Numerical investigation of a CO2 loop thermosyphon in an integrated air conditioning system for free cooling of data centers
Free cooling based on loop thermosyphon is ideal energy-saving method for data centers. Most working fluids presently used in this field will cause greenhouse effect or destroy the ozone layer. It is necessary to investigate the applicability of environment friendly fluids. A distributed-parameter m...
Saved in:
Published in | Applied thermal engineering Vol. 126; pp. 1134 - 1140 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
05.11.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Free cooling based on loop thermosyphon is ideal energy-saving method for data centers. Most working fluids presently used in this field will cause greenhouse effect or destroy the ozone layer. It is necessary to investigate the applicability of environment friendly fluids. A distributed-parameter model of a CO2 loop thermosyphon in an integrated air conditioning system for free cooling is built and validated. The performance is compared with traditional working fluids and the effects of some key geometric parameters are evaluated. The results show that the optimal filling ratios for CO2, R22 and R134a are 120%, 100% and 90%, respectively. The circulation flow rate of CO2 is much smaller than those of R22 and R134a. For CO2 loop thermosyphon, the heat transfer rate decreases with the increase of pipe length, while increases with the increase of riser diameter and height difference. The heat transfer rate increases with the increase of tube number and length of the evaporator, while the increasing rate decreases gradually. The optimal tube number and length are 80 and 0.6m, respectively. The relationships between the above phenomenon and the internal flow state are also analyzed. |
---|---|
AbstractList | Free cooling based on loop thermosyphon is ideal energy-saving method for data centers. Most working fluids presently used in this field will cause greenhouse effect or destroy the ozone layer. It is necessary to investigate the applicability of environment friendly fluids. A distributed-parameter model of a CO2 loop thermosyphon in an integrated air conditioning system for free cooling is built and validated. The performance is compared with traditional working fluids and the effects of some key geometric parameters are evaluated. The results show that the optimal filling ratios for CO2, R22 and R134a are 120%, 100% and 90%, respectively. The circulation flow rate of CO2 is much smaller than those of R22 and R134a. For CO2 loop thermosyphon, the heat transfer rate decreases with the increase of pipe length, while increases with the increase of riser diameter and height difference. The heat transfer rate increases with the increase of tube number and length of the evaporator, while the increasing rate decreases gradually. The optimal tube number and length are 80 and 0.6m, respectively. The relationships between the above phenomenon and the internal flow state are also analyzed. |
Author | Jin, Tingxiang Zhang, Hainan Tian, Changqing Shao, Shuangquan |
Author_xml | – sequence: 1 givenname: Hainan surname: Zhang fullname: Zhang, Hainan email: zhanghn@mail.ipc.ac.cn organization: Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China – sequence: 2 givenname: Shuangquan surname: Shao fullname: Shao, Shuangquan email: shaoshq@mail.ipc.ac.cn organization: Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China – sequence: 3 givenname: Tingxiang surname: Jin fullname: Jin, Tingxiang organization: School of Energy & Power Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China – sequence: 4 givenname: Changqing surname: Tian fullname: Tian, Changqing organization: Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China |
BookMark | eNqNkE9LAzEUxHOoYFv9Djl47Zq3_xe8aLEqFHvRc0izL23KNlmSWCj44c22XvTUyzx4w_xgZkJGxhok5A5YAgzK-10i-r4LW3R70aHZJGn8JpAmkBUjMo7azPIM4JpMvN8xBmld5WPy_f61R6el6Kg2B_RBb0TQ1lCrqKDzVUo7a3t64lp_7LfR0oaKQQNunAjYUqEdlda0ekhqs6H-6APuqbKOKocYTdsN_whtRRBUYgw7f0OulOg83v7eKflcPH_MX2fL1cvb_HE5k1nZhBmwCnLGVCmgbNumzcqqqMsCMKvWa8zKNUBVQoWFgjrPG6YA07zIoEZQ6wLSbEqezlzprPcOFZc6nGoGJ3THgfFhQ77jfzfkw4YcUh7Xi5CHf5De6b1wx0vji3McY9GDRse91GgkttqhDLy1-jLQD_92nhw |
CitedBy_id | crossref_primary_10_1016_j_ijheatmasstransfer_2022_123224 crossref_primary_10_1016_j_applthermaleng_2023_121447 crossref_primary_10_1016_j_apenergy_2020_115885 crossref_primary_10_1016_j_applthermaleng_2020_116059 crossref_primary_10_1016_j_enbuild_2020_110345 crossref_primary_10_1016_j_applthermaleng_2024_123327 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124393 crossref_primary_10_1016_j_enconman_2023_117985 crossref_primary_10_1016_j_icheatmasstransfer_2023_106639 crossref_primary_10_1016_j_enbuild_2023_113759 crossref_primary_10_1016_j_renene_2024_122046 crossref_primary_10_1016_j_applthermaleng_2021_116592 crossref_primary_10_1016_j_enconman_2021_113877 crossref_primary_10_1016_j_applthermaleng_2018_06_036 crossref_primary_10_1016_j_energy_2019_07_095 crossref_primary_10_1016_j_egyr_2019_09_005 crossref_primary_10_1016_j_ijrefrig_2018_10_025 crossref_primary_10_2139_ssrn_4169775 crossref_primary_10_1016_j_applthermaleng_2023_122331 crossref_primary_10_1177_0144598719881543 crossref_primary_10_1016_j_applthermaleng_2022_119457 crossref_primary_10_1016_j_applthermaleng_2019_114327 crossref_primary_10_2298_TSCI211023014W crossref_primary_10_1016_j_applthermaleng_2020_116444 crossref_primary_10_1016_j_apenergy_2020_115337 crossref_primary_10_1016_j_applthermaleng_2023_120103 crossref_primary_10_1016_j_applthermaleng_2023_120520 crossref_primary_10_1016_j_prime_2023_100118 crossref_primary_10_1016_j_seta_2022_102277 crossref_primary_10_1115_1_4064524 crossref_primary_10_3390_en12010105 crossref_primary_10_1016_j_energy_2023_127328 crossref_primary_10_1016_j_applthermaleng_2024_124324 crossref_primary_10_32604_fhmt_2024_052415 crossref_primary_10_1007_s10973_020_09499_w crossref_primary_10_1016_j_applthermaleng_2021_117618 |
Cites_doi | 10.1016/j.apenergy.2014.10.067 10.1016/j.ijrefrig.2015.06.014 10.1016/j.applthermaleng.2014.09.060 10.1243/PIME_PROC_1969_184_051_02 10.1016/j.ijrefrig.2015.08.014 10.1016/0017-9310(76)90014-4 10.1016/S0140-7007(01)00025-1 10.1016/j.applthermaleng.2004.05.006 10.1016/j.ijrefrig.2015.08.006 10.1016/S1359-4311(03)00043-7 10.1016/j.giq.2010.10.008 10.1016/j.ijrefrig.2012.09.012 10.1016/j.enbuild.2013.06.020 10.1016/j.egypro.2015.03.070 10.1016/j.apenergy.2015.09.033 10.1016/j.applthermaleng.2015.07.078 10.1126/science.1182769 10.1016/j.applthermaleng.2015.07.019 10.1016/j.ijrefrig.2013.11.020 10.1016/j.ijrefrig.2008.12.008 10.1016/j.applthermaleng.2016.01.065 10.1115/1.2910348 10.1016/j.applthermaleng.2016.03.016 10.1016/j.applthermaleng.2015.05.041 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd |
Copyright_xml | – notice: 2017 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.applthermaleng.2016.12.135 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 1140 |
ExternalDocumentID | 10_1016_j_applthermaleng_2016_12_135 S1359431116344763 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXKI AAXUO ABFNM ABJNI ABMAC ABNUV ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJOXV AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W JARJE JJJVA KOM M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSR SST SSZ T5K TN5 ~G- AAQXK AATTM AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FGOYB HZ~ R2- SEW SSH |
ID | FETCH-LOGICAL-c369t-1071400f6a16dd9d36758651e37bbe36b117617e5f184490f1e245318e1fb5123 |
IEDL.DBID | .~1 |
ISSN | 1359-4311 |
IngestDate | Thu Apr 24 23:08:19 EDT 2025 Tue Jul 01 02:27:24 EDT 2025 Mon Oct 07 06:11:39 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Data center Simulation Loop thermosyphon Free cooling CO2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c369t-1071400f6a16dd9d36758651e37bbe36b117617e5f184490f1e245318e1fb5123 |
PageCount | 7 |
ParticipantIDs | crossref_citationtrail_10_1016_j_applthermaleng_2016_12_135 crossref_primary_10_1016_j_applthermaleng_2016_12_135 elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2016_12_135 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-11-05 |
PublicationDateYYYYMMDD | 2017-11-05 |
PublicationDate_xml | – month: 11 year: 2017 text: 2017-11-05 day: 05 |
PublicationDecade | 2010 |
PublicationTitle | Applied thermal engineering |
PublicationYear | 2017 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Zhang, Wang, Shi, Li (b0035) 2015; 160 Zhang, Shao, Xu, Zou, Tang, Tian (b0090) 2015; 60 Zhang, Shao, Xu, Zou, Tang, Tian (b0080) 2016 Jaster, Kosky (b0135) 1976; 19 Lockhart, Martinelli (b0120) 1949; 45 Knapp, Denney, Barner (b0100) 2011; 28 Zhang, Shao, Xu, Zou, Tian (b0060) 2015; 75 Yu (b0145) 2005 Tong, Ding, Li, Liu (b0105) 2015; 90 Han, Shi, Wang, Zhang, Li (b0055) 2013; 36 Meijer (b0010) 2010; 328 Smith (b0125) 1969; 184 Han, Shi, Wang, Zhang, Li (b0075) 2014; 40 Zhang, Wang, Shi, Han, Li (b0085) 2015; 58 Zhou, Chen, Ma, Liu (b0070) 2013; 66 Wang, Zhang, Li, Luo (b0065) 2015; 90 Kim, Bullard (b0150) 2002; 25 Khodabandeh (b0030) 2004; 24 Chehade, Louahlia-Gualous, Masson, Lepinasse (b0040) 2015; 87 Ling, Zhang, Yu, Wu, Liao (b0095) 2015; 59 Koomey (b0005) 2011 Boo, Kim, Kang (b0025) 2015; 69 Kandlikar (b0130) 1990; 112 Lee, Kang, Kim (b0050) 2009; 32 Tong, Liu, Li, Jiang (b0110) 2016; 99 Jing, Zhang (b0115) 2001 Ling, Zhang, Yu, Liao, Sha (b0045) 2016; 102 Nist, NIST Reference Fluid Thermodynamic and Transport Properties Version 8.0, 2007. Lee, Rhi, Kim, Lee (b0020) 2003; 23 Dittus, Boelter (b0140) 1930 Ebrahimi, Jones, Fleischer (b0015) 2015; 139 Kim (10.1016/j.applthermaleng.2016.12.135_b0150) 2002; 25 Ling (10.1016/j.applthermaleng.2016.12.135_b0095) 2015; 59 Ebrahimi (10.1016/j.applthermaleng.2016.12.135_b0015) 2015; 139 Zhang (10.1016/j.applthermaleng.2016.12.135_b0035) 2015; 160 Dittus (10.1016/j.applthermaleng.2016.12.135_b0140) 1930 Boo (10.1016/j.applthermaleng.2016.12.135_b0025) 2015; 69 Chehade (10.1016/j.applthermaleng.2016.12.135_b0040) 2015; 87 Koomey (10.1016/j.applthermaleng.2016.12.135_b0005) 2011 Zhang (10.1016/j.applthermaleng.2016.12.135_b0090) 2015; 60 Lockhart (10.1016/j.applthermaleng.2016.12.135_b0120) 1949; 45 Jaster (10.1016/j.applthermaleng.2016.12.135_b0135) 1976; 19 Knapp (10.1016/j.applthermaleng.2016.12.135_b0100) 2011; 28 Tong (10.1016/j.applthermaleng.2016.12.135_b0105) 2015; 90 Kandlikar (10.1016/j.applthermaleng.2016.12.135_b0130) 1990; 112 Tong (10.1016/j.applthermaleng.2016.12.135_b0110) 2016; 99 Khodabandeh (10.1016/j.applthermaleng.2016.12.135_b0030) 2004; 24 Zhou (10.1016/j.applthermaleng.2016.12.135_b0070) 2013; 66 Zhang (10.1016/j.applthermaleng.2016.12.135_b0080) 2016 Zhang (10.1016/j.applthermaleng.2016.12.135_b0060) 2015; 75 10.1016/j.applthermaleng.2016.12.135_b0155 Wang (10.1016/j.applthermaleng.2016.12.135_b0065) 2015; 90 Jing (10.1016/j.applthermaleng.2016.12.135_b0115) 2001 Smith (10.1016/j.applthermaleng.2016.12.135_b0125) 1969; 184 Lee (10.1016/j.applthermaleng.2016.12.135_b0050) 2009; 32 Lee (10.1016/j.applthermaleng.2016.12.135_b0020) 2003; 23 Yu (10.1016/j.applthermaleng.2016.12.135_b0145) 2005 Han (10.1016/j.applthermaleng.2016.12.135_b0075) 2014; 40 Meijer (10.1016/j.applthermaleng.2016.12.135_b0010) 2010; 328 Zhang (10.1016/j.applthermaleng.2016.12.135_b0085) 2015; 58 Ling (10.1016/j.applthermaleng.2016.12.135_b0045) 2016; 102 Han (10.1016/j.applthermaleng.2016.12.135_b0055) 2013; 36 |
References_xml | – volume: 160 start-page: 10 year: 2015 end-page: 17 ident: b0035 article-title: Experimental investigation on two-phase thermosyphon loop with partially liquid-filled downcomer publication-title: Appl. Energy – volume: 75 start-page: 185 year: 2015 end-page: 192 ident: b0060 article-title: Integrated system of mechanical refrigeration and thermosyphon for free cooling of data centers publication-title: Appl. Therm. Eng. – volume: 66 start-page: 537 year: 2013 end-page: 544 ident: b0070 article-title: Energy-saving analysis of telecommunication base station with thermosyphon heat exchanger publication-title: Energy Build. – volume: 28 start-page: 533 year: 2011 end-page: 541 ident: b0100 article-title: Key issues in data center security: an investigation of government audit reports publication-title: Gov. Inform. Quart. – year: 2016 ident: b0080 article-title: Simulation on the performance and free cooling potential of the thermosyphon mode in an integrated system of mechanical refrigeration and thermosyphon publication-title: Appl. Energy – volume: 90 start-page: 937 year: 2015 end-page: 944 ident: b0065 article-title: Analysis on energy efficiency of an integrated heat pipe system in data centers publication-title: Appl. Therm. Eng. – volume: 40 start-page: 1 year: 2014 end-page: 10 ident: b0075 article-title: Energy consumption model of integrated air conditioner with thermosyphon in mobile phone base station publication-title: Int. J. Refrig. – volume: 36 start-page: 58 year: 2013 end-page: 69 ident: b0055 article-title: Development of an integrated air conditioner with thermosyphon and the application in mobile phone base station publication-title: Int. J. Refrig. – volume: 60 start-page: 9 year: 2015 end-page: 18 ident: b0090 article-title: Numerical investigation on integrated system of mechanical refrigeration and thermosyphon for free cooling of data centers publication-title: Int. J. Refrig. – volume: 45 start-page: 39 year: 1949 end-page: 48 ident: b0120 article-title: Proposed correlation of data for isothermal two-phase, two-component flow in pipes publication-title: Chem. Eng. Prog. – volume: 102 start-page: 375 year: 2016 end-page: 382 ident: b0045 article-title: Experimental study on the thermal characteristics of micro channel separate heat pipe respect to different filling ratio publication-title: Appl. Therm. Eng. – volume: 184 start-page: 647 year: 1969 end-page: 664 ident: b0125 article-title: Void fractions in two-phase flow: a correlation based upon an equal velocity head model publication-title: Proc. Inst. Mech. Eng. – year: 2005 ident: b0145 article-title: Heat Exchanger Design – volume: 25 start-page: 390 year: 2002 end-page: 400 ident: b0150 article-title: Air-side thermal hydraulic performance of multi-louvered fin aluminum heat exchangers publication-title: Int. J. Refrig. – volume: 99 start-page: 302 year: 2016 end-page: 312 ident: b0110 article-title: Experimental study on the effect of fill ratio on an R744 two-phase thermosyphon loop publication-title: Appl. Therm. Eng. – volume: 112 start-page: 219 year: 1990 end-page: 228 ident: b0130 article-title: A general correlation for saturated two-phase flow boiling heat transfer inside horizontal and vertical tubes publication-title: J. Heat Transfer – volume: 69 start-page: 608 year: 2015 end-page: 617 ident: b0025 article-title: An experimental study on a sodium loop-type heat pipe for thermal transport from a high-temperature solar receiver publication-title: Energy Proc. – year: 2011 ident: b0005 article-title: Growth in Data Center Electricity Use 2005 to 2010 – volume: 139 start-page: 384 year: 2015 end-page: 397 ident: b0015 article-title: Thermo-economic analysis of steady state waste heat recovery in data centers using absorption refrigeration publication-title: Appl. Energy – volume: 58 start-page: 172 year: 2015 end-page: 185 ident: b0085 article-title: Modeling and performance analysis of a two-phase thermosyphon loop with partially/fully liquid-filled downcomer publication-title: Int. J. Refrig. – reference: Nist, NIST Reference Fluid Thermodynamic and Transport Properties Version 8.0, 2007. – volume: 328 start-page: 318 year: 2010 end-page: 319 ident: b0010 article-title: Cooling energy-hungry data centers publication-title: Science – volume: 19 start-page: 95 year: 1976 end-page: 99 ident: b0135 article-title: Condensation in a mixed flow regime publication-title: Int. J. Heat Mass Transfer – volume: 32 start-page: 800 year: 2009 end-page: 808 ident: b0050 article-title: Performance optimization of a hybrid cooler combining vapor compression and natural circulation cycles publication-title: Int. J. Refrig. – volume: 23 start-page: 1167 year: 2003 end-page: 1176 ident: b0020 article-title: Use of two-phase loop thermosyphons for thermoelectric refrigeration: experiment and analysis publication-title: Appl. Therm. Eng. – year: 2001 ident: b0115 article-title: Fluid Dynamics – volume: 87 start-page: 559 year: 2015 end-page: 573 ident: b0040 article-title: Experimental investigations and modeling of a loop thermosyphon for cooling with zero electrical consumption publication-title: Appl. Therm. Eng. – volume: 59 start-page: 198 year: 2015 end-page: 209 ident: b0095 article-title: Study on thermal performance of micro-channel separate heat pipe for telecommunication stations: experiment and simulation publication-title: Int. J. Refrig. – volume: 90 start-page: 362 year: 2015 end-page: 365 ident: b0105 article-title: An experimental investigation of an R744 two-phase thermosyphon loop used to cool a data center publication-title: Appl. Therm. Eng. – year: 1930 ident: b0140 article-title: Heat Transfer in Automobile Radiators of the Tubular Type – volume: 24 start-page: 2643 year: 2004 end-page: 2655 ident: b0030 article-title: Thermal performance of a closed advanced two-phase thermosyphon loop for cooling of radio base stations at different operating conditions publication-title: Appl. Therm. Eng. – volume: 139 start-page: 384 year: 2015 ident: 10.1016/j.applthermaleng.2016.12.135_b0015 article-title: Thermo-economic analysis of steady state waste heat recovery in data centers using absorption refrigeration publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.10.067 – volume: 58 start-page: 172 year: 2015 ident: 10.1016/j.applthermaleng.2016.12.135_b0085 article-title: Modeling and performance analysis of a two-phase thermosyphon loop with partially/fully liquid-filled downcomer publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2015.06.014 – volume: 75 start-page: 185 year: 2015 ident: 10.1016/j.applthermaleng.2016.12.135_b0060 article-title: Integrated system of mechanical refrigeration and thermosyphon for free cooling of data centers publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2014.09.060 – volume: 184 start-page: 647 year: 1969 ident: 10.1016/j.applthermaleng.2016.12.135_b0125 article-title: Void fractions in two-phase flow: a correlation based upon an equal velocity head model publication-title: Proc. Inst. Mech. Eng. doi: 10.1243/PIME_PROC_1969_184_051_02 – volume: 60 start-page: 9 year: 2015 ident: 10.1016/j.applthermaleng.2016.12.135_b0090 article-title: Numerical investigation on integrated system of mechanical refrigeration and thermosyphon for free cooling of data centers publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2015.08.014 – volume: 19 start-page: 95 year: 1976 ident: 10.1016/j.applthermaleng.2016.12.135_b0135 article-title: Condensation in a mixed flow regime publication-title: Int. J. Heat Mass Transfer doi: 10.1016/0017-9310(76)90014-4 – volume: 25 start-page: 390 year: 2002 ident: 10.1016/j.applthermaleng.2016.12.135_b0150 article-title: Air-side thermal hydraulic performance of multi-louvered fin aluminum heat exchangers publication-title: Int. J. Refrig. doi: 10.1016/S0140-7007(01)00025-1 – year: 1930 ident: 10.1016/j.applthermaleng.2016.12.135_b0140 – volume: 24 start-page: 2643 year: 2004 ident: 10.1016/j.applthermaleng.2016.12.135_b0030 article-title: Thermal performance of a closed advanced two-phase thermosyphon loop for cooling of radio base stations at different operating conditions publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2004.05.006 – volume: 59 start-page: 198 year: 2015 ident: 10.1016/j.applthermaleng.2016.12.135_b0095 article-title: Study on thermal performance of micro-channel separate heat pipe for telecommunication stations: experiment and simulation publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2015.08.006 – volume: 23 start-page: 1167 year: 2003 ident: 10.1016/j.applthermaleng.2016.12.135_b0020 article-title: Use of two-phase loop thermosyphons for thermoelectric refrigeration: experiment and analysis publication-title: Appl. Therm. Eng. doi: 10.1016/S1359-4311(03)00043-7 – volume: 28 start-page: 533 year: 2011 ident: 10.1016/j.applthermaleng.2016.12.135_b0100 article-title: Key issues in data center security: an investigation of government audit reports publication-title: Gov. Inform. Quart. doi: 10.1016/j.giq.2010.10.008 – year: 2011 ident: 10.1016/j.applthermaleng.2016.12.135_b0005 – volume: 36 start-page: 58 year: 2013 ident: 10.1016/j.applthermaleng.2016.12.135_b0055 article-title: Development of an integrated air conditioner with thermosyphon and the application in mobile phone base station publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2012.09.012 – year: 2001 ident: 10.1016/j.applthermaleng.2016.12.135_b0115 – volume: 45 start-page: 39 year: 1949 ident: 10.1016/j.applthermaleng.2016.12.135_b0120 article-title: Proposed correlation of data for isothermal two-phase, two-component flow in pipes publication-title: Chem. Eng. Prog. – ident: 10.1016/j.applthermaleng.2016.12.135_b0155 – volume: 66 start-page: 537 year: 2013 ident: 10.1016/j.applthermaleng.2016.12.135_b0070 article-title: Energy-saving analysis of telecommunication base station with thermosyphon heat exchanger publication-title: Energy Build. doi: 10.1016/j.enbuild.2013.06.020 – volume: 69 start-page: 608 year: 2015 ident: 10.1016/j.applthermaleng.2016.12.135_b0025 article-title: An experimental study on a sodium loop-type heat pipe for thermal transport from a high-temperature solar receiver publication-title: Energy Proc. doi: 10.1016/j.egypro.2015.03.070 – year: 2016 ident: 10.1016/j.applthermaleng.2016.12.135_b0080 article-title: Simulation on the performance and free cooling potential of the thermosyphon mode in an integrated system of mechanical refrigeration and thermosyphon publication-title: Appl. Energy – volume: 160 start-page: 10 year: 2015 ident: 10.1016/j.applthermaleng.2016.12.135_b0035 article-title: Experimental investigation on two-phase thermosyphon loop with partially liquid-filled downcomer publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.09.033 – volume: 90 start-page: 937 year: 2015 ident: 10.1016/j.applthermaleng.2016.12.135_b0065 article-title: Analysis on energy efficiency of an integrated heat pipe system in data centers publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.07.078 – year: 2005 ident: 10.1016/j.applthermaleng.2016.12.135_b0145 – volume: 328 start-page: 318 year: 2010 ident: 10.1016/j.applthermaleng.2016.12.135_b0010 article-title: Cooling energy-hungry data centers publication-title: Science doi: 10.1126/science.1182769 – volume: 90 start-page: 362 year: 2015 ident: 10.1016/j.applthermaleng.2016.12.135_b0105 article-title: An experimental investigation of an R744 two-phase thermosyphon loop used to cool a data center publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.07.019 – volume: 40 start-page: 1 year: 2014 ident: 10.1016/j.applthermaleng.2016.12.135_b0075 article-title: Energy consumption model of integrated air conditioner with thermosyphon in mobile phone base station publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2013.11.020 – volume: 32 start-page: 800 year: 2009 ident: 10.1016/j.applthermaleng.2016.12.135_b0050 article-title: Performance optimization of a hybrid cooler combining vapor compression and natural circulation cycles publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2008.12.008 – volume: 99 start-page: 302 year: 2016 ident: 10.1016/j.applthermaleng.2016.12.135_b0110 article-title: Experimental study on the effect of fill ratio on an R744 two-phase thermosyphon loop publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.01.065 – volume: 112 start-page: 219 year: 1990 ident: 10.1016/j.applthermaleng.2016.12.135_b0130 article-title: A general correlation for saturated two-phase flow boiling heat transfer inside horizontal and vertical tubes publication-title: J. Heat Transfer doi: 10.1115/1.2910348 – volume: 102 start-page: 375 year: 2016 ident: 10.1016/j.applthermaleng.2016.12.135_b0045 article-title: Experimental study on the thermal characteristics of micro channel separate heat pipe respect to different filling ratio publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.03.016 – volume: 87 start-page: 559 year: 2015 ident: 10.1016/j.applthermaleng.2016.12.135_b0040 article-title: Experimental investigations and modeling of a loop thermosyphon for cooling with zero electrical consumption publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.05.041 |
SSID | ssj0012874 |
Score | 2.3891122 |
Snippet | Free cooling based on loop thermosyphon is ideal energy-saving method for data centers. Most working fluids presently used in this field will cause greenhouse... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1134 |
SubjectTerms | CO2 Data center Free cooling Loop thermosyphon Simulation |
Title | Numerical investigation of a CO2 loop thermosyphon in an integrated air conditioning system for free cooling of data centers |
URI | https://dx.doi.org/10.1016/j.applthermaleng.2016.12.135 |
Volume | 126 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA9DQfQgfuL8GDnsWrc0SbvgQcZwTMV50MFuJW0Tqcx2zO0giH-777XdF3gYeGmhTULIS977veTl9wipAyi3USiNE1mlHdFS0tHGCMdVMtaWy6bJT0yf-l5vIB6GclghnfldGAyrLHV_odNzbV1-aZSj2RgnSeOFcanA_DFAFELAMsEb7PCGOX39swjzYMjnnjtdUjlYeofUlzFeeEiMOOtDY9oSDPTycHOQ5cnf_jBTK6ane0D2S8xI20W3DknFpEdkb4VJ8Jh892fF0cuIJkvmjCylmaWadp5dOsqyMc17kX1-YUA6FKQanyVfREx1MqHgHsdJuUlLC5pnCriW2okx8BNT_LxhoxhZSjGyE-DjCRl07147PadMrOBE3FNTUL1I09e0nmZeHKuYo9fgSWa4H4aGeyFjPiAbIy34f0I1LTOugMXaMsyGgBD4KdlKs9ScERpHMQBMBW6m8YV2Xe37HMQRcdGMpG5FVXIzH8cgKlnHMfnFKJiHl70H61IIUAoBcwOQQpXIRe1xwb6xYb3buciCtdkUgKHYqIXzf7dwQXZdhAC4BS0vydZ0MjNXAGCmYS2foTWy3b5_7PV_AadK9HA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB5BkRY4rPaFeOzDh16j1rGd1OKAUAUqC5QDReJmOYm9yqo0VSkHJH48M4kLVOJQiUsOSWxZHnvmG8_4G4A2gnKfZ8pFudc2kj2tIuucjGKtCuuF6ro6Yno5TAY38u-tul2D_uIuDKVVBt3f6PRaW4c3nTCbnWlZdq65UBrNH0dEISVuk3XYIHYq1YKN47PzwfAlmECU7rXfpXREDT5B-zXNi-LEBLXuLFUuoVyvhM4HeV3_7R1L9cb6nH6BzwE2suNmZF9hzU2-wfYbMsHv8DR8aKIvY1a-kmdUE1Z5Zln_KmbjqpqyehTV_SPlpOOPzNIzUEYUzJYzhh5yUYZzWtYwPTOEtszPnMOPVOXnH3VKyaWMkjsRQf6Am9OTUX8QhdoKUS4SPUftS0x9XZ9YnhSFLgQ5DoniTqRZ5kSScZ4iuHHKowsodddzF0vcrz3HfYYgQexAa1JN3C6wIi8QY2r0NF0qbRzbNBUokVzIbq5sL9-Dw8U8mjwQj1P9i7FZZJj9N8tSMCQFw2ODUtgD9dJ62hBwrNjuaCEys7SgDNqKlXrY_3APf2BzMLq8MBdnw_MD2IoJEdCJtPoJrfnswf1CPDPPfof1-gz-Xfch |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+investigation+of+a+CO2+loop+thermosyphon+in+an+integrated+air+conditioning+system+for+free+cooling+of+data+centers&rft.jtitle=Applied+thermal+engineering&rft.au=Zhang%2C+Hainan&rft.au=Shao%2C+Shuangquan&rft.au=Jin%2C+Tingxiang&rft.au=Tian%2C+Changqing&rft.date=2017-11-05&rft.pub=Elsevier+Ltd&rft.issn=1359-4311&rft.volume=126&rft.spage=1134&rft.epage=1140&rft_id=info:doi/10.1016%2Fj.applthermaleng.2016.12.135&rft.externalDocID=S1359431116344763 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon |