Self-regulating behavior of hybrid membrane systems as demonstrated in an element-scale forward osmosis-reverse osmosis hybrid system

•Hybrid membrane systems require flow balancing between unit operations.•Unbalanced flow between unit operation can starve or overflow downstream processes.•Buffer tanks can offer operational flexibility.•Forward osmosis hybridized with reverse osmosis with a buffer tank can self-regulate.•Leveragin...

Full description

Saved in:
Bibliographic Details
Published inJournal of Membrane Science Letters Vol. 5; no. 2; p. 100102
Main Authors Ferguson, Noah, Chowdhury, Maqsud, Fitzsimonds, Colin, Beauregard, Nicole, Ostwal, Mayur, Pemberton, Marianne, Wazer, Edward, Cyr, Caylin, Srivastava, Ranjan, McCutcheon, Jeffrey R.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2025
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Hybrid membrane systems require flow balancing between unit operations.•Unbalanced flow between unit operation can starve or overflow downstream processes.•Buffer tanks can offer operational flexibility.•Forward osmosis hybridized with reverse osmosis with a buffer tank can self-regulate.•Leveraging thermodynamic equilibrium tendencies can reduce control and design complexity. Hybrid membrane systems can be difficult to design due to the requisite flow rate matching between up- and downstream unit operations. In this work, we use a forward osmosis-reverse osmosis (FO-RO) hybrid system to demonstrate how some membrane systems can exhibit self-regulating behavior due to osmotic coupling. This can reduce the need for complex control systems for flow balancing. We show this behavior using a module-scale test bed that can mimic the behavior of larger scale operations. The system shows permeate flow rate near-convergence between the FO and RO modules after startup or when perturbed by a change in RO module pressure. The behavior of this hybrid system demonstrates that some membrane operations can exploit osmotic interdependence, rather than expensive control systems, to achieve steady state operation. [Display omitted]
AbstractList •Hybrid membrane systems require flow balancing between unit operations.•Unbalanced flow between unit operation can starve or overflow downstream processes.•Buffer tanks can offer operational flexibility.•Forward osmosis hybridized with reverse osmosis with a buffer tank can self-regulate.•Leveraging thermodynamic equilibrium tendencies can reduce control and design complexity. Hybrid membrane systems can be difficult to design due to the requisite flow rate matching between up- and downstream unit operations. In this work, we use a forward osmosis-reverse osmosis (FO-RO) hybrid system to demonstrate how some membrane systems can exhibit self-regulating behavior due to osmotic coupling. This can reduce the need for complex control systems for flow balancing. We show this behavior using a module-scale test bed that can mimic the behavior of larger scale operations. The system shows permeate flow rate near-convergence between the FO and RO modules after startup or when perturbed by a change in RO module pressure. The behavior of this hybrid system demonstrates that some membrane operations can exploit osmotic interdependence, rather than expensive control systems, to achieve steady state operation. [Display omitted]
Hybrid membrane systems can be difficult to design due to the requisite flow rate matching between up- and downstream unit operations. In this work, we use a forward osmosis-reverse osmosis (FO-RO) hybrid system to demonstrate how some membrane systems can exhibit self-regulating behavior due to osmotic coupling. This can reduce the need for complex control systems for flow balancing. We show this behavior using a module-scale test bed that can mimic the behavior of larger scale operations. The system shows permeate flow rate near-convergence between the FO and RO modules after startup or when perturbed by a change in RO module pressure. The behavior of this hybrid system demonstrates that some membrane operations can exploit osmotic interdependence, rather than expensive control systems, to achieve steady state operation.
ArticleNumber 100102
Author Fitzsimonds, Colin
McCutcheon, Jeffrey R.
Beauregard, Nicole
Wazer, Edward
Pemberton, Marianne
Ostwal, Mayur
Cyr, Caylin
Srivastava, Ranjan
Ferguson, Noah
Chowdhury, Maqsud
Author_xml – sequence: 1
  givenname: Noah
  surname: Ferguson
  fullname: Ferguson, Noah
– sequence: 2
  givenname: Maqsud
  surname: Chowdhury
  fullname: Chowdhury, Maqsud
– sequence: 3
  givenname: Colin
  surname: Fitzsimonds
  fullname: Fitzsimonds, Colin
– sequence: 4
  givenname: Nicole
  surname: Beauregard
  fullname: Beauregard, Nicole
– sequence: 5
  givenname: Mayur
  surname: Ostwal
  fullname: Ostwal, Mayur
– sequence: 6
  givenname: Marianne
  surname: Pemberton
  fullname: Pemberton, Marianne
– sequence: 7
  givenname: Edward
  surname: Wazer
  fullname: Wazer, Edward
– sequence: 8
  givenname: Caylin
  surname: Cyr
  fullname: Cyr, Caylin
– sequence: 9
  givenname: Ranjan
  surname: Srivastava
  fullname: Srivastava, Ranjan
– sequence: 10
  givenname: Jeffrey R.
  orcidid: 0000-0002-5638-4926
  surname: McCutcheon
  fullname: McCutcheon, Jeffrey R.
  email: jeffrey.mccutcheon@uconn.edu
BookMark eNp9kcFu1DAQhi3USi1t36AHv0AWjxMn8QUJVUArVeIAnK2JPd56ldjINov2AXhvUkIRJ04z80v_NzP6X7OzmCIxdgtiBwL6N4fdQstMdSeFVKskQMhX7FIOg2w6CfLsn_6C3ZRyEELIEaAFfcl-fqbZN5n232esIe75RE94DCnz5PnTacrB8ZU_ZYzEy6lUWgrHwh0tKZaasZLjIXKMnGZaKNamWJyJ-5R_YHY8lSWVUNYVR8qFXuYX9oa8Zuce50I3f-oV-_rh_Ze7--bx08eHu3ePjW17XRtAZR341g7UTsp3lpQlUHbsUHuvR697qfSIWk8WB-oJALzyqKaxB691e8UeNq5LeDDfclgwn0zCYH4LKe8N5hrsTGYC9L0erRs1dD0Mo9S9Uw5aUpJQqpXVbSybUymZ_F8eCPOcjDmYLRnznIzZklltbzcbrX8eA2VTbKBoyYVMtq6HhP8DfgEjHJ5E
Cites_doi 10.1016/j.memsci.2016.07.035
10.1016/j.desal.2020.114429
10.1016/j.desal.2014.12.011
10.1016/j.memsci.2021.119182
10.1016/j.cep.2016.09.020
10.1016/j.memsci.2021.119054
10.1016/j.desal.2020.114583
10.1016/j.memsci.2015.06.004
10.1016/j.jiec.2021.03.048
10.4491/eer.2011.16.4.205
10.1016/j.desal.2018.04.015
10.1016/j.psep.2018.05.006
10.1016/j.memsci.2014.05.061
10.1111/1752-1688.12801
10.1016/j.rser.2023.113866
10.1016/j.watres.2020.116154
10.1021/acs.jced.0c00402
ContentType Journal Article
Copyright 2025
Copyright_xml – notice: 2025
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.memlet.2025.100102
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2772-4212
ExternalDocumentID oai_doaj_org_article_b1af698cd89146178296d5d13e52ea25
10_1016_j_memlet_2025_100102
S277242122500011X
GroupedDBID 6I.
AAFTH
AAFWJ
AALRI
AAXUO
AAYWO
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPKN
AFPUW
AIGII
AITUG
AKBMS
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
EBS
FDB
GROUPED_DOAJ
M41
M~E
OK1
ROL
AAYXX
CITATION
ID FETCH-LOGICAL-c369t-1a5cd1f3c7e3b5f4ce5ce15c84a9ff98f962598a99bca7e6e111f5fa5b861f993
IEDL.DBID DOA
ISSN 2772-4212
IngestDate Wed Aug 27 00:57:16 EDT 2025
Wed Jul 16 16:45:46 EDT 2025
Sat Aug 09 17:31:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Hybrid systems
Debottlenecking
Process control
Osmotic processes
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c369t-1a5cd1f3c7e3b5f4ce5ce15c84a9ff98f962598a99bca7e6e111f5fa5b861f993
ORCID 0000-0002-5638-4926
OpenAccessLink https://doaj.org/article/b1af698cd89146178296d5d13e52ea25
ParticipantIDs doaj_primary_oai_doaj_org_article_b1af698cd89146178296d5d13e52ea25
crossref_primary_10_1016_j_memlet_2025_100102
elsevier_sciencedirect_doi_10_1016_j_memlet_2025_100102
PublicationCentury 2000
PublicationDate December 2025
2025-12-00
2025-12-01
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: December 2025
PublicationDecade 2020
PublicationTitle Journal of Membrane Science Letters
PublicationYear 2025
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Kim, Lee, Nguyen, Adha, Kim, Ahn, Son, Kim (bib0010) 2021; 98
Lee, Park, Park, Lee, Kim (bib0012) 2020; 491
Volpin, Fons, Chekli, Kim, Jang, Shon (bib0020) 2018; 117
Aquaporin Inside® HFFO®14 Module Product Specifications, 2021. Retrieved from
Wan, Yang, Lipscomb, Stookey, Chunga (bib0021) 2021
Baker (bib0002) 2004
Cala, Maturana-Córdoba, Soto-Verjel (bib0007) 2023; 188
.
D’Haese, Bravo, Harmsen, Vanhaecke, Verliefde, Jeison, Cornelissen (bib0009) 2021; 626
Binger, Achilli (bib0003) 2020; 491
Cai, Galili, Gelman, Herzberg, Gilron (bib0006) 2021; 623
Ren, McCutcheon (bib0017) 2018; 442
Thiruvenkatachari, Su, Cunnington (bib0019) 2019
Sohn, Valavala, Han, Her, Yoon (bib0018) 2011; 16
Blandin, Verliefde, Tang, Le-Clech (bib0005) 2015; 363
McGovern, Lienhard V (bib0013) 2014; 469
Zaviska, Chun, Heran, Zou (bib0022) 2015; 492
Choi, Kim, Hong (bib0008) 2016; 520
Monnot, Nguyên, Laborie, Cabassud (bib0014) 2017; 113
Opalinski, Bhaskar, Manning (bib0015) 2020; 56
Blandin, Verliefde, Comas, Rodriguez-Roda, Le-Clech (bib0004) 2016; 6
Lee, Nguyen, Adha, Shon, Kim (bib0011) 2020; 185
Partanen, Partanen (bib0016) 2020; 65
Thiruvenkatachari (10.1016/j.memlet.2025.100102_bib0019) 2019
Binger (10.1016/j.memlet.2025.100102_bib0003) 2020; 491
10.1016/j.memlet.2025.100102_bib0001
Sohn (10.1016/j.memlet.2025.100102_bib0018) 2011; 16
Lee (10.1016/j.memlet.2025.100102_bib0012) 2020; 491
Cala (10.1016/j.memlet.2025.100102_bib0007) 2023; 188
Blandin (10.1016/j.memlet.2025.100102_bib0004) 2016; 6
Blandin (10.1016/j.memlet.2025.100102_bib0005) 2015; 363
McGovern (10.1016/j.memlet.2025.100102_bib0013) 2014; 469
Cai (10.1016/j.memlet.2025.100102_bib0006) 2021; 623
Kim (10.1016/j.memlet.2025.100102_bib0010) 2021; 98
D’Haese (10.1016/j.memlet.2025.100102_bib0009) 2021; 626
Monnot (10.1016/j.memlet.2025.100102_bib0014) 2017; 113
Zaviska (10.1016/j.memlet.2025.100102_bib0022) 2015; 492
Wan (10.1016/j.memlet.2025.100102_bib0021) 2021
Lee (10.1016/j.memlet.2025.100102_bib0011) 2020; 185
Choi (10.1016/j.memlet.2025.100102_bib0008) 2016; 520
Ren (10.1016/j.memlet.2025.100102_bib0017) 2018; 442
Partanen (10.1016/j.memlet.2025.100102_bib0016) 2020; 65
Baker (10.1016/j.memlet.2025.100102_bib0002) 2004
Opalinski (10.1016/j.memlet.2025.100102_bib0015) 2020; 56
Volpin (10.1016/j.memlet.2025.100102_bib0020) 2018; 117
References_xml – volume: 6
  start-page: 5
  year: 2016
  end-page: 8
  ident: bib0004
  article-title: Efficiently combining water reuse and desalination through forward osmosis-reverse osmosis (FO-RO) hybrids: a critical review
  publication-title: Membranes (Basel)
– volume: 363
  start-page: 26
  year: 2015
  end-page: 36
  ident: bib0005
  article-title: Opportunities to reach economic sustainability in forward osmosis-reverse osmosis hybrids for seawater desalination
  publication-title: Desalination
– volume: 65
  start-page: 5226
  year: 2020
  end-page: 5239
  ident: bib0016
  article-title: Traceable values for activity and osmotic coefficients in aqueous sodium chloride solutions at temperatures from 273.15 to 373.15 K up to the saturated solutions
  publication-title: J. Chem. Eng. Data
– volume: 16
  start-page: 205
  year: 2011
  end-page: 212
  ident: bib0018
  article-title: Pretreatment in reverse osmosis seawater desalination: a short review
  publication-title: Environ. Eng. Res.
– volume: 113
  start-page: 42
  year: 2017
  end-page: 55
  ident: bib0014
  article-title: Seawater reverse osmosis desalination plant at community-scale: role of an innovative pretreatment on process performances and intensification
  publication-title: Chem. Eng. Process. - Process Intensif.
– volume: 185
  start-page: 10
  year: 2020
  end-page: 12
  ident: bib0011
  article-title: Influence of hydrodynamic operating conditions on organic fouling of spiral-wound forward osmosis membranes: fouling-induced performance deterioration in FO-RO hybrid system
  publication-title: Water Res.
– reference: Aquaporin Inside® HFFO®14 Module Product Specifications, 2021. Retrieved from <
– reference: .
– start-page: 325
  year: 2019
  end-page: 336
  ident: bib0019
  article-title: FO-RO for mining wastewater treatment
  publication-title: Current Trends and Future Developments On (Bio-) Membranes: Reverse and Forward Osmosis: Principles, Applications, Advances
– volume: 491
  year: 2020
  ident: bib0012
  article-title: Toward scale-up of seawater reverse osmosis (SWRO) – pressure retarded osmosis (PRO) hybrid system: a case study of a 240 m3/day pilot plant
  publication-title: Desalination
– volume: 442
  start-page: 44
  year: 2018
  end-page: 50
  ident: bib0017
  article-title: A new commercial biomimetic hollow fiber membrane for forward osmosis
  publication-title: Desalination
– volume: 623
  start-page: 3
  year: 2021
  end-page: 4
  ident: bib0006
  article-title: Evaluating the impact of pretreatment processes on fouling of reverse osmosis membrane by secondary wastewater
  publication-title: J. Membr. Sci.
– volume: 520
  start-page: 89
  year: 2016
  end-page: 98
  ident: bib0008
  article-title: Fouling evaluation and mechanisms in a FO-RO hybrid process for direct potable reuse
  publication-title: J. Membr. Sci.
– volume: 491
  start-page: 2
  year: 2020
  ident: bib0003
  article-title: Forward osmosis and pressure retarded osmosis process modeling for integration with seawater reverse osmosis desalination
  publication-title: Desalination
– volume: 117
  start-page: 523
  year: 2018
  end-page: 532
  ident: bib0020
  article-title: Hybrid forward osmosis-reverse osmosis for wastewater reuse and seawater desalination: understanding the optimal feed solution to minimise fouling
  publication-title: Process Saf. Environ. Prot.
– volume: 188
  start-page: 3
  year: 2023
  end-page: 8
  ident: bib0007
  article-title: Exploring the pretreatments’ influence on pressure reverse osmosis: PRISMA review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 626
  start-page: 2
  year: 2021
  end-page: 4
  ident: bib0009
  article-title: Analysing organic micropollutant accumulation in closed loop FO–RO systems: a pilot plant study
  publication-title: J. Membr. Sci.
– year: 2004
  ident: bib0002
  publication-title: Membrane Technology and Applications
– volume: 98
  start-page: 237
  year: 2021
  end-page: 246
  ident: bib0010
  article-title: Insight into fouling potential analysis of a pilot-scale pressure-assisted forward osmosis plant for diluted seawater reverse osmosis desalination
  publication-title: J. Ind. Eng. Chem.
– volume: 492
  start-page: 430
  year: 2015
  end-page: 438
  ident: bib0022
  article-title: Using FO as pre-treatment of RO for high scaling potential brackish water: energy and performance optimisation
  publication-title: J. Membr. Sci.
– volume: 56
  start-page: 68
  year: 2020
  end-page: 81
  ident: bib0015
  article-title: Spatial and seasonal response of municipal water use to weather across the contiguous U.S
  publication-title: J. Am. Water Resour. Assoc.
– volume: 469
  start-page: 245
  year: 2014
  end-page: 250
  ident: bib0013
  article-title: On the potential of forward osmosis to energetically outperform reverse osmosis desalination
  publication-title: J. Membr. Sci.
– start-page: 225
  year: 2021
  end-page: 252
  ident: bib0021
  article-title: Design and fabrication of hollow fiber membrane modules
  publication-title: Hollow Fiber Membranes: Fabrication and Applications
– volume: 520
  start-page: 89
  year: 2016
  ident: 10.1016/j.memlet.2025.100102_bib0008
  article-title: Fouling evaluation and mechanisms in a FO-RO hybrid process for direct potable reuse
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2016.07.035
– start-page: 325
  year: 2019
  ident: 10.1016/j.memlet.2025.100102_bib0019
  article-title: FO-RO for mining wastewater treatment
– volume: 491
  year: 2020
  ident: 10.1016/j.memlet.2025.100102_bib0012
  article-title: Toward scale-up of seawater reverse osmosis (SWRO) – pressure retarded osmosis (PRO) hybrid system: a case study of a 240 m3/day pilot plant
  publication-title: Desalination
  doi: 10.1016/j.desal.2020.114429
– start-page: 225
  year: 2021
  ident: 10.1016/j.memlet.2025.100102_bib0021
  article-title: Design and fabrication of hollow fiber membrane modules
– volume: 363
  start-page: 26
  year: 2015
  ident: 10.1016/j.memlet.2025.100102_bib0005
  article-title: Opportunities to reach economic sustainability in forward osmosis-reverse osmosis hybrids for seawater desalination
  publication-title: Desalination
  doi: 10.1016/j.desal.2014.12.011
– volume: 626
  start-page: 2
  year: 2021
  ident: 10.1016/j.memlet.2025.100102_bib0009
  article-title: Analysing organic micropollutant accumulation in closed loop FO–RO systems: a pilot plant study
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2021.119182
– volume: 113
  start-page: 42
  year: 2017
  ident: 10.1016/j.memlet.2025.100102_bib0014
  article-title: Seawater reverse osmosis desalination plant at community-scale: role of an innovative pretreatment on process performances and intensification
  publication-title: Chem. Eng. Process. - Process Intensif.
  doi: 10.1016/j.cep.2016.09.020
– volume: 623
  start-page: 3
  year: 2021
  ident: 10.1016/j.memlet.2025.100102_bib0006
  article-title: Evaluating the impact of pretreatment processes on fouling of reverse osmosis membrane by secondary wastewater
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2021.119054
– volume: 491
  start-page: 2
  year: 2020
  ident: 10.1016/j.memlet.2025.100102_bib0003
  article-title: Forward osmosis and pressure retarded osmosis process modeling for integration with seawater reverse osmosis desalination
  publication-title: Desalination
  doi: 10.1016/j.desal.2020.114583
– volume: 492
  start-page: 430
  year: 2015
  ident: 10.1016/j.memlet.2025.100102_bib0022
  article-title: Using FO as pre-treatment of RO for high scaling potential brackish water: energy and performance optimisation
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2015.06.004
– volume: 98
  start-page: 237
  year: 2021
  ident: 10.1016/j.memlet.2025.100102_bib0010
  article-title: Insight into fouling potential analysis of a pilot-scale pressure-assisted forward osmosis plant for diluted seawater reverse osmosis desalination
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2021.03.048
– volume: 16
  start-page: 205
  year: 2011
  ident: 10.1016/j.memlet.2025.100102_bib0018
  article-title: Pretreatment in reverse osmosis seawater desalination: a short review
  publication-title: Environ. Eng. Res.
  doi: 10.4491/eer.2011.16.4.205
– volume: 442
  start-page: 44
  year: 2018
  ident: 10.1016/j.memlet.2025.100102_bib0017
  article-title: A new commercial biomimetic hollow fiber membrane for forward osmosis
  publication-title: Desalination
  doi: 10.1016/j.desal.2018.04.015
– volume: 6
  start-page: 5
  year: 2016
  ident: 10.1016/j.memlet.2025.100102_bib0004
  article-title: Efficiently combining water reuse and desalination through forward osmosis-reverse osmosis (FO-RO) hybrids: a critical review
  publication-title: Membranes (Basel)
– volume: 117
  start-page: 523
  year: 2018
  ident: 10.1016/j.memlet.2025.100102_bib0020
  article-title: Hybrid forward osmosis-reverse osmosis for wastewater reuse and seawater desalination: understanding the optimal feed solution to minimise fouling
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2018.05.006
– volume: 469
  start-page: 245
  year: 2014
  ident: 10.1016/j.memlet.2025.100102_bib0013
  article-title: On the potential of forward osmosis to energetically outperform reverse osmosis desalination
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2014.05.061
– volume: 56
  start-page: 68
  year: 2020
  ident: 10.1016/j.memlet.2025.100102_bib0015
  article-title: Spatial and seasonal response of municipal water use to weather across the contiguous U.S
  publication-title: J. Am. Water Resour. Assoc.
  doi: 10.1111/1752-1688.12801
– ident: 10.1016/j.memlet.2025.100102_bib0001
– volume: 188
  start-page: 3
  year: 2023
  ident: 10.1016/j.memlet.2025.100102_bib0007
  article-title: Exploring the pretreatments’ influence on pressure reverse osmosis: PRISMA review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2023.113866
– volume: 185
  start-page: 10
  year: 2020
  ident: 10.1016/j.memlet.2025.100102_bib0011
  article-title: Influence of hydrodynamic operating conditions on organic fouling of spiral-wound forward osmosis membranes: fouling-induced performance deterioration in FO-RO hybrid system
  publication-title: Water Res.
  doi: 10.1016/j.watres.2020.116154
– year: 2004
  ident: 10.1016/j.memlet.2025.100102_bib0002
– volume: 65
  start-page: 5226
  year: 2020
  ident: 10.1016/j.memlet.2025.100102_bib0016
  article-title: Traceable values for activity and osmotic coefficients in aqueous sodium chloride solutions at temperatures from 273.15 to 373.15 K up to the saturated solutions
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/acs.jced.0c00402
SSID ssj0002811319
Score 2.3105383
Snippet •Hybrid membrane systems require flow balancing between unit operations.•Unbalanced flow between unit operation can starve or overflow downstream...
Hybrid membrane systems can be difficult to design due to the requisite flow rate matching between up- and downstream unit operations. In this work, we use a...
SourceID doaj
crossref
elsevier
SourceType Open Website
Index Database
Publisher
StartPage 100102
SubjectTerms Debottlenecking
Hybrid systems
Osmotic processes
Process control
Title Self-regulating behavior of hybrid membrane systems as demonstrated in an element-scale forward osmosis-reverse osmosis hybrid system
URI https://dx.doi.org/10.1016/j.memlet.2025.100102
https://doaj.org/article/b1af698cd89146178296d5d13e52ea25
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIpygveWC1aJLasUdArSqkskClbpEfZ9GKpqgpAwsb_5tznKBMsLBEimWdrbuT7z7r_B0h1yZLc8stMAFSsIHQOVMeMU-e-sz2wUjjAlCcPIrxdPAw47NOq69QExbpgaPibkyivVDSOqlCC2oMaEo47pIMeAo6rdlLMeZ1wNSivjJKEnSu9q1cXdC1hCWqAiFhymvmoeYmpY1FNWV_JyR1wsxon-w1-SG9jfs6IFtQHpLdDmvgEfl6glfP1rGJPI7Q9qk9XXn68hGeYFHcBcLgEmhkaq6orqiDZUgGAzeEo_OS6pJCLB5nFVoKKOavoYaWrqrlqppXLLA7rSto_1vZUeQxmY6Gz_dj1nRTYDYTasMSza1L0AI5ZIb7gQU0UcKtHGjlvZJeBSgktVLG6hwE4CnoudfcSJF4TGNOyHa5KuGUUJvlCENsmmnPQ8dq1TdO4lEhnQEjnOkR1uq1eIukGUVbTbYooh2KYIci2qFH7oLyf-YGyut6AB2haByh-MsReiRvTVc02UPMClDU_Nflz_5j-XOyE0TGSpcLsr1Zv8Ml5isbc1W7Jn4nn8NvkZvtRQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-regulating+behavior+of+hybrid+membrane+systems+as+demonstrated+in+an+element-scale+forward+osmosis-reverse+osmosis+hybrid+system&rft.jtitle=Journal+of+Membrane+Science+Letters&rft.au=Ferguson%2C+Noah&rft.au=Chowdhury%2C+Maqsud&rft.au=Fitzsimonds%2C+Colin&rft.au=Beauregard%2C+Nicole&rft.date=2025-12-01&rft.pub=Elsevier+B.V&rft.issn=2772-4212&rft.eissn=2772-4212&rft.volume=5&rft.issue=2&rft_id=info:doi/10.1016%2Fj.memlet.2025.100102&rft.externalDocID=S277242122500011X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2772-4212&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2772-4212&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2772-4212&client=summon