSZDGfOb3Rf_Y6p_sYHtcAFo3_OXfbEJr6MY3yfdVF_n4lnl_0UBfffmFPfI_6sNb5EYHuunQN-82WTPFBtkc1m4boPy4pE9pW_ZennqDXJ360h3y1ZsE6vwrsqoNHSrl8j7Lgo5O6nlNnR_7BC_k2ZwetFyldCJPy_o5fecoU1u9p6WliLPx-YfCOMqIpvPAUheq4YnSl1QWuq01djGFdPdztTh1nsy75OhSuuYeWS_KwmwSKjQDCUJzo3HYREwi1t6xNgKeppmy0CPPVjqUV56cJMdFnZNw7iScOwnnXsI98tIp2Xk9Ryve3kD1yDv1yBVnIuEMuLYmkTKRIs60BaliGzJl4x7ZRo3Ku2mu_svHtlZKfFE5RijEHbwN7__jax6Ta9PROH-zd7j_gFyPEE76LNAtst6cLcxDhIMNPGqHICXHl62vPwAsS27h |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+Collapse+Accretion+Disks+within+Dark+Matter+Halos%3A+Saturation+of+the+Magnetorotational+Instability+and+the+Field+Expulsion&rft.jtitle=The+Astrophysical+journal&rft.au=Luo%2C+Yang&rft.au=Shlosman%2C+Isaac&rft.date=2024-11-01&rft.pub=The+American+Astronomical+Society&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=976&rft.issue=1&rft_id=info:doi/10.3847%2F1538-4357%2Fad7fec&rft.externalDocID=apjad7fec |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon |