Recent Advances, Challenges, and Future Perspectives of ZnO Nanostructure Materials Towards Energy Applications
In this approach, zinc oxide (ZnO) is a multipurpose substance with remarkable characteristics such as high sensitivity, a large specific area, non‐toxicity, excellent compatibility, and a high isoelectric point, which make it attractive for discussion with some limitations. It is the most favorable...
Saved in:
Published in | Chemical record Vol. 24; no. 1; pp. e202300106 - n/a |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this approach, zinc oxide (ZnO) is a multipurpose substance with remarkable characteristics such as high sensitivity, a large specific area, non‐toxicity, excellent compatibility, and a high isoelectric point, which make it attractive for discussion with some limitations. It is the most favorable possible option for the collection of nanostructures in terms of structure and their characteristics. The development of numerous ZnO nanostructure‐based electrochemical sensors and biosensors used in health diagnosis, pharmaceutical evaluation, food hygiene, and contamination of the environment monitoring is described, as well as the production of ZnO nanostructures. Nanostructured ZnO has good chemical and temperature durability as an n‐type semiconducting material, making it useful in a wide range of uses, from luminous materials to supercapacitors, batteries, solar cells, photocatalysis, biosensors, medicinal devices, and more. When compared to the bulk materials, the nanosized materials have both a higher rate of disintegration and a higher solubility. Furthermore, ZnO nanoparticles are regarded as top contenders for electrochemical sensors due to their strong electrochemical behaviors and electron transmission characteristics. The impact of many factors, including selectivity, sensitivity, detection limit, strength, and structures, arrangements, and their respective functioning processes, has been investigated. This study concentrated a substantial amount of its attention on the recent advancements that have been made in ZnO‐based nanoparticles, composites, and modified materials for use in the application areas of energy storage and conversion devices as well as biological applications. Supercapacitors, Li‐ion batteries, dye‐sensitized solar cells, photocatalysis, biosensors, medicinal, and biological systems have been studied. ZnO‐based materials are constantly analyzed for their advantages in energy and life science applications.
The development of numerous ZnO nanostructure‐based composite materials for efficient sensors, supercapacitors, antimicrobial agents, and biosensors applications has been largely used in health diagnosis, pharmaceutical evaluation, food hygiene, environmental approach, biomedical implementation, and decontamination of the environment monitoring and healthcare fields in a broad scales. |
---|---|
AbstractList | In this approach, zinc oxide (ZnO) is a multipurpose substance with remarkable characteristics such as high sensitivity, a large specific area, non-toxicity, excellent compatibility, and a high isoelectric point, which make it attractive for discussion with some limitations. It is the most favorable possible option for the collection of nanostructures in terms of structure and their characteristics. The development of numerous ZnO nanostructure-based electrochemical sensors and biosensors used in health diagnosis, pharmaceutical evaluation, food hygiene, and contamination of the environment monitoring is described, as well as the production of ZnO nanostructures. Nanostructured ZnO has good chemical and temperature durability as an n-type semiconducting material, making it useful in a wide range of uses, from luminous materials to supercapacitors, batteries, solar cells, photocatalysis, biosensors, medicinal devices, and more. When compared to the bulk materials, the nanosized materials have both a higher rate of disintegration and a higher solubility. Furthermore, ZnO nanoparticles are regarded as top contenders for electrochemical sensors due to their strong electrochemical behaviors and electron transmission characteristics. The impact of many factors, including selectivity, sensitivity, detection limit, strength, and structures, arrangements, and their respective functioning processes, has been investigated. This study concentrated a substantial amount of its attention on the recent advancements that have been made in ZnO-based nanoparticles, composites, and modified materials for use in the application areas of energy storage and conversion devices as well as biological applications. Supercapacitors, Li-ion batteries, dye-sensitized solar cells, photocatalysis, biosensors, medicinal, and biological systems have been studied. ZnO-based materials are constantly analyzed for their advantages in energy and life science applications.In this approach, zinc oxide (ZnO) is a multipurpose substance with remarkable characteristics such as high sensitivity, a large specific area, non-toxicity, excellent compatibility, and a high isoelectric point, which make it attractive for discussion with some limitations. It is the most favorable possible option for the collection of nanostructures in terms of structure and their characteristics. The development of numerous ZnO nanostructure-based electrochemical sensors and biosensors used in health diagnosis, pharmaceutical evaluation, food hygiene, and contamination of the environment monitoring is described, as well as the production of ZnO nanostructures. Nanostructured ZnO has good chemical and temperature durability as an n-type semiconducting material, making it useful in a wide range of uses, from luminous materials to supercapacitors, batteries, solar cells, photocatalysis, biosensors, medicinal devices, and more. When compared to the bulk materials, the nanosized materials have both a higher rate of disintegration and a higher solubility. Furthermore, ZnO nanoparticles are regarded as top contenders for electrochemical sensors due to their strong electrochemical behaviors and electron transmission characteristics. The impact of many factors, including selectivity, sensitivity, detection limit, strength, and structures, arrangements, and their respective functioning processes, has been investigated. This study concentrated a substantial amount of its attention on the recent advancements that have been made in ZnO-based nanoparticles, composites, and modified materials for use in the application areas of energy storage and conversion devices as well as biological applications. Supercapacitors, Li-ion batteries, dye-sensitized solar cells, photocatalysis, biosensors, medicinal, and biological systems have been studied. ZnO-based materials are constantly analyzed for their advantages in energy and life science applications. In this approach, zinc oxide (ZnO) is a multipurpose substance with remarkable characteristics such as high sensitivity, a large specific area, non‐toxicity, excellent compatibility, and a high isoelectric point, which make it attractive for discussion with some limitations. It is the most favorable possible option for the collection of nanostructures in terms of structure and their characteristics. The development of numerous ZnO nanostructure‐based electrochemical sensors and biosensors used in health diagnosis, pharmaceutical evaluation, food hygiene, and contamination of the environment monitoring is described, as well as the production of ZnO nanostructures. Nanostructured ZnO has good chemical and temperature durability as an n‐type semiconducting material, making it useful in a wide range of uses, from luminous materials to supercapacitors, batteries, solar cells, photocatalysis, biosensors, medicinal devices, and more. When compared to the bulk materials, the nanosized materials have both a higher rate of disintegration and a higher solubility. Furthermore, ZnO nanoparticles are regarded as top contenders for electrochemical sensors due to their strong electrochemical behaviors and electron transmission characteristics. The impact of many factors, including selectivity, sensitivity, detection limit, strength, and structures, arrangements, and their respective functioning processes, has been investigated. This study concentrated a substantial amount of its attention on the recent advancements that have been made in ZnO‐based nanoparticles, composites, and modified materials for use in the application areas of energy storage and conversion devices as well as biological applications. Supercapacitors, Li‐ion batteries, dye‐sensitized solar cells, photocatalysis, biosensors, medicinal, and biological systems have been studied. ZnO‐based materials are constantly analyzed for their advantages in energy and life science applications. In this approach, zinc oxide (ZnO) is a multipurpose substance with remarkable characteristics such as high sensitivity, a large specific area, non‐toxicity, excellent compatibility, and a high isoelectric point, which make it attractive for discussion with some limitations. It is the most favorable possible option for the collection of nanostructures in terms of structure and their characteristics. The development of numerous ZnO nanostructure‐based electrochemical sensors and biosensors used in health diagnosis, pharmaceutical evaluation, food hygiene, and contamination of the environment monitoring is described, as well as the production of ZnO nanostructures. Nanostructured ZnO has good chemical and temperature durability as an n‐type semiconducting material, making it useful in a wide range of uses, from luminous materials to supercapacitors, batteries, solar cells, photocatalysis, biosensors, medicinal devices, and more. When compared to the bulk materials, the nanosized materials have both a higher rate of disintegration and a higher solubility. Furthermore, ZnO nanoparticles are regarded as top contenders for electrochemical sensors due to their strong electrochemical behaviors and electron transmission characteristics. The impact of many factors, including selectivity, sensitivity, detection limit, strength, and structures, arrangements, and their respective functioning processes, has been investigated. This study concentrated a substantial amount of its attention on the recent advancements that have been made in ZnO‐based nanoparticles, composites, and modified materials for use in the application areas of energy storage and conversion devices as well as biological applications. Supercapacitors, Li‐ion batteries, dye‐sensitized solar cells, photocatalysis, biosensors, medicinal, and biological systems have been studied. ZnO‐based materials are constantly analyzed for their advantages in energy and life science applications. The development of numerous ZnO nanostructure‐based composite materials for efficient sensors, supercapacitors, antimicrobial agents, and biosensors applications has been largely used in health diagnosis, pharmaceutical evaluation, food hygiene, environmental approach, biomedical implementation, and decontamination of the environment monitoring and healthcare fields in a broad scales. |
Author | Shahzad, Umer Saeed, Mohsin Rahman, Mohammed M. Asiri, Abdullah M. Marwani, Hadi M. |
Author_xml | – sequence: 1 givenname: Mohsin surname: Saeed fullname: Saeed, Mohsin organization: King Abdulaziz University – sequence: 2 givenname: Hadi M. surname: Marwani fullname: Marwani, Hadi M. organization: King Abdulaziz University – sequence: 3 givenname: Umer surname: Shahzad fullname: Shahzad, Umer organization: King Abdulaziz University – sequence: 4 givenname: Abdullah M. surname: Asiri fullname: Asiri, Abdullah M. organization: King Abdulaziz University – sequence: 5 givenname: Mohammed M. orcidid: 0000-0003-2773-1244 surname: Rahman fullname: Rahman, Mohammed M. email: mmrahman@kau.edu.sa organization: King Abdulaziz University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37249417$$D View this record in MEDLINE/PubMed |
BookMark | eNp90ctrVDEUB-AgFfvQpVsJuHHRW_OYe5Msh6EvqK2UceMmpMm5NeVOck1yW-a_N52pFQp2lQP5fnmcs492QgyA0EdKjigh7Gux6YgRxgmhpHuD9mjLZEM6RXc2tWikUmoX7ed8VwmdCfEO7XLBZmpGxR6K12AhFDx39yZYyId48csMA4Tbx9oEh0-mMiXA3yHlEWzx95Bx7PHPcIUvTYi5pMluxDdTIHkzZLyMDya5jI8DpNs1no_j4K0pPob8Hr3tK4EPT-sB-nFyvFycNRdXp-eL-UVjeae6RrSyc-pGGis4kVb2llpimCCKMQczSYwSrq0_aFtHbN-7ut3VpOXScpCCH6Av23PHFH9PkIte-WxhGEyAOGXNJCOqk4zSSj-_oHdxSqG-TjNFOROKcVbVpyc13azA6TH5lUlr_beVFTRbYFPMOUH_TCjRj6PSdVT6eVTV8xfe-rJpUknGD_9NiW3qwQ-wfv0KvVxc_0v-AY1opow |
CitedBy_id | crossref_primary_10_1016_j_microc_2025_113171 crossref_primary_10_1515_revic_2024_0016 crossref_primary_10_1016_j_ijhydene_2024_11_348 crossref_primary_10_1007_s10854_024_13401_x crossref_primary_10_1007_s10311_025_01818_7 crossref_primary_10_1088_1361_6463_ada2a4 crossref_primary_10_1016_j_ijhydene_2024_07_081 crossref_primary_10_1016_j_elecom_2025_107893 crossref_primary_10_1002_asia_202400394 crossref_primary_10_1002_cnma_202400020 crossref_primary_10_1016_j_sbsr_2025_100767 crossref_primary_10_1080_10408347_2024_2337876 crossref_primary_10_1088_1748_0221_19_06_P06022 crossref_primary_10_1515_zpch_2024_0777 crossref_primary_10_1016_j_ijhydene_2024_03_275 crossref_primary_10_1016_j_matchemphys_2024_130000 crossref_primary_10_54021_seesv5n3_144 crossref_primary_10_1016_j_sna_2024_115971 crossref_primary_10_1007_s13399_024_06305_7 crossref_primary_10_1039_D4NA00133H crossref_primary_10_1002_cplu_202400368 crossref_primary_10_1016_j_cej_2025_161260 crossref_primary_10_1515_revic_2024_0026 crossref_primary_10_1016_j_jmat_2024_100974 crossref_primary_10_1002_tcr_202300285 crossref_primary_10_1016_j_jwpe_2025_107111 crossref_primary_10_1038_s41598_024_73352_5 crossref_primary_10_1016_j_rineng_2024_103428 crossref_primary_10_1149_2162_8777_ada3a2 crossref_primary_10_1007_s43207_024_00465_y crossref_primary_10_1016_j_ijhydene_2025_01_278 crossref_primary_10_1088_1361_665X_ad7a42 crossref_primary_10_1016_j_pes_2024_100018 crossref_primary_10_1002_ese3_1815 crossref_primary_10_1016_j_jelechem_2024_118790 crossref_primary_10_1016_j_jcrysgro_2025_128133 crossref_primary_10_1038_s41598_024_84438_5 crossref_primary_10_1016_j_hazadv_2024_100588 |
Cites_doi | 10.1590/1980-5373-mr-2020-0080 10.1016/j.ces.2005.04.012 10.1002/pi.5907 10.1039/C8TA00934A 10.1088/1361-6528/aaa0ef 10.1039/C3NR03806H 10.1007/s13204-021-01686-x 10.1246/cl.2004.770 10.3390/s100504558 10.1021/acs.langmuir.5b02341 10.1002/pssa.201700824 10.1161/CIRCULATIONAHA.110.943860 10.1007/s10529-011-0641-5 10.3390/s21165502 10.1021/acs.jpcc.9b07411 10.1016/j.bpj.2015.03.040 10.1007/s10904-018-0873-0 10.1007/s10854-019-02025-1 10.3390/ma8063101 10.1016/j.physb.2010.02.028 10.1021/acsami.6b14800 10.1016/j.saa.2011.08.045 10.2174/1566524013666131111130058 10.1016/j.jpowsour.2014.01.066 10.1007/s12274-011-0160-7 10.1016/j.matlet.2018.07.031 10.1002/tcr.202100299 10.1021/ac502249f 10.1021/cr400544s 10.1038/s41377-022-00808-6 10.1039/D0RA07328H 10.1016/j.snb.2006.08.034 10.1088/1742-6596/1907/1/012044 10.1038/nnano.2007.451 10.1016/j.jphotobiol.2018.04.036 10.1586/14737159.2014.888313 10.1007/s10856-008-3541-z 10.3390/nano7110354 10.1021/ja800999u 10.1155/2017/8510342 10.1016/j.electacta.2015.02.057 10.1016/j.jphotobiol.2008.07.009 10.1515/rams-2018-0009 10.1088/0953-8984/28/43/433001 10.1016/j.jallcom.2021.160219 10.1016/j.energy.2014.03.003 10.1016/j.jmat.2020.11.015 10.1002/(SICI)1097-0142(19980501)82:9<1643::AID-CNCR8>3.0.CO;2-B 10.1016/j.foodchem.2011.11.015 10.1016/j.jssc.2016.12.016 10.1016/j.molstruc.2016.10.057 10.5334/aa.06112 10.1111/j.1600-0404.2010.01334.x 10.1016/j.mssp.2017.08.001 10.1016/j.scp.2020.100223 10.1063/1.1589166 10.1016/j.reffit.2017.03.002 10.1007/s10008-020-04884-9 10.1021/nn306044d 10.1039/c3cc41048j 10.1155/2018/3569758 10.1541/ieejfms.140.357 10.1088/2053-1591/aa5ed8 10.15244/pjoes/99239 10.1016/j.cossms.2020.100805 10.1002/tcr.202100280 10.1021/ef400212b 10.1109/JPROC.2010.2044550 10.3390/nano10030530 10.1016/j.matchemphys.2013.06.012 10.1016/j.cis.2019.05.006 10.1016/j.snr.2022.100100 10.1557/mrs.2012.186 10.1016/j.cej.2022.134790 10.1016/j.jpowsour.2016.04.107 10.1039/c3cc48197b 10.1016/j.apsusc.2018.01.172 10.1016/j.ijpharm.2017.10.008 10.1002/cphc.200700002 10.1016/j.matlet.2017.11.108 10.1016/j.electacta.2006.07.032 10.1016/j.mattod.2017.11.003 10.1016/j.snb.2017.12.101 10.3390/chemosensors3010001 10.1088/0953-8984/16/25/R01 10.1016/j.jsamd.2016.10.001 10.3390/nano8040268 10.1002/cmmi.434 10.1021/acsami.5b12776 10.1039/C7CS00007C 10.1016/j.ceramint.2006.08.003 10.1002/adfm.202170152 10.3109/17435390.2012.760014 10.1039/D1TA00232E 10.1166/jnn.2017.15053 10.1007/s11664-018-6213-x 10.1002/adma.201970076 10.1002/tcr.202100329 10.1039/c3nr03934j 10.1088/1361-6528/aa82b0 10.1016/j.phytol.2019.04.009 10.3390/nano10061086 10.1038/nmat2442 10.1016/j.physb.2021.413028 10.1002/adma.200800243 10.1016/j.matchemphys.2014.07.058 10.1016/j.jallcom.2014.09.105 10.1016/j.ssi.2020.115544 10.1039/c0ee00683a 10.1088/0957-4484/19/12/125603 10.1007/s10008-016-3187-6 10.1088/1361-6528/ab268a 10.1016/j.materresbull.2015.05.019 10.1039/C6RA06346B 10.3390/pharmaceutics11110575 10.1016/j.rser.2021.110849 10.1039/c0nr00047g 10.1039/C8MH01365A 10.1002/admi.201901932 10.1021/am5073468 10.1179/1753555713Y.0000000063 10.1006/jcis.1997.5354 10.1016/j.ijleo.2021.166715 10.1080/17453670710015120 10.1088/1361-6528/ac08bb 10.3748/wjg.v22.i5.1745 10.1007/s10854-018-8964-9 10.1002/tcr.202200090 10.2174/187152006778226530 10.1016/j.tiv.2011.08.011 10.1016/j.biomaterials.2006.09.046 10.1016/S0955-2219(00)00283-1 10.1021/la100293s 10.1016/j.apsusc.2018.09.264 10.1016/j.snb.2019.04.083 10.1002/adma.201501121 10.1039/C8TA04129F 10.1016/j.matlet.2018.06.049 10.1021/la201755w 10.3390/s151129408 10.1016/j.jallcom.2018.11.112 10.1016/j.jhazmat.2010.07.010 10.1039/C3TC31476F 10.1016/j.matpr.2022.02.422 10.3390/cancers13184570 10.1039/C6NR07207K 10.1088/1742-6596/984/1/012005 10.1155/2018/1062562 10.1166/jbn.2011.1219 10.1109/T-ED.1985.22095 10.1140/epjb/e2016-60799-9 10.1002/adma.201306126 10.1016/j.cej.2022.137045 10.1016/j.biomaterials.2010.10.022 10.1016/j.jpowsour.2014.02.088 10.1039/c1jm11302j 10.1016/j.physb.2017.07.039 10.2174/138920110792246483 10.1016/j.jallcom.2017.06.099 10.1149/2.0141807jss 10.1016/j.sna.2021.112574 10.1016/j.ssi.2009.10.001 10.1007/s40820-015-0040-x 10.3390/ma11020287 10.1039/C4TA02052A 10.1088/0957-4484/27/42/425708 10.1007/s10853-017-1544-1 10.1002/adma.201506457 10.1063/1.4907568 10.1016/j.apcatb.2022.121603 10.1016/j.jhazmat.2005.10.022 10.1517/17425247.2010.502560 10.1021/jp500516t 10.1002/tcr.202000088 10.1016/j.apsusc.2018.03.217 10.1021/jp0271054 10.1088/1674-1056/26/4/047307 10.1002/cplu.201300015 10.3390/ma7042833 10.3390/s19020233 10.1016/j.jpowsour.2010.09.065 10.1016/j.jhazmat.2017.07.056 10.1007/s10008-017-3788-8 10.1111/j.1574-6968.2007.01012.x 10.1039/C8CE01773E 10.1016/j.ceramint.2016.10.051 |
ContentType | Journal Article |
Copyright | 2023 The Chemical Society of Japan & Wiley‐VCH GmbH 2023 The Chemical Society of Japan & Wiley-VCH GmbH. 2024 The Chemical Society of Japan & Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 The Chemical Society of Japan & Wiley‐VCH GmbH – notice: 2023 The Chemical Society of Japan & Wiley-VCH GmbH. – notice: 2024 The Chemical Society of Japan & Wiley‐VCH GmbH |
DBID | AAYXX CITATION NPM 7QO 7T7 8FD C1K FR3 P64 7X8 |
DOI | 10.1002/tcr.202300106 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Engineering Research Database Biotechnology Research Abstracts Technology Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Engineering Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1528-0691 |
EndPage | n/a |
ExternalDocumentID | 37249417 10_1002_tcr_202300106 TCR202300106 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia funderid: IFPRP: 600-130-1442 – fundername: Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia grantid: IFPRP: 600-130-1442 |
GroupedDBID | --- .3N .Y3 05W 0R~ 10A 123 1OC 29B 31~ 33P 3WU 4.4 50Y 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 53G 5VS 66C 702 7PT 8-1 8UM A00 AAESR AAHHS AAHQN AAMNL AANHP AANLZ AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ASPBG AVWKF AZFZN AZVAB BDRZF BFHJK BMXJE BROTX BRXPI BY8 CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD F5P FEDTE G-S G.N GODZA HF~ HGLYW HVGLF HZ~ IX1 J0M LATKE LAW LC2 LC3 LEEKS LH- LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MSFUL MSSTM MXFUL MXSTM MY~ N9A O9- OIG P2W P4D Q11 QB0 QRW R.K ROL RX1 SUPJJ V2E W99 WBKPD WOHZO WQJ WXSBR WYJ WYUIH XG1 XV2 ZZTAW ~IA AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION NPM 7QO 7T7 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 P64 7X8 |
ID | FETCH-LOGICAL-c3696-7586d9b8ac7308c8fc1c0a270922de480a97d541755d0cffd1c06369c38c3e873 |
IEDL.DBID | DR2 |
ISSN | 1527-8999 1528-0691 |
IngestDate | Fri Jul 11 02:22:35 EDT 2025 Fri Jul 25 10:35:38 EDT 2025 Wed Feb 19 02:07:15 EST 2025 Tue Jul 01 02:40:11 EDT 2025 Thu Apr 24 23:03:05 EDT 2025 Wed Jan 22 16:15:33 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Lithium-ion batteries Solar cells Supercapacitors ZnO nanostructures Photocatalysis |
Language | English |
License | 2023 The Chemical Society of Japan & Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3696-7586d9b8ac7308c8fc1c0a270922de480a97d541755d0cffd1c06369c38c3e873 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-2773-1244 |
PMID | 37249417 |
PQID | 2913279232 |
PQPubID | 1006501 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_2820968211 proquest_journals_2913279232 pubmed_primary_37249417 crossref_primary_10_1002_tcr_202300106 crossref_citationtrail_10_1002_tcr_202300106 wiley_primary_10_1002_tcr_202300106_TCR202300106 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2024 2024-01-00 2024-Jan 20240101 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: January 2024 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Chemical record |
PublicationTitleAlternate | Chem Rec |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 1140 2010; 11 2010; 98 2014; 259 2010; 10 2018; 447 2020; 20 2015; 70 2019; 11 2018; 449 2014; 26 2019; 19 2020; 15 2008; 34 2010; 183 2020; 12 2021; 320 2005; 60 2020; 10 1998; 82 2022; 22 2011; 196 2013; 7 2013; 8 2013; 5 2018; 47 2014; 256 2018; 7 2004; 33 2018; 6 2018; 8 2012; 132 2010; 26 2018; 215 2019; 21 2018; 214 2007; 8 2014; 14 2019; 29 2008; 20 2010; 2 2019; 270 1998; 200 2011; 123 2010; 7 2022; 446 2017; 722 2019; 7 2018; 29 2018; 341 2018; 28 2006; 52 2019; 6 2018; 183 2019; 31 2020; 140 2019; 30 2009; 180 2018; 228 2018; 984 2011; 83 2019; 465 2016; 320 2012; 37 2021; 143 2011; 4 2018; 21 2011; 6 2011; 7 2017; 534 2001; 21 2018; 230 2016; 6 2017; 53 2016; 1 2022; 4 2013; 78 2016; 20 2020; 24 2020; 23 2022; 11 2016; 28 2018; 11 2019; 292 2016; 27 2016; 8 2008; 130 2014; 148 2016; 22 2021; 25 2013; 29 2017; 7 2021; 21 2012; 2012 2017; 3 2013; 27 2017; 4 2015; 620 2015; 31 2017; 43 2017; 46 2021; 360 2014; 69 2008; 79 2015; 108 2015; 106 2008; 3 2017; 9 2011; 1463 2006; 133 2019; 123 2007; 28 2020; 7 2021; 32 2021; 31 2014; 2 2018; 535 2018; 259 2013; 13 2021; 238 2019; 69 2021; 877 2002; 107 2011; 21 2018; 73 2008; 279 2011; 25 2011; 27 2003; 83 2014; 50 2014; 7 2014; 6 2017; 247 2016; 89 2014; 118 2021; 9 2007; 123 2021; 7 2015; 15 2015; 161 2015; 5 2015; 3 2013; 49 2017; 26 2017; 2017 2010; 405 2017; 28 2017; 22 2008; 19 2010; 122 2011; 33 2011; 32 2006; 6 2013; 141 2006; 1 2021; 188 2015; 8 2015; 7 2022; 316 2008; 93 2014; 114 2022; 435 2014; 86 2011; 863 2021; 13 2018; 2018 2015; 27 2021; 12 2021; 11 2012; 1 2004; 16 2017; 17 2022; 62 2021; 614 2021; 1907 2009; 8 2019; 779 1985; 32 2018; 53 e_1_2_5_147_1 e_1_2_5_23_1 e_1_2_5_46_1 e_1_2_5_162_1 e_1_2_5_185_1 e_1_2_5_124_1 e_1_2_5_101_1 e_1_2_5_109_1 e_1_2_5_61_1 e_1_2_5_84_1 e_1_2_5_150_1 Moezzi A. (e_1_2_5_63_1) 2012; 1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_57_1 e_1_2_5_113_1 e_1_2_5_136_1 e_1_2_5_174_1 e_1_2_5_197_1 e_1_2_5_7_1 Zhao Y. (e_1_2_5_151_1) 2016; 6 e_1_2_5_19_1 e_1_2_5_159_1 e_1_2_5_72_1 e_1_2_5_95_1 Zhou X. (e_1_2_5_105_1) 2021; 188 e_1_2_5_146_1 e_1_2_5_169_1 e_1_2_5_45_1 e_1_2_5_184_1 e_1_2_5_100_1 e_1_2_5_123_1 e_1_2_5_22_1 e_1_2_5_68_1 e_1_2_5_108_1 e_1_2_5_60_1 e_1_2_5_172_1 Xiao X. (e_1_2_5_126_1) 2017; 7 e_1_2_5_158_1 e_1_2_5_8_1 e_1_2_5_10_1 e_1_2_5_56_1 e_1_2_5_135_1 e_1_2_5_173_1 e_1_2_5_33_1 e_1_2_5_112_1 e_1_2_5_196_1 e_1_2_5_79_1 e_1_2_5_18_1 Zhang Y. (e_1_2_5_69_1) 2012; 2012 e_1_2_5_71_1 e_1_2_5_94_1 e_1_2_5_161_1 e_1_2_5_145_1 e_1_2_5_25_1 e_1_2_5_48_1 e_1_2_5_168_1 e_1_2_5_122_1 e_1_2_5_107_1 e_1_2_5_86_1 e_1_2_5_194_1 e_1_2_5_40_1 e_1_2_5_205_1 e_1_2_5_171_1 e_1_2_5_36_1 e_1_2_5_59_1 e_1_2_5_157_1 e_1_2_5_111_1 e_1_2_5_134_1 e_1_2_5_195_1 e_1_2_5_5_1 e_1_2_5_119_1 e_1_2_5_74_1 e_1_2_5_97_1 e_1_2_5_51_1 e_1_2_5_160_1 e_1_2_5_183_1 e_1_2_5_121_1 e_1_2_5_144_1 e_1_2_5_167_1 e_1_2_5_47_1 e_1_2_5_24_1 e_1_2_5_106_1 e_1_2_5_129_1 e_1_2_5_62_1 e_1_2_5_85_1 e_1_2_5_170_1 e_1_2_5_193_1 e_1_2_5_204_1 e_1_2_5_110_1 e_1_2_5_156_1 e_1_2_5_58_1 e_1_2_5_179_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_12_1 e_1_2_5_133_1 e_1_2_5_118_1 e_1_2_5_73_1 e_1_2_5_96_1 e_1_2_5_182_1 e_1_2_5_27_1 e_1_2_5_166_1 e_1_2_5_189_1 e_1_2_5_120_1 e_1_2_5_143_1 e_1_2_5_65_1 e_1_2_5_88_1 e_1_2_5_128_1 e_1_2_5_80_1 e_1_2_5_42_1 e_1_2_5_203_1 e_1_2_5_192_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_132_1 e_1_2_5_155_1 e_1_2_5_178_1 e_1_2_5_76_1 e_1_2_5_99_1 e_1_2_5_117_1 e_1_2_5_3_1 Li J. (e_1_2_5_49_1) 2015; 5 e_1_2_5_91_1 Maurya S. (e_1_2_5_9_1) 2019; 7 e_1_2_5_30_1 e_1_2_5_53_1 e_1_2_5_181_1 e_1_2_5_188_1 e_1_2_5_26_1 e_1_2_5_142_1 e_1_2_5_165_1 e_1_2_5_87_1 e_1_2_5_104_1 e_1_2_5_127_1 e_1_2_5_64_1 e_1_2_5_202_1 e_1_2_5_41_1 e_1_2_5_191_1 e_1_2_5_14_1 e_1_2_5_131_1 e_1_2_5_177_1 e_1_2_5_37_1 e_1_2_5_154_1 e_1_2_5_4_1 e_1_2_5_98_1 e_1_2_5_139_1 e_1_2_5_116_1 e_1_2_5_90_1 e_1_2_5_75_1 e_1_2_5_52_1 e_1_2_5_180_1 e_1_2_5_103_1 e_1_2_5_141_1 e_1_2_5_21_1 e_1_2_5_44_1 e_1_2_5_164_1 e_1_2_5_187_1 Ahmad R. (e_1_2_5_13_1) 2017; 7 e_1_2_5_67_1 e_1_2_5_149_1 e_1_2_5_29_1 e_1_2_5_82_1 e_1_2_5_201_1 Webster T. J. (e_1_2_5_199_1) 2011; 1463 e_1_2_5_190_1 e_1_2_5_17_1 e_1_2_5_130_1 e_1_2_5_32_1 e_1_2_5_55_1 e_1_2_5_153_1 e_1_2_5_176_1 e_1_2_5_78_1 e_1_2_5_115_1 e_1_2_5_138_1 e_1_2_5_1_1 Kumar R. (e_1_2_5_43_1) 2020; 12 e_1_2_5_70_1 e_1_2_5_93_1 e_1_2_5_28_1 e_1_2_5_140_1 e_1_2_5_102_1 e_1_2_5_125_1 e_1_2_5_163_1 e_1_2_5_186_1 e_1_2_5_66_1 e_1_2_5_89_1 e_1_2_5_148_1 Lin S.-L. (e_1_2_5_152_1) 2013; 8 e_1_2_5_81_1 e_1_2_5_200_1 e_1_2_5_20_1 e_1_2_5_39_1 e_1_2_5_16_1 e_1_2_5_114_1 e_1_2_5_198_1 e_1_2_5_54_1 e_1_2_5_175_1 e_1_2_5_77_1 e_1_2_5_2_1 Salah N. (e_1_2_5_83_1) 2011; 863 e_1_2_5_137_1 Chen X. (e_1_2_5_50_1) 2021; 11 e_1_2_5_92_1 e_1_2_5_31_1 |
References_xml | – volume: 20 start-page: 1553 year: 2020 end-page: 1567 publication-title: Chem. Rec. – volume: 1 start-page: 139 year: 2006 publication-title: Ancient Asia – volume: 1140 start-page: 12 year: 2017 publication-title: J. Mol. Struct. – volume: 19 start-page: 233 year: 2019 publication-title: Sensors – volume: 292 start-page: 24 year: 2019 publication-title: Sens. Actuators B – volume: 11 start-page: 575 year: 2019 publication-title: Pharmaceutica – volume: 14 start-page: 225 year: 2014 publication-title: Expert Rev. Mol. Diagn. – volume: 47 start-page: 3647 year: 2018 publication-title: J. Electron. Mater. – volume: 49 start-page: 4456 year: 2013 publication-title: Chem. Commun. – volume: 161 start-page: 261 year: 2015 publication-title: Electrochim. Acta – volume: 28 start-page: 2046 year: 2018 publication-title: J. Inorg. Organomet. Polym. Mater. – volume: 23 year: 2020 publication-title: Mater. Res. – volume: 22 start-page: 1745 year: 2016 publication-title: World J. Gastroenterol. – volume: 4 start-page: 1013 year: 2011 publication-title: Nano Res. – volume: 7 start-page: 563 year: 2021 publication-title: Journal of Materiomics – volume: 29 year: 2018 publication-title: Nanotechnology – volume: 83 start-page: 348 year: 2011 publication-title: Spectrochim. Acta Part A – volume: 435 year: 2022 publication-title: Chem. Eng. J. – volume: 27 start-page: 3508 year: 2013 publication-title: Energy Fuels – volume: 30 year: 2019 publication-title: Nanotechnology – volume: 215 year: 2018 publication-title: Phys. Status Solidi A – volume: 53 start-page: 185 year: 2017 publication-title: J. Mater. Sci. – volume: 4 start-page: 1113 year: 2011 publication-title: Energy Environ. Sci. – volume: 8 start-page: 7800 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 1463 year: 2011 publication-title: Int. J. Nanomed. – volume: 2012 start-page: 1 year: 2012 publication-title: J. Nanomater. – volume: 26 year: 2017 publication-title: Chin. Phys. B – volume: 8 year: 2013 publication-title: Nanoscale Res. Lett. – volume: 320 start-page: 314 year: 2016 publication-title: J. Power Sources – volume: 259 start-page: 526 year: 2018 publication-title: Sens. Actuators B – volume: 93 start-page: 119 year: 2008 publication-title: J. Photochem. Photobiol. B – volume: 8 start-page: 782 year: 2007 publication-title: ChemPhysChem – volume: 259 start-page: 98 year: 2014 publication-title: J. Power Sources – volume: 984 year: 2018 publication-title: J. Phys. Conf. Ser. – volume: 183 start-page: 182 year: 2010 publication-title: J. Hazard. Mater. – volume: 316 year: 2022 publication-title: Appl. Catal. B – volume: 46 start-page: 5311 year: 2017 publication-title: Chem. Soc. Rev. – volume: 341 start-page: 102 year: 2018 publication-title: J. Hazard. Mater. – volume: 8 start-page: 18578 year: 2016 publication-title: Nanoscale – volume: 8 start-page: 268 year: 2018 publication-title: Nanomaterials – volume: 114 start-page: 7610 year: 2014 publication-title: Chem. Rev. – volume: 1 start-page: 185 year: 2012 end-page: 186 publication-title: Chem. Eng. J. – volume: 21 start-page: 925 year: 2001 publication-title: J. Eur. Ceram. Soc. – volume: 863 year: 2011 publication-title: Int. J. Nanomed. – volume: 83 start-page: 144 year: 2003 publication-title: Appl. Phys. Lett. – volume: 2 start-page: 1573 year: 2010 publication-title: Nanoscale – volume: 7 start-page: 1063 year: 2010 publication-title: Expert Opin. Drug Delivery – volume: 28 start-page: 791 year: 2007 publication-title: Biomaterials – volume: 43 start-page: 907 year: 2017 publication-title: Ceram. Int. – volume: 122 start-page: 202 year: 2010 publication-title: Acta Neurol. Scand. – volume: 52 start-page: 1309 year: 2006 publication-title: Electrochim. Acta – volume: 6 start-page: 16515 year: 2018 publication-title: J. Mater. Chem. A – volume: 22 year: 2022 publication-title: Chem. Rec. – volume: 98 start-page: 1255 year: 2010 publication-title: Proc. IEEE – volume: 25 start-page: 1065 year: 2021 publication-title: J. Solid State Electrochem. – volume: 2017 start-page: 1 year: 2017 publication-title: J. Nanomater. – volume: 614 year: 2021 publication-title: Physica B: Condensed Matter – volume: 28 year: 2016 publication-title: J. Phys. Condens. Matter – volume: 4 year: 2017 publication-title: Mater. Res. Express – volume: 16 start-page: R829 year: 2004 publication-title: J. Phys. Condens. Matter – volume: 247 start-page: 31 year: 2017 publication-title: J. Solid State Chem. – volume: 11 year: 2022 publication-title: Light-Sci. Appl. – volume: 73 start-page: 111 year: 2018 publication-title: Mater. Sci. Semicond. Process. – volume: 37 start-page: 814 year: 2012 publication-title: MRS Bull. – volume: 33 start-page: 770 year: 2004 publication-title: Chem. Lett. – volume: 22 start-page: 527 year: 2017 publication-title: J. Solid State Electrochem. – volume: 8 start-page: 3101 year: 2015 publication-title: Materials – volume: 12 start-page: 673 year: 2021 publication-title: Applied Nanoscience – volume: 7 year: 2017 publication-title: Sci. Rep. – volume: 15 year: 2020 publication-title: Sustainable Chemistry and Pharmacy – volume: 21 start-page: 12288 year: 2011 publication-title: J. Mater. Chem. – volume: 2018 start-page: 1 year: 2018 publication-title: Bioinorg. Chem. Appl. – volume: 3 start-page: 406 year: 2017 publication-title: Resource-Efficient Technologies – volume: 133 start-page: 226 year: 2006 publication-title: J. Hazard. Mater. – volume: 7 start-page: 95 year: 2011 publication-title: J. Biomed. Nanotechnol. – volume: 31 start-page: 10913 year: 2015 publication-title: Langmuir – volume: 228 start-page: 331 year: 2018 publication-title: Mater. Lett. – volume: 6 start-page: 328 year: 2011 publication-title: Contrast Media Mol. Imaging – volume: 70 start-page: 478 year: 2015 publication-title: Mater. Res. Bull. – volume: 86 start-page: 7351 year: 2014 publication-title: Anal. Chem. – volume: 4 year: 2022 publication-title: Sensors and Actuators Reports – volume: 89 year: 2016 publication-title: Eur. Phys. J. B – volume: 50 start-page: 1890 year: 2014 publication-title: Chem. Commun. – volume: 28 year: 2017 publication-title: Nanotechnology – volume: 123 start-page: 29394 year: 2019 publication-title: J. Phys. Chem. C – volume: 69 start-page: 266 year: 2014 publication-title: Energy – volume: 620 start-page: 31 year: 2015 publication-title: J. Alloys Compd. – volume: 29 start-page: 111 year: 2019 publication-title: Pol. J. Environ. Stud. – volume: 535 start-page: 216 year: 2018 publication-title: Physica B: Condensed Matter – volume: 27 start-page: 10243 year: 2011 publication-title: Langmuir – volume: 6 start-page: 90916 year: 2016 publication-title: RSC Adv. – volume: 8 start-page: 543 year: 2009 publication-title: Nat. Mater. – volume: 60 start-page: 4749 year: 2005 publication-title: Chem. Eng. Sci. – volume: 29 start-page: 8 year: 2013 publication-title: Mater. Technol. – volume: 279 start-page: 71 year: 2008 publication-title: FEMS Microbiol. Lett. – volume: 78 start-page: 546 year: 2013 publication-title: ChemPlusChem – volume: 3 start-page: 101 year: 2008 publication-title: Nat. Nanotechnol. – volume: 27 year: 2016 publication-title: Nanotechnology – volume: 7 start-page: 219 year: 2015 publication-title: Nano-Micro Lett. – volume: 9 start-page: 9616 year: 2021 publication-title: J. Mater. Chem. A – volume: 62 start-page: 5083 year: 2022 publication-title: Mater. Today: Proc. – volume: 21 start-page: 1071 year: 2019 publication-title: CrystEngComm – volume: 6 year: 2016 publication-title: Sci. Rep. – volume: 69 start-page: 7 year: 2019 publication-title: Polym. Int. – volume: 1907 year: 2021 publication-title: J. Phys. Conf. Ser. – volume: 11 start-page: 654 year: 2010 publication-title: Curr. Pharm. Biotechnol. – volume: 7 start-page: 354 year: 2017 publication-title: Nanomaterials – volume: 21 start-page: 5502 year: 2021 publication-title: Sensors – volume: 7 start-page: Q3089 year: 2018 publication-title: ECS J. Solid State Sci. Technol. – volume: 82 start-page: 1643 year: 1998 publication-title: Cancer – volume: 79 start-page: 302 year: 2008 publication-title: Acta Orthopaedica – volume: 6 start-page: 407 year: 2006 publication-title: Anti-Cancer Agents Med. Chem. – volume: 123 start-page: 1116 year: 2011 publication-title: Circulation – volume: 10 start-page: 39786 year: 2020 publication-title: RSC Adv. – volume: 3 start-page: 1 year: 2015 publication-title: Chemosensors – volume: 214 start-page: 10 year: 2018 publication-title: Mater. Lett. – volume: 465 start-page: 1107 year: 2019 publication-title: Appl. Surf. Sci. – volume: 320 year: 2021 publication-title: Sensors and Actuators A: Physical – volume: 7 start-page: 2480 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 7 year: 2020 publication-title: Adv. Mater. Interfaces – volume: 140 start-page: 357 year: 2020 publication-title: IEEJ Transactions on Fundamentals and Materials – volume: 6 start-page: 6860 year: 2018 publication-title: J. Mater. Chem. A – volume: 20 start-page: 4547 year: 2008 publication-title: Adv. Mater. – volume: 148 start-page: 380 year: 2014 publication-title: Mater. Chem. Phys. – volume: 2 start-page: 13661 year: 2014 publication-title: J. Mater. Chem. A – volume: 20 start-page: 11 year: 2008 publication-title: J. Mater. Sci. Mater. Med. – volume: 13 start-page: 1633 year: 2013 publication-title: Curr. Mol. Med. – volume: 196 start-page: 2340 year: 2011 publication-title: J. Power Sources – volume: 449 start-page: 521 year: 2018 publication-title: Appl. Surf. Sci. – volume: 141 start-page: 835 year: 2013 publication-title: Mater. Chem. Phys. – volume: 360 year: 2021 publication-title: Solid State Ionics – volume: 26 start-page: 6522 year: 2010 publication-title: Langmuir – volume: 2 start-page: 1331 year: 2014 publication-title: J. Mater. Chem. C – volume: 132 start-page: 419 year: 2012 publication-title: Food Chem. – volume: 24 year: 2020 publication-title: Curr. Opin. Solid State Mater. Sci. – volume: 11 year: 2021 publication-title: Sci. Rep. – volume: 7 start-page: 2617 year: 2013 publication-title: ACS Nano – volume: 20 start-page: 1743 year: 2016 publication-title: J. Solid State Electrochem. – volume: 5 year: 2015 publication-title: Sci. Rep. – volume: 447 start-page: 173 year: 2018 publication-title: Appl. Surf. Sci. – volume: 405 start-page: 2286 year: 2010 publication-title: Physica B: Condensed Matter – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 6 start-page: 470 year: 2019 publication-title: Mater. Horiz. – volume: 5 start-page: 11808 year: 2013 publication-title: Nanoscale – volume: 10 start-page: 4558 year: 2010 publication-title: Sensors – volume: 30 start-page: 15825 year: 2019 publication-title: J. Mater. Sci. Mater. Electron. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 32 year: 2021 publication-title: Nanotechnology – volume: 12 year: 2020 publication-title: Nano-Micro Letters – volume: 15 start-page: 29408 year: 2015 publication-title: Sensors – volume: 123 start-page: 299 year: 2007 publication-title: Sens. Actuators B – volume: 188 year: 2021 publication-title: Microchim. Acta – volume: 10 start-page: 1086 year: 2020 publication-title: Nanomaterials – volume: 8 start-page: 107 year: 2013 publication-title: Nanotoxicology – volume: 17 start-page: 7952 year: 2017 publication-title: J. Nanosci. Nanotechnol. – volume: 9 start-page: 8480 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 13 start-page: 4570 year: 2021 publication-title: Cancers – volume: 118 start-page: 9209 year: 2014 publication-title: J. Phys. Chem. C – volume: 25 start-page: 1721 year: 2011 publication-title: Toxicol. in Vitro – volume: 534 start-page: 190 year: 2017 publication-title: Int. J. Pharm. – volume: 180 start-page: 1525 year: 2009 publication-title: Solid State Ionics – volume: 28 start-page: 5229 year: 2016 publication-title: Adv. Mater. – volume: 108 start-page: 2333 year: 2015 publication-title: Biophys. J. – volume: 230 start-page: 48 year: 2018 publication-title: Mater. Lett. – volume: 32 start-page: 1170 year: 1985 publication-title: IEEE Trans. Electron Devices – volume: 238 year: 2021 publication-title: Optik – volume: 256 start-page: 206 year: 2014 publication-title: J. Power Sources – volume: 106 year: 2015 publication-title: Appl. Phys. Lett. – volume: 183 start-page: 201 year: 2018 publication-title: J. Photochem. Photobiol. B – volume: 53 start-page: 119 year: 2018 publication-title: Reviews On Advanced Materials Science – volume: 11 start-page: 287 year: 2018 publication-title: Materials – volume: 7 start-page: 3749 year: 2019 publication-title: Int. J. Sci. Technol. – volume: 779 start-page: 720 year: 2019 publication-title: J. Alloys Compd. – volume: 33 start-page: 1891 year: 2011 publication-title: Biotechnol. Lett. – volume: 143 year: 2021 publication-title: Renewable Sustainable Energy Rev. – volume: 27 start-page: 4447 year: 2015 publication-title: Adv. Mater. – volume: 270 start-page: 1 year: 2019 publication-title: Adv. Colloid Interface Sci. – volume: 130 start-page: 7522 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 530 year: 2020 publication-title: Nanomaterials – volume: 107 start-page: 659 year: 2002 publication-title: J. Phys. Chem. B – volume: 21 start-page: 631 year: 2018 publication-title: Mater. Today – volume: 31 start-page: 170 year: 2019 publication-title: Phytochem. Lett. – volume: 7 start-page: 2833 year: 2014 publication-title: Materials – volume: 19 year: 2008 publication-title: Nanotechnology – volume: 877 year: 2021 publication-title: J. Alloys Compd. – volume: 34 start-page: 57 year: 2008 publication-title: Ceram. Int. – volume: 1 start-page: 454 year: 2016 publication-title: J. Sci. Adv. Mater. Devices – volume: 26 start-page: 3368 year: 2014 publication-title: Adv. Mater. – volume: 200 start-page: 220 year: 1998 publication-title: J. Colloid Interface Sci. – volume: 32 start-page: 1185 year: 2011 publication-title: Biomaterials – volume: 29 start-page: 9339 year: 2018 publication-title: J. Mater. Sci. Mater. Electron. – volume: 722 start-page: 716 year: 2017 publication-title: J. Alloys Compd. – volume: 446 year: 2022 publication-title: Chem. Eng. J. – volume: 6 start-page: 758 year: 2014 publication-title: Nanoscale – ident: e_1_2_5_82_1 doi: 10.1590/1980-5373-mr-2020-0080 – ident: e_1_2_5_94_1 doi: 10.1016/j.ces.2005.04.012 – ident: e_1_2_5_24_1 doi: 10.1002/pi.5907 – ident: e_1_2_5_138_1 doi: 10.1039/C8TA00934A – ident: e_1_2_5_93_1 doi: 10.1088/1361-6528/aaa0ef – ident: e_1_2_5_173_1 doi: 10.1039/C3NR03806H – ident: e_1_2_5_59_1 doi: 10.1007/s13204-021-01686-x – ident: e_1_2_5_86_1 doi: 10.1246/cl.2004.770 – ident: e_1_2_5_154_1 doi: 10.3390/s100504558 – ident: e_1_2_5_3_1 doi: 10.1021/acs.langmuir.5b02341 – ident: e_1_2_5_31_1 doi: 10.1002/pssa.201700824 – ident: e_1_2_5_163_1 doi: 10.1161/CIRCULATIONAHA.110.943860 – ident: e_1_2_5_179_1 doi: 10.1007/s10529-011-0641-5 – ident: e_1_2_5_104_1 doi: 10.3390/s21165502 – ident: e_1_2_5_89_1 doi: 10.1021/acs.jpcc.9b07411 – volume: 188 year: 2021 ident: e_1_2_5_105_1 publication-title: Microchim. Acta – ident: e_1_2_5_153_1 doi: 10.1016/j.bpj.2015.03.040 – ident: e_1_2_5_115_1 doi: 10.1007/s10904-018-0873-0 – ident: e_1_2_5_45_1 doi: 10.1007/s10854-019-02025-1 – ident: e_1_2_5_177_1 doi: 10.3390/ma8063101 – ident: e_1_2_5_122_1 doi: 10.1016/j.physb.2010.02.028 – ident: e_1_2_5_194_1 doi: 10.1021/acsami.6b14800 – ident: e_1_2_5_165_1 doi: 10.1016/j.saa.2011.08.045 – ident: e_1_2_5_164_1 doi: 10.2174/1566524013666131111130058 – ident: e_1_2_5_131_1 doi: 10.1016/j.jpowsour.2014.01.066 – ident: e_1_2_5_61_1 doi: 10.1007/s12274-011-0160-7 – ident: e_1_2_5_35_1 doi: 10.1016/j.matlet.2018.07.031 – ident: e_1_2_5_202_1 doi: 10.1002/tcr.202100299 – ident: e_1_2_5_158_1 doi: 10.1021/ac502249f – volume: 7 year: 2017 ident: e_1_2_5_13_1 publication-title: Sci. Rep. – ident: e_1_2_5_84_1 doi: 10.1021/cr400544s – ident: e_1_2_5_186_1 doi: 10.1038/s41377-022-00808-6 – ident: e_1_2_5_48_1 doi: 10.1039/D0RA07328H – ident: e_1_2_5_51_1 doi: 10.1016/j.snb.2006.08.034 – ident: e_1_2_5_96_1 doi: 10.1088/1742-6596/1907/1/012044 – ident: e_1_2_5_110_1 doi: 10.1038/nnano.2007.451 – ident: e_1_2_5_78_1 doi: 10.1016/j.jphotobiol.2018.04.036 – ident: e_1_2_5_162_1 doi: 10.1586/14737159.2014.888313 – ident: e_1_2_5_180_1 doi: 10.1007/s10856-008-3541-z – ident: e_1_2_5_198_1 doi: 10.3390/nano7110354 – ident: e_1_2_5_55_1 doi: 10.3390/s21165502 – ident: e_1_2_5_166_1 doi: 10.1021/ja800999u – ident: e_1_2_5_74_1 doi: 10.1155/2017/8510342 – ident: e_1_2_5_140_1 doi: 10.1016/j.electacta.2015.02.057 – ident: e_1_2_5_195_1 doi: 10.1016/j.jphotobiol.2008.07.009 – ident: e_1_2_5_73_1 doi: 10.1515/rams-2018-0009 – ident: e_1_2_5_16_1 doi: 10.1088/0953-8984/28/43/433001 – ident: e_1_2_5_100_1 doi: 10.1016/j.jallcom.2021.160219 – ident: e_1_2_5_114_1 doi: 10.1016/j.energy.2014.03.003 – ident: e_1_2_5_127_1 doi: 10.1016/j.jmat.2020.11.015 – ident: e_1_2_5_160_1 doi: 10.1002/(SICI)1097-0142(19980501)82:9<1643::AID-CNCR8>3.0.CO;2-B – ident: e_1_2_5_174_1 doi: 10.1016/j.foodchem.2011.11.015 – ident: e_1_2_5_145_1 doi: 10.1016/j.jssc.2016.12.016 – ident: e_1_2_5_90_1 doi: 10.1016/j.molstruc.2016.10.057 – ident: e_1_2_5_17_1 doi: 10.5334/aa.06112 – ident: e_1_2_5_149_1 doi: 10.1111/j.1600-0404.2010.01334.x – ident: e_1_2_5_4_1 doi: 10.1016/j.mssp.2017.08.001 – ident: e_1_2_5_76_1 doi: 10.1016/j.scp.2020.100223 – ident: e_1_2_5_54_1 doi: 10.1063/1.1589166 – ident: e_1_2_5_72_1 doi: 10.1016/j.reffit.2017.03.002 – ident: e_1_2_5_27_1 doi: 10.1007/s10008-020-04884-9 – ident: e_1_2_5_129_1 doi: 10.1021/nn306044d – ident: e_1_2_5_130_1 doi: 10.1039/c3cc41048j – ident: e_1_2_5_68_1 doi: 10.1155/2018/3569758 – ident: e_1_2_5_97_1 doi: 10.1541/ieejfms.140.357 – ident: e_1_2_5_134_1 doi: 10.1088/2053-1591/aa5ed8 – ident: e_1_2_5_77_1 doi: 10.15244/pjoes/99239 – ident: e_1_2_5_191_1 doi: 10.1016/j.cossms.2020.100805 – volume: 863 year: 2011 ident: e_1_2_5_83_1 publication-title: Int. J. Nanomed. – ident: e_1_2_5_205_1 doi: 10.1002/tcr.202100280 – ident: e_1_2_5_119_1 doi: 10.1021/ef400212b – ident: e_1_2_5_2_1 doi: 10.1109/JPROC.2010.2044550 – ident: e_1_2_5_80_1 doi: 10.3390/nano10030530 – ident: e_1_2_5_144_1 doi: 10.1016/j.matchemphys.2013.06.012 – ident: e_1_2_5_41_1 doi: 10.1016/j.cis.2019.05.006 – ident: e_1_2_5_20_1 doi: 10.1016/j.snr.2022.100100 – volume: 7 year: 2017 ident: e_1_2_5_126_1 publication-title: Sci. Rep. – ident: e_1_2_5_60_1 doi: 10.1557/mrs.2012.186 – ident: e_1_2_5_190_1 doi: 10.1016/j.cej.2022.134790 – volume: 8 year: 2013 ident: e_1_2_5_152_1 publication-title: Nanoscale Res. Lett. – ident: e_1_2_5_147_1 doi: 10.1016/j.jpowsour.2016.04.107 – ident: e_1_2_5_12_1 doi: 10.1039/c3cc48197b – volume: 7 start-page: 3749 year: 2019 ident: e_1_2_5_9_1 publication-title: Int. J. Sci. Technol. – ident: e_1_2_5_123_1 doi: 10.1016/j.apsusc.2018.01.172 – ident: e_1_2_5_196_1 doi: 10.1016/j.ijpharm.2017.10.008 – ident: e_1_2_5_11_1 doi: 10.1002/cphc.200700002 – ident: e_1_2_5_81_1 doi: 10.3390/nano10030530 – ident: e_1_2_5_98_1 doi: 10.1016/j.matlet.2017.11.108 – ident: e_1_2_5_121_1 doi: 10.1016/j.electacta.2006.07.032 – ident: e_1_2_5_5_1 doi: 10.1016/j.mattod.2017.11.003 – ident: e_1_2_5_30_1 doi: 10.1016/j.snb.2017.12.101 – ident: e_1_2_5_18_1 doi: 10.3390/chemosensors3010001 – ident: e_1_2_5_150_1 doi: 10.1088/0953-8984/16/25/R01 – ident: e_1_2_5_113_1 doi: 10.1016/j.jsamd.2016.10.001 – ident: e_1_2_5_178_1 doi: 10.3390/nano8040268 – ident: e_1_2_5_167_1 doi: 10.1002/cmmi.434 – ident: e_1_2_5_132_1 doi: 10.1021/acsami.5b12776 – ident: e_1_2_5_25_1 doi: 10.1039/C7CS00007C – ident: e_1_2_5_88_1 doi: 10.1016/j.ceramint.2006.08.003 – ident: e_1_2_5_29_1 doi: 10.1002/adfm.202170152 – volume: 6 year: 2016 ident: e_1_2_5_151_1 publication-title: Sci. Rep. – ident: e_1_2_5_176_1 doi: 10.3109/17435390.2012.760014 – ident: e_1_2_5_95_1 doi: 10.1039/D1TA00232E – ident: e_1_2_5_91_1 doi: 10.1166/jnn.2017.15053 – ident: e_1_2_5_39_1 doi: 10.1007/s11664-018-6213-x – ident: e_1_2_5_102_1 doi: 10.1002/adma.201970076 – ident: e_1_2_5_204_1 doi: 10.1002/tcr.202100329 – ident: e_1_2_5_14_1 doi: 10.1039/c3nr03934j – ident: e_1_2_5_148_1 doi: 10.1088/1361-6528/aa82b0 – ident: e_1_2_5_66_1 doi: 10.1016/j.phytol.2019.04.009 – ident: e_1_2_5_67_1 doi: 10.3390/nano10061086 – ident: e_1_2_5_184_1 doi: 10.1038/nmat2442 – volume: 12 year: 2020 ident: e_1_2_5_43_1 publication-title: Nano-Micro Letters – ident: e_1_2_5_101_1 doi: 10.1016/j.physb.2021.413028 – ident: e_1_2_5_42_1 doi: 10.1002/adma.200800243 – ident: e_1_2_5_124_1 doi: 10.1016/j.matchemphys.2014.07.058 – ident: e_1_2_5_118_1 doi: 10.1016/j.jallcom.2014.09.105 – ident: e_1_2_5_21_1 doi: 10.1016/j.ssi.2020.115544 – volume: 2012 start-page: 1 year: 2012 ident: e_1_2_5_69_1 publication-title: J. Nanomater. – ident: e_1_2_5_111_1 doi: 10.1039/c0ee00683a – ident: e_1_2_5_109_1 doi: 10.1007/s10008-020-04884-9 – ident: e_1_2_5_57_1 doi: 10.1088/0957-4484/19/12/125603 – ident: e_1_2_5_141_1 doi: 10.1007/s10008-016-3187-6 – ident: e_1_2_5_1_1 doi: 10.1088/1361-6528/ab268a – ident: e_1_2_5_139_1 doi: 10.1016/j.materresbull.2015.05.019 – volume: 1 start-page: 185 year: 2012 ident: e_1_2_5_63_1 publication-title: Chem. Eng. J. – ident: e_1_2_5_33_1 doi: 10.1039/C6RA06346B – ident: e_1_2_5_65_1 doi: 10.3390/pharmaceutics11110575 – ident: e_1_2_5_187_1 doi: 10.1016/j.rser.2021.110849 – ident: e_1_2_5_6_1 doi: 10.1039/c0nr00047g – ident: e_1_2_5_44_1 doi: 10.1039/C8MH01365A – ident: e_1_2_5_28_1 doi: 10.1002/admi.201901932 – ident: e_1_2_5_137_1 doi: 10.1021/am5073468 – ident: e_1_2_5_193_1 doi: 10.1179/1753555713Y.0000000063 – ident: e_1_2_5_85_1 doi: 10.1006/jcis.1997.5354 – ident: e_1_2_5_106_1 doi: 10.1016/j.ijleo.2021.166715 – ident: e_1_2_5_172_1 doi: 10.1080/17453670710015120 – ident: e_1_2_5_53_1 doi: 10.1088/1361-6528/ac08bb – ident: e_1_2_5_157_1 doi: 10.3748/wjg.v22.i5.1745 – volume: 5 year: 2015 ident: e_1_2_5_49_1 publication-title: Sci. Rep. – ident: e_1_2_5_92_1 doi: 10.1007/s10854-018-8964-9 – ident: e_1_2_5_201_1 doi: 10.1002/tcr.202200090 – ident: e_1_2_5_170_1 doi: 10.2174/187152006778226530 – ident: e_1_2_5_182_1 doi: 10.1016/j.tiv.2011.08.011 – ident: e_1_2_5_156_1 doi: 10.1016/j.biomaterials.2006.09.046 – volume: 1463 year: 2011 ident: e_1_2_5_199_1 publication-title: Int. J. Nanomed. – ident: e_1_2_5_10_1 doi: 10.1088/0953-8984/16/25/R01 – ident: e_1_2_5_87_1 doi: 10.1016/S0955-2219(00)00283-1 – ident: e_1_2_5_181_1 doi: 10.1021/la100293s – ident: e_1_2_5_112_1 doi: 10.1016/j.apsusc.2018.09.264 – ident: e_1_2_5_46_1 doi: 10.1016/j.snb.2019.04.083 – ident: e_1_2_5_56_1 doi: 10.1002/adma.201501121 – ident: e_1_2_5_142_1 doi: 10.1039/C8TA04129F – ident: e_1_2_5_32_1 doi: 10.1016/j.matlet.2018.06.049 – ident: e_1_2_5_47_1 doi: 10.1021/la201755w – ident: e_1_2_5_159_1 doi: 10.3390/s151129408 – ident: e_1_2_5_99_1 doi: 10.1016/j.jallcom.2018.11.112 – ident: e_1_2_5_183_1 doi: 10.1016/j.jhazmat.2010.07.010 – ident: e_1_2_5_128_1 doi: 10.1039/C3TC31476F – ident: e_1_2_5_75_1 doi: 10.1016/j.matpr.2022.02.422 – ident: e_1_2_5_161_1 doi: 10.3390/cancers13184570 – ident: e_1_2_5_143_1 doi: 10.1039/C6NR07207K – ident: e_1_2_5_116_1 doi: 10.1088/1742-6596/984/1/012005 – ident: e_1_2_5_185_1 doi: 10.1155/2018/1062562 – ident: e_1_2_5_169_1 doi: 10.1166/jbn.2011.1219 – ident: e_1_2_5_200_1 doi: 10.2174/1566524013666131111130058 – ident: e_1_2_5_22_1 doi: 10.1109/T-ED.1985.22095 – ident: e_1_2_5_155_1 doi: 10.1140/epjb/e2016-60799-9 – ident: e_1_2_5_135_1 doi: 10.1002/adma.201306126 – ident: e_1_2_5_189_1 doi: 10.1016/j.cej.2022.137045 – ident: e_1_2_5_168_1 doi: 10.1016/j.biomaterials.2010.10.022 – ident: e_1_2_5_133_1 doi: 10.1016/j.jpowsour.2014.02.088 – ident: e_1_2_5_34_1 doi: 10.1039/c1jm11302j – ident: e_1_2_5_36_1 doi: 10.1016/j.physb.2017.07.039 – ident: e_1_2_5_171_1 doi: 10.2174/138920110792246483 – ident: e_1_2_5_146_1 doi: 10.1016/j.jallcom.2017.06.099 – ident: e_1_2_5_40_1 doi: 10.1149/2.0141807jss – ident: e_1_2_5_58_1 doi: 10.1016/j.sna.2021.112574 – ident: e_1_2_5_120_1 doi: 10.1016/j.ssi.2009.10.001 – ident: e_1_2_5_175_1 doi: 10.1007/s40820-015-0040-x – ident: e_1_2_5_19_1 doi: 10.3390/ma11020287 – volume: 11 year: 2021 ident: e_1_2_5_50_1 publication-title: Sci. Rep. – ident: e_1_2_5_52_1 doi: 10.1039/C4TA02052A – ident: e_1_2_5_107_1 doi: 10.1088/1361-6528/ab268a – ident: e_1_2_5_125_1 doi: 10.1088/0957-4484/27/42/425708 – ident: e_1_2_5_70_1 doi: 10.1007/s10853-017-1544-1 – ident: e_1_2_5_103_1 doi: 10.1002/adma.201506457 – ident: e_1_2_5_15_1 doi: 10.1063/1.4907568 – ident: e_1_2_5_188_1 doi: 10.1016/j.apcatb.2022.121603 – ident: e_1_2_5_8_1 doi: 10.1016/j.jhazmat.2005.10.022 – ident: e_1_2_5_197_1 doi: 10.1517/17425247.2010.502560 – ident: e_1_2_5_38_1 doi: 10.1021/jp500516t – ident: e_1_2_5_203_1 doi: 10.1002/tcr.202000088 – ident: e_1_2_5_37_1 doi: 10.1016/j.apsusc.2018.03.217 – ident: e_1_2_5_7_1 doi: 10.1021/jp0271054 – ident: e_1_2_5_64_1 doi: 10.1088/1674-1056/26/4/047307 – ident: e_1_2_5_136_1 doi: 10.1002/cplu.201300015 – ident: e_1_2_5_62_1 doi: 10.3390/ma7042833 – ident: e_1_2_5_23_1 doi: 10.3390/s19020233 – ident: e_1_2_5_117_1 doi: 10.1016/j.jpowsour.2010.09.065 – ident: e_1_2_5_26_1 doi: 10.1016/j.jhazmat.2017.07.056 – ident: e_1_2_5_108_1 doi: 10.1007/s10008-017-3788-8 – ident: e_1_2_5_192_1 doi: 10.1111/j.1574-6968.2007.01012.x – ident: e_1_2_5_79_1 doi: 10.1039/C8CE01773E – ident: e_1_2_5_71_1 doi: 10.1016/j.ceramint.2016.10.051 |
SSID | ssj0011477 |
Score | 2.576926 |
SecondaryResourceType | review_article |
Snippet | In this approach, zinc oxide (ZnO) is a multipurpose substance with remarkable characteristics such as high sensitivity, a large specific area, non‐toxicity,... In this approach, zinc oxide (ZnO) is a multipurpose substance with remarkable characteristics such as high sensitivity, a large specific area, non-toxicity,... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202300106 |
SubjectTerms | Biocompatibility Biosensors Chemical sensors Disintegration Electrochemistry Energy storage Environmental monitoring Food contamination Food sanitation Hygiene Lithium-ion batteries Nanoparticles Nanostructure Photocatalysis Photovoltaic cells Sensitivity Solar cells Supercapacitors Toxicity Zinc oxide Zinc oxides ZnO nanostructures |
Title | Recent Advances, Challenges, and Future Perspectives of ZnO Nanostructure Materials Towards Energy Applications |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ftcr.202300106 https://www.ncbi.nlm.nih.gov/pubmed/37249417 https://www.proquest.com/docview/2913279232 https://www.proquest.com/docview/2820968211 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFH6IF724L3UjgniyY5e0kxyHwUGEUZERxEtNk_SitELHi7_el6TtOIqCeGtIQrO-fC_L9wGcxFzwUCWhr2gS-1QjhmNm3wqX1yINWU6FMCe64-v08p5ePSQPjc6peQvj-CG6DTczM6y9NhNc5PX5jDQUDVXPaH9brwZtsLmvZUDRXUcfhVDfKi8a5VYf_QrecGxi_vO53PNr0jegOY9b7cIzWoWntsjuvslz722a9-T7FzbHf9RpDVYaUEoGbhStw4IuN2Bp2GrBbUKF6BJXJzJwNwbqMzJsRVjwW5SKjCw3Cbmdvd2sSVWQx_KGoAGvHE2tSTEWUzfoycTe2K3JhX1-SAafjtK34H50MRle-o1Ugy-NIKCPXkeqeM6ERIvBJCtkKAMR9QMeRUpTFgjeVwlFrJKoQBaFwugUc8qYyVizfrwNi2VV6l0gYaKpEggrw1hRrgXHUMqFSIIiLALOPDhrOyuTDY-5kdN4yRwDc5RhK2ZdK3pw2iV_dQQePyU8aHs-a-ZxnUUcvXVDsRh5cNxFY-ObYxVR6uoN0yCI4ilDT9qDHTdiuj_FfXRvsdoeBLbffy9CNhnedYG9v2fZh2X8pm6H6AAWsWv1IWKmaX5kJ8YHrpUMFw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9MwGH4F5VAuY4yxZXRgJMSp6fLhpPaxqlYV1hZUtVK1S-TazgWUIKW98Ov32k6ylYlJiFsc24m__bz-eB6ATzEXPFRJ6CuaxD7ViOGYWbfC6TVPQ7alQpgd3fkina7p102yeXCL3_FDtAtupmfY8dp0cLMgfXXPGooj1cCIf1uz5jm8MKre1qhatgRSCPat9qLRbvXRsuA1yyZ-4Oog-uGs9AhqHiJXO_VMXoFoEu1OnPwY7Hfbgfz9B5_j_-TqGI5qXEpGriG9hme6OIHuuJGDewMlAkycoMjIHRqo-mTc6LDgsygUmVh6EvL9_vpmRcqc3BbfCI7hpWOqNSHmYufaPVnZQ7sVubY3EMnowW76Kawn16vx1K_VGnxpNAF9NDxSxbdMSBw0mGS5DGUgomHAo0hpygLBhyqhCFcSFcg8V-idYkwZMxlrNozfQqcoC30OJEw0VQKRZRgryrXg6Eq5EEmQh3nAmQf9prYyWVOZG0WNn5kjYY4yLMWsLUUPPrfBfzkOj78F7DVVn9Vducoijga7YVmMPPjYemPhm50VUehyj2EQR_GUoTHtwZlrMu2f4iFauJhtDwJb8U8nIVuNl63j4t-jfIDudDWfZbMvi5t38BLfU7dg1IMOVrO-RAi12763veQOcQIQMg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9swGH41Ogm4sA0GBDow0rQTKflwUvtYlVaFQUGoSGiX4NrOBZQgtb3w63ltJ2EdGtK0Wxzbib_9vP54HoDvMRc8VEnoK5rEPtWI4ZhZt8LpNU9DNqVCmB3dy3E6uqXnd8ldpXNq7sI4fohmwc30DDtemw7-pPKTV9JQHKg6RvvbWjUr8JGmATPN-vSm4Y9CrG-lF410q4-GBa9INvEDJ0vRlyelN0hzGbjamWf4Ce7rNLsDJw-dxXzakc9_0Dn-R6Y-w0aFSknPNaMv8EEXm7DWr8XgtqBEeInTE-m5IwOzY9KvVVjwWRSKDC05Cbl-vbw5I2VOfhVXBEfw0vHUmhCXYu5aPZnYI7szMrD3D0nvt730r3A7HEz6I7_SavClUQT00exIFZ8yIXHIYJLlMpSBiLoBjyKlKQsE76qEIlhJVCDzXKF3ijFlzGSsWTfehlZRFnoXSJhoqgTiyjBWlGvB0ZVyIZIgD_OAMw-O68rKZEVkbvQ0HjNHwRxlWIpZU4oe_GiCPzkGj78FbNc1n1UdeZZFHM11w7EYeXDUeGPhm30VUehygWEQRfGUoSntwY5rMc2f4i7at5htDwJb7-8nIZv0bxrH3r9HOYTV69NhdnE2_rkP6_iautWiNrSwlvU3xE_z6YHtIy9GzQ7q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances%2C+Challenges%2C+and+Future+Perspectives+of+ZnO+Nanostructure+Materials+Towards+Energy+Applications&rft.jtitle=Chemical+record&rft.au=Saeed%2C+Mohsin&rft.au=Marwani%2C+Hadi+M.&rft.au=Shahzad%2C+Umer&rft.au=Asiri%2C+Abdullah+M.&rft.date=2024-01-01&rft.issn=1527-8999&rft.eissn=1528-0691&rft.volume=24&rft.issue=1&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Ftcr.202300106&rft.externalDBID=10.1002%252Ftcr.202300106&rft.externalDocID=TCR202300106 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1527-8999&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1527-8999&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1527-8999&client=summon |