Recent Advances of C−S Coupling Reaction of (Hetero)Arenes by C−H Functionalization
Organic sulfur compounds encompass a vast and diverse variety of species that possess unique biological activity due to the presence of sulfur atoms or sulfur‐containing functional groups. These compounds are widely present in natural products, pharmaceuticals, agricultural chemicals, and functional...
Saved in:
Published in | Chemical record Vol. 24; no. 12; pp. e202400177 - n/a |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.12.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Organic sulfur compounds encompass a vast and diverse variety of species that possess unique biological activity due to the presence of sulfur atoms or sulfur‐containing functional groups. These compounds are widely present in natural products, pharmaceuticals, agricultural chemicals, and functional materials. In recent years, numerous sulfur‐containing compounds such as thiols, thioethers, disulfides, thiourea, dimethyl sulfoxide, sulfonates and their derivatives, as well as sulfur‐containing inorganic compounds, have been utilized as coupling agents to synthesize (hetero)aryl sulfides via C−H Functionalization. These novel transformations provide effective methods for constructing C−S bond of (hetero)arenes, while also expanding the scope of (hetero)aryl sulfides with the potential biological activity. Therefore, the synthesis of aryl sulfides through C−H bond functionalization has attracted widespread attention. This review mainly focuses on the construction of (hetero)aryl sulfides via C−H bond functionalization since 2015. We hope this review offers a useful conceptual overview and inspires further advancements in the efficient construction of C−S bonds.
The construction of C−S bond of (hetero)aryl sulfides by C−H bond activation have brought new opportunities and also with challenges. The described here about these transformations aim to provide a platform for the effective construction of C−S bond, together with a brief discussion with their mechanism, hoping to show the general readership about common reaction patterns and development trends, as well as potential applications. We believe that this article can be of interest for a larger circle of people who are not only in the chemistry of sulfur containing compounds but also in methods of preparation of functionalized heterocyclic compounds. |
---|---|
AbstractList | Organic sulfur compounds encompass a vast and diverse variety of species that possess unique biological activity due to the presence of sulfur atoms or sulfur‐containing functional groups. These compounds are widely present in natural products, pharmaceuticals, agricultural chemicals, and functional materials. In recent years, numerous sulfur‐containing compounds such as thiols, thioethers, disulfides, thiourea, dimethyl sulfoxide, sulfonates and their derivatives, as well as sulfur‐containing inorganic compounds, have been utilized as coupling agents to synthesize (hetero)aryl sulfides via C−H Functionalization. These novel transformations provide effective methods for constructing C−S bond of (hetero)arenes, while also expanding the scope of (hetero)aryl sulfides with the potential biological activity. Therefore, the synthesis of aryl sulfides through C−H bond functionalization has attracted widespread attention. This review mainly focuses on the construction of (hetero)aryl sulfides via C−H bond functionalization since 2015. We hope this review offers a useful conceptual overview and inspires further advancements in the efficient construction of C−S bonds. Organic sulfur compounds encompass a vast and diverse variety of species that possess unique biological activity due to the presence of sulfur atoms or sulfur‐containing functional groups. These compounds are widely present in natural products, pharmaceuticals, agricultural chemicals, and functional materials. In recent years, numerous sulfur‐containing compounds such as thiols, thioethers, disulfides, thiourea, dimethyl sulfoxide, sulfonates and their derivatives, as well as sulfur‐containing inorganic compounds, have been utilized as coupling agents to synthesize (hetero)aryl sulfides via C−H Functionalization. These novel transformations provide effective methods for constructing C−S bond of (hetero)arenes, while also expanding the scope of (hetero)aryl sulfides with the potential biological activity. Therefore, the synthesis of aryl sulfides through C−H bond functionalization has attracted widespread attention. This review mainly focuses on the construction of (hetero)aryl sulfides via C−H bond functionalization since 2015. We hope this review offers a useful conceptual overview and inspires further advancements in the efficient construction of C−S bonds. The construction of C−S bond of (hetero)aryl sulfides by C−H bond activation have brought new opportunities and also with challenges. The described here about these transformations aim to provide a platform for the effective construction of C−S bond, together with a brief discussion with their mechanism, hoping to show the general readership about common reaction patterns and development trends, as well as potential applications. We believe that this article can be of interest for a larger circle of people who are not only in the chemistry of sulfur containing compounds but also in methods of preparation of functionalized heterocyclic compounds. Organic sulfur compounds encompass a vast and diverse variety of species that possess unique biological activity due to the presence of sulfur atoms or sulfur-containing functional groups. These compounds are widely present in natural products, pharmaceuticals, agricultural chemicals, and functional materials. In recent years, numerous sulfur-containing compounds such as thiols, thioethers, disulfides, thiourea, dimethyl sulfoxide, sulfonates and their derivatives, as well as sulfur-containing inorganic compounds, have been utilized as coupling agents to synthesize (hetero)aryl sulfides via C-H Functionalization. These novel transformations provide effective methods for constructing C-S bond of (hetero)arenes, while also expanding the scope of (hetero)aryl sulfides with the potential biological activity. Therefore, the synthesis of aryl sulfides through C-H bond functionalization has attracted widespread attention. This review mainly focuses on the construction of (hetero)aryl sulfides via C-H bond functionalization since 2015. We hope this review offers a useful conceptual overview and inspires further advancements in the efficient construction of C-S bonds. Organic sulfur compounds encompass a vast and diverse variety of species that possess unique biological activity due to the presence of sulfur atoms or sulfur-containing functional groups. These compounds are widely present in natural products, pharmaceuticals, agricultural chemicals, and functional materials. In recent years, numerous sulfur-containing compounds such as thiols, thioethers, disulfides, thiourea, dimethyl sulfoxide, sulfonates and their derivatives, as well as sulfur-containing inorganic compounds, have been utilized as coupling agents to synthesize (hetero)aryl sulfides via C-H Functionalization. These novel transformations provide effective methods for constructing C-S bond of (hetero)arenes, while also expanding the scope of (hetero)aryl sulfides with the potential biological activity. Therefore, the synthesis of aryl sulfides through C-H bond functionalization has attracted widespread attention. This review mainly focuses on the construction of (hetero)aryl sulfides via C-H bond functionalization since 2015. We hope this review offers a useful conceptual overview and inspires further advancements in the efficient construction of C-S bonds.Organic sulfur compounds encompass a vast and diverse variety of species that possess unique biological activity due to the presence of sulfur atoms or sulfur-containing functional groups. These compounds are widely present in natural products, pharmaceuticals, agricultural chemicals, and functional materials. In recent years, numerous sulfur-containing compounds such as thiols, thioethers, disulfides, thiourea, dimethyl sulfoxide, sulfonates and their derivatives, as well as sulfur-containing inorganic compounds, have been utilized as coupling agents to synthesize (hetero)aryl sulfides via C-H Functionalization. These novel transformations provide effective methods for constructing C-S bond of (hetero)arenes, while also expanding the scope of (hetero)aryl sulfides with the potential biological activity. Therefore, the synthesis of aryl sulfides through C-H bond functionalization has attracted widespread attention. This review mainly focuses on the construction of (hetero)aryl sulfides via C-H bond functionalization since 2015. We hope this review offers a useful conceptual overview and inspires further advancements in the efficient construction of C-S bonds. |
Author | Wang, Nai‐Xing Zhang, Lei‐Yang Nastasi, Julia Xing, Yalan Lucan, Dumitra |
Author_xml | – sequence: 1 givenname: Lei‐Yang surname: Zhang fullname: Zhang, Lei‐Yang organization: Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences – sequence: 2 givenname: Nai‐Xing orcidid: 0000-0001-9520-3254 surname: Wang fullname: Wang, Nai‐Xing email: nxwang@mail.ipc.ac.cn organization: Technical Sciences Academy of Romania ASTR – sequence: 3 givenname: Dumitra surname: Lucan fullname: Lucan, Dumitra email: dumitra.lucan@nuclear.ro organization: Technical Sciences Academy of Romania ASTR – sequence: 4 givenname: Julia surname: Nastasi fullname: Nastasi, Julia organization: Hofstra University – sequence: 5 givenname: Yalan surname: Xing fullname: Xing, Yalan email: Yalan.Xing@hofstra.edu organization: Hofstra University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39558752$$D View this record in MEDLINE/PubMed |
BookMark | eNp90c9rFDEUB_AgLfaHHr3KgJd6mPqSTCbJcRmsKxQK24rHkM28kSmzyZrMKOtf0HP_RP8Ss7uthYKe8iCf7yMv74Qc-OCRkDcUzikA-zC6eM6AVQBUyhfkmAqmSqg1PdjVslRa6yNyktJtJrSS8iU54loIJQU7Jl8X6NCPxaz9Yb3DVISuaH7f3V8XTZjWQ--_FQu0buyD316dzXHEGN7PIvqMl5sdnhcXk98ZO_S_7LZ4RQ47OyR8_XCeki8XH2-aeXl59elzM7ssHa-1LNHWDCuOoESFClUnwLKWu0502Aop9VJz3XJa2xqszPNw1UEroUUnoGolPyVn-77rGL5PmEaz6pPDYbAew5QMpxwYaAYq03fP6G2YYn7yVlWKa-C8zurtg5qWK2zNOvYrGzfm8csy4HvgYkgpYmdcP-5mHqPtB0PBbBdj8mLM38XkVPks9dj4X17u_c9-wM3_sblpFk_JPzUZnsE |
CitedBy_id | crossref_primary_10_1002_asia_202401940 |
Cites_doi | 10.1021/acs.orglett.9b02120 10.1021/acs.joc.0c00050 10.1002/anie.201901610 10.1039/C9CS00837C 10.1002/anie.201702488 10.1002/anie.201700012 10.1021/acs.joc.9b00785 10.1055/s-0036-1588829 10.1039/C6CS00075D 10.1002/adsc.202000291 10.1021/acs.joc.0c02078 10.1002/chem.201504179 10.1007/s11426-019-9554-1 10.1021/jacs.5b05665 10.1039/C8OB02268B 10.1021/acs.orglett.2c03066 10.1039/C4CS00239C 10.1002/chem.201900850 10.1002/anie.202001149 10.1016/j.tetlet.2020.152368 10.1002/adsc.201600802 10.1021/acs.orglett.6b01970 10.1039/C5GC00403A 10.1021/acs.accounts.7b00611 10.1002/anie.201411997 10.1002/cjoc.201800405 10.1039/C8CC09595G 10.1039/C9QO01174A 10.1039/D0GC00591F 10.1021/acs.chemrev.8b00372 10.1039/C5GC02292D 10.1021/acs.joc.6b00636 10.1021/acs.joc.9b02866 10.1002/adsc.201800846 10.3390/molecules26040822 10.1039/D1OB00846C 10.1021/acs.joc.0c02672 10.1021/acs.joc.6b00692 10.1039/C5RA03606B 10.1002/ejoc.202400535 10.1055/s-0037-1609585 10.1039/C5OB02475G 10.1039/C9GC03384J 10.1002/celc.201901212 10.1002/ajoc.201700677 10.1002/chem.202000279 10.1039/C7GC00468K 10.1039/C5OB01313E 10.1039/C7QO00218A 10.1002/asia.201701163 10.1039/C6QO00851H 10.1039/C9GC01718F 10.1021/jm049360d 10.1002/ejoc.202100001 10.1002/anie.201915470 10.1039/C7OB00561J 10.1002/slct.201702046 10.1021/acs.orglett.7b03538 10.1002/asia.201901334 10.1039/C5RA01342A 10.1039/C9CS00571D 10.1021/acs.chemrev.6b00657 10.1039/C7QO00717E 10.1021/acs.orglett.8b01681 10.1002/adsc.201600429 10.1039/C4OB02586E 10.1021/acs.chemrev.6b00664 10.1002/adsc.201901180 10.1021/acs.chemrev.8b00077 10.1002/slct.202002512 10.1021/acs.joc.5b00443 10.1002/asia.201501407 10.1021/acs.joc.7b02384 10.1002/ejoc.201700147 10.1021/acs.joc.5b01602 10.1039/C8OB02994F 10.1021/acs.joc.5b00940 10.1126/science.aam9041 10.1021/acs.joc.8b00676 10.1021/acs.orglett.1c02553 10.1016/j.tetlet.2015.12.091 10.1021/acs.orglett.8b01610 10.1021/acs.orglett.8b00525 10.2174/1570179413666151218203928 10.1021/acs.joc.9b02205 10.1002/anie.201804929 10.1021/acs.orglett.6b00764 10.1002/adsc.201900301 10.1016/j.mcat.2018.04.020 10.1055/s-0036-1588140 10.1002/adsc.201600846 10.1021/acs.joc.6b02943 10.1016/j.tetlet.2019.03.067 10.1039/C7OB01390F 10.1021/acs.chemrev.6b00574 10.1021/acs.orglett.0c01645 10.1021/acs.joc.4c00120 10.1002/adsc.201900069 10.1002/cctc.201500917 |
ContentType | Journal Article |
Copyright | 2024 The Chemical Society of Japan and Wiley-VCH GmbH 2024 The Chemical Society of Japan and Wiley-VCH GmbH. |
Copyright_xml | – notice: 2024 The Chemical Society of Japan and Wiley-VCH GmbH – notice: 2024 The Chemical Society of Japan and Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7QO 7T7 8FD C1K FR3 P64 7X8 |
DOI | 10.1002/tcr.202400177 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Engineering Research Database Biotechnology Research Abstracts Technology Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | CrossRef Engineering Research Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1528-0691 |
EndPage | n/a |
ExternalDocumentID | 39558752 10_1002_tcr_202400177 TCR202400177 |
Genre | reviewArticle Journal Article Review |
GroupedDBID | --- .3N .Y3 05W 0R~ 10A 123 1OC 29B 31~ 33P 3WU 4.4 50Y 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 53G 5VS 66C 702 7PT 8-1 8UM A00 AAESR AAHHS AAHQN AAMNL AANHP AANLZ AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ASPBG AVWKF AZFZN AZVAB BDRZF BFHJK BMXJE BROTX BRXPI BY8 CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD F5P FEDTE G-S G.N GODZA HF~ HGLYW HVGLF HZ~ IX1 J0M LATKE LAW LC2 LC3 LEEKS LH- LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MSFUL MSSTM MXFUL MXSTM MY~ N9A O9- OIG P2W P4D Q11 QB0 QRW R.K ROL RX1 SUPJJ V2E W99 WBKPD WOHZO WQJ WXSBR WYJ WYUIH XG1 XV2 ZZTAW ~IA AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION NPM 7QO 7T7 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 P64 7X8 |
ID | FETCH-LOGICAL-c3697-ea62e43e0854e8e8f50a2d3cf5fed5779b939d316a60a715238f0d70dec504d73 |
IEDL.DBID | DR2 |
ISSN | 1527-8999 1528-0691 |
IngestDate | Fri Jul 11 01:42:40 EDT 2025 Fri Jul 25 12:15:10 EDT 2025 Wed Feb 19 01:58:48 EST 2025 Tue Jul 01 02:40:12 EDT 2025 Thu Apr 24 23:09:05 EDT 2025 Wed Jan 22 17:13:52 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Sulfur-containing heterocycles C−S coupling reaction C−H bond functionalization (Hetero)aryl sulfides |
Language | English |
License | 2024 The Chemical Society of Japan and Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3697-ea62e43e0854e8e8f50a2d3cf5fed5779b939d316a60a715238f0d70dec504d73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-9520-3254 |
PMID | 39558752 |
PQID | 3148390336 |
PQPubID | 1006501 |
PageCount | 23 |
ParticipantIDs | proquest_miscellaneous_3130209208 proquest_journals_3148390336 pubmed_primary_39558752 crossref_citationtrail_10_1002_tcr_202400177 crossref_primary_10_1002_tcr_202400177 wiley_primary_10_1002_tcr_202400177_TCR202400177 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2024 2024-12-00 2024-Dec 20241201 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: December 2024 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Chemical record |
PublicationTitleAlternate | Chem Rec |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 26 2017; 2 2017; 82 2021; 23 2018; 360 2017; 4 2019; 55 2020; 362 2020; 61 2019; 14 2019; 58 2019; 17 2022; 24 2020; 59 2015; 80 2018; 83 2024 2019; 361 2017; 356 2017; 117 2019; 362 2018; 7 2020; 7 2018; 452 2020; 5 2019; 60 2018; 5 2019; 62 2015; 137 2019; 21 2015; 44 2019; 25 2020; 49 2019; 119 2016; 358 2016; 81 2024; 27. 2018; 37 2016; 45 2021; 2021 2015; 13 2015; 17 2015; 5 2021; 86 2019; 6 2017; 2017 2020; 85 2017; 28 2004; 47 2015; 54 2021; 50 2016; 18 2018; 20 2016; 14 2016; 13 2016; 57 2016; 11 2019; 84 2017; 15 2018; 118 2017; 12 2017; 56 2021; 19 2020; 26 2017; 19 2018; 51 2020; 22 2018; 50 2024; 89 2018; 16 2016; 8 2018; 57 2016; 22 e_1_2_7_3_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_100_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_90_1 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_52_1 e_1_2_7_98_1 Palit K. (e_1_2_7_28_1) 2024 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_75_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_79_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_82_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_86_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_5_1 e_1_2_7_9_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_80_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_91_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_38_1 |
References_xml | – volume: 117 start-page: 9433 year: 2017 end-page: 9520 publication-title: Chem. Rev. – volume: 59 start-page: 7803 year: 2020 end-page: 7807 publication-title: Angew. Chem. Int. Ed. – volume: 82 start-page: 2263 year: 2017 end-page: 2268 publication-title: J. Org. Chem. – volume: 49 start-page: 4307 year: 2020 end-page: 4359 publication-title: Chem. Soc. Rev. – volume: 18 start-page: 2351 year: 2016 end-page: 2354 publication-title: Org. Lett. – volume: 13 start-page: 3711 year: 2015 end-page: 3720 publication-title: Org. Biomol. Chem. – volume: 7 start-page: 371 year: 2018 end-page: 373 publication-title: Asian J. Org. Chem. – volume: 26 start-page: 8083 year: 2020 end-page: 8089 publication-title: Chem. Eur. J. – volume: 25 start-page: 6891 year: 2019 end-page: 6895 publication-title: Chem. Eur. J. – volume: 81 start-page: 4262 year: 2016 end-page: 4268 publication-title: J. Org. Chem. – volume: 5 start-page: 30389 year: 2015 end-page: 30393 publication-title: RSC Adv. – volume: 13 start-page: 651 year: 2016 end-page: 655 publication-title: Curr. Org. Synth. – volume: 17 start-page: 4068 year: 2015 end-page: 4072 publication-title: Green Chem. – volume: 89 start-page: 6798 year: 2024 end-page: 6812 publication-title: J. Org. Chem. – volume: 23 start-page: 7139 year: 2021 end-page: 7143 publication-title: Org. Lett. – volume: 8 start-page: 304 year: 2016 end-page: 307 publication-title: ChemCatChem – volume: 358 start-page: 3050 year: 2016 end-page: 3056 publication-title: Adv. Synth. Catal. – volume: 117 start-page: 8622 year: 2017 end-page: 8648 publication-title: Chem. Rev. – volume: 14 start-page: 4807 year: 2019 end-page: 4813 publication-title: Chem. Asian J. – volume: 117 start-page: 9333 year: 2017 end-page: 9403 publication-title: Chem. Rev. – volume: 57 start-page: 16618 year: 2018 end-page: 16637 publication-title: Angew. Chem. Int. Ed. – start-page: 2024 year: 2024 publication-title: Eur. J. Org. Chem. – volume: 20 start-page: 4223 year: 2018 end-page: 4226 publication-title: Org. Lett. – volume: 85 start-page: 4365 year: 2020 end-page: 4372 publication-title: J. Org. Chem. – volume: 361 start-page: 3331 year: 2019 end-page: 3336 publication-title: Adv. Synth. Catal. – volume: 26 start-page: 822 year: 2021 publication-title: Molecules – volume: 15 start-page: 5191 year: 2017 end-page: 5196 publication-title: Org. Biomol. Chem. – volume: 2021 start-page: 1446 year: 2021 end-page: 1451 publication-title: Eur. J. Org. Chem. – volume: 137 start-page: 9273 year: 2015 end-page: 9280 publication-title: J. Am. Chem. Soc. – volume: 81 start-page: 4762 year: 2016 end-page: 4770 publication-title: J. Org. Chem. – volume: 6 start-page: 4450 year: 2019 end-page: 4455 publication-title: ChemElectroChem – volume: 452 start-page: 260 year: 2018 end-page: 263 publication-title: J. Mol. Catal. – volume: 22 start-page: 427 year: 2020 end-page: 432 publication-title: Green Chem. – volume: 55 start-page: 1580 year: 2019 end-page: 1583 publication-title: Chem. Commun. – volume: 7 start-page: 350 year: 2020 end-page: 354 publication-title: Org. Chem. Front. – volume: 58 start-page: 6650 year: 2019 end-page: 6653 publication-title: Angew. Chem. Int. Ed. – volume: 362 start-page: 2666 year: 2020 end-page: 2671 publication-title: Adv. Synth. Catal. – volume: 21 start-page: 4084 year: 2019 end-page: 4089 publication-title: Green Chem. – volume: 84 start-page: 7265 year: 2019 end-page: 7278 publication-title: J. Org. Chem. – volume: 45 start-page: 2900 year: 2016 end-page: 2936 publication-title: Chem. Soc. Rev. – volume: 47 start-page: 6120 year: 2004 end-page: 6123 publication-title: J. Med. Chem. – volume: 54 start-page: 5772 year: 2015 end-page: 5776 publication-title: Angew. Chem. Int. Ed. – volume: 118 start-page: 7532 year: 2018 end-page: 7585 publication-title: Chem. Rev. – volume: 361 start-page: 3008 year: 2019 end-page: 3013 publication-title: Adv. Synth. Catal. – volume: 56 start-page: 3009 year: 2017 end-page: 3013 publication-title: Angew. Chem. Int. Ed. – volume: 17 start-page: 1535 year: 2019 end-page: 1541 publication-title: Org. Biomol. Chem. – volume: 5 start-page: 11583 year: 2020 end-page: 11589 publication-title: ChemistrySelect – volume: 2 start-page: 8607 year: 2017 end-page: 8611 publication-title: ChemistrySelect – volume: 119 start-page: 2550 year: 2019 end-page: 2610 publication-title: Chem. Rev. – volume: 22 start-page: 4906 year: 2020 end-page: 4911 publication-title: Green Chem. – volume: 56 start-page: 6599 year: 2017 end-page: 6603 publication-title: Angew. Chem. Int. Ed. – volume: 50 start-page: 8903 year: 2021 end-page: 8953 publication-title: Chem. Soc. Rev. – volume: 14 start-page: 2282 year: 2016 end-page: 2290 publication-title: Org. Biomol. Chem. – volume: 80 start-page: 4116 year: 2015 end-page: 4122 publication-title: J. Org. Chem. – volume: 28 start-page: 1845 year: 2017 end-page: 1851 publication-title: Synlett – volume: 27. year: 2024 publication-title: Eur. J. Org. Chem. – volume: 18 start-page: 3918 year: 2016 end-page: 3921 publication-title: Org. Lett. – volume: 356 start-page: 1059 year: 2017 end-page: 1063 publication-title: Science – volume: 362 start-page: 512 year: 2019 end-page: 517 publication-title: Adv. Synth. Catal. – volume: 84 start-page: 16262 year: 2019 end-page: 16267 publication-title: J. Org. Chem. – volume: 84 start-page: 14342 year: 2019 end-page: 14348 publication-title: J. Org. Chem. – volume: 80 start-page: 8361 year: 2015 end-page: 8366 publication-title: J. Org. Chem. – volume: 360 start-page: 3911 year: 2018 end-page: 3915 publication-title: Adv. Synth. Catal. – volume: 20 start-page: 170 year: 2018 end-page: 173 publication-title: Org. Lett. – volume: 57 start-page: 574 year: 2016 end-page: 577 publication-title: Tetrahedron Lett. – volume: 4 start-page: 1091 year: 2017 end-page: 1102 publication-title: Org. Chem. Front. – volume: 13 start-page: 8807 year: 2015 end-page: 8811 publication-title: Org. Biomol. Chem. – volume: 19 start-page: 2092 year: 2017 end-page: 2095 publication-title: Green Chem. – volume: 358 start-page: 3770 year: 2016 end-page: 3776 publication-title: Adv. Synth. Catal. – volume: 5 start-page: 22356 year: 2015 end-page: 22360 publication-title: RSC Adv. – volume: 24 start-page: 7605 year: 2022 end-page: 7610 publication-title: Org. Lett. – volume: 18 start-page: 1538 year: 2016 end-page: 1546 publication-title: Green Chem. – volume: 19 start-page: 5818 year: 2021 end-page: 5826 publication-title: Org. Biomol. Chem. – volume: 2017 start-page: 2280 year: 2017 end-page: 2289 publication-title: Eur. J. Org. Chem. – volume: 83 start-page: 7789 year: 2018 end-page: 7798 publication-title: J. Org. Chem. – volume: 80 start-page: 9167 year: 2015 end-page: 9175 publication-title: J. Org. Chem. – volume: 22 start-page: 5202 year: 2020 end-page: 5206 publication-title: Org. Lett. – volume: 11 start-page: 882 year: 2016 end-page: 892 publication-title: Chem. Asian J. – volume: 21 start-page: 5981 year: 2019 end-page: 5985 publication-title: Org. Lett. – volume: 50 start-page: 4113 year: 2018 end-page: 4123 publication-title: Synthesis – volume: 37 start-page: 49 year: 2018 end-page: 52 publication-title: Chin. J. Chem. – volume: 86 start-page: 2570 year: 2021 end-page: 2581 publication-title: J. Org. Chem. – volume: 358 start-page: 4100 year: 2016 end-page: 4105 publication-title: Adv. Synth. Catal. – volume: 20 start-page: 2204 year: 2018 end-page: 2207 publication-title: Org. Lett. – volume: 4 start-page: 1367 year: 2017 end-page: 1371 publication-title: Org. Chem. Front. – volume: 16 start-page: 8015 year: 2018 end-page: 8019 publication-title: Org. Biomol. Chem. – volume: 15 start-page: 5284 year: 2017 end-page: 5288 publication-title: Org. Biomol. Chem. – volume: 28 start-page: 957 year: 2017 end-page: 961 publication-title: Synlett – volume: 20 start-page: 4416 year: 2018 end-page: 4420 publication-title: Org. Lett. – volume: 51 start-page: 1092 year: 2018 end-page: 1105 publication-title: Acc. Chem. Res. – volume: 86 start-page: 291 year: 2021 end-page: 301 publication-title: J. Org. Chem. – volume: 61 year: 2020 publication-title: Tetrahedron Lett. – volume: 5 start-page: 216 year: 2018 end-page: 221 publication-title: Org. Chem. Front. – volume: 44 start-page: 291 year: 2015 end-page: 314 publication-title: Chem. Soc. Rev. – volume: 59 start-page: 4959 year: 2020 end-page: 4964 publication-title: Angew. Chem. Int. Ed. – volume: 22 start-page: 511 year: 2016 end-page: 516 publication-title: Chem. Eur. J. – volume: 60 start-page: 1317 year: 2019 end-page: 1320 publication-title: Tetrahedron Lett. – volume: 12 start-page: 2675 year: 2017 end-page: 2679 publication-title: Chem. Asian J. – volume: 62 start-page: 1501 year: 2019 end-page: 1503 publication-title: Sci. China Chem. – volume: 82 start-page: 12892 year: 2017 end-page: 12898 publication-title: J. Org. Chem. – ident: e_1_2_7_92_1 doi: 10.1021/acs.orglett.9b02120 – ident: e_1_2_7_61_1 doi: 10.1021/acs.joc.0c00050 – ident: e_1_2_7_77_1 doi: 10.1002/anie.201901610 – ident: e_1_2_7_14_1 doi: 10.1039/C9CS00837C – ident: e_1_2_7_90_1 doi: 10.1002/anie.201702488 – ident: e_1_2_7_47_1 doi: 10.1002/anie.201700012 – ident: e_1_2_7_80_1 doi: 10.1021/acs.joc.9b00785 – ident: e_1_2_7_43_1 doi: 10.1055/s-0036-1588829 – ident: e_1_2_7_13_1 doi: 10.1039/C6CS00075D – ident: e_1_2_7_51_1 doi: 10.1002/adsc.202000291 – ident: e_1_2_7_54_1 doi: 10.1021/acs.joc.0c02078 – ident: e_1_2_7_66_1 doi: 10.1002/chem.201504179 – ident: e_1_2_7_78_1 doi: 10.1007/s11426-019-9554-1 – ident: e_1_2_7_76_1 doi: 10.1021/jacs.5b05665 – ident: e_1_2_7_62_1 doi: 10.1039/C8OB02268B – ident: e_1_2_7_63_1 doi: 10.1021/acs.orglett.2c03066 – ident: e_1_2_7_3_1 doi: 10.1039/C4CS00239C – ident: e_1_2_7_70_1 doi: 10.1002/chem.201900850 – ident: e_1_2_7_95_1 doi: 10.1002/anie.202001149 – ident: e_1_2_7_57_1 doi: 10.1016/j.tetlet.2020.152368 – ident: e_1_2_7_86_1 doi: 10.1002/adsc.201600802 – ident: e_1_2_7_75_1 doi: 10.1021/acs.orglett.6b01970 – ident: e_1_2_7_55_1 doi: 10.1039/C5GC00403A – ident: e_1_2_7_7_1 doi: 10.1021/acs.accounts.7b00611 – ident: e_1_2_7_31_1 doi: 10.1002/anie.201411997 – ident: e_1_2_7_56_1 doi: 10.1002/cjoc.201800405 – ident: e_1_2_7_81_1 doi: 10.1039/C8CC09595G – ident: e_1_2_7_97_1 doi: 10.1039/C9QO01174A – ident: e_1_2_7_23_1 doi: 10.1039/D0GC00591F – ident: e_1_2_7_12_1 doi: 10.1039/C9CS00837C – ident: e_1_2_7_6_1 doi: 10.1021/acs.chemrev.8b00372 – ident: e_1_2_7_67_1 doi: 10.1039/C5GC02292D – ident: e_1_2_7_32_1 doi: 10.1021/acs.joc.6b00636 – ident: e_1_2_7_89_1 doi: 10.1021/acs.joc.9b02866 – ident: e_1_2_7_87_1 doi: 10.1002/adsc.201800846 – ident: e_1_2_7_88_1 doi: 10.3390/molecules26040822 – ident: e_1_2_7_96_1 doi: 10.1039/D1OB00846C – ident: e_1_2_7_58_1 doi: 10.1021/acs.joc.0c02672 – ident: e_1_2_7_84_1 doi: 10.1021/acs.joc.6b00692 – ident: e_1_2_7_22_1 doi: 10.1039/C5RA03606B – ident: e_1_2_7_9_1 doi: 10.1002/ejoc.202400535 – ident: e_1_2_7_25_1 doi: 10.1055/s-0037-1609585 – ident: e_1_2_7_37_1 doi: 10.1039/C5OB02475G – ident: e_1_2_7_38_1 doi: 10.1039/C9GC03384J – ident: e_1_2_7_71_1 doi: 10.1002/celc.201901212 – ident: e_1_2_7_49_1 doi: 10.1002/ajoc.201700677 – ident: e_1_2_7_79_1 doi: 10.1002/chem.202000279 – ident: e_1_2_7_91_1 doi: 10.1039/C7GC00468K – ident: e_1_2_7_24_1 doi: 10.1039/C5OB01313E – ident: e_1_2_7_45_1 doi: 10.1039/C7QO00218A – ident: e_1_2_7_46_1 doi: 10.1002/asia.201701163 – ident: e_1_2_7_98_1 doi: 10.1039/C6QO00851H – ident: e_1_2_7_33_1 doi: 10.1039/C9GC01718F – ident: e_1_2_7_10_1 doi: 10.1021/jm049360d – ident: e_1_2_7_27_1 doi: 10.1002/ejoc.202100001 – ident: e_1_2_7_40_1 doi: 10.1002/anie.201915470 – ident: e_1_2_7_44_1 doi: 10.1039/C7OB00561J – ident: e_1_2_7_18_1 doi: 10.1002/slct.201702046 – ident: e_1_2_7_100_1 doi: 10.1021/acs.orglett.7b03538 – ident: e_1_2_7_72_1 doi: 10.1002/asia.201901334 – ident: e_1_2_7_60_1 doi: 10.1039/C5RA01342A – ident: e_1_2_7_15_1 doi: 10.1039/C9CS00571D – ident: e_1_2_7_1_1 doi: 10.1021/acs.chemrev.6b00657 – ident: e_1_2_7_19_1 doi: 10.1039/C7QO00717E – ident: e_1_2_7_69_1 doi: 10.1021/acs.orglett.8b01681 – ident: e_1_2_7_35_1 doi: 10.1002/adsc.201600429 – ident: e_1_2_7_41_1 doi: 10.1039/C4OB02586E – ident: e_1_2_7_2_1 doi: 10.1021/acs.chemrev.6b00664 – ident: e_1_2_7_93_1 doi: 10.1002/adsc.201901180 – ident: e_1_2_7_5_1 doi: 10.1021/acs.chemrev.8b00077 – ident: e_1_2_7_50_1 doi: 10.1002/slct.202002512 – ident: e_1_2_7_17_1 doi: 10.1021/acs.joc.5b00443 – ident: e_1_2_7_73_1 doi: 10.1002/asia.201501407 – ident: e_1_2_7_30_1 doi: 10.1021/acs.joc.7b02384 – ident: e_1_2_7_64_1 doi: 10.1002/ejoc.201700147 – ident: e_1_2_7_20_1 doi: 10.1021/acs.joc.5b01602 – ident: e_1_2_7_21_1 doi: 10.1039/C8OB02994F – ident: e_1_2_7_99_1 doi: 10.1021/acs.joc.5b00940 – ident: e_1_2_7_11_1 doi: 10.1126/science.aam9041 – ident: e_1_2_7_101_1 doi: 10.1021/acs.joc.8b00676 – ident: e_1_2_7_48_1 doi: 10.1021/acs.orglett.1c02553 – ident: e_1_2_7_83_1 doi: 10.1016/j.tetlet.2015.12.091 – ident: e_1_2_7_59_1 doi: 10.1021/acs.orglett.8b01610 – ident: e_1_2_7_74_1 doi: 10.1021/acs.orglett.8b00525 – ident: e_1_2_7_82_1 doi: 10.2174/1570179413666151218203928 – ident: e_1_2_7_52_1 doi: 10.1021/acs.joc.9b02205 – ident: e_1_2_7_8_1 doi: 10.1002/anie.201804929 – ident: e_1_2_7_42_1 doi: 10.1021/acs.orglett.6b00764 – start-page: 2024 year: 2024 ident: e_1_2_7_28_1 publication-title: Eur. J. Org. Chem. – ident: e_1_2_7_39_1 doi: 10.1002/adsc.201900301 – ident: e_1_2_7_53_1 doi: 10.1016/j.mcat.2018.04.020 – ident: e_1_2_7_29_1 doi: 10.1055/s-0036-1588140 – ident: e_1_2_7_34_1 doi: 10.1002/adsc.201600846 – ident: e_1_2_7_85_1 doi: 10.1021/acs.joc.6b02943 – ident: e_1_2_7_16_1 doi: 10.1016/j.tetlet.2019.03.067 – ident: e_1_2_7_36_1 doi: 10.1039/C7OB01390F – ident: e_1_2_7_4_1 doi: 10.1021/acs.chemrev.6b00574 – ident: e_1_2_7_94_1 doi: 10.1021/acs.orglett.0c01645 – ident: e_1_2_7_65_1 doi: 10.1021/acs.joc.4c00120 – ident: e_1_2_7_26_1 doi: 10.1002/adsc.201900069 – ident: e_1_2_7_68_1 doi: 10.1002/cctc.201500917 |
SSID | ssj0011477 |
Score | 2.405848 |
SecondaryResourceType | review_article |
Snippet | Organic sulfur compounds encompass a vast and diverse variety of species that possess unique biological activity due to the presence of sulfur atoms or... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202400177 |
SubjectTerms | (Hetero)aryl sulfides Agrochemicals Aromatic compounds Biological activity Chemical reactions Coupling agents C−H bond functionalization C−S coupling reaction Dimethyl sulfoxide Functional groups Functional materials Hydrogen bonds Inorganic compounds Natural products Organosulfur compounds Sulfides Sulfonates Sulfur Sulfur compounds Sulfur-containing heterocycles Thioethers Thiols Thiourea derivatives |
Title | Recent Advances of C−S Coupling Reaction of (Hetero)Arenes by C−H Functionalization |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ftcr.202400177 https://www.ncbi.nlm.nih.gov/pubmed/39558752 https://www.proquest.com/docview/3148390336 https://www.proquest.com/docview/3130209208 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VvcAFyjttQa6EEEikdWLn4eMqYrWqVA5LK3oLfnIAbVB399D-As78RH4JM3E2aEEgIW6JPFaSscf-xpn5BuC5CxpRfZBp6QNPpSpdakzmEcgJITKdGyspd_jsbTm7kKeXxeVQ55RyYSI_xHjgRpbRr9dk4NosT36ShuJChe4dhUBmFWWTU7wWgaL5SB-FUL-vvEiVW1P0K9TAsYn9T7Z6b-9JvwHNbdzabzzTu_Bh88ox3uTT8Xplju3NL2yO__FNe3BnAKVsEmfRPdjxi_twq9nUgnsA7xFd4u7EJjFiYMm6wJrvX7-9Y023ppzej2zuY4oENb2cUZBN92pCfJlLZq574Rmb4iYazx6H7M-HcDF9c97M0qEkQ2pFqarU6zL3UngEatLXvg4F17kTNhTBu6KqlFFCOZGVuuS6QsWLOnBXcedtwaWrxCPYXXQL_wSYcXWtLBfGFbm0mTXWujyz6EEF67RUCbzeDEprB75yKpvxuY1My3mL2mpHbSXwYhT_Eok6_iR4uBnhdrDXZSvQKxSKC1EmcDQ2o5Lp94le-G5NMgKxtcp5ncDjODPGJwlVFOj55Qnwfnz__grteTMfb_b_vcsB3KbrGFVzCLurq7V_ithoZZ71BvADIpYGOQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V9lAuQHmU0FKMhBBIpHVi5-HjKnQVoO1h2YreIj85gDaI3T3AL-Dcn8gvYRxnAwuiEuKY2E4c2-P5xpn5BuCJcRJRveNxbh2NuchNrFRiEcgxxhKZKs197PDpWV6f89cX2cUvUfyBH2I4cPOS0e3XXsD9gfTRT9ZQ3KnQvvM-kElRXIMtn9Xbs-e_nAwEUgj2u9yLPndrjJaF6Fk28QFHa83XtdIfUHMduXaqZ3wT5KrTwePkw-FyoQ7119_4HP_nq27BjR6XklFYSDuwYWe3YbtapYO7A-8QYKKCIqPgNDAnrSPV92-Xb0nVLn1Y73sysSFKwhc9q72fTft85Ckz50R96SrXZIx6NBw_9gGgd-F8fDyt6rjPyhBrlositjJPLWcWsRq3pS1dRmVqmHaZsyYrCqEEE4YlucypLHDkWemoKaixOqPcFOwebM7amb0PRJmyFJoyZbKU60QrrU2aaDSinDaSiwherGal0T1luc-c8bEJZMtpg6PVDKMVwdOh-qfA1fG3ivurKW56kZ03DA1DJihjeQSPh2IcZP8HRc5su_R1GMJrkdIygt2wNIY3MZFlaPylEdBugq_uQjOtJsPFg39v8gi26-npSXPy6uzNHlz394OTzT5sLj4v7UOESgt10EnDD4hOClU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VVoJeypumFDASQiCR1okdJz6uUlbLq0JLK3oL8auHVpuqu3tof0HP_Yn8EsZxNmhBICGOie3EsT2eb5yZbwBeGFcjqnc8FtbRmEthYqUSi0COMZbUqdLcxw5_2hejQ_7-KDvq8pz6WJjAD9EfuHnJaPdrL-Bnxu3-JA3FjQrNO-8CmeT5DVjjgkqfu2Fv3PNHIdZvUy_61K0xGhayI9nEB-wuNV9WSr8hzWXg2mqe4W34tuhzcDg52ZnP1I6-_IXO8T8-6g5sdKiUDMIyugsrdnIPbpWLZHD34SvCS1RPZBBcBqakcaT8fnX9hZTN3Af1HpOxDTESvujVyHvZNK8HnjBzStRFW3lEhqhFw-FjF_75AA6Hbw_KUdzlZIg1EzKPbS1Sy5lFpMZtYQuX0To1TLvMWZPluVSSScMSUQta5zjwrHDU5NRYnVFucvYQVifNxG4CUaYopKZMmSzlOtFKa5MmGk0op03NZQRvFpNS6Y6w3OfNOK0C1XJa4WhV_WhF8LKvfhaYOv5UcXsxw1UnsNOKoVnIJGVMRPC8L8ZB9v9P6olt5r4OQ3AtU1pE8CisjP5NTGYZmn5pBLSd3793oToox_3F1r83eQY3P-8Nq4_v9j88hnV_O3jYbMPq7HxunyBOmqmnrSz8AFwvCQQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances+of+C%E2%88%92S+Coupling+Reaction+of+%28Hetero%29Arenes+by+C%E2%88%92H+Functionalization&rft.jtitle=Chemical+record&rft.au=Zhang%2C+Lei%E2%80%90Yang&rft.au=Wang%2C+Nai%E2%80%90Xing&rft.au=Lucan%2C+Dumitra&rft.au=Nastasi%2C+Julia&rft.date=2024-12-01&rft.issn=1527-8999&rft.eissn=1528-0691&rft.volume=24&rft.issue=12&rft_id=info:doi/10.1002%2Ftcr.202400177&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_tcr_202400177 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1527-8999&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1527-8999&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1527-8999&client=summon |