Recent Advances of C−S Coupling Reaction of (Hetero)Arenes by C−H Functionalization

Organic sulfur compounds encompass a vast and diverse variety of species that possess unique biological activity due to the presence of sulfur atoms or sulfur‐containing functional groups. These compounds are widely present in natural products, pharmaceuticals, agricultural chemicals, and functional...

Full description

Saved in:
Bibliographic Details
Published inChemical record Vol. 24; no. 12; pp. e202400177 - n/a
Main Authors Zhang, Lei‐Yang, Wang, Nai‐Xing, Lucan, Dumitra, Nastasi, Julia, Xing, Yalan
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.12.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Organic sulfur compounds encompass a vast and diverse variety of species that possess unique biological activity due to the presence of sulfur atoms or sulfur‐containing functional groups. These compounds are widely present in natural products, pharmaceuticals, agricultural chemicals, and functional materials. In recent years, numerous sulfur‐containing compounds such as thiols, thioethers, disulfides, thiourea, dimethyl sulfoxide, sulfonates and their derivatives, as well as sulfur‐containing inorganic compounds, have been utilized as coupling agents to synthesize (hetero)aryl sulfides via C−H Functionalization. These novel transformations provide effective methods for constructing C−S bond of (hetero)arenes, while also expanding the scope of (hetero)aryl sulfides with the potential biological activity. Therefore, the synthesis of aryl sulfides through C−H bond functionalization has attracted widespread attention. This review mainly focuses on the construction of (hetero)aryl sulfides via C−H bond functionalization since 2015. We hope this review offers a useful conceptual overview and inspires further advancements in the efficient construction of C−S bonds. The construction of C−S bond of (hetero)aryl sulfides by C−H bond activation have brought new opportunities and also with challenges. The described here about these transformations aim to provide a platform for the effective construction of C−S bond, together with a brief discussion with their mechanism, hoping to show the general readership about common reaction patterns and development trends, as well as potential applications. We believe that this article can be of interest for a larger circle of people who are not only in the chemistry of sulfur containing compounds but also in methods of preparation of functionalized heterocyclic compounds.
AbstractList Organic sulfur compounds encompass a vast and diverse variety of species that possess unique biological activity due to the presence of sulfur atoms or sulfur‐containing functional groups. These compounds are widely present in natural products, pharmaceuticals, agricultural chemicals, and functional materials. In recent years, numerous sulfur‐containing compounds such as thiols, thioethers, disulfides, thiourea, dimethyl sulfoxide, sulfonates and their derivatives, as well as sulfur‐containing inorganic compounds, have been utilized as coupling agents to synthesize (hetero)aryl sulfides via C−H Functionalization. These novel transformations provide effective methods for constructing C−S bond of (hetero)arenes, while also expanding the scope of (hetero)aryl sulfides with the potential biological activity. Therefore, the synthesis of aryl sulfides through C−H bond functionalization has attracted widespread attention. This review mainly focuses on the construction of (hetero)aryl sulfides via C−H bond functionalization since 2015. We hope this review offers a useful conceptual overview and inspires further advancements in the efficient construction of C−S bonds.
Organic sulfur compounds encompass a vast and diverse variety of species that possess unique biological activity due to the presence of sulfur atoms or sulfur‐containing functional groups. These compounds are widely present in natural products, pharmaceuticals, agricultural chemicals, and functional materials. In recent years, numerous sulfur‐containing compounds such as thiols, thioethers, disulfides, thiourea, dimethyl sulfoxide, sulfonates and their derivatives, as well as sulfur‐containing inorganic compounds, have been utilized as coupling agents to synthesize (hetero)aryl sulfides via C−H Functionalization. These novel transformations provide effective methods for constructing C−S bond of (hetero)arenes, while also expanding the scope of (hetero)aryl sulfides with the potential biological activity. Therefore, the synthesis of aryl sulfides through C−H bond functionalization has attracted widespread attention. This review mainly focuses on the construction of (hetero)aryl sulfides via C−H bond functionalization since 2015. We hope this review offers a useful conceptual overview and inspires further advancements in the efficient construction of C−S bonds. The construction of C−S bond of (hetero)aryl sulfides by C−H bond activation have brought new opportunities and also with challenges. The described here about these transformations aim to provide a platform for the effective construction of C−S bond, together with a brief discussion with their mechanism, hoping to show the general readership about common reaction patterns and development trends, as well as potential applications. We believe that this article can be of interest for a larger circle of people who are not only in the chemistry of sulfur containing compounds but also in methods of preparation of functionalized heterocyclic compounds.
Organic sulfur compounds encompass a vast and diverse variety of species that possess unique biological activity due to the presence of sulfur atoms or sulfur-containing functional groups. These compounds are widely present in natural products, pharmaceuticals, agricultural chemicals, and functional materials. In recent years, numerous sulfur-containing compounds such as thiols, thioethers, disulfides, thiourea, dimethyl sulfoxide, sulfonates and their derivatives, as well as sulfur-containing inorganic compounds, have been utilized as coupling agents to synthesize (hetero)aryl sulfides via C-H Functionalization. These novel transformations provide effective methods for constructing C-S bond of (hetero)arenes, while also expanding the scope of (hetero)aryl sulfides with the potential biological activity. Therefore, the synthesis of aryl sulfides through C-H bond functionalization has attracted widespread attention. This review mainly focuses on the construction of (hetero)aryl sulfides via C-H bond functionalization since 2015. We hope this review offers a useful conceptual overview and inspires further advancements in the efficient construction of C-S bonds.
Organic sulfur compounds encompass a vast and diverse variety of species that possess unique biological activity due to the presence of sulfur atoms or sulfur-containing functional groups. These compounds are widely present in natural products, pharmaceuticals, agricultural chemicals, and functional materials. In recent years, numerous sulfur-containing compounds such as thiols, thioethers, disulfides, thiourea, dimethyl sulfoxide, sulfonates and their derivatives, as well as sulfur-containing inorganic compounds, have been utilized as coupling agents to synthesize (hetero)aryl sulfides via C-H Functionalization. These novel transformations provide effective methods for constructing C-S bond of (hetero)arenes, while also expanding the scope of (hetero)aryl sulfides with the potential biological activity. Therefore, the synthesis of aryl sulfides through C-H bond functionalization has attracted widespread attention. This review mainly focuses on the construction of (hetero)aryl sulfides via C-H bond functionalization since 2015. We hope this review offers a useful conceptual overview and inspires further advancements in the efficient construction of C-S bonds.Organic sulfur compounds encompass a vast and diverse variety of species that possess unique biological activity due to the presence of sulfur atoms or sulfur-containing functional groups. These compounds are widely present in natural products, pharmaceuticals, agricultural chemicals, and functional materials. In recent years, numerous sulfur-containing compounds such as thiols, thioethers, disulfides, thiourea, dimethyl sulfoxide, sulfonates and their derivatives, as well as sulfur-containing inorganic compounds, have been utilized as coupling agents to synthesize (hetero)aryl sulfides via C-H Functionalization. These novel transformations provide effective methods for constructing C-S bond of (hetero)arenes, while also expanding the scope of (hetero)aryl sulfides with the potential biological activity. Therefore, the synthesis of aryl sulfides through C-H bond functionalization has attracted widespread attention. This review mainly focuses on the construction of (hetero)aryl sulfides via C-H bond functionalization since 2015. We hope this review offers a useful conceptual overview and inspires further advancements in the efficient construction of C-S bonds.
Author Wang, Nai‐Xing
Zhang, Lei‐Yang
Nastasi, Julia
Xing, Yalan
Lucan, Dumitra
Author_xml – sequence: 1
  givenname: Lei‐Yang
  surname: Zhang
  fullname: Zhang, Lei‐Yang
  organization: Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences
– sequence: 2
  givenname: Nai‐Xing
  orcidid: 0000-0001-9520-3254
  surname: Wang
  fullname: Wang, Nai‐Xing
  email: nxwang@mail.ipc.ac.cn
  organization: Technical Sciences Academy of Romania ASTR
– sequence: 3
  givenname: Dumitra
  surname: Lucan
  fullname: Lucan, Dumitra
  email: dumitra.lucan@nuclear.ro
  organization: Technical Sciences Academy of Romania ASTR
– sequence: 4
  givenname: Julia
  surname: Nastasi
  fullname: Nastasi, Julia
  organization: Hofstra University
– sequence: 5
  givenname: Yalan
  surname: Xing
  fullname: Xing, Yalan
  email: Yalan.Xing@hofstra.edu
  organization: Hofstra University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39558752$$D View this record in MEDLINE/PubMed
BookMark eNp90c9rFDEUB_AgLfaHHr3KgJd6mPqSTCbJcRmsKxQK24rHkM28kSmzyZrMKOtf0HP_RP8Ss7uthYKe8iCf7yMv74Qc-OCRkDcUzikA-zC6eM6AVQBUyhfkmAqmSqg1PdjVslRa6yNyktJtJrSS8iU54loIJQU7Jl8X6NCPxaz9Yb3DVISuaH7f3V8XTZjWQ--_FQu0buyD316dzXHEGN7PIvqMl5sdnhcXk98ZO_S_7LZ4RQ47OyR8_XCeki8XH2-aeXl59elzM7ssHa-1LNHWDCuOoESFClUnwLKWu0502Aop9VJz3XJa2xqszPNw1UEroUUnoGolPyVn-77rGL5PmEaz6pPDYbAew5QMpxwYaAYq03fP6G2YYn7yVlWKa-C8zurtg5qWK2zNOvYrGzfm8csy4HvgYkgpYmdcP-5mHqPtB0PBbBdj8mLM38XkVPks9dj4X17u_c9-wM3_sblpFk_JPzUZnsE
CitedBy_id crossref_primary_10_1002_asia_202401940
Cites_doi 10.1021/acs.orglett.9b02120
10.1021/acs.joc.0c00050
10.1002/anie.201901610
10.1039/C9CS00837C
10.1002/anie.201702488
10.1002/anie.201700012
10.1021/acs.joc.9b00785
10.1055/s-0036-1588829
10.1039/C6CS00075D
10.1002/adsc.202000291
10.1021/acs.joc.0c02078
10.1002/chem.201504179
10.1007/s11426-019-9554-1
10.1021/jacs.5b05665
10.1039/C8OB02268B
10.1021/acs.orglett.2c03066
10.1039/C4CS00239C
10.1002/chem.201900850
10.1002/anie.202001149
10.1016/j.tetlet.2020.152368
10.1002/adsc.201600802
10.1021/acs.orglett.6b01970
10.1039/C5GC00403A
10.1021/acs.accounts.7b00611
10.1002/anie.201411997
10.1002/cjoc.201800405
10.1039/C8CC09595G
10.1039/C9QO01174A
10.1039/D0GC00591F
10.1021/acs.chemrev.8b00372
10.1039/C5GC02292D
10.1021/acs.joc.6b00636
10.1021/acs.joc.9b02866
10.1002/adsc.201800846
10.3390/molecules26040822
10.1039/D1OB00846C
10.1021/acs.joc.0c02672
10.1021/acs.joc.6b00692
10.1039/C5RA03606B
10.1002/ejoc.202400535
10.1055/s-0037-1609585
10.1039/C5OB02475G
10.1039/C9GC03384J
10.1002/celc.201901212
10.1002/ajoc.201700677
10.1002/chem.202000279
10.1039/C7GC00468K
10.1039/C5OB01313E
10.1039/C7QO00218A
10.1002/asia.201701163
10.1039/C6QO00851H
10.1039/C9GC01718F
10.1021/jm049360d
10.1002/ejoc.202100001
10.1002/anie.201915470
10.1039/C7OB00561J
10.1002/slct.201702046
10.1021/acs.orglett.7b03538
10.1002/asia.201901334
10.1039/C5RA01342A
10.1039/C9CS00571D
10.1021/acs.chemrev.6b00657
10.1039/C7QO00717E
10.1021/acs.orglett.8b01681
10.1002/adsc.201600429
10.1039/C4OB02586E
10.1021/acs.chemrev.6b00664
10.1002/adsc.201901180
10.1021/acs.chemrev.8b00077
10.1002/slct.202002512
10.1021/acs.joc.5b00443
10.1002/asia.201501407
10.1021/acs.joc.7b02384
10.1002/ejoc.201700147
10.1021/acs.joc.5b01602
10.1039/C8OB02994F
10.1021/acs.joc.5b00940
10.1126/science.aam9041
10.1021/acs.joc.8b00676
10.1021/acs.orglett.1c02553
10.1016/j.tetlet.2015.12.091
10.1021/acs.orglett.8b01610
10.1021/acs.orglett.8b00525
10.2174/1570179413666151218203928
10.1021/acs.joc.9b02205
10.1002/anie.201804929
10.1021/acs.orglett.6b00764
10.1002/adsc.201900301
10.1016/j.mcat.2018.04.020
10.1055/s-0036-1588140
10.1002/adsc.201600846
10.1021/acs.joc.6b02943
10.1016/j.tetlet.2019.03.067
10.1039/C7OB01390F
10.1021/acs.chemrev.6b00574
10.1021/acs.orglett.0c01645
10.1021/acs.joc.4c00120
10.1002/adsc.201900069
10.1002/cctc.201500917
ContentType Journal Article
Copyright 2024 The Chemical Society of Japan and Wiley-VCH GmbH
2024 The Chemical Society of Japan and Wiley-VCH GmbH.
Copyright_xml – notice: 2024 The Chemical Society of Japan and Wiley-VCH GmbH
– notice: 2024 The Chemical Society of Japan and Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7QO
7T7
8FD
C1K
FR3
P64
7X8
DOI 10.1002/tcr.202400177
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList CrossRef
Engineering Research Database

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1528-0691
EndPage n/a
ExternalDocumentID 39558752
10_1002_tcr_202400177
TCR202400177
Genre reviewArticle
Journal Article
Review
GroupedDBID ---
.3N
.Y3
05W
0R~
10A
123
1OC
29B
31~
33P
3WU
4.4
50Y
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
53G
5VS
66C
702
7PT
8-1
8UM
A00
AAESR
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BMXJE
BROTX
BRXPI
BY8
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
F5P
FEDTE
G-S
G.N
GODZA
HF~
HGLYW
HVGLF
HZ~
IX1
J0M
LATKE
LAW
LC2
LC3
LEEKS
LH-
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MSFUL
MSSTM
MXFUL
MXSTM
MY~
N9A
O9-
OIG
P2W
P4D
Q11
QB0
QRW
R.K
ROL
RX1
SUPJJ
V2E
W99
WBKPD
WOHZO
WQJ
WXSBR
WYJ
WYUIH
XG1
XV2
ZZTAW
~IA
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
NPM
7QO
7T7
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
P64
7X8
ID FETCH-LOGICAL-c3697-ea62e43e0854e8e8f50a2d3cf5fed5779b939d316a60a715238f0d70dec504d73
IEDL.DBID DR2
ISSN 1527-8999
1528-0691
IngestDate Fri Jul 11 01:42:40 EDT 2025
Fri Jul 25 12:15:10 EDT 2025
Wed Feb 19 01:58:48 EST 2025
Tue Jul 01 02:40:12 EDT 2025
Thu Apr 24 23:09:05 EDT 2025
Wed Jan 22 17:13:52 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Sulfur-containing heterocycles
C−S coupling reaction
C−H bond functionalization
(Hetero)aryl sulfides
Language English
License 2024 The Chemical Society of Japan and Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3697-ea62e43e0854e8e8f50a2d3cf5fed5779b939d316a60a715238f0d70dec504d73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-9520-3254
PMID 39558752
PQID 3148390336
PQPubID 1006501
PageCount 23
ParticipantIDs proquest_miscellaneous_3130209208
proquest_journals_3148390336
pubmed_primary_39558752
crossref_citationtrail_10_1002_tcr_202400177
crossref_primary_10_1002_tcr_202400177
wiley_primary_10_1002_tcr_202400177_TCR202400177
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2024
2024-12-00
2024-Dec
20241201
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: December 2024
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Chemical record
PublicationTitleAlternate Chem Rec
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 26
2017; 2
2017; 82
2021; 23
2018; 360
2017; 4
2019; 55
2020; 362
2020; 61
2019; 14
2019; 58
2019; 17
2022; 24
2020; 59
2015; 80
2018; 83
2024
2019; 361
2017; 356
2017; 117
2019; 362
2018; 7
2020; 7
2018; 452
2020; 5
2019; 60
2018; 5
2019; 62
2015; 137
2019; 21
2015; 44
2019; 25
2020; 49
2019; 119
2016; 358
2016; 81
2024; 27.
2018; 37
2016; 45
2021; 2021
2015; 13
2015; 17
2015; 5
2021; 86
2019; 6
2017; 2017
2020; 85
2017; 28
2004; 47
2015; 54
2021; 50
2016; 18
2018; 20
2016; 14
2016; 13
2016; 57
2016; 11
2019; 84
2017; 15
2018; 118
2017; 12
2017; 56
2021; 19
2020; 26
2017; 19
2018; 51
2020; 22
2018; 50
2024; 89
2018; 16
2016; 8
2018; 57
2016; 22
e_1_2_7_3_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_100_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_90_1
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_52_1
e_1_2_7_98_1
Palit K. (e_1_2_7_28_1) 2024
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_75_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_79_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_82_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_86_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_5_1
e_1_2_7_9_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_80_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_91_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_38_1
References_xml – volume: 117
  start-page: 9433
  year: 2017
  end-page: 9520
  publication-title: Chem. Rev.
– volume: 59
  start-page: 7803
  year: 2020
  end-page: 7807
  publication-title: Angew. Chem. Int. Ed.
– volume: 82
  start-page: 2263
  year: 2017
  end-page: 2268
  publication-title: J. Org. Chem.
– volume: 49
  start-page: 4307
  year: 2020
  end-page: 4359
  publication-title: Chem. Soc. Rev.
– volume: 18
  start-page: 2351
  year: 2016
  end-page: 2354
  publication-title: Org. Lett.
– volume: 13
  start-page: 3711
  year: 2015
  end-page: 3720
  publication-title: Org. Biomol. Chem.
– volume: 7
  start-page: 371
  year: 2018
  end-page: 373
  publication-title: Asian J. Org. Chem.
– volume: 26
  start-page: 8083
  year: 2020
  end-page: 8089
  publication-title: Chem. Eur. J.
– volume: 25
  start-page: 6891
  year: 2019
  end-page: 6895
  publication-title: Chem. Eur. J.
– volume: 81
  start-page: 4262
  year: 2016
  end-page: 4268
  publication-title: J. Org. Chem.
– volume: 5
  start-page: 30389
  year: 2015
  end-page: 30393
  publication-title: RSC Adv.
– volume: 13
  start-page: 651
  year: 2016
  end-page: 655
  publication-title: Curr. Org. Synth.
– volume: 17
  start-page: 4068
  year: 2015
  end-page: 4072
  publication-title: Green Chem.
– volume: 89
  start-page: 6798
  year: 2024
  end-page: 6812
  publication-title: J. Org. Chem.
– volume: 23
  start-page: 7139
  year: 2021
  end-page: 7143
  publication-title: Org. Lett.
– volume: 8
  start-page: 304
  year: 2016
  end-page: 307
  publication-title: ChemCatChem
– volume: 358
  start-page: 3050
  year: 2016
  end-page: 3056
  publication-title: Adv. Synth. Catal.
– volume: 117
  start-page: 8622
  year: 2017
  end-page: 8648
  publication-title: Chem. Rev.
– volume: 14
  start-page: 4807
  year: 2019
  end-page: 4813
  publication-title: Chem. Asian J.
– volume: 117
  start-page: 9333
  year: 2017
  end-page: 9403
  publication-title: Chem. Rev.
– volume: 57
  start-page: 16618
  year: 2018
  end-page: 16637
  publication-title: Angew. Chem. Int. Ed.
– start-page: 2024
  year: 2024
  publication-title: Eur. J. Org. Chem.
– volume: 20
  start-page: 4223
  year: 2018
  end-page: 4226
  publication-title: Org. Lett.
– volume: 85
  start-page: 4365
  year: 2020
  end-page: 4372
  publication-title: J. Org. Chem.
– volume: 361
  start-page: 3331
  year: 2019
  end-page: 3336
  publication-title: Adv. Synth. Catal.
– volume: 26
  start-page: 822
  year: 2021
  publication-title: Molecules
– volume: 15
  start-page: 5191
  year: 2017
  end-page: 5196
  publication-title: Org. Biomol. Chem.
– volume: 2021
  start-page: 1446
  year: 2021
  end-page: 1451
  publication-title: Eur. J. Org. Chem.
– volume: 137
  start-page: 9273
  year: 2015
  end-page: 9280
  publication-title: J. Am. Chem. Soc.
– volume: 81
  start-page: 4762
  year: 2016
  end-page: 4770
  publication-title: J. Org. Chem.
– volume: 6
  start-page: 4450
  year: 2019
  end-page: 4455
  publication-title: ChemElectroChem
– volume: 452
  start-page: 260
  year: 2018
  end-page: 263
  publication-title: J. Mol. Catal.
– volume: 22
  start-page: 427
  year: 2020
  end-page: 432
  publication-title: Green Chem.
– volume: 55
  start-page: 1580
  year: 2019
  end-page: 1583
  publication-title: Chem. Commun.
– volume: 7
  start-page: 350
  year: 2020
  end-page: 354
  publication-title: Org. Chem. Front.
– volume: 58
  start-page: 6650
  year: 2019
  end-page: 6653
  publication-title: Angew. Chem. Int. Ed.
– volume: 362
  start-page: 2666
  year: 2020
  end-page: 2671
  publication-title: Adv. Synth. Catal.
– volume: 21
  start-page: 4084
  year: 2019
  end-page: 4089
  publication-title: Green Chem.
– volume: 84
  start-page: 7265
  year: 2019
  end-page: 7278
  publication-title: J. Org. Chem.
– volume: 45
  start-page: 2900
  year: 2016
  end-page: 2936
  publication-title: Chem. Soc. Rev.
– volume: 47
  start-page: 6120
  year: 2004
  end-page: 6123
  publication-title: J. Med. Chem.
– volume: 54
  start-page: 5772
  year: 2015
  end-page: 5776
  publication-title: Angew. Chem. Int. Ed.
– volume: 118
  start-page: 7532
  year: 2018
  end-page: 7585
  publication-title: Chem. Rev.
– volume: 361
  start-page: 3008
  year: 2019
  end-page: 3013
  publication-title: Adv. Synth. Catal.
– volume: 56
  start-page: 3009
  year: 2017
  end-page: 3013
  publication-title: Angew. Chem. Int. Ed.
– volume: 17
  start-page: 1535
  year: 2019
  end-page: 1541
  publication-title: Org. Biomol. Chem.
– volume: 5
  start-page: 11583
  year: 2020
  end-page: 11589
  publication-title: ChemistrySelect
– volume: 2
  start-page: 8607
  year: 2017
  end-page: 8611
  publication-title: ChemistrySelect
– volume: 119
  start-page: 2550
  year: 2019
  end-page: 2610
  publication-title: Chem. Rev.
– volume: 22
  start-page: 4906
  year: 2020
  end-page: 4911
  publication-title: Green Chem.
– volume: 56
  start-page: 6599
  year: 2017
  end-page: 6603
  publication-title: Angew. Chem. Int. Ed.
– volume: 50
  start-page: 8903
  year: 2021
  end-page: 8953
  publication-title: Chem. Soc. Rev.
– volume: 14
  start-page: 2282
  year: 2016
  end-page: 2290
  publication-title: Org. Biomol. Chem.
– volume: 80
  start-page: 4116
  year: 2015
  end-page: 4122
  publication-title: J. Org. Chem.
– volume: 28
  start-page: 1845
  year: 2017
  end-page: 1851
  publication-title: Synlett
– volume: 27.
  year: 2024
  publication-title: Eur. J. Org. Chem.
– volume: 18
  start-page: 3918
  year: 2016
  end-page: 3921
  publication-title: Org. Lett.
– volume: 356
  start-page: 1059
  year: 2017
  end-page: 1063
  publication-title: Science
– volume: 362
  start-page: 512
  year: 2019
  end-page: 517
  publication-title: Adv. Synth. Catal.
– volume: 84
  start-page: 16262
  year: 2019
  end-page: 16267
  publication-title: J. Org. Chem.
– volume: 84
  start-page: 14342
  year: 2019
  end-page: 14348
  publication-title: J. Org. Chem.
– volume: 80
  start-page: 8361
  year: 2015
  end-page: 8366
  publication-title: J. Org. Chem.
– volume: 360
  start-page: 3911
  year: 2018
  end-page: 3915
  publication-title: Adv. Synth. Catal.
– volume: 20
  start-page: 170
  year: 2018
  end-page: 173
  publication-title: Org. Lett.
– volume: 57
  start-page: 574
  year: 2016
  end-page: 577
  publication-title: Tetrahedron Lett.
– volume: 4
  start-page: 1091
  year: 2017
  end-page: 1102
  publication-title: Org. Chem. Front.
– volume: 13
  start-page: 8807
  year: 2015
  end-page: 8811
  publication-title: Org. Biomol. Chem.
– volume: 19
  start-page: 2092
  year: 2017
  end-page: 2095
  publication-title: Green Chem.
– volume: 358
  start-page: 3770
  year: 2016
  end-page: 3776
  publication-title: Adv. Synth. Catal.
– volume: 5
  start-page: 22356
  year: 2015
  end-page: 22360
  publication-title: RSC Adv.
– volume: 24
  start-page: 7605
  year: 2022
  end-page: 7610
  publication-title: Org. Lett.
– volume: 18
  start-page: 1538
  year: 2016
  end-page: 1546
  publication-title: Green Chem.
– volume: 19
  start-page: 5818
  year: 2021
  end-page: 5826
  publication-title: Org. Biomol. Chem.
– volume: 2017
  start-page: 2280
  year: 2017
  end-page: 2289
  publication-title: Eur. J. Org. Chem.
– volume: 83
  start-page: 7789
  year: 2018
  end-page: 7798
  publication-title: J. Org. Chem.
– volume: 80
  start-page: 9167
  year: 2015
  end-page: 9175
  publication-title: J. Org. Chem.
– volume: 22
  start-page: 5202
  year: 2020
  end-page: 5206
  publication-title: Org. Lett.
– volume: 11
  start-page: 882
  year: 2016
  end-page: 892
  publication-title: Chem. Asian J.
– volume: 21
  start-page: 5981
  year: 2019
  end-page: 5985
  publication-title: Org. Lett.
– volume: 50
  start-page: 4113
  year: 2018
  end-page: 4123
  publication-title: Synthesis
– volume: 37
  start-page: 49
  year: 2018
  end-page: 52
  publication-title: Chin. J. Chem.
– volume: 86
  start-page: 2570
  year: 2021
  end-page: 2581
  publication-title: J. Org. Chem.
– volume: 358
  start-page: 4100
  year: 2016
  end-page: 4105
  publication-title: Adv. Synth. Catal.
– volume: 20
  start-page: 2204
  year: 2018
  end-page: 2207
  publication-title: Org. Lett.
– volume: 4
  start-page: 1367
  year: 2017
  end-page: 1371
  publication-title: Org. Chem. Front.
– volume: 16
  start-page: 8015
  year: 2018
  end-page: 8019
  publication-title: Org. Biomol. Chem.
– volume: 15
  start-page: 5284
  year: 2017
  end-page: 5288
  publication-title: Org. Biomol. Chem.
– volume: 28
  start-page: 957
  year: 2017
  end-page: 961
  publication-title: Synlett
– volume: 20
  start-page: 4416
  year: 2018
  end-page: 4420
  publication-title: Org. Lett.
– volume: 51
  start-page: 1092
  year: 2018
  end-page: 1105
  publication-title: Acc. Chem. Res.
– volume: 86
  start-page: 291
  year: 2021
  end-page: 301
  publication-title: J. Org. Chem.
– volume: 61
  year: 2020
  publication-title: Tetrahedron Lett.
– volume: 5
  start-page: 216
  year: 2018
  end-page: 221
  publication-title: Org. Chem. Front.
– volume: 44
  start-page: 291
  year: 2015
  end-page: 314
  publication-title: Chem. Soc. Rev.
– volume: 59
  start-page: 4959
  year: 2020
  end-page: 4964
  publication-title: Angew. Chem. Int. Ed.
– volume: 22
  start-page: 511
  year: 2016
  end-page: 516
  publication-title: Chem. Eur. J.
– volume: 60
  start-page: 1317
  year: 2019
  end-page: 1320
  publication-title: Tetrahedron Lett.
– volume: 12
  start-page: 2675
  year: 2017
  end-page: 2679
  publication-title: Chem. Asian J.
– volume: 62
  start-page: 1501
  year: 2019
  end-page: 1503
  publication-title: Sci. China Chem.
– volume: 82
  start-page: 12892
  year: 2017
  end-page: 12898
  publication-title: J. Org. Chem.
– ident: e_1_2_7_92_1
  doi: 10.1021/acs.orglett.9b02120
– ident: e_1_2_7_61_1
  doi: 10.1021/acs.joc.0c00050
– ident: e_1_2_7_77_1
  doi: 10.1002/anie.201901610
– ident: e_1_2_7_14_1
  doi: 10.1039/C9CS00837C
– ident: e_1_2_7_90_1
  doi: 10.1002/anie.201702488
– ident: e_1_2_7_47_1
  doi: 10.1002/anie.201700012
– ident: e_1_2_7_80_1
  doi: 10.1021/acs.joc.9b00785
– ident: e_1_2_7_43_1
  doi: 10.1055/s-0036-1588829
– ident: e_1_2_7_13_1
  doi: 10.1039/C6CS00075D
– ident: e_1_2_7_51_1
  doi: 10.1002/adsc.202000291
– ident: e_1_2_7_54_1
  doi: 10.1021/acs.joc.0c02078
– ident: e_1_2_7_66_1
  doi: 10.1002/chem.201504179
– ident: e_1_2_7_78_1
  doi: 10.1007/s11426-019-9554-1
– ident: e_1_2_7_76_1
  doi: 10.1021/jacs.5b05665
– ident: e_1_2_7_62_1
  doi: 10.1039/C8OB02268B
– ident: e_1_2_7_63_1
  doi: 10.1021/acs.orglett.2c03066
– ident: e_1_2_7_3_1
  doi: 10.1039/C4CS00239C
– ident: e_1_2_7_70_1
  doi: 10.1002/chem.201900850
– ident: e_1_2_7_95_1
  doi: 10.1002/anie.202001149
– ident: e_1_2_7_57_1
  doi: 10.1016/j.tetlet.2020.152368
– ident: e_1_2_7_86_1
  doi: 10.1002/adsc.201600802
– ident: e_1_2_7_75_1
  doi: 10.1021/acs.orglett.6b01970
– ident: e_1_2_7_55_1
  doi: 10.1039/C5GC00403A
– ident: e_1_2_7_7_1
  doi: 10.1021/acs.accounts.7b00611
– ident: e_1_2_7_31_1
  doi: 10.1002/anie.201411997
– ident: e_1_2_7_56_1
  doi: 10.1002/cjoc.201800405
– ident: e_1_2_7_81_1
  doi: 10.1039/C8CC09595G
– ident: e_1_2_7_97_1
  doi: 10.1039/C9QO01174A
– ident: e_1_2_7_23_1
  doi: 10.1039/D0GC00591F
– ident: e_1_2_7_12_1
  doi: 10.1039/C9CS00837C
– ident: e_1_2_7_6_1
  doi: 10.1021/acs.chemrev.8b00372
– ident: e_1_2_7_67_1
  doi: 10.1039/C5GC02292D
– ident: e_1_2_7_32_1
  doi: 10.1021/acs.joc.6b00636
– ident: e_1_2_7_89_1
  doi: 10.1021/acs.joc.9b02866
– ident: e_1_2_7_87_1
  doi: 10.1002/adsc.201800846
– ident: e_1_2_7_88_1
  doi: 10.3390/molecules26040822
– ident: e_1_2_7_96_1
  doi: 10.1039/D1OB00846C
– ident: e_1_2_7_58_1
  doi: 10.1021/acs.joc.0c02672
– ident: e_1_2_7_84_1
  doi: 10.1021/acs.joc.6b00692
– ident: e_1_2_7_22_1
  doi: 10.1039/C5RA03606B
– ident: e_1_2_7_9_1
  doi: 10.1002/ejoc.202400535
– ident: e_1_2_7_25_1
  doi: 10.1055/s-0037-1609585
– ident: e_1_2_7_37_1
  doi: 10.1039/C5OB02475G
– ident: e_1_2_7_38_1
  doi: 10.1039/C9GC03384J
– ident: e_1_2_7_71_1
  doi: 10.1002/celc.201901212
– ident: e_1_2_7_49_1
  doi: 10.1002/ajoc.201700677
– ident: e_1_2_7_79_1
  doi: 10.1002/chem.202000279
– ident: e_1_2_7_91_1
  doi: 10.1039/C7GC00468K
– ident: e_1_2_7_24_1
  doi: 10.1039/C5OB01313E
– ident: e_1_2_7_45_1
  doi: 10.1039/C7QO00218A
– ident: e_1_2_7_46_1
  doi: 10.1002/asia.201701163
– ident: e_1_2_7_98_1
  doi: 10.1039/C6QO00851H
– ident: e_1_2_7_33_1
  doi: 10.1039/C9GC01718F
– ident: e_1_2_7_10_1
  doi: 10.1021/jm049360d
– ident: e_1_2_7_27_1
  doi: 10.1002/ejoc.202100001
– ident: e_1_2_7_40_1
  doi: 10.1002/anie.201915470
– ident: e_1_2_7_44_1
  doi: 10.1039/C7OB00561J
– ident: e_1_2_7_18_1
  doi: 10.1002/slct.201702046
– ident: e_1_2_7_100_1
  doi: 10.1021/acs.orglett.7b03538
– ident: e_1_2_7_72_1
  doi: 10.1002/asia.201901334
– ident: e_1_2_7_60_1
  doi: 10.1039/C5RA01342A
– ident: e_1_2_7_15_1
  doi: 10.1039/C9CS00571D
– ident: e_1_2_7_1_1
  doi: 10.1021/acs.chemrev.6b00657
– ident: e_1_2_7_19_1
  doi: 10.1039/C7QO00717E
– ident: e_1_2_7_69_1
  doi: 10.1021/acs.orglett.8b01681
– ident: e_1_2_7_35_1
  doi: 10.1002/adsc.201600429
– ident: e_1_2_7_41_1
  doi: 10.1039/C4OB02586E
– ident: e_1_2_7_2_1
  doi: 10.1021/acs.chemrev.6b00664
– ident: e_1_2_7_93_1
  doi: 10.1002/adsc.201901180
– ident: e_1_2_7_5_1
  doi: 10.1021/acs.chemrev.8b00077
– ident: e_1_2_7_50_1
  doi: 10.1002/slct.202002512
– ident: e_1_2_7_17_1
  doi: 10.1021/acs.joc.5b00443
– ident: e_1_2_7_73_1
  doi: 10.1002/asia.201501407
– ident: e_1_2_7_30_1
  doi: 10.1021/acs.joc.7b02384
– ident: e_1_2_7_64_1
  doi: 10.1002/ejoc.201700147
– ident: e_1_2_7_20_1
  doi: 10.1021/acs.joc.5b01602
– ident: e_1_2_7_21_1
  doi: 10.1039/C8OB02994F
– ident: e_1_2_7_99_1
  doi: 10.1021/acs.joc.5b00940
– ident: e_1_2_7_11_1
  doi: 10.1126/science.aam9041
– ident: e_1_2_7_101_1
  doi: 10.1021/acs.joc.8b00676
– ident: e_1_2_7_48_1
  doi: 10.1021/acs.orglett.1c02553
– ident: e_1_2_7_83_1
  doi: 10.1016/j.tetlet.2015.12.091
– ident: e_1_2_7_59_1
  doi: 10.1021/acs.orglett.8b01610
– ident: e_1_2_7_74_1
  doi: 10.1021/acs.orglett.8b00525
– ident: e_1_2_7_82_1
  doi: 10.2174/1570179413666151218203928
– ident: e_1_2_7_52_1
  doi: 10.1021/acs.joc.9b02205
– ident: e_1_2_7_8_1
  doi: 10.1002/anie.201804929
– ident: e_1_2_7_42_1
  doi: 10.1021/acs.orglett.6b00764
– start-page: 2024
  year: 2024
  ident: e_1_2_7_28_1
  publication-title: Eur. J. Org. Chem.
– ident: e_1_2_7_39_1
  doi: 10.1002/adsc.201900301
– ident: e_1_2_7_53_1
  doi: 10.1016/j.mcat.2018.04.020
– ident: e_1_2_7_29_1
  doi: 10.1055/s-0036-1588140
– ident: e_1_2_7_34_1
  doi: 10.1002/adsc.201600846
– ident: e_1_2_7_85_1
  doi: 10.1021/acs.joc.6b02943
– ident: e_1_2_7_16_1
  doi: 10.1016/j.tetlet.2019.03.067
– ident: e_1_2_7_36_1
  doi: 10.1039/C7OB01390F
– ident: e_1_2_7_4_1
  doi: 10.1021/acs.chemrev.6b00574
– ident: e_1_2_7_94_1
  doi: 10.1021/acs.orglett.0c01645
– ident: e_1_2_7_65_1
  doi: 10.1021/acs.joc.4c00120
– ident: e_1_2_7_26_1
  doi: 10.1002/adsc.201900069
– ident: e_1_2_7_68_1
  doi: 10.1002/cctc.201500917
SSID ssj0011477
Score 2.405848
SecondaryResourceType review_article
Snippet Organic sulfur compounds encompass a vast and diverse variety of species that possess unique biological activity due to the presence of sulfur atoms or...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202400177
SubjectTerms (Hetero)aryl sulfides
Agrochemicals
Aromatic compounds
Biological activity
Chemical reactions
Coupling agents
C−H bond functionalization
C−S coupling reaction
Dimethyl sulfoxide
Functional groups
Functional materials
Hydrogen bonds
Inorganic compounds
Natural products
Organosulfur compounds
Sulfides
Sulfonates
Sulfur
Sulfur compounds
Sulfur-containing heterocycles
Thioethers
Thiols
Thiourea derivatives
Title Recent Advances of C−S Coupling Reaction of (Hetero)Arenes by C−H Functionalization
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ftcr.202400177
https://www.ncbi.nlm.nih.gov/pubmed/39558752
https://www.proquest.com/docview/3148390336
https://www.proquest.com/docview/3130209208
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VvcAFyjttQa6EEEikdWLn4eMqYrWqVA5LK3oLfnIAbVB399D-As78RH4JM3E2aEEgIW6JPFaSscf-xpn5BuC5CxpRfZBp6QNPpSpdakzmEcgJITKdGyspd_jsbTm7kKeXxeVQ55RyYSI_xHjgRpbRr9dk4NosT36ShuJChe4dhUBmFWWTU7wWgaL5SB-FUL-vvEiVW1P0K9TAsYn9T7Z6b-9JvwHNbdzabzzTu_Bh88ox3uTT8Xplju3NL2yO__FNe3BnAKVsEmfRPdjxi_twq9nUgnsA7xFd4u7EJjFiYMm6wJrvX7-9Y023ppzej2zuY4oENb2cUZBN92pCfJlLZq574Rmb4iYazx6H7M-HcDF9c97M0qEkQ2pFqarU6zL3UngEatLXvg4F17kTNhTBu6KqlFFCOZGVuuS6QsWLOnBXcedtwaWrxCPYXXQL_wSYcXWtLBfGFbm0mTXWujyz6EEF67RUCbzeDEprB75yKpvxuY1My3mL2mpHbSXwYhT_Eok6_iR4uBnhdrDXZSvQKxSKC1EmcDQ2o5Lp94le-G5NMgKxtcp5ncDjODPGJwlVFOj55Qnwfnz__grteTMfb_b_vcsB3KbrGFVzCLurq7V_ithoZZ71BvADIpYGOQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V9lAuQHmU0FKMhBBIpHVi5-HjKnQVoO1h2YreIj85gDaI3T3AL-Dcn8gvYRxnAwuiEuKY2E4c2-P5xpn5BuCJcRJRveNxbh2NuchNrFRiEcgxxhKZKs197PDpWV6f89cX2cUvUfyBH2I4cPOS0e3XXsD9gfTRT9ZQ3KnQvvM-kElRXIMtn9Xbs-e_nAwEUgj2u9yLPndrjJaF6Fk28QFHa83XtdIfUHMduXaqZ3wT5KrTwePkw-FyoQ7119_4HP_nq27BjR6XklFYSDuwYWe3YbtapYO7A-8QYKKCIqPgNDAnrSPV92-Xb0nVLn1Y73sysSFKwhc9q72fTft85Ckz50R96SrXZIx6NBw_9gGgd-F8fDyt6rjPyhBrlositjJPLWcWsRq3pS1dRmVqmHaZsyYrCqEEE4YlucypLHDkWemoKaixOqPcFOwebM7amb0PRJmyFJoyZbKU60QrrU2aaDSinDaSiwherGal0T1luc-c8bEJZMtpg6PVDKMVwdOh-qfA1fG3ivurKW56kZ03DA1DJihjeQSPh2IcZP8HRc5su_R1GMJrkdIygt2wNIY3MZFlaPylEdBugq_uQjOtJsPFg39v8gi26-npSXPy6uzNHlz394OTzT5sLj4v7UOESgt10EnDD4hOClU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VVoJeypumFDASQiCR1okdJz6uUlbLq0JLK3oL8auHVpuqu3tof0HP_Yn8EsZxNmhBICGOie3EsT2eb5yZbwBeGFcjqnc8FtbRmEthYqUSi0COMZbUqdLcxw5_2hejQ_7-KDvq8pz6WJjAD9EfuHnJaPdrL-Bnxu3-JA3FjQrNO-8CmeT5DVjjgkqfu2Fv3PNHIdZvUy_61K0xGhayI9nEB-wuNV9WSr8hzWXg2mqe4W34tuhzcDg52ZnP1I6-_IXO8T8-6g5sdKiUDMIyugsrdnIPbpWLZHD34SvCS1RPZBBcBqakcaT8fnX9hZTN3Af1HpOxDTESvujVyHvZNK8HnjBzStRFW3lEhqhFw-FjF_75AA6Hbw_KUdzlZIg1EzKPbS1Sy5lFpMZtYQuX0To1TLvMWZPluVSSScMSUQta5zjwrHDU5NRYnVFucvYQVifNxG4CUaYopKZMmSzlOtFKa5MmGk0op03NZQRvFpNS6Y6w3OfNOK0C1XJa4WhV_WhF8LKvfhaYOv5UcXsxw1UnsNOKoVnIJGVMRPC8L8ZB9v9P6olt5r4OQ3AtU1pE8CisjP5NTGYZmn5pBLSd3793oToox_3F1r83eQY3P-8Nq4_v9j88hnV_O3jYbMPq7HxunyBOmqmnrSz8AFwvCQQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances+of+C%E2%88%92S+Coupling+Reaction+of+%28Hetero%29Arenes+by+C%E2%88%92H+Functionalization&rft.jtitle=Chemical+record&rft.au=Zhang%2C+Lei%E2%80%90Yang&rft.au=Wang%2C+Nai%E2%80%90Xing&rft.au=Lucan%2C+Dumitra&rft.au=Nastasi%2C+Julia&rft.date=2024-12-01&rft.issn=1527-8999&rft.eissn=1528-0691&rft.volume=24&rft.issue=12&rft_id=info:doi/10.1002%2Ftcr.202400177&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_tcr_202400177
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1527-8999&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1527-8999&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1527-8999&client=summon