Numerical investigation of a CO2 loop thermosyphon in an integrated air conditioning system for free cooling of data centers

Free cooling based on loop thermosyphon is ideal energy-saving method for data centers. Most working fluids presently used in this field will cause greenhouse effect or destroy the ozone layer. It is necessary to investigate the applicability of environment friendly fluids. A distributed-parameter m...

Full description

Saved in:
Bibliographic Details
Published inApplied thermal engineering Vol. 126; pp. 1134 - 1140
Main Authors Zhang, Hainan, Shao, Shuangquan, Jin, Tingxiang, Tian, Changqing
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 05.11.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Free cooling based on loop thermosyphon is ideal energy-saving method for data centers. Most working fluids presently used in this field will cause greenhouse effect or destroy the ozone layer. It is necessary to investigate the applicability of environment friendly fluids. A distributed-parameter model of a CO2 loop thermosyphon in an integrated air conditioning system for free cooling is built and validated. The performance is compared with traditional working fluids and the effects of some key geometric parameters are evaluated. The results show that the optimal filling ratios for CO2, R22 and R134a are 120%, 100% and 90%, respectively. The circulation flow rate of CO2 is much smaller than those of R22 and R134a. For CO2 loop thermosyphon, the heat transfer rate decreases with the increase of pipe length, while increases with the increase of riser diameter and height difference. The heat transfer rate increases with the increase of tube number and length of the evaporator, while the increasing rate decreases gradually. The optimal tube number and length are 80 and 0.6m, respectively. The relationships between the above phenomenon and the internal flow state are also analyzed.
AbstractList Free cooling based on loop thermosyphon is ideal energy-saving method for data centers. Most working fluids presently used in this field will cause greenhouse effect or destroy the ozone layer. It is necessary to investigate the applicability of environment friendly fluids. A distributed-parameter model of a CO2 loop thermosyphon in an integrated air conditioning system for free cooling is built and validated. The performance is compared with traditional working fluids and the effects of some key geometric parameters are evaluated. The results show that the optimal filling ratios for CO2, R22 and R134a are 120%, 100% and 90%, respectively. The circulation flow rate of CO2 is much smaller than those of R22 and R134a. For CO2 loop thermosyphon, the heat transfer rate decreases with the increase of pipe length, while increases with the increase of riser diameter and height difference. The heat transfer rate increases with the increase of tube number and length of the evaporator, while the increasing rate decreases gradually. The optimal tube number and length are 80 and 0.6m, respectively. The relationships between the above phenomenon and the internal flow state are also analyzed.
Author Jin, Tingxiang
Zhang, Hainan
Tian, Changqing
Shao, Shuangquan
Author_xml – sequence: 1
  givenname: Hainan
  surname: Zhang
  fullname: Zhang, Hainan
  email: zhanghn@mail.ipc.ac.cn
  organization: Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
– sequence: 2
  givenname: Shuangquan
  surname: Shao
  fullname: Shao, Shuangquan
  email: shaoshq@mail.ipc.ac.cn
  organization: Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
– sequence: 3
  givenname: Tingxiang
  surname: Jin
  fullname: Jin, Tingxiang
  organization: School of Energy & Power Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
– sequence: 4
  givenname: Changqing
  surname: Tian
  fullname: Tian, Changqing
  organization: Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
BookMark eNqNkE9LAzEUxHOoYFv9Djl47Zq3_xe8aLEqFHvRc0izL23KNlmSWCj44c22XvTUyzx4w_xgZkJGxhok5A5YAgzK-10i-r4LW3R70aHZJGn8JpAmkBUjMo7azPIM4JpMvN8xBmld5WPy_f61R6el6Kg2B_RBb0TQ1lCrqKDzVUo7a3t64lp_7LfR0oaKQQNunAjYUqEdlda0ekhqs6H-6APuqbKOKocYTdsN_whtRRBUYgw7f0OulOg83v7eKflcPH_MX2fL1cvb_HE5k1nZhBmwCnLGVCmgbNumzcqqqMsCMKvWa8zKNUBVQoWFgjrPG6YA07zIoEZQ6wLSbEqezlzprPcOFZc6nGoGJ3THgfFhQ77jfzfkw4YcUh7Xi5CHf5De6b1wx0vji3McY9GDRse91GgkttqhDLy1-jLQD_92nhw
CitedBy_id crossref_primary_10_1016_j_ijheatmasstransfer_2022_123224
crossref_primary_10_1016_j_applthermaleng_2023_121447
crossref_primary_10_1016_j_apenergy_2020_115885
crossref_primary_10_1016_j_applthermaleng_2020_116059
crossref_primary_10_1016_j_enbuild_2020_110345
crossref_primary_10_1016_j_applthermaleng_2024_123327
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124393
crossref_primary_10_1016_j_enconman_2023_117985
crossref_primary_10_1016_j_icheatmasstransfer_2023_106639
crossref_primary_10_1016_j_enbuild_2023_113759
crossref_primary_10_1016_j_renene_2024_122046
crossref_primary_10_1016_j_applthermaleng_2021_116592
crossref_primary_10_1016_j_enconman_2021_113877
crossref_primary_10_1016_j_applthermaleng_2018_06_036
crossref_primary_10_1016_j_energy_2019_07_095
crossref_primary_10_1016_j_egyr_2019_09_005
crossref_primary_10_1016_j_ijrefrig_2018_10_025
crossref_primary_10_2139_ssrn_4169775
crossref_primary_10_1016_j_applthermaleng_2023_122331
crossref_primary_10_1177_0144598719881543
crossref_primary_10_1016_j_applthermaleng_2022_119457
crossref_primary_10_1016_j_applthermaleng_2019_114327
crossref_primary_10_2298_TSCI211023014W
crossref_primary_10_1016_j_applthermaleng_2020_116444
crossref_primary_10_1016_j_apenergy_2020_115337
crossref_primary_10_1016_j_applthermaleng_2023_120103
crossref_primary_10_1016_j_applthermaleng_2023_120520
crossref_primary_10_1016_j_prime_2023_100118
crossref_primary_10_1016_j_seta_2022_102277
crossref_primary_10_1115_1_4064524
crossref_primary_10_3390_en12010105
crossref_primary_10_1016_j_energy_2023_127328
crossref_primary_10_1016_j_applthermaleng_2024_124324
crossref_primary_10_32604_fhmt_2024_052415
crossref_primary_10_1007_s10973_020_09499_w
crossref_primary_10_1016_j_applthermaleng_2021_117618
Cites_doi 10.1016/j.apenergy.2014.10.067
10.1016/j.ijrefrig.2015.06.014
10.1016/j.applthermaleng.2014.09.060
10.1243/PIME_PROC_1969_184_051_02
10.1016/j.ijrefrig.2015.08.014
10.1016/0017-9310(76)90014-4
10.1016/S0140-7007(01)00025-1
10.1016/j.applthermaleng.2004.05.006
10.1016/j.ijrefrig.2015.08.006
10.1016/S1359-4311(03)00043-7
10.1016/j.giq.2010.10.008
10.1016/j.ijrefrig.2012.09.012
10.1016/j.enbuild.2013.06.020
10.1016/j.egypro.2015.03.070
10.1016/j.apenergy.2015.09.033
10.1016/j.applthermaleng.2015.07.078
10.1126/science.1182769
10.1016/j.applthermaleng.2015.07.019
10.1016/j.ijrefrig.2013.11.020
10.1016/j.ijrefrig.2008.12.008
10.1016/j.applthermaleng.2016.01.065
10.1115/1.2910348
10.1016/j.applthermaleng.2016.03.016
10.1016/j.applthermaleng.2015.05.041
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright_xml – notice: 2017 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.applthermaleng.2016.12.135
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 1140
ExternalDocumentID 10_1016_j_applthermaleng_2016_12_135
S1359431116344763
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
JARJE
JJJVA
KOM
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
TN5
~G-
AAQXK
AATTM
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FGOYB
HZ~
R2-
SEW
SSH
ID FETCH-LOGICAL-c369t-1071400f6a16dd9d36758651e37bbe36b117617e5f184490f1e245318e1fb5123
IEDL.DBID .~1
ISSN 1359-4311
IngestDate Thu Apr 24 23:08:19 EDT 2025
Tue Jul 01 02:27:24 EDT 2025
Mon Oct 07 06:11:39 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Data center
Simulation
Loop thermosyphon
Free cooling
CO2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c369t-1071400f6a16dd9d36758651e37bbe36b117617e5f184490f1e245318e1fb5123
PageCount 7
ParticipantIDs crossref_citationtrail_10_1016_j_applthermaleng_2016_12_135
crossref_primary_10_1016_j_applthermaleng_2016_12_135
elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2016_12_135
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-11-05
PublicationDateYYYYMMDD 2017-11-05
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-05
  day: 05
PublicationDecade 2010
PublicationTitle Applied thermal engineering
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhang, Wang, Shi, Li (b0035) 2015; 160
Zhang, Shao, Xu, Zou, Tang, Tian (b0090) 2015; 60
Zhang, Shao, Xu, Zou, Tang, Tian (b0080) 2016
Jaster, Kosky (b0135) 1976; 19
Lockhart, Martinelli (b0120) 1949; 45
Knapp, Denney, Barner (b0100) 2011; 28
Zhang, Shao, Xu, Zou, Tian (b0060) 2015; 75
Yu (b0145) 2005
Tong, Ding, Li, Liu (b0105) 2015; 90
Han, Shi, Wang, Zhang, Li (b0055) 2013; 36
Meijer (b0010) 2010; 328
Smith (b0125) 1969; 184
Han, Shi, Wang, Zhang, Li (b0075) 2014; 40
Zhang, Wang, Shi, Han, Li (b0085) 2015; 58
Zhou, Chen, Ma, Liu (b0070) 2013; 66
Wang, Zhang, Li, Luo (b0065) 2015; 90
Kim, Bullard (b0150) 2002; 25
Khodabandeh (b0030) 2004; 24
Chehade, Louahlia-Gualous, Masson, Lepinasse (b0040) 2015; 87
Ling, Zhang, Yu, Wu, Liao (b0095) 2015; 59
Koomey (b0005) 2011
Boo, Kim, Kang (b0025) 2015; 69
Kandlikar (b0130) 1990; 112
Lee, Kang, Kim (b0050) 2009; 32
Tong, Liu, Li, Jiang (b0110) 2016; 99
Jing, Zhang (b0115) 2001
Ling, Zhang, Yu, Liao, Sha (b0045) 2016; 102
Nist, NIST Reference Fluid Thermodynamic and Transport Properties Version 8.0, 2007.
Lee, Rhi, Kim, Lee (b0020) 2003; 23
Dittus, Boelter (b0140) 1930
Ebrahimi, Jones, Fleischer (b0015) 2015; 139
Kim (10.1016/j.applthermaleng.2016.12.135_b0150) 2002; 25
Ling (10.1016/j.applthermaleng.2016.12.135_b0095) 2015; 59
Ebrahimi (10.1016/j.applthermaleng.2016.12.135_b0015) 2015; 139
Zhang (10.1016/j.applthermaleng.2016.12.135_b0035) 2015; 160
Dittus (10.1016/j.applthermaleng.2016.12.135_b0140) 1930
Boo (10.1016/j.applthermaleng.2016.12.135_b0025) 2015; 69
Chehade (10.1016/j.applthermaleng.2016.12.135_b0040) 2015; 87
Koomey (10.1016/j.applthermaleng.2016.12.135_b0005) 2011
Zhang (10.1016/j.applthermaleng.2016.12.135_b0090) 2015; 60
Lockhart (10.1016/j.applthermaleng.2016.12.135_b0120) 1949; 45
Jaster (10.1016/j.applthermaleng.2016.12.135_b0135) 1976; 19
Knapp (10.1016/j.applthermaleng.2016.12.135_b0100) 2011; 28
Tong (10.1016/j.applthermaleng.2016.12.135_b0105) 2015; 90
Kandlikar (10.1016/j.applthermaleng.2016.12.135_b0130) 1990; 112
Tong (10.1016/j.applthermaleng.2016.12.135_b0110) 2016; 99
Khodabandeh (10.1016/j.applthermaleng.2016.12.135_b0030) 2004; 24
Zhou (10.1016/j.applthermaleng.2016.12.135_b0070) 2013; 66
Zhang (10.1016/j.applthermaleng.2016.12.135_b0080) 2016
Zhang (10.1016/j.applthermaleng.2016.12.135_b0060) 2015; 75
10.1016/j.applthermaleng.2016.12.135_b0155
Wang (10.1016/j.applthermaleng.2016.12.135_b0065) 2015; 90
Jing (10.1016/j.applthermaleng.2016.12.135_b0115) 2001
Smith (10.1016/j.applthermaleng.2016.12.135_b0125) 1969; 184
Lee (10.1016/j.applthermaleng.2016.12.135_b0050) 2009; 32
Lee (10.1016/j.applthermaleng.2016.12.135_b0020) 2003; 23
Yu (10.1016/j.applthermaleng.2016.12.135_b0145) 2005
Han (10.1016/j.applthermaleng.2016.12.135_b0075) 2014; 40
Meijer (10.1016/j.applthermaleng.2016.12.135_b0010) 2010; 328
Zhang (10.1016/j.applthermaleng.2016.12.135_b0085) 2015; 58
Ling (10.1016/j.applthermaleng.2016.12.135_b0045) 2016; 102
Han (10.1016/j.applthermaleng.2016.12.135_b0055) 2013; 36
References_xml – volume: 160
  start-page: 10
  year: 2015
  end-page: 17
  ident: b0035
  article-title: Experimental investigation on two-phase thermosyphon loop with partially liquid-filled downcomer
  publication-title: Appl. Energy
– volume: 75
  start-page: 185
  year: 2015
  end-page: 192
  ident: b0060
  article-title: Integrated system of mechanical refrigeration and thermosyphon for free cooling of data centers
  publication-title: Appl. Therm. Eng.
– volume: 66
  start-page: 537
  year: 2013
  end-page: 544
  ident: b0070
  article-title: Energy-saving analysis of telecommunication base station with thermosyphon heat exchanger
  publication-title: Energy Build.
– volume: 28
  start-page: 533
  year: 2011
  end-page: 541
  ident: b0100
  article-title: Key issues in data center security: an investigation of government audit reports
  publication-title: Gov. Inform. Quart.
– year: 2016
  ident: b0080
  article-title: Simulation on the performance and free cooling potential of the thermosyphon mode in an integrated system of mechanical refrigeration and thermosyphon
  publication-title: Appl. Energy
– volume: 90
  start-page: 937
  year: 2015
  end-page: 944
  ident: b0065
  article-title: Analysis on energy efficiency of an integrated heat pipe system in data centers
  publication-title: Appl. Therm. Eng.
– volume: 40
  start-page: 1
  year: 2014
  end-page: 10
  ident: b0075
  article-title: Energy consumption model of integrated air conditioner with thermosyphon in mobile phone base station
  publication-title: Int. J. Refrig.
– volume: 36
  start-page: 58
  year: 2013
  end-page: 69
  ident: b0055
  article-title: Development of an integrated air conditioner with thermosyphon and the application in mobile phone base station
  publication-title: Int. J. Refrig.
– volume: 60
  start-page: 9
  year: 2015
  end-page: 18
  ident: b0090
  article-title: Numerical investigation on integrated system of mechanical refrigeration and thermosyphon for free cooling of data centers
  publication-title: Int. J. Refrig.
– volume: 45
  start-page: 39
  year: 1949
  end-page: 48
  ident: b0120
  article-title: Proposed correlation of data for isothermal two-phase, two-component flow in pipes
  publication-title: Chem. Eng. Prog.
– volume: 102
  start-page: 375
  year: 2016
  end-page: 382
  ident: b0045
  article-title: Experimental study on the thermal characteristics of micro channel separate heat pipe respect to different filling ratio
  publication-title: Appl. Therm. Eng.
– volume: 184
  start-page: 647
  year: 1969
  end-page: 664
  ident: b0125
  article-title: Void fractions in two-phase flow: a correlation based upon an equal velocity head model
  publication-title: Proc. Inst. Mech. Eng.
– year: 2005
  ident: b0145
  article-title: Heat Exchanger Design
– volume: 25
  start-page: 390
  year: 2002
  end-page: 400
  ident: b0150
  article-title: Air-side thermal hydraulic performance of multi-louvered fin aluminum heat exchangers
  publication-title: Int. J. Refrig.
– volume: 99
  start-page: 302
  year: 2016
  end-page: 312
  ident: b0110
  article-title: Experimental study on the effect of fill ratio on an R744 two-phase thermosyphon loop
  publication-title: Appl. Therm. Eng.
– volume: 112
  start-page: 219
  year: 1990
  end-page: 228
  ident: b0130
  article-title: A general correlation for saturated two-phase flow boiling heat transfer inside horizontal and vertical tubes
  publication-title: J. Heat Transfer
– volume: 69
  start-page: 608
  year: 2015
  end-page: 617
  ident: b0025
  article-title: An experimental study on a sodium loop-type heat pipe for thermal transport from a high-temperature solar receiver
  publication-title: Energy Proc.
– year: 2011
  ident: b0005
  article-title: Growth in Data Center Electricity Use 2005 to 2010
– volume: 139
  start-page: 384
  year: 2015
  end-page: 397
  ident: b0015
  article-title: Thermo-economic analysis of steady state waste heat recovery in data centers using absorption refrigeration
  publication-title: Appl. Energy
– volume: 58
  start-page: 172
  year: 2015
  end-page: 185
  ident: b0085
  article-title: Modeling and performance analysis of a two-phase thermosyphon loop with partially/fully liquid-filled downcomer
  publication-title: Int. J. Refrig.
– reference: Nist, NIST Reference Fluid Thermodynamic and Transport Properties Version 8.0, 2007.
– volume: 328
  start-page: 318
  year: 2010
  end-page: 319
  ident: b0010
  article-title: Cooling energy-hungry data centers
  publication-title: Science
– volume: 19
  start-page: 95
  year: 1976
  end-page: 99
  ident: b0135
  article-title: Condensation in a mixed flow regime
  publication-title: Int. J. Heat Mass Transfer
– volume: 32
  start-page: 800
  year: 2009
  end-page: 808
  ident: b0050
  article-title: Performance optimization of a hybrid cooler combining vapor compression and natural circulation cycles
  publication-title: Int. J. Refrig.
– volume: 23
  start-page: 1167
  year: 2003
  end-page: 1176
  ident: b0020
  article-title: Use of two-phase loop thermosyphons for thermoelectric refrigeration: experiment and analysis
  publication-title: Appl. Therm. Eng.
– year: 2001
  ident: b0115
  article-title: Fluid Dynamics
– volume: 87
  start-page: 559
  year: 2015
  end-page: 573
  ident: b0040
  article-title: Experimental investigations and modeling of a loop thermosyphon for cooling with zero electrical consumption
  publication-title: Appl. Therm. Eng.
– volume: 59
  start-page: 198
  year: 2015
  end-page: 209
  ident: b0095
  article-title: Study on thermal performance of micro-channel separate heat pipe for telecommunication stations: experiment and simulation
  publication-title: Int. J. Refrig.
– volume: 90
  start-page: 362
  year: 2015
  end-page: 365
  ident: b0105
  article-title: An experimental investigation of an R744 two-phase thermosyphon loop used to cool a data center
  publication-title: Appl. Therm. Eng.
– year: 1930
  ident: b0140
  article-title: Heat Transfer in Automobile Radiators of the Tubular Type
– volume: 24
  start-page: 2643
  year: 2004
  end-page: 2655
  ident: b0030
  article-title: Thermal performance of a closed advanced two-phase thermosyphon loop for cooling of radio base stations at different operating conditions
  publication-title: Appl. Therm. Eng.
– volume: 139
  start-page: 384
  year: 2015
  ident: 10.1016/j.applthermaleng.2016.12.135_b0015
  article-title: Thermo-economic analysis of steady state waste heat recovery in data centers using absorption refrigeration
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.10.067
– volume: 58
  start-page: 172
  year: 2015
  ident: 10.1016/j.applthermaleng.2016.12.135_b0085
  article-title: Modeling and performance analysis of a two-phase thermosyphon loop with partially/fully liquid-filled downcomer
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2015.06.014
– volume: 75
  start-page: 185
  year: 2015
  ident: 10.1016/j.applthermaleng.2016.12.135_b0060
  article-title: Integrated system of mechanical refrigeration and thermosyphon for free cooling of data centers
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2014.09.060
– volume: 184
  start-page: 647
  year: 1969
  ident: 10.1016/j.applthermaleng.2016.12.135_b0125
  article-title: Void fractions in two-phase flow: a correlation based upon an equal velocity head model
  publication-title: Proc. Inst. Mech. Eng.
  doi: 10.1243/PIME_PROC_1969_184_051_02
– volume: 60
  start-page: 9
  year: 2015
  ident: 10.1016/j.applthermaleng.2016.12.135_b0090
  article-title: Numerical investigation on integrated system of mechanical refrigeration and thermosyphon for free cooling of data centers
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2015.08.014
– volume: 19
  start-page: 95
  year: 1976
  ident: 10.1016/j.applthermaleng.2016.12.135_b0135
  article-title: Condensation in a mixed flow regime
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/0017-9310(76)90014-4
– volume: 25
  start-page: 390
  year: 2002
  ident: 10.1016/j.applthermaleng.2016.12.135_b0150
  article-title: Air-side thermal hydraulic performance of multi-louvered fin aluminum heat exchangers
  publication-title: Int. J. Refrig.
  doi: 10.1016/S0140-7007(01)00025-1
– year: 1930
  ident: 10.1016/j.applthermaleng.2016.12.135_b0140
– volume: 24
  start-page: 2643
  year: 2004
  ident: 10.1016/j.applthermaleng.2016.12.135_b0030
  article-title: Thermal performance of a closed advanced two-phase thermosyphon loop for cooling of radio base stations at different operating conditions
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2004.05.006
– volume: 59
  start-page: 198
  year: 2015
  ident: 10.1016/j.applthermaleng.2016.12.135_b0095
  article-title: Study on thermal performance of micro-channel separate heat pipe for telecommunication stations: experiment and simulation
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2015.08.006
– volume: 23
  start-page: 1167
  year: 2003
  ident: 10.1016/j.applthermaleng.2016.12.135_b0020
  article-title: Use of two-phase loop thermosyphons for thermoelectric refrigeration: experiment and analysis
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/S1359-4311(03)00043-7
– volume: 28
  start-page: 533
  year: 2011
  ident: 10.1016/j.applthermaleng.2016.12.135_b0100
  article-title: Key issues in data center security: an investigation of government audit reports
  publication-title: Gov. Inform. Quart.
  doi: 10.1016/j.giq.2010.10.008
– year: 2011
  ident: 10.1016/j.applthermaleng.2016.12.135_b0005
– volume: 36
  start-page: 58
  year: 2013
  ident: 10.1016/j.applthermaleng.2016.12.135_b0055
  article-title: Development of an integrated air conditioner with thermosyphon and the application in mobile phone base station
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2012.09.012
– year: 2001
  ident: 10.1016/j.applthermaleng.2016.12.135_b0115
– volume: 45
  start-page: 39
  year: 1949
  ident: 10.1016/j.applthermaleng.2016.12.135_b0120
  article-title: Proposed correlation of data for isothermal two-phase, two-component flow in pipes
  publication-title: Chem. Eng. Prog.
– ident: 10.1016/j.applthermaleng.2016.12.135_b0155
– volume: 66
  start-page: 537
  year: 2013
  ident: 10.1016/j.applthermaleng.2016.12.135_b0070
  article-title: Energy-saving analysis of telecommunication base station with thermosyphon heat exchanger
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2013.06.020
– volume: 69
  start-page: 608
  year: 2015
  ident: 10.1016/j.applthermaleng.2016.12.135_b0025
  article-title: An experimental study on a sodium loop-type heat pipe for thermal transport from a high-temperature solar receiver
  publication-title: Energy Proc.
  doi: 10.1016/j.egypro.2015.03.070
– year: 2016
  ident: 10.1016/j.applthermaleng.2016.12.135_b0080
  article-title: Simulation on the performance and free cooling potential of the thermosyphon mode in an integrated system of mechanical refrigeration and thermosyphon
  publication-title: Appl. Energy
– volume: 160
  start-page: 10
  year: 2015
  ident: 10.1016/j.applthermaleng.2016.12.135_b0035
  article-title: Experimental investigation on two-phase thermosyphon loop with partially liquid-filled downcomer
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.09.033
– volume: 90
  start-page: 937
  year: 2015
  ident: 10.1016/j.applthermaleng.2016.12.135_b0065
  article-title: Analysis on energy efficiency of an integrated heat pipe system in data centers
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.07.078
– year: 2005
  ident: 10.1016/j.applthermaleng.2016.12.135_b0145
– volume: 328
  start-page: 318
  year: 2010
  ident: 10.1016/j.applthermaleng.2016.12.135_b0010
  article-title: Cooling energy-hungry data centers
  publication-title: Science
  doi: 10.1126/science.1182769
– volume: 90
  start-page: 362
  year: 2015
  ident: 10.1016/j.applthermaleng.2016.12.135_b0105
  article-title: An experimental investigation of an R744 two-phase thermosyphon loop used to cool a data center
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.07.019
– volume: 40
  start-page: 1
  year: 2014
  ident: 10.1016/j.applthermaleng.2016.12.135_b0075
  article-title: Energy consumption model of integrated air conditioner with thermosyphon in mobile phone base station
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2013.11.020
– volume: 32
  start-page: 800
  year: 2009
  ident: 10.1016/j.applthermaleng.2016.12.135_b0050
  article-title: Performance optimization of a hybrid cooler combining vapor compression and natural circulation cycles
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2008.12.008
– volume: 99
  start-page: 302
  year: 2016
  ident: 10.1016/j.applthermaleng.2016.12.135_b0110
  article-title: Experimental study on the effect of fill ratio on an R744 two-phase thermosyphon loop
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.01.065
– volume: 112
  start-page: 219
  year: 1990
  ident: 10.1016/j.applthermaleng.2016.12.135_b0130
  article-title: A general correlation for saturated two-phase flow boiling heat transfer inside horizontal and vertical tubes
  publication-title: J. Heat Transfer
  doi: 10.1115/1.2910348
– volume: 102
  start-page: 375
  year: 2016
  ident: 10.1016/j.applthermaleng.2016.12.135_b0045
  article-title: Experimental study on the thermal characteristics of micro channel separate heat pipe respect to different filling ratio
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.03.016
– volume: 87
  start-page: 559
  year: 2015
  ident: 10.1016/j.applthermaleng.2016.12.135_b0040
  article-title: Experimental investigations and modeling of a loop thermosyphon for cooling with zero electrical consumption
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.05.041
SSID ssj0012874
Score 2.3891122
Snippet Free cooling based on loop thermosyphon is ideal energy-saving method for data centers. Most working fluids presently used in this field will cause greenhouse...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1134
SubjectTerms CO2
Data center
Free cooling
Loop thermosyphon
Simulation
Title Numerical investigation of a CO2 loop thermosyphon in an integrated air conditioning system for free cooling of data centers
URI https://dx.doi.org/10.1016/j.applthermaleng.2016.12.135
Volume 126
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA9DQfQgfuL8GDnsWrc0SbvgQcZwTMV50MFuJW0Tqcx2zO0giH-777XdF3gYeGmhTULIS977veTl9wipAyi3USiNE1mlHdFS0tHGCMdVMtaWy6bJT0yf-l5vIB6GclghnfldGAyrLHV_odNzbV1-aZSj2RgnSeOFcanA_DFAFELAMsEb7PCGOX39swjzYMjnnjtdUjlYeofUlzFeeEiMOOtDY9oSDPTycHOQ5cnf_jBTK6ane0D2S8xI20W3DknFpEdkb4VJ8Jh892fF0cuIJkvmjCylmaWadp5dOsqyMc17kX1-YUA6FKQanyVfREx1MqHgHsdJuUlLC5pnCriW2okx8BNT_LxhoxhZSjGyE-DjCRl07147PadMrOBE3FNTUL1I09e0nmZeHKuYo9fgSWa4H4aGeyFjPiAbIy34f0I1LTOugMXaMsyGgBD4KdlKs9ScERpHMQBMBW6m8YV2Xe37HMQRcdGMpG5FVXIzH8cgKlnHMfnFKJiHl70H61IIUAoBcwOQQpXIRe1xwb6xYb3buciCtdkUgKHYqIXzf7dwQXZdhAC4BS0vydZ0MjNXAGCmYS2foTWy3b5_7PV_AadK9HA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB5BkRY4rPaFeOzDh16j1rGd1OKAUAUqC5QDReJmOYm9yqo0VSkHJH48M4kLVOJQiUsOSWxZHnvmG8_4G4A2gnKfZ8pFudc2kj2tIuucjGKtCuuF6ro6Yno5TAY38u-tul2D_uIuDKVVBt3f6PRaW4c3nTCbnWlZdq65UBrNH0dEISVuk3XYIHYq1YKN47PzwfAlmECU7rXfpXREDT5B-zXNi-LEBLXuLFUuoVyvhM4HeV3_7R1L9cb6nH6BzwE2suNmZF9hzU2-wfYbMsHv8DR8aKIvY1a-kmdUE1Z5Zln_KmbjqpqyehTV_SPlpOOPzNIzUEYUzJYzhh5yUYZzWtYwPTOEtszPnMOPVOXnH3VKyaWMkjsRQf6Am9OTUX8QhdoKUS4SPUftS0x9XZ9YnhSFLgQ5DoniTqRZ5kSScZ4iuHHKowsodddzF0vcrz3HfYYgQexAa1JN3C6wIi8QY2r0NF0qbRzbNBUokVzIbq5sL9-Dw8U8mjwQj1P9i7FZZJj9N8tSMCQFw2ODUtgD9dJ62hBwrNjuaCEys7SgDNqKlXrY_3APf2BzMLq8MBdnw_MD2IoJEdCJtPoJrfnswf1CPDPPfof1-gz-Xfch
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+investigation+of+a+CO2+loop+thermosyphon+in+an+integrated+air+conditioning+system+for+free+cooling+of+data+centers&rft.jtitle=Applied+thermal+engineering&rft.au=Zhang%2C+Hainan&rft.au=Shao%2C+Shuangquan&rft.au=Jin%2C+Tingxiang&rft.au=Tian%2C+Changqing&rft.date=2017-11-05&rft.pub=Elsevier+Ltd&rft.issn=1359-4311&rft.volume=126&rft.spage=1134&rft.epage=1140&rft_id=info:doi/10.1016%2Fj.applthermaleng.2016.12.135&rft.externalDocID=S1359431116344763
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon