Recent Advances, Challenges, and Future Perspectives of ZnO Nanostructure Materials Towards Energy Applications

In this approach, zinc oxide (ZnO) is a multipurpose substance with remarkable characteristics such as high sensitivity, a large specific area, non‐toxicity, excellent compatibility, and a high isoelectric point, which make it attractive for discussion with some limitations. It is the most favorable...

Full description

Saved in:
Bibliographic Details
Published inChemical record Vol. 24; no. 1; pp. e202300106 - n/a
Main Authors Saeed, Mohsin, Marwani, Hadi M., Shahzad, Umer, Asiri, Abdullah M., Rahman, Mohammed M.
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this approach, zinc oxide (ZnO) is a multipurpose substance with remarkable characteristics such as high sensitivity, a large specific area, non‐toxicity, excellent compatibility, and a high isoelectric point, which make it attractive for discussion with some limitations. It is the most favorable possible option for the collection of nanostructures in terms of structure and their characteristics. The development of numerous ZnO nanostructure‐based electrochemical sensors and biosensors used in health diagnosis, pharmaceutical evaluation, food hygiene, and contamination of the environment monitoring is described, as well as the production of ZnO nanostructures. Nanostructured ZnO has good chemical and temperature durability as an n‐type semiconducting material, making it useful in a wide range of uses, from luminous materials to supercapacitors, batteries, solar cells, photocatalysis, biosensors, medicinal devices, and more. When compared to the bulk materials, the nanosized materials have both a higher rate of disintegration and a higher solubility. Furthermore, ZnO nanoparticles are regarded as top contenders for electrochemical sensors due to their strong electrochemical behaviors and electron transmission characteristics. The impact of many factors, including selectivity, sensitivity, detection limit, strength, and structures, arrangements, and their respective functioning processes, has been investigated. This study concentrated a substantial amount of its attention on the recent advancements that have been made in ZnO‐based nanoparticles, composites, and modified materials for use in the application areas of energy storage and conversion devices as well as biological applications. Supercapacitors, Li‐ion batteries, dye‐sensitized solar cells, photocatalysis, biosensors, medicinal, and biological systems have been studied. ZnO‐based materials are constantly analyzed for their advantages in energy and life science applications. The development of numerous ZnO nanostructure‐based composite materials for efficient sensors, supercapacitors, antimicrobial agents, and biosensors applications has been largely used in health diagnosis, pharmaceutical evaluation, food hygiene, environmental approach, biomedical implementation, and decontamination of the environment monitoring and healthcare fields in a broad scales.
AbstractList In this approach, zinc oxide (ZnO) is a multipurpose substance with remarkable characteristics such as high sensitivity, a large specific area, non-toxicity, excellent compatibility, and a high isoelectric point, which make it attractive for discussion with some limitations. It is the most favorable possible option for the collection of nanostructures in terms of structure and their characteristics. The development of numerous ZnO nanostructure-based electrochemical sensors and biosensors used in health diagnosis, pharmaceutical evaluation, food hygiene, and contamination of the environment monitoring is described, as well as the production of ZnO nanostructures. Nanostructured ZnO has good chemical and temperature durability as an n-type semiconducting material, making it useful in a wide range of uses, from luminous materials to supercapacitors, batteries, solar cells, photocatalysis, biosensors, medicinal devices, and more. When compared to the bulk materials, the nanosized materials have both a higher rate of disintegration and a higher solubility. Furthermore, ZnO nanoparticles are regarded as top contenders for electrochemical sensors due to their strong electrochemical behaviors and electron transmission characteristics. The impact of many factors, including selectivity, sensitivity, detection limit, strength, and structures, arrangements, and their respective functioning processes, has been investigated. This study concentrated a substantial amount of its attention on the recent advancements that have been made in ZnO-based nanoparticles, composites, and modified materials for use in the application areas of energy storage and conversion devices as well as biological applications. Supercapacitors, Li-ion batteries, dye-sensitized solar cells, photocatalysis, biosensors, medicinal, and biological systems have been studied. ZnO-based materials are constantly analyzed for their advantages in energy and life science applications.In this approach, zinc oxide (ZnO) is a multipurpose substance with remarkable characteristics such as high sensitivity, a large specific area, non-toxicity, excellent compatibility, and a high isoelectric point, which make it attractive for discussion with some limitations. It is the most favorable possible option for the collection of nanostructures in terms of structure and their characteristics. The development of numerous ZnO nanostructure-based electrochemical sensors and biosensors used in health diagnosis, pharmaceutical evaluation, food hygiene, and contamination of the environment monitoring is described, as well as the production of ZnO nanostructures. Nanostructured ZnO has good chemical and temperature durability as an n-type semiconducting material, making it useful in a wide range of uses, from luminous materials to supercapacitors, batteries, solar cells, photocatalysis, biosensors, medicinal devices, and more. When compared to the bulk materials, the nanosized materials have both a higher rate of disintegration and a higher solubility. Furthermore, ZnO nanoparticles are regarded as top contenders for electrochemical sensors due to their strong electrochemical behaviors and electron transmission characteristics. The impact of many factors, including selectivity, sensitivity, detection limit, strength, and structures, arrangements, and their respective functioning processes, has been investigated. This study concentrated a substantial amount of its attention on the recent advancements that have been made in ZnO-based nanoparticles, composites, and modified materials for use in the application areas of energy storage and conversion devices as well as biological applications. Supercapacitors, Li-ion batteries, dye-sensitized solar cells, photocatalysis, biosensors, medicinal, and biological systems have been studied. ZnO-based materials are constantly analyzed for their advantages in energy and life science applications.
In this approach, zinc oxide (ZnO) is a multipurpose substance with remarkable characteristics such as high sensitivity, a large specific area, non‐toxicity, excellent compatibility, and a high isoelectric point, which make it attractive for discussion with some limitations. It is the most favorable possible option for the collection of nanostructures in terms of structure and their characteristics. The development of numerous ZnO nanostructure‐based electrochemical sensors and biosensors used in health diagnosis, pharmaceutical evaluation, food hygiene, and contamination of the environment monitoring is described, as well as the production of ZnO nanostructures. Nanostructured ZnO has good chemical and temperature durability as an n‐type semiconducting material, making it useful in a wide range of uses, from luminous materials to supercapacitors, batteries, solar cells, photocatalysis, biosensors, medicinal devices, and more. When compared to the bulk materials, the nanosized materials have both a higher rate of disintegration and a higher solubility. Furthermore, ZnO nanoparticles are regarded as top contenders for electrochemical sensors due to their strong electrochemical behaviors and electron transmission characteristics. The impact of many factors, including selectivity, sensitivity, detection limit, strength, and structures, arrangements, and their respective functioning processes, has been investigated. This study concentrated a substantial amount of its attention on the recent advancements that have been made in ZnO‐based nanoparticles, composites, and modified materials for use in the application areas of energy storage and conversion devices as well as biological applications. Supercapacitors, Li‐ion batteries, dye‐sensitized solar cells, photocatalysis, biosensors, medicinal, and biological systems have been studied. ZnO‐based materials are constantly analyzed for their advantages in energy and life science applications.
In this approach, zinc oxide (ZnO) is a multipurpose substance with remarkable characteristics such as high sensitivity, a large specific area, non‐toxicity, excellent compatibility, and a high isoelectric point, which make it attractive for discussion with some limitations. It is the most favorable possible option for the collection of nanostructures in terms of structure and their characteristics. The development of numerous ZnO nanostructure‐based electrochemical sensors and biosensors used in health diagnosis, pharmaceutical evaluation, food hygiene, and contamination of the environment monitoring is described, as well as the production of ZnO nanostructures. Nanostructured ZnO has good chemical and temperature durability as an n‐type semiconducting material, making it useful in a wide range of uses, from luminous materials to supercapacitors, batteries, solar cells, photocatalysis, biosensors, medicinal devices, and more. When compared to the bulk materials, the nanosized materials have both a higher rate of disintegration and a higher solubility. Furthermore, ZnO nanoparticles are regarded as top contenders for electrochemical sensors due to their strong electrochemical behaviors and electron transmission characteristics. The impact of many factors, including selectivity, sensitivity, detection limit, strength, and structures, arrangements, and their respective functioning processes, has been investigated. This study concentrated a substantial amount of its attention on the recent advancements that have been made in ZnO‐based nanoparticles, composites, and modified materials for use in the application areas of energy storage and conversion devices as well as biological applications. Supercapacitors, Li‐ion batteries, dye‐sensitized solar cells, photocatalysis, biosensors, medicinal, and biological systems have been studied. ZnO‐based materials are constantly analyzed for their advantages in energy and life science applications. The development of numerous ZnO nanostructure‐based composite materials for efficient sensors, supercapacitors, antimicrobial agents, and biosensors applications has been largely used in health diagnosis, pharmaceutical evaluation, food hygiene, environmental approach, biomedical implementation, and decontamination of the environment monitoring and healthcare fields in a broad scales.
Author Shahzad, Umer
Saeed, Mohsin
Rahman, Mohammed M.
Asiri, Abdullah M.
Marwani, Hadi M.
Author_xml – sequence: 1
  givenname: Mohsin
  surname: Saeed
  fullname: Saeed, Mohsin
  organization: King Abdulaziz University
– sequence: 2
  givenname: Hadi M.
  surname: Marwani
  fullname: Marwani, Hadi M.
  organization: King Abdulaziz University
– sequence: 3
  givenname: Umer
  surname: Shahzad
  fullname: Shahzad, Umer
  organization: King Abdulaziz University
– sequence: 4
  givenname: Abdullah M.
  surname: Asiri
  fullname: Asiri, Abdullah M.
  organization: King Abdulaziz University
– sequence: 5
  givenname: Mohammed M.
  orcidid: 0000-0003-2773-1244
  surname: Rahman
  fullname: Rahman, Mohammed M.
  email: mmrahman@kau.edu.sa
  organization: King Abdulaziz University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37249417$$D View this record in MEDLINE/PubMed
BookMark eNp90ctrVDEUB-AgFfvQpVsJuHHRW_OYe5Msh6EvqK2UceMmpMm5NeVOck1yW-a_N52pFQp2lQP5fnmcs492QgyA0EdKjigh7Gux6YgRxgmhpHuD9mjLZEM6RXc2tWikUmoX7ed8VwmdCfEO7XLBZmpGxR6K12AhFDx39yZYyId48csMA4Tbx9oEh0-mMiXA3yHlEWzx95Bx7PHPcIUvTYi5pMluxDdTIHkzZLyMDya5jI8DpNs1no_j4K0pPob8Hr3tK4EPT-sB-nFyvFycNRdXp-eL-UVjeae6RrSyc-pGGis4kVb2llpimCCKMQczSYwSrq0_aFtHbN-7ut3VpOXScpCCH6Av23PHFH9PkIte-WxhGEyAOGXNJCOqk4zSSj-_oHdxSqG-TjNFOROKcVbVpyc13azA6TH5lUlr_beVFTRbYFPMOUH_TCjRj6PSdVT6eVTV8xfe-rJpUknGD_9NiW3qwQ-wfv0KvVxc_0v-AY1opow
CitedBy_id crossref_primary_10_1016_j_microc_2025_113171
crossref_primary_10_1515_revic_2024_0016
crossref_primary_10_1016_j_ijhydene_2024_11_348
crossref_primary_10_1007_s10854_024_13401_x
crossref_primary_10_1007_s10311_025_01818_7
crossref_primary_10_1088_1361_6463_ada2a4
crossref_primary_10_1016_j_ijhydene_2024_07_081
crossref_primary_10_1016_j_elecom_2025_107893
crossref_primary_10_1002_asia_202400394
crossref_primary_10_1002_cnma_202400020
crossref_primary_10_1016_j_sbsr_2025_100767
crossref_primary_10_1080_10408347_2024_2337876
crossref_primary_10_1088_1748_0221_19_06_P06022
crossref_primary_10_1515_zpch_2024_0777
crossref_primary_10_1016_j_ijhydene_2024_03_275
crossref_primary_10_1016_j_matchemphys_2024_130000
crossref_primary_10_54021_seesv5n3_144
crossref_primary_10_1016_j_sna_2024_115971
crossref_primary_10_1007_s13399_024_06305_7
crossref_primary_10_1039_D4NA00133H
crossref_primary_10_1002_cplu_202400368
crossref_primary_10_1016_j_cej_2025_161260
crossref_primary_10_1515_revic_2024_0026
crossref_primary_10_1016_j_jmat_2024_100974
crossref_primary_10_1002_tcr_202300285
crossref_primary_10_1016_j_jwpe_2025_107111
crossref_primary_10_1038_s41598_024_73352_5
crossref_primary_10_1016_j_rineng_2024_103428
crossref_primary_10_1149_2162_8777_ada3a2
crossref_primary_10_1007_s43207_024_00465_y
crossref_primary_10_1016_j_ijhydene_2025_01_278
crossref_primary_10_1088_1361_665X_ad7a42
crossref_primary_10_1016_j_pes_2024_100018
crossref_primary_10_1002_ese3_1815
crossref_primary_10_1016_j_jelechem_2024_118790
crossref_primary_10_1016_j_jcrysgro_2025_128133
crossref_primary_10_1038_s41598_024_84438_5
crossref_primary_10_1016_j_hazadv_2024_100588
Cites_doi 10.1590/1980-5373-mr-2020-0080
10.1016/j.ces.2005.04.012
10.1002/pi.5907
10.1039/C8TA00934A
10.1088/1361-6528/aaa0ef
10.1039/C3NR03806H
10.1007/s13204-021-01686-x
10.1246/cl.2004.770
10.3390/s100504558
10.1021/acs.langmuir.5b02341
10.1002/pssa.201700824
10.1161/CIRCULATIONAHA.110.943860
10.1007/s10529-011-0641-5
10.3390/s21165502
10.1021/acs.jpcc.9b07411
10.1016/j.bpj.2015.03.040
10.1007/s10904-018-0873-0
10.1007/s10854-019-02025-1
10.3390/ma8063101
10.1016/j.physb.2010.02.028
10.1021/acsami.6b14800
10.1016/j.saa.2011.08.045
10.2174/1566524013666131111130058
10.1016/j.jpowsour.2014.01.066
10.1007/s12274-011-0160-7
10.1016/j.matlet.2018.07.031
10.1002/tcr.202100299
10.1021/ac502249f
10.1021/cr400544s
10.1038/s41377-022-00808-6
10.1039/D0RA07328H
10.1016/j.snb.2006.08.034
10.1088/1742-6596/1907/1/012044
10.1038/nnano.2007.451
10.1016/j.jphotobiol.2018.04.036
10.1586/14737159.2014.888313
10.1007/s10856-008-3541-z
10.3390/nano7110354
10.1021/ja800999u
10.1155/2017/8510342
10.1016/j.electacta.2015.02.057
10.1016/j.jphotobiol.2008.07.009
10.1515/rams-2018-0009
10.1088/0953-8984/28/43/433001
10.1016/j.jallcom.2021.160219
10.1016/j.energy.2014.03.003
10.1016/j.jmat.2020.11.015
10.1002/(SICI)1097-0142(19980501)82:9<1643::AID-CNCR8>3.0.CO;2-B
10.1016/j.foodchem.2011.11.015
10.1016/j.jssc.2016.12.016
10.1016/j.molstruc.2016.10.057
10.5334/aa.06112
10.1111/j.1600-0404.2010.01334.x
10.1016/j.mssp.2017.08.001
10.1016/j.scp.2020.100223
10.1063/1.1589166
10.1016/j.reffit.2017.03.002
10.1007/s10008-020-04884-9
10.1021/nn306044d
10.1039/c3cc41048j
10.1155/2018/3569758
10.1541/ieejfms.140.357
10.1088/2053-1591/aa5ed8
10.15244/pjoes/99239
10.1016/j.cossms.2020.100805
10.1002/tcr.202100280
10.1021/ef400212b
10.1109/JPROC.2010.2044550
10.3390/nano10030530
10.1016/j.matchemphys.2013.06.012
10.1016/j.cis.2019.05.006
10.1016/j.snr.2022.100100
10.1557/mrs.2012.186
10.1016/j.cej.2022.134790
10.1016/j.jpowsour.2016.04.107
10.1039/c3cc48197b
10.1016/j.apsusc.2018.01.172
10.1016/j.ijpharm.2017.10.008
10.1002/cphc.200700002
10.1016/j.matlet.2017.11.108
10.1016/j.electacta.2006.07.032
10.1016/j.mattod.2017.11.003
10.1016/j.snb.2017.12.101
10.3390/chemosensors3010001
10.1088/0953-8984/16/25/R01
10.1016/j.jsamd.2016.10.001
10.3390/nano8040268
10.1002/cmmi.434
10.1021/acsami.5b12776
10.1039/C7CS00007C
10.1016/j.ceramint.2006.08.003
10.1002/adfm.202170152
10.3109/17435390.2012.760014
10.1039/D1TA00232E
10.1166/jnn.2017.15053
10.1007/s11664-018-6213-x
10.1002/adma.201970076
10.1002/tcr.202100329
10.1039/c3nr03934j
10.1088/1361-6528/aa82b0
10.1016/j.phytol.2019.04.009
10.3390/nano10061086
10.1038/nmat2442
10.1016/j.physb.2021.413028
10.1002/adma.200800243
10.1016/j.matchemphys.2014.07.058
10.1016/j.jallcom.2014.09.105
10.1016/j.ssi.2020.115544
10.1039/c0ee00683a
10.1088/0957-4484/19/12/125603
10.1007/s10008-016-3187-6
10.1088/1361-6528/ab268a
10.1016/j.materresbull.2015.05.019
10.1039/C6RA06346B
10.3390/pharmaceutics11110575
10.1016/j.rser.2021.110849
10.1039/c0nr00047g
10.1039/C8MH01365A
10.1002/admi.201901932
10.1021/am5073468
10.1179/1753555713Y.0000000063
10.1006/jcis.1997.5354
10.1016/j.ijleo.2021.166715
10.1080/17453670710015120
10.1088/1361-6528/ac08bb
10.3748/wjg.v22.i5.1745
10.1007/s10854-018-8964-9
10.1002/tcr.202200090
10.2174/187152006778226530
10.1016/j.tiv.2011.08.011
10.1016/j.biomaterials.2006.09.046
10.1016/S0955-2219(00)00283-1
10.1021/la100293s
10.1016/j.apsusc.2018.09.264
10.1016/j.snb.2019.04.083
10.1002/adma.201501121
10.1039/C8TA04129F
10.1016/j.matlet.2018.06.049
10.1021/la201755w
10.3390/s151129408
10.1016/j.jallcom.2018.11.112
10.1016/j.jhazmat.2010.07.010
10.1039/C3TC31476F
10.1016/j.matpr.2022.02.422
10.3390/cancers13184570
10.1039/C6NR07207K
10.1088/1742-6596/984/1/012005
10.1155/2018/1062562
10.1166/jbn.2011.1219
10.1109/T-ED.1985.22095
10.1140/epjb/e2016-60799-9
10.1002/adma.201306126
10.1016/j.cej.2022.137045
10.1016/j.biomaterials.2010.10.022
10.1016/j.jpowsour.2014.02.088
10.1039/c1jm11302j
10.1016/j.physb.2017.07.039
10.2174/138920110792246483
10.1016/j.jallcom.2017.06.099
10.1149/2.0141807jss
10.1016/j.sna.2021.112574
10.1016/j.ssi.2009.10.001
10.1007/s40820-015-0040-x
10.3390/ma11020287
10.1039/C4TA02052A
10.1088/0957-4484/27/42/425708
10.1007/s10853-017-1544-1
10.1002/adma.201506457
10.1063/1.4907568
10.1016/j.apcatb.2022.121603
10.1016/j.jhazmat.2005.10.022
10.1517/17425247.2010.502560
10.1021/jp500516t
10.1002/tcr.202000088
10.1016/j.apsusc.2018.03.217
10.1021/jp0271054
10.1088/1674-1056/26/4/047307
10.1002/cplu.201300015
10.3390/ma7042833
10.3390/s19020233
10.1016/j.jpowsour.2010.09.065
10.1016/j.jhazmat.2017.07.056
10.1007/s10008-017-3788-8
10.1111/j.1574-6968.2007.01012.x
10.1039/C8CE01773E
10.1016/j.ceramint.2016.10.051
ContentType Journal Article
Copyright 2023 The Chemical Society of Japan & Wiley‐VCH GmbH
2023 The Chemical Society of Japan & Wiley-VCH GmbH.
2024 The Chemical Society of Japan & Wiley‐VCH GmbH
Copyright_xml – notice: 2023 The Chemical Society of Japan & Wiley‐VCH GmbH
– notice: 2023 The Chemical Society of Japan & Wiley-VCH GmbH.
– notice: 2024 The Chemical Society of Japan & Wiley‐VCH GmbH
DBID AAYXX
CITATION
NPM
7QO
7T7
8FD
C1K
FR3
P64
7X8
DOI 10.1002/tcr.202300106
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

Engineering Research Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1528-0691
EndPage n/a
ExternalDocumentID 37249417
10_1002_tcr_202300106
TCR202300106
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia
  funderid: IFPRP: 600-130-1442
– fundername: Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia
  grantid: IFPRP: 600-130-1442
GroupedDBID ---
.3N
.Y3
05W
0R~
10A
123
1OC
29B
31~
33P
3WU
4.4
50Y
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
53G
5VS
66C
702
7PT
8-1
8UM
A00
AAESR
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BMXJE
BROTX
BRXPI
BY8
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
F5P
FEDTE
G-S
G.N
GODZA
HF~
HGLYW
HVGLF
HZ~
IX1
J0M
LATKE
LAW
LC2
LC3
LEEKS
LH-
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MSFUL
MSSTM
MXFUL
MXSTM
MY~
N9A
O9-
OIG
P2W
P4D
Q11
QB0
QRW
R.K
ROL
RX1
SUPJJ
V2E
W99
WBKPD
WOHZO
WQJ
WXSBR
WYJ
WYUIH
XG1
XV2
ZZTAW
~IA
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
NPM
7QO
7T7
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
P64
7X8
ID FETCH-LOGICAL-c3696-7586d9b8ac7308c8fc1c0a270922de480a97d541755d0cffd1c06369c38c3e873
IEDL.DBID DR2
ISSN 1527-8999
1528-0691
IngestDate Fri Jul 11 02:22:35 EDT 2025
Fri Jul 25 10:35:38 EDT 2025
Wed Feb 19 02:07:15 EST 2025
Tue Jul 01 02:40:11 EDT 2025
Thu Apr 24 23:03:05 EDT 2025
Wed Jan 22 16:15:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Lithium-ion batteries
Solar cells
Supercapacitors
ZnO nanostructures
Photocatalysis
Language English
License 2023 The Chemical Society of Japan & Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3696-7586d9b8ac7308c8fc1c0a270922de480a97d541755d0cffd1c06369c38c3e873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-2773-1244
PMID 37249417
PQID 2913279232
PQPubID 1006501
PageCount 17
ParticipantIDs proquest_miscellaneous_2820968211
proquest_journals_2913279232
pubmed_primary_37249417
crossref_primary_10_1002_tcr_202300106
crossref_citationtrail_10_1002_tcr_202300106
wiley_primary_10_1002_tcr_202300106_TCR202300106
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2024
2024-01-00
2024-Jan
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: January 2024
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Chemical record
PublicationTitleAlternate Chem Rec
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 1140
2010; 11
2010; 98
2014; 259
2010; 10
2018; 447
2020; 20
2015; 70
2019; 11
2018; 449
2014; 26
2019; 19
2020; 15
2008; 34
2010; 183
2020; 12
2021; 320
2005; 60
2020; 10
1998; 82
2022; 22
2011; 196
2013; 7
2013; 8
2013; 5
2018; 47
2014; 256
2018; 7
2004; 33
2018; 6
2018; 8
2012; 132
2010; 26
2018; 215
2019; 21
2018; 214
2007; 8
2014; 14
2019; 29
2008; 20
2010; 2
2019; 270
1998; 200
2011; 123
2010; 7
2022; 446
2017; 722
2019; 7
2018; 29
2018; 341
2018; 28
2006; 52
2019; 6
2018; 183
2019; 31
2020; 140
2019; 30
2009; 180
2018; 228
2018; 984
2011; 83
2019; 465
2016; 320
2012; 37
2021; 143
2011; 4
2018; 21
2011; 6
2011; 7
2017; 534
2001; 21
2018; 230
2016; 6
2017; 53
2016; 1
2022; 4
2013; 78
2016; 20
2020; 24
2020; 23
2022; 11
2016; 28
2018; 11
2019; 292
2016; 27
2016; 8
2008; 130
2014; 148
2016; 22
2021; 25
2013; 29
2017; 7
2021; 21
2012; 2012
2017; 3
2013; 27
2017; 4
2015; 620
2015; 31
2017; 43
2017; 46
2021; 360
2014; 69
2008; 79
2015; 108
2015; 106
2008; 3
2017; 9
2011; 1463
2006; 133
2019; 123
2007; 28
2020; 7
2021; 32
2021; 31
2014; 2
2018; 535
2018; 259
2013; 13
2021; 238
2019; 69
2021; 877
2002; 107
2011; 21
2018; 73
2008; 279
2011; 25
2011; 27
2003; 83
2014; 50
2014; 7
2014; 6
2017; 247
2016; 89
2014; 118
2021; 9
2007; 123
2021; 7
2015; 15
2015; 161
2015; 5
2015; 3
2013; 49
2017; 26
2017; 2017
2010; 405
2017; 28
2017; 22
2008; 19
2010; 122
2011; 33
2011; 32
2006; 6
2013; 141
2006; 1
2021; 188
2015; 8
2015; 7
2022; 316
2008; 93
2014; 114
2022; 435
2014; 86
2011; 863
2021; 13
2018; 2018
2015; 27
2021; 12
2021; 11
2012; 1
2004; 16
2017; 17
2022; 62
2021; 614
2021; 1907
2009; 8
2019; 779
1985; 32
2018; 53
e_1_2_5_147_1
e_1_2_5_23_1
e_1_2_5_46_1
e_1_2_5_162_1
e_1_2_5_185_1
e_1_2_5_124_1
e_1_2_5_101_1
e_1_2_5_109_1
e_1_2_5_61_1
e_1_2_5_84_1
e_1_2_5_150_1
Moezzi A. (e_1_2_5_63_1) 2012; 1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_57_1
e_1_2_5_113_1
e_1_2_5_136_1
e_1_2_5_174_1
e_1_2_5_197_1
e_1_2_5_7_1
Zhao Y. (e_1_2_5_151_1) 2016; 6
e_1_2_5_19_1
e_1_2_5_159_1
e_1_2_5_72_1
e_1_2_5_95_1
Zhou X. (e_1_2_5_105_1) 2021; 188
e_1_2_5_146_1
e_1_2_5_169_1
e_1_2_5_45_1
e_1_2_5_184_1
e_1_2_5_100_1
e_1_2_5_123_1
e_1_2_5_22_1
e_1_2_5_68_1
e_1_2_5_108_1
e_1_2_5_60_1
e_1_2_5_172_1
Xiao X. (e_1_2_5_126_1) 2017; 7
e_1_2_5_158_1
e_1_2_5_8_1
e_1_2_5_10_1
e_1_2_5_56_1
e_1_2_5_135_1
e_1_2_5_173_1
e_1_2_5_33_1
e_1_2_5_112_1
e_1_2_5_196_1
e_1_2_5_79_1
e_1_2_5_18_1
Zhang Y. (e_1_2_5_69_1) 2012; 2012
e_1_2_5_71_1
e_1_2_5_94_1
e_1_2_5_161_1
e_1_2_5_145_1
e_1_2_5_25_1
e_1_2_5_48_1
e_1_2_5_168_1
e_1_2_5_122_1
e_1_2_5_107_1
e_1_2_5_86_1
e_1_2_5_194_1
e_1_2_5_40_1
e_1_2_5_205_1
e_1_2_5_171_1
e_1_2_5_36_1
e_1_2_5_59_1
e_1_2_5_157_1
e_1_2_5_111_1
e_1_2_5_134_1
e_1_2_5_195_1
e_1_2_5_5_1
e_1_2_5_119_1
e_1_2_5_74_1
e_1_2_5_97_1
e_1_2_5_51_1
e_1_2_5_160_1
e_1_2_5_183_1
e_1_2_5_121_1
e_1_2_5_144_1
e_1_2_5_167_1
e_1_2_5_47_1
e_1_2_5_24_1
e_1_2_5_106_1
e_1_2_5_129_1
e_1_2_5_62_1
e_1_2_5_85_1
e_1_2_5_170_1
e_1_2_5_193_1
e_1_2_5_204_1
e_1_2_5_110_1
e_1_2_5_156_1
e_1_2_5_58_1
e_1_2_5_179_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_12_1
e_1_2_5_133_1
e_1_2_5_118_1
e_1_2_5_73_1
e_1_2_5_96_1
e_1_2_5_182_1
e_1_2_5_27_1
e_1_2_5_166_1
e_1_2_5_189_1
e_1_2_5_120_1
e_1_2_5_143_1
e_1_2_5_65_1
e_1_2_5_88_1
e_1_2_5_128_1
e_1_2_5_80_1
e_1_2_5_42_1
e_1_2_5_203_1
e_1_2_5_192_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_132_1
e_1_2_5_155_1
e_1_2_5_178_1
e_1_2_5_76_1
e_1_2_5_99_1
e_1_2_5_117_1
e_1_2_5_3_1
Li J. (e_1_2_5_49_1) 2015; 5
e_1_2_5_91_1
Maurya S. (e_1_2_5_9_1) 2019; 7
e_1_2_5_30_1
e_1_2_5_53_1
e_1_2_5_181_1
e_1_2_5_188_1
e_1_2_5_26_1
e_1_2_5_142_1
e_1_2_5_165_1
e_1_2_5_87_1
e_1_2_5_104_1
e_1_2_5_127_1
e_1_2_5_64_1
e_1_2_5_202_1
e_1_2_5_41_1
e_1_2_5_191_1
e_1_2_5_14_1
e_1_2_5_131_1
e_1_2_5_177_1
e_1_2_5_37_1
e_1_2_5_154_1
e_1_2_5_4_1
e_1_2_5_98_1
e_1_2_5_139_1
e_1_2_5_116_1
e_1_2_5_90_1
e_1_2_5_75_1
e_1_2_5_52_1
e_1_2_5_180_1
e_1_2_5_103_1
e_1_2_5_141_1
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_164_1
e_1_2_5_187_1
Ahmad R. (e_1_2_5_13_1) 2017; 7
e_1_2_5_67_1
e_1_2_5_149_1
e_1_2_5_29_1
e_1_2_5_82_1
e_1_2_5_201_1
Webster T. J. (e_1_2_5_199_1) 2011; 1463
e_1_2_5_190_1
e_1_2_5_17_1
e_1_2_5_130_1
e_1_2_5_32_1
e_1_2_5_55_1
e_1_2_5_153_1
e_1_2_5_176_1
e_1_2_5_78_1
e_1_2_5_115_1
e_1_2_5_138_1
e_1_2_5_1_1
Kumar R. (e_1_2_5_43_1) 2020; 12
e_1_2_5_70_1
e_1_2_5_93_1
e_1_2_5_28_1
e_1_2_5_140_1
e_1_2_5_102_1
e_1_2_5_125_1
e_1_2_5_163_1
e_1_2_5_186_1
e_1_2_5_66_1
e_1_2_5_89_1
e_1_2_5_148_1
Lin S.-L. (e_1_2_5_152_1) 2013; 8
e_1_2_5_81_1
e_1_2_5_200_1
e_1_2_5_20_1
e_1_2_5_39_1
e_1_2_5_16_1
e_1_2_5_114_1
e_1_2_5_198_1
e_1_2_5_54_1
e_1_2_5_175_1
e_1_2_5_77_1
e_1_2_5_2_1
Salah N. (e_1_2_5_83_1) 2011; 863
e_1_2_5_137_1
Chen X. (e_1_2_5_50_1) 2021; 11
e_1_2_5_92_1
e_1_2_5_31_1
References_xml – volume: 20
  start-page: 1553
  year: 2020
  end-page: 1567
  publication-title: Chem. Rec.
– volume: 1
  start-page: 139
  year: 2006
  publication-title: Ancient Asia
– volume: 1140
  start-page: 12
  year: 2017
  publication-title: J. Mol. Struct.
– volume: 19
  start-page: 233
  year: 2019
  publication-title: Sensors
– volume: 292
  start-page: 24
  year: 2019
  publication-title: Sens. Actuators B
– volume: 11
  start-page: 575
  year: 2019
  publication-title: Pharmaceutica
– volume: 14
  start-page: 225
  year: 2014
  publication-title: Expert Rev. Mol. Diagn.
– volume: 47
  start-page: 3647
  year: 2018
  publication-title: J. Electron. Mater.
– volume: 49
  start-page: 4456
  year: 2013
  publication-title: Chem. Commun.
– volume: 161
  start-page: 261
  year: 2015
  publication-title: Electrochim. Acta
– volume: 28
  start-page: 2046
  year: 2018
  publication-title: J. Inorg. Organomet. Polym. Mater.
– volume: 23
  year: 2020
  publication-title: Mater. Res.
– volume: 22
  start-page: 1745
  year: 2016
  publication-title: World J. Gastroenterol.
– volume: 4
  start-page: 1013
  year: 2011
  publication-title: Nano Res.
– volume: 7
  start-page: 563
  year: 2021
  publication-title: Journal of Materiomics
– volume: 29
  year: 2018
  publication-title: Nanotechnology
– volume: 83
  start-page: 348
  year: 2011
  publication-title: Spectrochim. Acta Part A
– volume: 435
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 27
  start-page: 3508
  year: 2013
  publication-title: Energy Fuels
– volume: 30
  year: 2019
  publication-title: Nanotechnology
– volume: 215
  year: 2018
  publication-title: Phys. Status Solidi A
– volume: 53
  start-page: 185
  year: 2017
  publication-title: J. Mater. Sci.
– volume: 4
  start-page: 1113
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 8
  start-page: 7800
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 1463
  year: 2011
  publication-title: Int. J. Nanomed.
– volume: 2012
  start-page: 1
  year: 2012
  publication-title: J. Nanomater.
– volume: 26
  year: 2017
  publication-title: Chin. Phys. B
– volume: 8
  year: 2013
  publication-title: Nanoscale Res. Lett.
– volume: 320
  start-page: 314
  year: 2016
  publication-title: J. Power Sources
– volume: 259
  start-page: 526
  year: 2018
  publication-title: Sens. Actuators B
– volume: 93
  start-page: 119
  year: 2008
  publication-title: J. Photochem. Photobiol. B
– volume: 8
  start-page: 782
  year: 2007
  publication-title: ChemPhysChem
– volume: 259
  start-page: 98
  year: 2014
  publication-title: J. Power Sources
– volume: 984
  year: 2018
  publication-title: J. Phys. Conf. Ser.
– volume: 183
  start-page: 182
  year: 2010
  publication-title: J. Hazard. Mater.
– volume: 316
  year: 2022
  publication-title: Appl. Catal. B
– volume: 46
  start-page: 5311
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 341
  start-page: 102
  year: 2018
  publication-title: J. Hazard. Mater.
– volume: 8
  start-page: 18578
  year: 2016
  publication-title: Nanoscale
– volume: 8
  start-page: 268
  year: 2018
  publication-title: Nanomaterials
– volume: 114
  start-page: 7610
  year: 2014
  publication-title: Chem. Rev.
– volume: 1
  start-page: 185
  year: 2012
  end-page: 186
  publication-title: Chem. Eng. J.
– volume: 21
  start-page: 925
  year: 2001
  publication-title: J. Eur. Ceram. Soc.
– volume: 863
  year: 2011
  publication-title: Int. J. Nanomed.
– volume: 83
  start-page: 144
  year: 2003
  publication-title: Appl. Phys. Lett.
– volume: 2
  start-page: 1573
  year: 2010
  publication-title: Nanoscale
– volume: 7
  start-page: 1063
  year: 2010
  publication-title: Expert Opin. Drug Delivery
– volume: 28
  start-page: 791
  year: 2007
  publication-title: Biomaterials
– volume: 43
  start-page: 907
  year: 2017
  publication-title: Ceram. Int.
– volume: 122
  start-page: 202
  year: 2010
  publication-title: Acta Neurol. Scand.
– volume: 52
  start-page: 1309
  year: 2006
  publication-title: Electrochim. Acta
– volume: 6
  start-page: 16515
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 22
  year: 2022
  publication-title: Chem. Rec.
– volume: 98
  start-page: 1255
  year: 2010
  publication-title: Proc. IEEE
– volume: 25
  start-page: 1065
  year: 2021
  publication-title: J. Solid State Electrochem.
– volume: 2017
  start-page: 1
  year: 2017
  publication-title: J. Nanomater.
– volume: 614
  year: 2021
  publication-title: Physica B: Condensed Matter
– volume: 28
  year: 2016
  publication-title: J. Phys. Condens. Matter
– volume: 4
  year: 2017
  publication-title: Mater. Res. Express
– volume: 16
  start-page: R829
  year: 2004
  publication-title: J. Phys. Condens. Matter
– volume: 247
  start-page: 31
  year: 2017
  publication-title: J. Solid State Chem.
– volume: 11
  year: 2022
  publication-title: Light-Sci. Appl.
– volume: 73
  start-page: 111
  year: 2018
  publication-title: Mater. Sci. Semicond. Process.
– volume: 37
  start-page: 814
  year: 2012
  publication-title: MRS Bull.
– volume: 33
  start-page: 770
  year: 2004
  publication-title: Chem. Lett.
– volume: 22
  start-page: 527
  year: 2017
  publication-title: J. Solid State Electrochem.
– volume: 8
  start-page: 3101
  year: 2015
  publication-title: Materials
– volume: 12
  start-page: 673
  year: 2021
  publication-title: Applied Nanoscience
– volume: 7
  year: 2017
  publication-title: Sci. Rep.
– volume: 15
  year: 2020
  publication-title: Sustainable Chemistry and Pharmacy
– volume: 21
  start-page: 12288
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 2018
  start-page: 1
  year: 2018
  publication-title: Bioinorg. Chem. Appl.
– volume: 3
  start-page: 406
  year: 2017
  publication-title: Resource-Efficient Technologies
– volume: 133
  start-page: 226
  year: 2006
  publication-title: J. Hazard. Mater.
– volume: 7
  start-page: 95
  year: 2011
  publication-title: J. Biomed. Nanotechnol.
– volume: 31
  start-page: 10913
  year: 2015
  publication-title: Langmuir
– volume: 228
  start-page: 331
  year: 2018
  publication-title: Mater. Lett.
– volume: 6
  start-page: 328
  year: 2011
  publication-title: Contrast Media Mol. Imaging
– volume: 70
  start-page: 478
  year: 2015
  publication-title: Mater. Res. Bull.
– volume: 86
  start-page: 7351
  year: 2014
  publication-title: Anal. Chem.
– volume: 4
  year: 2022
  publication-title: Sensors and Actuators Reports
– volume: 89
  year: 2016
  publication-title: Eur. Phys. J. B
– volume: 50
  start-page: 1890
  year: 2014
  publication-title: Chem. Commun.
– volume: 28
  year: 2017
  publication-title: Nanotechnology
– volume: 123
  start-page: 29394
  year: 2019
  publication-title: J. Phys. Chem. C
– volume: 69
  start-page: 266
  year: 2014
  publication-title: Energy
– volume: 620
  start-page: 31
  year: 2015
  publication-title: J. Alloys Compd.
– volume: 29
  start-page: 111
  year: 2019
  publication-title: Pol. J. Environ. Stud.
– volume: 535
  start-page: 216
  year: 2018
  publication-title: Physica B: Condensed Matter
– volume: 27
  start-page: 10243
  year: 2011
  publication-title: Langmuir
– volume: 6
  start-page: 90916
  year: 2016
  publication-title: RSC Adv.
– volume: 8
  start-page: 543
  year: 2009
  publication-title: Nat. Mater.
– volume: 60
  start-page: 4749
  year: 2005
  publication-title: Chem. Eng. Sci.
– volume: 29
  start-page: 8
  year: 2013
  publication-title: Mater. Technol.
– volume: 279
  start-page: 71
  year: 2008
  publication-title: FEMS Microbiol. Lett.
– volume: 78
  start-page: 546
  year: 2013
  publication-title: ChemPlusChem
– volume: 3
  start-page: 101
  year: 2008
  publication-title: Nat. Nanotechnol.
– volume: 27
  year: 2016
  publication-title: Nanotechnology
– volume: 7
  start-page: 219
  year: 2015
  publication-title: Nano-Micro Lett.
– volume: 9
  start-page: 9616
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 62
  start-page: 5083
  year: 2022
  publication-title: Mater. Today: Proc.
– volume: 21
  start-page: 1071
  year: 2019
  publication-title: CrystEngComm
– volume: 6
  year: 2016
  publication-title: Sci. Rep.
– volume: 69
  start-page: 7
  year: 2019
  publication-title: Polym. Int.
– volume: 1907
  year: 2021
  publication-title: J. Phys. Conf. Ser.
– volume: 11
  start-page: 654
  year: 2010
  publication-title: Curr. Pharm. Biotechnol.
– volume: 7
  start-page: 354
  year: 2017
  publication-title: Nanomaterials
– volume: 21
  start-page: 5502
  year: 2021
  publication-title: Sensors
– volume: 7
  start-page: Q3089
  year: 2018
  publication-title: ECS J. Solid State Sci. Technol.
– volume: 82
  start-page: 1643
  year: 1998
  publication-title: Cancer
– volume: 79
  start-page: 302
  year: 2008
  publication-title: Acta Orthopaedica
– volume: 6
  start-page: 407
  year: 2006
  publication-title: Anti-Cancer Agents Med. Chem.
– volume: 123
  start-page: 1116
  year: 2011
  publication-title: Circulation
– volume: 10
  start-page: 39786
  year: 2020
  publication-title: RSC Adv.
– volume: 3
  start-page: 1
  year: 2015
  publication-title: Chemosensors
– volume: 214
  start-page: 10
  year: 2018
  publication-title: Mater. Lett.
– volume: 465
  start-page: 1107
  year: 2019
  publication-title: Appl. Surf. Sci.
– volume: 320
  year: 2021
  publication-title: Sensors and Actuators A: Physical
– volume: 7
  start-page: 2480
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  year: 2020
  publication-title: Adv. Mater. Interfaces
– volume: 140
  start-page: 357
  year: 2020
  publication-title: IEEJ Transactions on Fundamentals and Materials
– volume: 6
  start-page: 6860
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 20
  start-page: 4547
  year: 2008
  publication-title: Adv. Mater.
– volume: 148
  start-page: 380
  year: 2014
  publication-title: Mater. Chem. Phys.
– volume: 2
  start-page: 13661
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 20
  start-page: 11
  year: 2008
  publication-title: J. Mater. Sci. Mater. Med.
– volume: 13
  start-page: 1633
  year: 2013
  publication-title: Curr. Mol. Med.
– volume: 196
  start-page: 2340
  year: 2011
  publication-title: J. Power Sources
– volume: 449
  start-page: 521
  year: 2018
  publication-title: Appl. Surf. Sci.
– volume: 141
  start-page: 835
  year: 2013
  publication-title: Mater. Chem. Phys.
– volume: 360
  year: 2021
  publication-title: Solid State Ionics
– volume: 26
  start-page: 6522
  year: 2010
  publication-title: Langmuir
– volume: 2
  start-page: 1331
  year: 2014
  publication-title: J. Mater. Chem. C
– volume: 132
  start-page: 419
  year: 2012
  publication-title: Food Chem.
– volume: 24
  year: 2020
  publication-title: Curr. Opin. Solid State Mater. Sci.
– volume: 11
  year: 2021
  publication-title: Sci. Rep.
– volume: 7
  start-page: 2617
  year: 2013
  publication-title: ACS Nano
– volume: 20
  start-page: 1743
  year: 2016
  publication-title: J. Solid State Electrochem.
– volume: 5
  year: 2015
  publication-title: Sci. Rep.
– volume: 447
  start-page: 173
  year: 2018
  publication-title: Appl. Surf. Sci.
– volume: 405
  start-page: 2286
  year: 2010
  publication-title: Physica B: Condensed Matter
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 6
  start-page: 470
  year: 2019
  publication-title: Mater. Horiz.
– volume: 5
  start-page: 11808
  year: 2013
  publication-title: Nanoscale
– volume: 10
  start-page: 4558
  year: 2010
  publication-title: Sensors
– volume: 30
  start-page: 15825
  year: 2019
  publication-title: J. Mater. Sci. Mater. Electron.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 32
  year: 2021
  publication-title: Nanotechnology
– volume: 12
  year: 2020
  publication-title: Nano-Micro Letters
– volume: 15
  start-page: 29408
  year: 2015
  publication-title: Sensors
– volume: 123
  start-page: 299
  year: 2007
  publication-title: Sens. Actuators B
– volume: 188
  year: 2021
  publication-title: Microchim. Acta
– volume: 10
  start-page: 1086
  year: 2020
  publication-title: Nanomaterials
– volume: 8
  start-page: 107
  year: 2013
  publication-title: Nanotoxicology
– volume: 17
  start-page: 7952
  year: 2017
  publication-title: J. Nanosci. Nanotechnol.
– volume: 9
  start-page: 8480
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 13
  start-page: 4570
  year: 2021
  publication-title: Cancers
– volume: 118
  start-page: 9209
  year: 2014
  publication-title: J. Phys. Chem. C
– volume: 25
  start-page: 1721
  year: 2011
  publication-title: Toxicol. in Vitro
– volume: 534
  start-page: 190
  year: 2017
  publication-title: Int. J. Pharm.
– volume: 180
  start-page: 1525
  year: 2009
  publication-title: Solid State Ionics
– volume: 28
  start-page: 5229
  year: 2016
  publication-title: Adv. Mater.
– volume: 108
  start-page: 2333
  year: 2015
  publication-title: Biophys. J.
– volume: 230
  start-page: 48
  year: 2018
  publication-title: Mater. Lett.
– volume: 32
  start-page: 1170
  year: 1985
  publication-title: IEEE Trans. Electron Devices
– volume: 238
  year: 2021
  publication-title: Optik
– volume: 256
  start-page: 206
  year: 2014
  publication-title: J. Power Sources
– volume: 106
  year: 2015
  publication-title: Appl. Phys. Lett.
– volume: 183
  start-page: 201
  year: 2018
  publication-title: J. Photochem. Photobiol. B
– volume: 53
  start-page: 119
  year: 2018
  publication-title: Reviews On Advanced Materials Science
– volume: 11
  start-page: 287
  year: 2018
  publication-title: Materials
– volume: 7
  start-page: 3749
  year: 2019
  publication-title: Int. J. Sci. Technol.
– volume: 779
  start-page: 720
  year: 2019
  publication-title: J. Alloys Compd.
– volume: 33
  start-page: 1891
  year: 2011
  publication-title: Biotechnol. Lett.
– volume: 143
  year: 2021
  publication-title: Renewable Sustainable Energy Rev.
– volume: 27
  start-page: 4447
  year: 2015
  publication-title: Adv. Mater.
– volume: 270
  start-page: 1
  year: 2019
  publication-title: Adv. Colloid Interface Sci.
– volume: 130
  start-page: 7522
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 530
  year: 2020
  publication-title: Nanomaterials
– volume: 107
  start-page: 659
  year: 2002
  publication-title: J. Phys. Chem. B
– volume: 21
  start-page: 631
  year: 2018
  publication-title: Mater. Today
– volume: 31
  start-page: 170
  year: 2019
  publication-title: Phytochem. Lett.
– volume: 7
  start-page: 2833
  year: 2014
  publication-title: Materials
– volume: 19
  year: 2008
  publication-title: Nanotechnology
– volume: 877
  year: 2021
  publication-title: J. Alloys Compd.
– volume: 34
  start-page: 57
  year: 2008
  publication-title: Ceram. Int.
– volume: 1
  start-page: 454
  year: 2016
  publication-title: J. Sci. Adv. Mater. Devices
– volume: 26
  start-page: 3368
  year: 2014
  publication-title: Adv. Mater.
– volume: 200
  start-page: 220
  year: 1998
  publication-title: J. Colloid Interface Sci.
– volume: 32
  start-page: 1185
  year: 2011
  publication-title: Biomaterials
– volume: 29
  start-page: 9339
  year: 2018
  publication-title: J. Mater. Sci. Mater. Electron.
– volume: 722
  start-page: 716
  year: 2017
  publication-title: J. Alloys Compd.
– volume: 446
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 6
  start-page: 758
  year: 2014
  publication-title: Nanoscale
– ident: e_1_2_5_82_1
  doi: 10.1590/1980-5373-mr-2020-0080
– ident: e_1_2_5_94_1
  doi: 10.1016/j.ces.2005.04.012
– ident: e_1_2_5_24_1
  doi: 10.1002/pi.5907
– ident: e_1_2_5_138_1
  doi: 10.1039/C8TA00934A
– ident: e_1_2_5_93_1
  doi: 10.1088/1361-6528/aaa0ef
– ident: e_1_2_5_173_1
  doi: 10.1039/C3NR03806H
– ident: e_1_2_5_59_1
  doi: 10.1007/s13204-021-01686-x
– ident: e_1_2_5_86_1
  doi: 10.1246/cl.2004.770
– ident: e_1_2_5_154_1
  doi: 10.3390/s100504558
– ident: e_1_2_5_3_1
  doi: 10.1021/acs.langmuir.5b02341
– ident: e_1_2_5_31_1
  doi: 10.1002/pssa.201700824
– ident: e_1_2_5_163_1
  doi: 10.1161/CIRCULATIONAHA.110.943860
– ident: e_1_2_5_179_1
  doi: 10.1007/s10529-011-0641-5
– ident: e_1_2_5_104_1
  doi: 10.3390/s21165502
– ident: e_1_2_5_89_1
  doi: 10.1021/acs.jpcc.9b07411
– volume: 188
  year: 2021
  ident: e_1_2_5_105_1
  publication-title: Microchim. Acta
– ident: e_1_2_5_153_1
  doi: 10.1016/j.bpj.2015.03.040
– ident: e_1_2_5_115_1
  doi: 10.1007/s10904-018-0873-0
– ident: e_1_2_5_45_1
  doi: 10.1007/s10854-019-02025-1
– ident: e_1_2_5_177_1
  doi: 10.3390/ma8063101
– ident: e_1_2_5_122_1
  doi: 10.1016/j.physb.2010.02.028
– ident: e_1_2_5_194_1
  doi: 10.1021/acsami.6b14800
– ident: e_1_2_5_165_1
  doi: 10.1016/j.saa.2011.08.045
– ident: e_1_2_5_164_1
  doi: 10.2174/1566524013666131111130058
– ident: e_1_2_5_131_1
  doi: 10.1016/j.jpowsour.2014.01.066
– ident: e_1_2_5_61_1
  doi: 10.1007/s12274-011-0160-7
– ident: e_1_2_5_35_1
  doi: 10.1016/j.matlet.2018.07.031
– ident: e_1_2_5_202_1
  doi: 10.1002/tcr.202100299
– ident: e_1_2_5_158_1
  doi: 10.1021/ac502249f
– volume: 7
  year: 2017
  ident: e_1_2_5_13_1
  publication-title: Sci. Rep.
– ident: e_1_2_5_84_1
  doi: 10.1021/cr400544s
– ident: e_1_2_5_186_1
  doi: 10.1038/s41377-022-00808-6
– ident: e_1_2_5_48_1
  doi: 10.1039/D0RA07328H
– ident: e_1_2_5_51_1
  doi: 10.1016/j.snb.2006.08.034
– ident: e_1_2_5_96_1
  doi: 10.1088/1742-6596/1907/1/012044
– ident: e_1_2_5_110_1
  doi: 10.1038/nnano.2007.451
– ident: e_1_2_5_78_1
  doi: 10.1016/j.jphotobiol.2018.04.036
– ident: e_1_2_5_162_1
  doi: 10.1586/14737159.2014.888313
– ident: e_1_2_5_180_1
  doi: 10.1007/s10856-008-3541-z
– ident: e_1_2_5_198_1
  doi: 10.3390/nano7110354
– ident: e_1_2_5_55_1
  doi: 10.3390/s21165502
– ident: e_1_2_5_166_1
  doi: 10.1021/ja800999u
– ident: e_1_2_5_74_1
  doi: 10.1155/2017/8510342
– ident: e_1_2_5_140_1
  doi: 10.1016/j.electacta.2015.02.057
– ident: e_1_2_5_195_1
  doi: 10.1016/j.jphotobiol.2008.07.009
– ident: e_1_2_5_73_1
  doi: 10.1515/rams-2018-0009
– ident: e_1_2_5_16_1
  doi: 10.1088/0953-8984/28/43/433001
– ident: e_1_2_5_100_1
  doi: 10.1016/j.jallcom.2021.160219
– ident: e_1_2_5_114_1
  doi: 10.1016/j.energy.2014.03.003
– ident: e_1_2_5_127_1
  doi: 10.1016/j.jmat.2020.11.015
– ident: e_1_2_5_160_1
  doi: 10.1002/(SICI)1097-0142(19980501)82:9<1643::AID-CNCR8>3.0.CO;2-B
– ident: e_1_2_5_174_1
  doi: 10.1016/j.foodchem.2011.11.015
– ident: e_1_2_5_145_1
  doi: 10.1016/j.jssc.2016.12.016
– ident: e_1_2_5_90_1
  doi: 10.1016/j.molstruc.2016.10.057
– ident: e_1_2_5_17_1
  doi: 10.5334/aa.06112
– ident: e_1_2_5_149_1
  doi: 10.1111/j.1600-0404.2010.01334.x
– ident: e_1_2_5_4_1
  doi: 10.1016/j.mssp.2017.08.001
– ident: e_1_2_5_76_1
  doi: 10.1016/j.scp.2020.100223
– ident: e_1_2_5_54_1
  doi: 10.1063/1.1589166
– ident: e_1_2_5_72_1
  doi: 10.1016/j.reffit.2017.03.002
– ident: e_1_2_5_27_1
  doi: 10.1007/s10008-020-04884-9
– ident: e_1_2_5_129_1
  doi: 10.1021/nn306044d
– ident: e_1_2_5_130_1
  doi: 10.1039/c3cc41048j
– ident: e_1_2_5_68_1
  doi: 10.1155/2018/3569758
– ident: e_1_2_5_97_1
  doi: 10.1541/ieejfms.140.357
– ident: e_1_2_5_134_1
  doi: 10.1088/2053-1591/aa5ed8
– ident: e_1_2_5_77_1
  doi: 10.15244/pjoes/99239
– ident: e_1_2_5_191_1
  doi: 10.1016/j.cossms.2020.100805
– volume: 863
  year: 2011
  ident: e_1_2_5_83_1
  publication-title: Int. J. Nanomed.
– ident: e_1_2_5_205_1
  doi: 10.1002/tcr.202100280
– ident: e_1_2_5_119_1
  doi: 10.1021/ef400212b
– ident: e_1_2_5_2_1
  doi: 10.1109/JPROC.2010.2044550
– ident: e_1_2_5_80_1
  doi: 10.3390/nano10030530
– ident: e_1_2_5_144_1
  doi: 10.1016/j.matchemphys.2013.06.012
– ident: e_1_2_5_41_1
  doi: 10.1016/j.cis.2019.05.006
– ident: e_1_2_5_20_1
  doi: 10.1016/j.snr.2022.100100
– volume: 7
  year: 2017
  ident: e_1_2_5_126_1
  publication-title: Sci. Rep.
– ident: e_1_2_5_60_1
  doi: 10.1557/mrs.2012.186
– ident: e_1_2_5_190_1
  doi: 10.1016/j.cej.2022.134790
– volume: 8
  year: 2013
  ident: e_1_2_5_152_1
  publication-title: Nanoscale Res. Lett.
– ident: e_1_2_5_147_1
  doi: 10.1016/j.jpowsour.2016.04.107
– ident: e_1_2_5_12_1
  doi: 10.1039/c3cc48197b
– volume: 7
  start-page: 3749
  year: 2019
  ident: e_1_2_5_9_1
  publication-title: Int. J. Sci. Technol.
– ident: e_1_2_5_123_1
  doi: 10.1016/j.apsusc.2018.01.172
– ident: e_1_2_5_196_1
  doi: 10.1016/j.ijpharm.2017.10.008
– ident: e_1_2_5_11_1
  doi: 10.1002/cphc.200700002
– ident: e_1_2_5_81_1
  doi: 10.3390/nano10030530
– ident: e_1_2_5_98_1
  doi: 10.1016/j.matlet.2017.11.108
– ident: e_1_2_5_121_1
  doi: 10.1016/j.electacta.2006.07.032
– ident: e_1_2_5_5_1
  doi: 10.1016/j.mattod.2017.11.003
– ident: e_1_2_5_30_1
  doi: 10.1016/j.snb.2017.12.101
– ident: e_1_2_5_18_1
  doi: 10.3390/chemosensors3010001
– ident: e_1_2_5_150_1
  doi: 10.1088/0953-8984/16/25/R01
– ident: e_1_2_5_113_1
  doi: 10.1016/j.jsamd.2016.10.001
– ident: e_1_2_5_178_1
  doi: 10.3390/nano8040268
– ident: e_1_2_5_167_1
  doi: 10.1002/cmmi.434
– ident: e_1_2_5_132_1
  doi: 10.1021/acsami.5b12776
– ident: e_1_2_5_25_1
  doi: 10.1039/C7CS00007C
– ident: e_1_2_5_88_1
  doi: 10.1016/j.ceramint.2006.08.003
– ident: e_1_2_5_29_1
  doi: 10.1002/adfm.202170152
– volume: 6
  year: 2016
  ident: e_1_2_5_151_1
  publication-title: Sci. Rep.
– ident: e_1_2_5_176_1
  doi: 10.3109/17435390.2012.760014
– ident: e_1_2_5_95_1
  doi: 10.1039/D1TA00232E
– ident: e_1_2_5_91_1
  doi: 10.1166/jnn.2017.15053
– ident: e_1_2_5_39_1
  doi: 10.1007/s11664-018-6213-x
– ident: e_1_2_5_102_1
  doi: 10.1002/adma.201970076
– ident: e_1_2_5_204_1
  doi: 10.1002/tcr.202100329
– ident: e_1_2_5_14_1
  doi: 10.1039/c3nr03934j
– ident: e_1_2_5_148_1
  doi: 10.1088/1361-6528/aa82b0
– ident: e_1_2_5_66_1
  doi: 10.1016/j.phytol.2019.04.009
– ident: e_1_2_5_67_1
  doi: 10.3390/nano10061086
– ident: e_1_2_5_184_1
  doi: 10.1038/nmat2442
– volume: 12
  year: 2020
  ident: e_1_2_5_43_1
  publication-title: Nano-Micro Letters
– ident: e_1_2_5_101_1
  doi: 10.1016/j.physb.2021.413028
– ident: e_1_2_5_42_1
  doi: 10.1002/adma.200800243
– ident: e_1_2_5_124_1
  doi: 10.1016/j.matchemphys.2014.07.058
– ident: e_1_2_5_118_1
  doi: 10.1016/j.jallcom.2014.09.105
– ident: e_1_2_5_21_1
  doi: 10.1016/j.ssi.2020.115544
– volume: 2012
  start-page: 1
  year: 2012
  ident: e_1_2_5_69_1
  publication-title: J. Nanomater.
– ident: e_1_2_5_111_1
  doi: 10.1039/c0ee00683a
– ident: e_1_2_5_109_1
  doi: 10.1007/s10008-020-04884-9
– ident: e_1_2_5_57_1
  doi: 10.1088/0957-4484/19/12/125603
– ident: e_1_2_5_141_1
  doi: 10.1007/s10008-016-3187-6
– ident: e_1_2_5_1_1
  doi: 10.1088/1361-6528/ab268a
– ident: e_1_2_5_139_1
  doi: 10.1016/j.materresbull.2015.05.019
– volume: 1
  start-page: 185
  year: 2012
  ident: e_1_2_5_63_1
  publication-title: Chem. Eng. J.
– ident: e_1_2_5_33_1
  doi: 10.1039/C6RA06346B
– ident: e_1_2_5_65_1
  doi: 10.3390/pharmaceutics11110575
– ident: e_1_2_5_187_1
  doi: 10.1016/j.rser.2021.110849
– ident: e_1_2_5_6_1
  doi: 10.1039/c0nr00047g
– ident: e_1_2_5_44_1
  doi: 10.1039/C8MH01365A
– ident: e_1_2_5_28_1
  doi: 10.1002/admi.201901932
– ident: e_1_2_5_137_1
  doi: 10.1021/am5073468
– ident: e_1_2_5_193_1
  doi: 10.1179/1753555713Y.0000000063
– ident: e_1_2_5_85_1
  doi: 10.1006/jcis.1997.5354
– ident: e_1_2_5_106_1
  doi: 10.1016/j.ijleo.2021.166715
– ident: e_1_2_5_172_1
  doi: 10.1080/17453670710015120
– ident: e_1_2_5_53_1
  doi: 10.1088/1361-6528/ac08bb
– ident: e_1_2_5_157_1
  doi: 10.3748/wjg.v22.i5.1745
– volume: 5
  year: 2015
  ident: e_1_2_5_49_1
  publication-title: Sci. Rep.
– ident: e_1_2_5_92_1
  doi: 10.1007/s10854-018-8964-9
– ident: e_1_2_5_201_1
  doi: 10.1002/tcr.202200090
– ident: e_1_2_5_170_1
  doi: 10.2174/187152006778226530
– ident: e_1_2_5_182_1
  doi: 10.1016/j.tiv.2011.08.011
– ident: e_1_2_5_156_1
  doi: 10.1016/j.biomaterials.2006.09.046
– volume: 1463
  year: 2011
  ident: e_1_2_5_199_1
  publication-title: Int. J. Nanomed.
– ident: e_1_2_5_10_1
  doi: 10.1088/0953-8984/16/25/R01
– ident: e_1_2_5_87_1
  doi: 10.1016/S0955-2219(00)00283-1
– ident: e_1_2_5_181_1
  doi: 10.1021/la100293s
– ident: e_1_2_5_112_1
  doi: 10.1016/j.apsusc.2018.09.264
– ident: e_1_2_5_46_1
  doi: 10.1016/j.snb.2019.04.083
– ident: e_1_2_5_56_1
  doi: 10.1002/adma.201501121
– ident: e_1_2_5_142_1
  doi: 10.1039/C8TA04129F
– ident: e_1_2_5_32_1
  doi: 10.1016/j.matlet.2018.06.049
– ident: e_1_2_5_47_1
  doi: 10.1021/la201755w
– ident: e_1_2_5_159_1
  doi: 10.3390/s151129408
– ident: e_1_2_5_99_1
  doi: 10.1016/j.jallcom.2018.11.112
– ident: e_1_2_5_183_1
  doi: 10.1016/j.jhazmat.2010.07.010
– ident: e_1_2_5_128_1
  doi: 10.1039/C3TC31476F
– ident: e_1_2_5_75_1
  doi: 10.1016/j.matpr.2022.02.422
– ident: e_1_2_5_161_1
  doi: 10.3390/cancers13184570
– ident: e_1_2_5_143_1
  doi: 10.1039/C6NR07207K
– ident: e_1_2_5_116_1
  doi: 10.1088/1742-6596/984/1/012005
– ident: e_1_2_5_185_1
  doi: 10.1155/2018/1062562
– ident: e_1_2_5_169_1
  doi: 10.1166/jbn.2011.1219
– ident: e_1_2_5_200_1
  doi: 10.2174/1566524013666131111130058
– ident: e_1_2_5_22_1
  doi: 10.1109/T-ED.1985.22095
– ident: e_1_2_5_155_1
  doi: 10.1140/epjb/e2016-60799-9
– ident: e_1_2_5_135_1
  doi: 10.1002/adma.201306126
– ident: e_1_2_5_189_1
  doi: 10.1016/j.cej.2022.137045
– ident: e_1_2_5_168_1
  doi: 10.1016/j.biomaterials.2010.10.022
– ident: e_1_2_5_133_1
  doi: 10.1016/j.jpowsour.2014.02.088
– ident: e_1_2_5_34_1
  doi: 10.1039/c1jm11302j
– ident: e_1_2_5_36_1
  doi: 10.1016/j.physb.2017.07.039
– ident: e_1_2_5_171_1
  doi: 10.2174/138920110792246483
– ident: e_1_2_5_146_1
  doi: 10.1016/j.jallcom.2017.06.099
– ident: e_1_2_5_40_1
  doi: 10.1149/2.0141807jss
– ident: e_1_2_5_58_1
  doi: 10.1016/j.sna.2021.112574
– ident: e_1_2_5_120_1
  doi: 10.1016/j.ssi.2009.10.001
– ident: e_1_2_5_175_1
  doi: 10.1007/s40820-015-0040-x
– ident: e_1_2_5_19_1
  doi: 10.3390/ma11020287
– volume: 11
  year: 2021
  ident: e_1_2_5_50_1
  publication-title: Sci. Rep.
– ident: e_1_2_5_52_1
  doi: 10.1039/C4TA02052A
– ident: e_1_2_5_107_1
  doi: 10.1088/1361-6528/ab268a
– ident: e_1_2_5_125_1
  doi: 10.1088/0957-4484/27/42/425708
– ident: e_1_2_5_70_1
  doi: 10.1007/s10853-017-1544-1
– ident: e_1_2_5_103_1
  doi: 10.1002/adma.201506457
– ident: e_1_2_5_15_1
  doi: 10.1063/1.4907568
– ident: e_1_2_5_188_1
  doi: 10.1016/j.apcatb.2022.121603
– ident: e_1_2_5_8_1
  doi: 10.1016/j.jhazmat.2005.10.022
– ident: e_1_2_5_197_1
  doi: 10.1517/17425247.2010.502560
– ident: e_1_2_5_38_1
  doi: 10.1021/jp500516t
– ident: e_1_2_5_203_1
  doi: 10.1002/tcr.202000088
– ident: e_1_2_5_37_1
  doi: 10.1016/j.apsusc.2018.03.217
– ident: e_1_2_5_7_1
  doi: 10.1021/jp0271054
– ident: e_1_2_5_64_1
  doi: 10.1088/1674-1056/26/4/047307
– ident: e_1_2_5_136_1
  doi: 10.1002/cplu.201300015
– ident: e_1_2_5_62_1
  doi: 10.3390/ma7042833
– ident: e_1_2_5_23_1
  doi: 10.3390/s19020233
– ident: e_1_2_5_117_1
  doi: 10.1016/j.jpowsour.2010.09.065
– ident: e_1_2_5_26_1
  doi: 10.1016/j.jhazmat.2017.07.056
– ident: e_1_2_5_108_1
  doi: 10.1007/s10008-017-3788-8
– ident: e_1_2_5_192_1
  doi: 10.1111/j.1574-6968.2007.01012.x
– ident: e_1_2_5_79_1
  doi: 10.1039/C8CE01773E
– ident: e_1_2_5_71_1
  doi: 10.1016/j.ceramint.2016.10.051
SSID ssj0011477
Score 2.576926
SecondaryResourceType review_article
Snippet In this approach, zinc oxide (ZnO) is a multipurpose substance with remarkable characteristics such as high sensitivity, a large specific area, non‐toxicity,...
In this approach, zinc oxide (ZnO) is a multipurpose substance with remarkable characteristics such as high sensitivity, a large specific area, non-toxicity,...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202300106
SubjectTerms Biocompatibility
Biosensors
Chemical sensors
Disintegration
Electrochemistry
Energy storage
Environmental monitoring
Food contamination
Food sanitation
Hygiene
Lithium-ion batteries
Nanoparticles
Nanostructure
Photocatalysis
Photovoltaic cells
Sensitivity
Solar cells
Supercapacitors
Toxicity
Zinc oxide
Zinc oxides
ZnO nanostructures
Title Recent Advances, Challenges, and Future Perspectives of ZnO Nanostructure Materials Towards Energy Applications
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ftcr.202300106
https://www.ncbi.nlm.nih.gov/pubmed/37249417
https://www.proquest.com/docview/2913279232
https://www.proquest.com/docview/2820968211
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFH6IF724L3UjgniyY5e0kxyHwUGEUZERxEtNk_SitELHi7_el6TtOIqCeGtIQrO-fC_L9wGcxFzwUCWhr2gS-1QjhmNm3wqX1yINWU6FMCe64-v08p5ePSQPjc6peQvj-CG6DTczM6y9NhNc5PX5jDQUDVXPaH9brwZtsLmvZUDRXUcfhVDfKi8a5VYf_QrecGxi_vO53PNr0jegOY9b7cIzWoWntsjuvslz722a9-T7FzbHf9RpDVYaUEoGbhStw4IuN2Bp2GrBbUKF6BJXJzJwNwbqMzJsRVjwW5SKjCw3Cbmdvd2sSVWQx_KGoAGvHE2tSTEWUzfoycTe2K3JhX1-SAafjtK34H50MRle-o1Ugy-NIKCPXkeqeM6ERIvBJCtkKAMR9QMeRUpTFgjeVwlFrJKoQBaFwugUc8qYyVizfrwNi2VV6l0gYaKpEggrw1hRrgXHUMqFSIIiLALOPDhrOyuTDY-5kdN4yRwDc5RhK2ZdK3pw2iV_dQQePyU8aHs-a-ZxnUUcvXVDsRh5cNxFY-ObYxVR6uoN0yCI4ilDT9qDHTdiuj_FfXRvsdoeBLbffy9CNhnedYG9v2fZh2X8pm6H6AAWsWv1IWKmaX5kJ8YHrpUMFw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9MwGH4F5VAuY4yxZXRgJMSp6fLhpPaxqlYV1hZUtVK1S-TazgWUIKW98Ov32k6ylYlJiFsc24m__bz-eB6ATzEXPFRJ6CuaxD7ViOGYWbfC6TVPQ7alQpgd3fkina7p102yeXCL3_FDtAtupmfY8dp0cLMgfXXPGooj1cCIf1uz5jm8MKre1qhatgRSCPat9qLRbvXRsuA1yyZ-4Oog-uGs9AhqHiJXO_VMXoFoEu1OnPwY7Hfbgfz9B5_j_-TqGI5qXEpGriG9hme6OIHuuJGDewMlAkycoMjIHRqo-mTc6LDgsygUmVh6EvL9_vpmRcqc3BbfCI7hpWOqNSHmYufaPVnZQ7sVubY3EMnowW76Kawn16vx1K_VGnxpNAF9NDxSxbdMSBw0mGS5DGUgomHAo0hpygLBhyqhCFcSFcg8V-idYkwZMxlrNozfQqcoC30OJEw0VQKRZRgryrXg6Eq5EEmQh3nAmQf9prYyWVOZG0WNn5kjYY4yLMWsLUUPPrfBfzkOj78F7DVVn9Vducoijga7YVmMPPjYemPhm50VUehyj2EQR_GUoTHtwZlrMu2f4iFauJhtDwJb8U8nIVuNl63j4t-jfIDudDWfZbMvi5t38BLfU7dg1IMOVrO-RAi12763veQOcQIQMg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9swGH41Ogm4sA0GBDow0rQTKflwUvtYlVaFQUGoSGiX4NrOBZQgtb3w63ltJ2EdGtK0Wxzbib_9vP54HoDvMRc8VEnoK5rEPtWI4ZhZt8LpNU9DNqVCmB3dy3E6uqXnd8ldpXNq7sI4fohmwc30DDtemw7-pPKTV9JQHKg6RvvbWjUr8JGmATPN-vSm4Y9CrG-lF410q4-GBa9INvEDJ0vRlyelN0hzGbjamWf4Ce7rNLsDJw-dxXzakc9_0Dn-R6Y-w0aFSknPNaMv8EEXm7DWr8XgtqBEeInTE-m5IwOzY9KvVVjwWRSKDC05Cbl-vbw5I2VOfhVXBEfw0vHUmhCXYu5aPZnYI7szMrD3D0nvt730r3A7HEz6I7_SavClUQT00exIFZ8yIXHIYJLlMpSBiLoBjyKlKQsE76qEIlhJVCDzXKF3ijFlzGSsWTfehlZRFnoXSJhoqgTiyjBWlGvB0ZVyIZIgD_OAMw-O68rKZEVkbvQ0HjNHwRxlWIpZU4oe_GiCPzkGj78FbNc1n1UdeZZFHM11w7EYeXDUeGPhm30VUehygWEQRfGUoSntwY5rMc2f4i7at5htDwJb7-8nIZv0bxrH3r9HOYTV69NhdnE2_rkP6_iautWiNrSwlvU3xE_z6YHtIy9GzQ7q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances%2C+Challenges%2C+and+Future+Perspectives+of+ZnO+Nanostructure+Materials+Towards+Energy+Applications&rft.jtitle=Chemical+record&rft.au=Saeed%2C+Mohsin&rft.au=Marwani%2C+Hadi+M.&rft.au=Shahzad%2C+Umer&rft.au=Asiri%2C+Abdullah+M.&rft.date=2024-01-01&rft.issn=1527-8999&rft.eissn=1528-0691&rft.volume=24&rft.issue=1&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Ftcr.202300106&rft.externalDBID=10.1002%252Ftcr.202300106&rft.externalDocID=TCR202300106
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1527-8999&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1527-8999&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1527-8999&client=summon