Metal‐Organic Framework Composites and Their Derivatives as Efficient Electrodes for Energy Storage Applications: Recent Progress and Future Perspectives

Metal‐organic frameworks (MOFs) have been important electrochemical energy storage (EES) materials because of their rich species, large specific surface area, high porosity and rich active sites. Nevertheless, the poor conductivity, low mechanical and electrochemical stability of pristine MOFs have...

Full description

Saved in:
Bibliographic Details
Published inChemical record Vol. 23; no. 6; pp. e202300006 - n/a
Main Authors Wang, Teng, Chen, Shaoqian, Chen, Kai‐Jie
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Metal‐organic frameworks (MOFs) have been important electrochemical energy storage (EES) materials because of their rich species, large specific surface area, high porosity and rich active sites. Nevertheless, the poor conductivity, low mechanical and electrochemical stability of pristine MOFs have hindered their further applications. Although single component MOF derivatives have higher conductivity, self‐aggregation often occurs during preparation. Composite design can overcome the shortcomings of MOFs and derivatives and create synergistic effects, resulting in improved electrochemical properties for EES. In this review, recent applications of MOF composites and derivatives as electrodes in different types of batteries and supercapacitors are critically discussed. The advantages, challenges, and future perspectives of MOF composites and derivatives have been given. This review may guide the development of high‐performance MOF composites and derivatives in the field of EES. Recent applications of metal–organic framework (MOF) composites and derivatives as electrodes in different types of batteries and supercapacitors are presented. Effective material design strategies are raised for obtaining high‐performance MOF composites for electrochemical energy storage (EES) devices. The current issues and future perspectives of MOF composites and derivatives in the field have been given to guide their development in future.
AbstractList Abstract Metal‐organic frameworks (MOFs) have been important electrochemical energy storage (EES) materials because of their rich species, large specific surface area, high porosity and rich active sites. Nevertheless, the poor conductivity, low mechanical and electrochemical stability of pristine MOFs have hindered their further applications. Although single component MOF derivatives have higher conductivity, self‐aggregation often occurs during preparation. Composite design can overcome the shortcomings of MOFs and derivatives and create synergistic effects, resulting in improved electrochemical properties for EES. In this review, recent applications of MOF composites and derivatives as electrodes in different types of batteries and supercapacitors are critically discussed. The advantages, challenges, and future perspectives of MOF composites and derivatives have been given. This review may guide the development of high‐performance MOF composites and derivatives in the field of EES.
Metal‐organic frameworks (MOFs) have been important electrochemical energy storage (EES) materials because of their rich species, large specific surface area, high porosity and rich active sites. Nevertheless, the poor conductivity, low mechanical and electrochemical stability of pristine MOFs have hindered their further applications. Although single component MOF derivatives have higher conductivity, self‐aggregation often occurs during preparation. Composite design can overcome the shortcomings of MOFs and derivatives and create synergistic effects, resulting in improved electrochemical properties for EES. In this review, recent applications of MOF composites and derivatives as electrodes in different types of batteries and supercapacitors are critically discussed. The advantages, challenges, and future perspectives of MOF composites and derivatives have been given. This review may guide the development of high‐performance MOF composites and derivatives in the field of EES. Recent applications of metal–organic framework (MOF) composites and derivatives as electrodes in different types of batteries and supercapacitors are presented. Effective material design strategies are raised for obtaining high‐performance MOF composites for electrochemical energy storage (EES) devices. The current issues and future perspectives of MOF composites and derivatives in the field have been given to guide their development in future.
Metal‐organic frameworks (MOFs) have been important electrochemical energy storage (EES) materials because of their rich species, large specific surface area, high porosity and rich active sites. Nevertheless, the poor conductivity, low mechanical and electrochemical stability of pristine MOFs have hindered their further applications. Although single component MOF derivatives have higher conductivity, self‐aggregation often occurs during preparation. Composite design can overcome the shortcomings of MOFs and derivatives and create synergistic effects, resulting in improved electrochemical properties for EES. In this review, recent applications of MOF composites and derivatives as electrodes in different types of batteries and supercapacitors are critically discussed. The advantages, challenges, and future perspectives of MOF composites and derivatives have been given. This review may guide the development of high‐performance MOF composites and derivatives in the field of EES.
Author Chen, Shaoqian
Chen, Kai‐Jie
Wang, Teng
Author_xml – sequence: 1
  givenname: Teng
  orcidid: 0000-0002-4771-126X
  surname: Wang
  fullname: Wang, Teng
  email: wangt42@nwpu.edu.cn
  organization: Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi' an
– sequence: 2
  givenname: Shaoqian
  surname: Chen
  fullname: Chen, Shaoqian
  organization: Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi' an
– sequence: 3
  givenname: Kai‐Jie
  surname: Chen
  fullname: Chen, Kai‐Jie
  email: ckjiscon@nwpu.edu.cn
  organization: Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi' an
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36942948$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAURi1URH9gyRZZYsMmxXYcO2FXDTNQqahVGdaR49wMLkmcXietZscjsOfteJI6TFukLvDG1vXxsa-_Q7LX-x4Iec3ZMWdMvB8tHgsmUhaHekYOeCbyhKmC7_1d6yQvimKfHIZwxRjnUusXZD9VhRSFzA_I7y8wmvbPz1_nuDG9s3SFpoNbjz_owneDD26EQE1f0_V3cEg_ArobM7qbuRrosmmcddCPdNmCHdHXsd54pMsecLOlX0ePZgP0ZBhaZ-M534cP9BLsfOQC_QYh7PSraZwQ6AVgGKJpvuAled6YNsCr-_mIfFst14vPydn5p9PFyVliYx8qEbWRtYxtZ6JqGNeSy0rVSgot8loqWeS1inuSCQ2q4WAay42qqjSrKpZVKj0i73beAf31BGEsOxcstK3pwU-hFDovRKqEziL69gl65Sfs4-tKkYt8_lc5C5MdZdGHgNCUA7rO4LbkrJxTK2Nq5WNqkX9zb52qDupH-iGmCOgdcOta2P7fVq4Xl__Ud9F4pyk
CitedBy_id crossref_primary_10_1016_j_jelechem_2024_118178
crossref_primary_10_1016_j_cej_2024_149624
crossref_primary_10_1002_smll_202402998
crossref_primary_10_1080_25740881_2024_2310529
crossref_primary_10_1016_j_jpowsour_2024_234576
crossref_primary_10_1039_D3CC03146B
Cites_doi 10.1039/c1ee01776d
10.1002/EXP.20210178
10.1002/anie.201712872
10.1016/j.jtice.2017.04.010
10.1016/j.jssc.2021.122736
10.1007/s12274-018-2250-2
10.1039/C8TA07686C
10.1016/j.electacta.2019.135130
10.1002/ange.202000352
10.1016/j.colsurfa.2022.128954
10.1021/acsnano.0c09898
10.1002/smll.202202313
10.1016/j.cej.2019.01.178
10.1016/j.ensm.2018.07.018
10.1021/cr500207g
10.1002/smll.201704435
10.1002/anie.201908542
10.1016/j.rser.2014.11.066
10.1039/b813846j
10.1002/sstr.202000078
10.1002/tcr.201700057
10.1002/aenm.202003203
10.1016/j.ensm.2021.10.039
10.1126/science.aam5852
10.1021/acs.inorgchem.8b01574
10.1007/s11581-022-04655-8
10.1016/j.diamond.2022.108912
10.1016/j.ensm.2020.05.024
10.1021/acsami.7b04584
10.1038/s41586-020-1972-y
10.1039/C8TA00612A
10.1016/j.jpowsour.2015.03.106
10.1007/s41918-018-0024-x
10.1002/asia.201900629
10.1038/s41598-021-04409-y
10.1002/adma.201704303
10.1016/j.est.2021.103698
10.1016/j.jallcom.2021.158764
10.1016/j.jallcom.2019.01.157
10.1021/acs.nanolett.9b01033
10.1016/j.cej.2022.138287
10.1039/C8TA11419F
10.1002/adfm.201906081
10.1002/aenm.201602733
10.1002/smll.201904255
10.1016/j.rser.2011.01.007
10.1039/D0NR03219K
10.1016/j.jpowsour.2022.231030
10.1039/C5RA08226A
10.1007/s40820-021-00699-z
10.1002/cssc.201702270
10.1021/acs.jpclett.6b01236
10.1016/j.nanoen.2019.104032
10.1002/adma.202003313
10.1021/acsami.9b02859
10.1039/D0TA08006C
10.1039/C8TA05065A
10.1021/acsami.5b07024
10.1016/j.est.2022.104238
10.1007/s11581-022-04443-4
10.1016/j.cej.2021.132146
10.1007/s10853-020-05559-6
10.1016/j.cclet.2021.09.103
10.1002/asia.201900848
10.1007/s10934-021-01125-w
10.1002/adfm.201302631
10.1016/j.nanoen.2015.10.029
10.1038/nmat3191
10.1007/s40843-021-1727-3
10.1002/ange.201908542
10.1002/aenm.202001050
10.1016/j.jssc.2020.121568
10.1021/acsami.0c15793
10.1021/acsaem.1c03649
10.1002/celc.201500254
10.1016/j.ensm.2019.08.004
10.1016/j.fuel.2022.124724
10.1007/s40820-021-00728-x
10.1002/ange.201712872
10.1016/j.jpowsour.2012.12.102
10.1016/j.colsurfa.2021.127810
10.1002/adma.201704124
10.1016/j.jallcom.2022.164845
10.1021/acsnano.0c03488
10.1016/j.electacta.2019.04.121
10.1016/j.electacta.2018.01.210
10.1002/adma.201901220
10.1039/C8CC09847F
10.1016/j.energy.2021.123043
10.1016/j.coelec.2017.10.014
10.1016/j.jcis.2020.08.044
10.1016/j.ceramint.2022.02.225
10.1002/aenm.202100321
10.1039/D0TA10603H
10.1002/ente.202000808
10.1039/C8CC05366A
10.1016/j.matchemphys.2022.126311
10.1002/aenm.202200113
10.1002/adfm.201702046
10.1016/j.nanoen.2020.104868
10.1016/j.jechem.2020.04.061
10.1002/adma.202170028
10.1002/advs.201802362
10.1016/j.cej.2022.135945
10.1016/j.jallcom.2022.163649
10.1002/aenm.201801090
10.1002/aenm.201600426
10.1039/D2TA05202D
10.1016/j.electacta.2020.136378
10.1002/aenm.201901892
10.1016/j.rser.2011.11.011
10.1016/j.jpowsour.2016.03.040
10.1002/adma.201902228
10.1016/j.jpowsour.2018.01.028
10.1016/j.jcis.2021.11.129
10.1016/j.jcis.2021.11.175
10.1002/aenm.202100346
10.1007/s12274-020-2848-z
10.1021/acssuschemeng.8b06288
10.1002/adma.202101204
10.1002/aenm.201703268
10.1016/j.jallcom.2021.160531
10.1039/C8TA09528K
10.1016/j.cej.2022.135042
10.1002/admi.201901571
10.1002/adfm.201702634
10.1016/j.electacta.2019.135104
10.1016/j.est.2021.103550
10.1039/C9RA07061C
10.1126/sciadv.aao7233
10.1016/j.electacta.2016.09.004
10.1016/j.ensm.2019.03.001
10.1002/ente.202101024
10.1039/D1QI00191D
10.1038/nmat2011
10.1039/C3CS60472A
10.1002/smll.202103517
10.1016/j.matchemphys.2020.123484
10.1016/j.nanoen.2020.104523
10.1039/D1NJ01394G
10.1002/adma.201904320
10.1002/smll.202006424
10.1021/acs.accounts.6b00457
10.1039/C8TA03408G
10.1016/j.flatc.2021.100332
10.1016/j.jpowsour.2020.227937
10.1002/adma.201001068
10.1016/j.nanoen.2022.107146
10.1016/j.jcis.2019.06.031
10.4236/chnstd.2016.52003
10.1016/j.apsusc.2019.144882
10.1016/j.jcis.2018.07.037
10.1016/j.carbon.2016.03.032
10.1016/j.electacta.2020.137154
10.1016/j.electacta.2014.05.023
10.1016/S0378-7753(01)00617-6
10.1021/acsami.7b02987
10.1002/aenm.201800716
10.1039/D1SC00095K
10.1021/acsami.6b10640
10.1039/C9NR10491G
10.1039/C6RA23049K
10.1002/adma.201606802
10.1039/C9NR10015F
10.1016/j.cej.2021.132489
10.1021/acsnano.0c02762
10.1016/j.electacta.2019.01.142
10.1016/j.electacta.2019.135394
10.1007/s11705-021-2085-3
10.1016/j.jallcom.2021.162640
10.1038/am.2016.104
10.1021/acs.energyfuels.2c00718
10.1007/s12274-022-4511-3
10.1039/D2TA02114E
10.1007/s11664-019-07505-y
10.1002/anie.202000352
10.1021/acs.energyfuels.0c03380
10.1039/D0DT00976H
10.1002/aenm.201904162
10.1002/aenm.201000010
10.1016/j.ccr.2020.213341
10.1016/j.matt.2019.05.007
10.1021/acsnano.1c06402
10.1126/science.aas9343
10.1038/nmat2460
10.1039/C9TA05812E
10.1039/C6CS00426A
10.1039/C7MH00512A
10.1016/j.electacta.2016.08.110
10.1002/adfm.201707592
10.1016/j.ensm.2018.09.007
10.1016/j.ensm.2018.11.014
10.1002/smll.201805061
10.1007/s40820-021-00594-7
10.1002/aenm.201500110
10.1002/adfm.201902915
10.1039/D0DT03971C
10.1016/j.ceramint.2020.06.067
10.1016/j.nanoen.2019.103935
10.1021/acs.energyfuels.2c01489
10.1149/2162-8777/ac44f8
10.1002/adma.201600319
10.1016/j.jcis.2021.06.145
10.1016/j.cej.2019.123661
10.1002/aenm.201801445
10.1021/am506292b
10.1007/s40820-019-0313-x
10.1039/C5NR04383B
10.1002/aenm.201800013
10.1038/s41560-019-0338-x
10.1016/j.micromeso.2013.11.011
10.1021/acsenergylett.0c00502
10.1039/C9TA08253K
10.1016/j.joule.2020.03.002
10.1039/D0TA02825H
10.1021/acsami.8b04502
10.1002/adfm.202113235
10.1016/j.jcis.2021.12.157
10.1126/science.1230444
10.1016/j.cej.2019.122652
10.1016/j.compositesb.2022.109812
10.1021/jacs.9b11446
10.1021/acs.nanolett.9b01127
10.1002/smll.202203307
10.1016/j.jcis.2018.11.101
10.1039/C9DT04101J
10.1002/anie.202116282
10.1039/C4TA01241K
10.1016/j.jallcom.2020.157181
10.3390/nano10040695
10.1002/er.8452
10.1002/aenm.201904215
10.1016/j.carbon.2020.01.108
10.1016/j.cej.2020.124979
10.1039/c3ra41061g
ContentType Journal Article
Copyright 2023 The Chemical Society of Japan & Wiley‐VCH GmbH
2023 The Chemical Society of Japan & Wiley-VCH GmbH.
Copyright_xml – notice: 2023 The Chemical Society of Japan & Wiley‐VCH GmbH
– notice: 2023 The Chemical Society of Japan & Wiley-VCH GmbH.
DBID NPM
AAYXX
CITATION
7QO
7T7
8FD
C1K
FR3
P64
7X8
DOI 10.1002/tcr.202300006
DatabaseName PubMed
CrossRef
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList CrossRef

Engineering Research Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1528-0691
EndPage n/a
ExternalDocumentID 10_1002_tcr_202300006
36942948
TCR202300006
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21905229; 22071195
– fundername: Key Research and Development Projects of Shaanxi Province
  funderid: 2023-YBGY-293; 2023-YBGY-425
– fundername: Youth Innovation Team of Shaanxi Universities, and the National College Student Innovation and Entrepreneurship Training Program
  funderid: S202210699717
– fundername: National Natural Science Foundation of China
  grantid: 21905229
– fundername: Key Research and Development Projects of Shaanxi Province
  grantid: 2023-YBGY-293
– fundername: National Natural Science Foundation of China
  grantid: 22071195
– fundername: Key Research and Development Projects of Shaanxi Province
  grantid: 2023-YBGY-425
– fundername: Youth Innovation Team of Shaanxi Universities, and the National College Student Innovation and Entrepreneurship Training Program
  grantid: S202210699717
GroupedDBID ---
.3N
.Y3
05W
0R~
10A
123
1OC
29B
31~
33P
3WU
4.4
50Y
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
53G
5VS
66C
702
7PT
8-1
8UM
A00
AAESR
AAHHS
AANLZ
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ASPBG
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BMXJE
BROTX
BRXPI
BY8
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
F5P
FEDTE
G-S
G.N
GODZA
HF~
HGLYW
HVGLF
HZ~
IX1
J0M
LATKE
LAW
LC2
LC3
LEEKS
LH-
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MSFUL
MSSTM
MXFUL
MXSTM
MY~
N9A
O9-
OIG
P2W
P4D
Q11
QB0
QRW
R.K
RAD
ROL
RX1
SUPJJ
V2E
W99
WBKPD
WOHZO
WQJ
WXSBR
WYJ
WYUIH
XG1
XV2
ZZTAW
~IA
NPM
AAYXX
CITATION
7QO
7T7
8FD
C1K
FR3
P64
7X8
ID FETCH-LOGICAL-c3696-2da4d452852bf017414b6d642728d46498d68524027e6f1eafc1a6bb35bb05b63
IEDL.DBID DR2
ISSN 1527-8999
IngestDate Sat Oct 05 05:45:18 EDT 2024
Thu Oct 10 19:18:07 EDT 2024
Thu Sep 12 19:14:52 EDT 2024
Wed Oct 16 00:38:47 EDT 2024
Sat Aug 24 01:20:30 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Metal-organic framework
MOF composites
batteries
supercapacitors
MOF derivatives
Language English
License 2023 The Chemical Society of Japan & Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3696-2da4d452852bf017414b6d642728d46498d68524027e6f1eafc1a6bb35bb05b63
Notes Both authors contributed equally
.
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ORCID 0000-0002-4771-126X
PMID 36942948
PQID 2828369446
PQPubID 1006501
PageCount 25
ParticipantIDs proquest_miscellaneous_2789236275
proquest_journals_2828369446
crossref_primary_10_1002_tcr_202300006
pubmed_primary_36942948
wiley_primary_10_1002_tcr_202300006_TCR202300006
PublicationCentury 2000
PublicationDate June 2023
2023-Jun
2023-06-00
20230601
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: June 2023
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Chemical record
PublicationTitleAlternate Chem Rec
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 604
2022; 450
2021; 65
2013; 3
2019; 11
2019; 12
2019; 15
2019; 14
2020; 161
2019; 17
2019; 16
2019; 19
2020; 14
2020; 13
2020; 12
2012; 16
2020; 11
2020; 10
2022; 613
2020; 329
2022; 610
2022; 28
2022; 611
2014; 135
2022; 441
2022; 287
2018; 6
2010; 22
2018; 8
2018; 2
2010; 1
2016; 316
2017; 76
2020; 290
2019; 23
2020; 578
2022; 36
2007; 6
2019; 553
2019; 311
2019; 29
2018; 30
2020; 331
2022; 32
2013; 231
2020; 455
2022; 33
2022; 324
2019; 7
2018; 28
2019; 9
2019; 4
2019; 6
2021; 45
2019; 31
2019; 1
2020; 381
2020; 34
2013; 341
2020; 32
2011; 4
2021; 50
2021; 52
2022; 910
2022; 632
2022; 236
2014; 43
2017; 50
2016; 6
2018; 18
2016; 7
2021; 56
2020; 31
2020; 30
2016; 219
2022; 5
2020; 395
2001; 97–98
2020; 392
2019; 48
2022; 12
2022; 15
2020; 24
2016; 215
2022; 0
2022; 97
2022; 10
2022; 11
2016; 28
2022; 901
2018; 11
2018; 10
2016; 8
2018; 14
2022; 18
2017; 6
2018; 361
2017; 7
2017; 3
2017; 4
2013; 24
2019; 55
2020; 362
2021; 28
2017; 46
2020 2020; 59 132
2011; 11
2019; 366
2011; 15
2021; 881
2016; 103
2017; 356
2017; 9
2022; 897
2020; 8
2022; 243
2022; 123
2017; 30
2020; 5
2020; 4
2014; 2
2021; 33
2019; 64
2019; 65
2018; 531
2018 2018; 57 130
2018; 379
2015; 43
2020; 9
2020; 49
2020; 255
2020; 46
2016; 05
2014; 6
2022; 646
2022; 523
2020; 416
2015; 2
2022; 430
2021; 9
2021; 8
2018; 265
2015; 5
2015; 18
2021; 2
2017; 27
2022; 51
2021; 867
2015; 285
2022; 46
2019; 784
2020; 349
2022; 47
2022; 48
2019; 301
2021; 582
2017; 29
2022; 44
2020; 509
2021; 1
2019; 141
2015; 7
2014; 114
2019 2019; 58 131
2022; 435
2021; 13
2021; 15
2021; 12
2020; 74
2019; 539
2022; 61
2021; 854
2021; 17
2020; 70
2009; 8
2019; 538
2022; 429
2022; 307
2014; 185
2018; 54
2009; 38
2018; 57
e_1_2_7_3_1
e_1_2_7_104_1
e_1_2_7_127_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_191_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_142_1
e_1_2_7_165_1
e_1_2_7_188_1
e_1_2_7_202_1
e_1_2_7_225_1
e_1_2_7_116_1
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_180_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_56_1
e_1_2_7_79_1
e_1_2_7_131_1
e_1_2_7_131_2
e_1_2_7_154_1
e_1_2_7_237_1
e_1_2_7_177_1
e_1_2_7_214_1
e_1_2_7_139_1
e_1_2_7_4_1
e_1_2_7_128_1
e_1_2_7_105_1
e_1_2_7_82_1
e_1_2_7_120_1
e_1_2_7_192_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_67_1
e_1_2_7_143_1
e_1_2_7_189_1
e_1_2_7_29_1
e_1_2_7_203_1
e_1_2_7_226_1
e_1_2_7_166_1
e_1_2_7_117_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_181_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_238_1
e_1_2_7_78_1
e_1_2_7_193_1
e_1_2_7_132_1
e_1_2_7_155_1
e_1_2_7_178_1
e_1_2_7_215_1
e_1_2_7_230_1
e_1_2_7_106_1
e_1_2_7_129_1
e_1_2_7_9_1
e_1_2_7_81_1
e_1_2_7_121_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_170_1
e_1_2_7_227_1
e_1_2_7_89_1
e_1_2_7_182_1
e_1_2_7_28_1
e_1_2_7_144_1
e_1_2_7_167_1
e_1_2_7_204_1
e_1_2_7_118_1
e_1_2_7_110_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_171_1
e_1_2_7_216_1
e_1_2_7_194_1
e_1_2_7_39_1
e_1_2_7_133_1
e_1_2_7_156_1
e_1_2_7_179_1
e_1_2_7_231_1
e_1_2_7_107_1
e_1_2_7_80_1
e_1_2_7_122_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_205_1
e_1_2_7_228_1
e_1_2_7_160_1
e_1_2_7_183_1
e_1_2_7_27_1
e_1_2_7_145_1
e_1_2_7_220_1
e_1_2_7_168_1
e_1_2_7_119_1
e_1_2_7_91_1
e_1_2_7_111_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_172_1
e_1_2_7_195_1
e_1_2_7_217_1
e_1_2_7_38_1
e_1_2_7_134_1
e_1_2_7_232_1
e_1_2_7_157_1
e_1_2_7_108_1
e_1_2_7_7_1
e_1_2_7_100_1
e_1_2_7_123_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_161_1
e_1_2_7_184_1
e_1_2_7_206_1
e_1_2_7_26_1
e_1_2_7_229_1
e_1_2_7_49_1
e_1_2_7_146_1
e_1_2_7_169_1
e_1_2_7_221_1
e_1_2_7_90_1
e_1_2_7_112_1
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_75_1
Ji J. (e_1_2_7_138_1) 2022; 0
e_1_2_7_150_1
e_1_2_7_196_1
e_1_2_7_37_1
e_1_2_7_173_1
e_1_2_7_218_1
e_1_2_7_135_1
e_1_2_7_158_1
e_1_2_7_233_1
e_1_2_7_210_1
e_1_2_7_109_1
e_1_2_7_8_1
e_1_2_7_124_1
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_63_1
e_1_2_7_86_1
e_1_2_7_185_1
e_1_2_7_207_1
e_1_2_7_48_1
e_1_2_7_162_1
Niu H. (e_1_2_7_209_1) 2019; 539
e_1_2_7_147_1
e_1_2_7_222_1
e_1_2_7_113_1
e_1_2_7_51_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_151_1
e_1_2_7_174_1
e_1_2_7_219_1
e_1_2_7_197_1
e_1_2_7_234_1
e_1_2_7_136_1
e_1_2_7_211_1
e_1_2_7_159_1
e_1_2_7_5_1
e_1_2_7_102_1
e_1_2_7_125_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_85_1
e_1_2_7_47_1
e_1_2_7_140_1
e_1_2_7_163_1
e_1_2_7_208_1
e_1_2_7_223_1
e_1_2_7_186_1
e_1_2_7_148_1
e_1_2_7_200_1
e_1_2_7_114_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_152_1
e_1_2_7_235_2
e_1_2_7_175_1
e_1_2_7_212_1
e_1_2_7_198_1
e_1_2_7_235_1
e_1_2_7_137_1
e_1_2_7_6_1
e_1_2_7_103_2
e_1_2_7_126_1
e_1_2_7_103_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_61_2
e_1_2_7_61_1
e_1_2_7_190_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_69_1
e_1_2_7_141_1
e_1_2_7_201_1
e_1_2_7_224_1
e_1_2_7_164_1
e_1_2_7_187_1
e_1_2_7_149_1
e_1_2_7_115_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_130_1
e_1_2_7_153_1
e_1_2_7_176_1
e_1_2_7_199_1
e_1_2_7_213_1
e_1_2_7_236_1
References_xml – volume: 70
  year: 2020
  publication-title: Nano Energy
– volume: 49
  start-page: 5730
  year: 2020
  end-page: 5735
  publication-title: Dalton Trans.
– volume: 56
  start-page: 5868
  year: 2021
  end-page: 5877
  publication-title: J. Mater. Sci.
– volume: 18
  year: 2022
  publication-title: Small
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 901
  year: 2022
  publication-title: J. Alloys Compd.
– volume: 1
  start-page: 90
  year: 2019
  end-page: 114
  publication-title: Matter
– volume: 9
  start-page: 36123
  year: 2019
  end-page: 36135
  publication-title: RSC Adv.
– volume: 24
  start-page: 22
  year: 2020
  end-page: 51
  publication-title: Energy Storage Mater.
– volume: 6
  start-page: 100
  year: 2017
  end-page: 107
  publication-title: Curr. Opin. Electrochem.
– volume: 31
  start-page: 27
  year: 2020
  end-page: 35
  publication-title: Energy Storage Mater.
– volume: 12
  start-page: 4552
  year: 2020
  end-page: 4561
  publication-title: Nanoscale
– volume: 349
  year: 2020
  publication-title: Electrochim. Acta
– volume: 46
  start-page: 22934
  year: 2020
  end-page: 22943
  publication-title: Ceram. Int.
– volume: 14
  start-page: 8495
  year: 2020
  end-page: 8507
  publication-title: ACS Nano
– volume: 15
  start-page: 1487
  year: 2021
  end-page: 1499
  publication-title: Front. Chem. Sci. Eng.
– volume: 435
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 57
  start-page: 10953
  year: 2018
  end-page: 10960
  publication-title: Inorg. Chem.
– volume: 9
  start-page: 14309
  year: 2017
  end-page: 14318
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 15040
  year: 2018
  end-page: 15046
  publication-title: J. Mater. Chem. A
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 34
  start-page: 16879
  year: 2020
  end-page: 16884
  publication-title: Energy Fuels
– volume: 12
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 307
  year: 2022
  publication-title: J. Solid State Chem.
– volume: 28
  start-page: 1837
  year: 2021
  end-page: 1865
  publication-title: J. Porous Mater.
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 881
  year: 2021
  publication-title: J. Alloys Compd.
– volume: 7
  start-page: 1725
  year: 2019
  end-page: 1736
  publication-title: J. Mater. Chem. A
– volume: 28
  start-page: 4185
  year: 2022
  end-page: 4194
  publication-title: Ionics
– volume: 10
  year: 2022
  publication-title: Energy Technol.
– volume: 0
  start-page: 1
  year: 2022
  end-page: 10
  publication-title: Energy Environ. Mater.
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 531
  start-page: 148
  year: 2018
  end-page: 159
  publication-title: J. Colloid Interface Sci.
– volume: 7
  start-page: 1315
  year: 2019
  end-page: 1322
  publication-title: J. Mater. Chem. A
– volume: 285
  start-page: 281
  year: 2015
  end-page: 290
  publication-title: J. Power Sources
– volume: 381
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 10
  start-page: 16962
  year: 2022
  end-page: 16975
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 1235
  year: 2022
  end-page: 1243
  publication-title: ACS Appl. Energ. Mater.
– volume: 48
  start-page: 7011
  year: 2019
  end-page: 7024
  publication-title: J. Electron. Mater.
– volume: 6
  start-page: 13908
  year: 2018
  end-page: 13917
  publication-title: J. Mater. Chem. A
– volume: 97–98
  start-page: 188
  year: 2001
  end-page: 190
  publication-title: J. Power Sources
– volume: 7
  start-page: 20999
  year: 2015
  end-page: 21004
  publication-title: ACS Appl. Mater. Interfaces
– volume: 243
  year: 2022
  publication-title: Energy
– volume: 11
  start-page: 709
  year: 2018
  end-page: 715
  publication-title: ChemSusChem
– volume: 6
  year: 2019
  publication-title: Adv. Mater. Interfaces
– volume: 6
  start-page: 858
  year: 2007
  end-page: 861
  publication-title: Nat. Mater.
– volume: 11
  start-page: 78
  year: 2019
  publication-title: Nano-Micro Lett.
– volume: 4
  start-page: 771
  year: 2020
  end-page: 799
  publication-title: Joule
– volume: 450
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 236
  year: 2022
  publication-title: Composites Part B
– volume: 47
  year: 2022
  publication-title: J. Energy Storage
– volume: 65
  start-page: 59
  year: 2021
  end-page: 68
  publication-title: Sci. China Mater.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 324
  year: 2022
  publication-title: Fuel
– volume: 32
  year: 2022
  publication-title: FlatChem
– volume: 50
  start-page: 857
  year: 2017
  end-page: 865
  publication-title: Acc. Chem. Res.
– volume: 2
  year: 2021
  publication-title: Small Structures
– volume: 48
  start-page: 16754
  year: 2022
  end-page: 16763
  publication-title: Ceram. Int.
– volume: 123
  year: 2022
  publication-title: Diamond Relat. Mater.
– volume: 11
  start-page: 15662
  year: 2019
  end-page: 15669
  publication-title: ACS Appl. Mater. Interfaces
– volume: 14
  start-page: 10210
  year: 2020
  end-page: 10218
  publication-title: ACS Nano
– volume: 74
  year: 2020
  publication-title: Nano Energy
– volume: 8
  start-page: 3325
  year: 2021
  end-page: 3335
  publication-title: Inorg. Chem. Front.
– volume: 231
  start-page: 153
  year: 2013
  end-page: 162
  publication-title: J. Power Sources
– volume: 103
  start-page: 356
  year: 2016
  end-page: 362
  publication-title: Carbon
– volume: 7
  start-page: 2945
  year: 2016
  end-page: 2950
  publication-title: J. Phys. Chem. Lett.
– volume: 55
  start-page: 1746
  year: 2019
  end-page: 1749
  publication-title: Chem. Commun.
– volume: 8
  start-page: 500
  year: 2009
  end-page: 506
  publication-title: Nat. Mater.
– volume: 17
  start-page: 167
  year: 2019
  end-page: 177
  publication-title: Energy Storage Mater.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 33
  start-page: 2669
  year: 2022
  end-page: 2676
  publication-title: Chin. Chem. Lett.
– volume: 18
  start-page: 459
  year: 2018
  end-page: 479
  publication-title: Chem. Rec.
– volume: 23
  start-page: 664
  year: 2019
  end-page: 669
  publication-title: Energy Storage Mater.
– volume: 4
  start-page: 1122
  year: 2017
  end-page: 1127
  publication-title: Mater. Horiz.
– volume: 611
  start-page: 718
  year: 2022
  end-page: 725
  publication-title: J. Colloid Interface Sci.
– volume: 1
  start-page: 34
  year: 2010
  end-page: 50
  publication-title: Adv. Energy Mater.
– volume: 610
  start-page: 863
  year: 2022
  end-page: 878
  publication-title: J. Colloid Interface Sci.
– volume: 3
  year: 2017
  publication-title: Sci. Adv.
– volume: 578
  start-page: 251
  year: 2020
  end-page: 255
  publication-title: Nature
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: e294
  year: 2016
  end-page: e294
  publication-title: NPG Asia Mater.
– volume: 19
  start-page: 4391
  year: 2019
  end-page: 4399
  publication-title: Nano Lett.
– volume: 15
  start-page: 3228
  year: 2021
  end-page: 3240
  publication-title: ACS Nano
– volume: 8
  start-page: 9355
  year: 2020
  end-page: 9363
  publication-title: J. Mater. Chem. A
– volume: 76
  start-page: 65
  year: 2017
  end-page: 72
  publication-title: J. Taiwan Inst. Chem. Eng.
– volume: 49
  start-page: 411
  year: 2020
  end-page: 417
  publication-title: Dalton Trans.
– volume: 290
  year: 2020
  publication-title: J. Solid State Chem.
– volume: 455
  year: 2020
  publication-title: J. Power Sources
– volume: 141
  start-page: 20037
  year: 2019
  end-page: 20042
  publication-title: J. Am. Chem. Soc.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 392
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 24
  start-page: 1243
  year: 2013
  end-page: 1250
  publication-title: Adv. Funct. Mater.
– volume: 265
  start-page: 336
  year: 2018
  end-page: 347
  publication-title: Electrochim. Acta
– volume: 15
  start-page: 2149
  year: 2011
  end-page: 2163
  publication-title: Renewable Sustainable Energy Rev.
– volume: 16
  start-page: 1412
  year: 2012
  end-page: 1425
  publication-title: Renewable Sustainable Energy Rev.
– volume: 316
  start-page: 176
  year: 2016
  end-page: 182
  publication-title: J. Power Sources
– volume: 361
  start-page: 777
  year: 2018
  end-page: 781
  publication-title: Science
– volume: 255
  year: 2020
  publication-title: Mater. Chem. Phys.
– volume: 15
  year: 2019
  publication-title: Small
– volume: 2
  start-page: 29
  year: 2018
  end-page: 104
  publication-title: Electrochem. Energy Rev.
– volume: 28
  start-page: 2349
  year: 2022
  end-page: 2362
  publication-title: Ionics
– volume: 509
  year: 2020
  publication-title: Appl. Surf. Sci.
– volume: 7
  start-page: 6113
  year: 2019
  end-page: 6121
  publication-title: ACS Sustainable Chem. Eng.
– volume: 48
  year: 2022
  publication-title: J. Energy Storage
– volume: 14
  start-page: 3566
  year: 2019
  end-page: 3571
  publication-title: Chem. Asian J.
– volume: 8
  start-page: 28904
  year: 2016
  end-page: 28916
  publication-title: ACS Appl. Mater. Interfaces
– volume: 46
  start-page: 2660
  year: 2017
  end-page: 2677
  publication-title: Chem. Soc. Rev.
– volume: 215
  start-page: 410
  year: 2016
  end-page: 419
  publication-title: Electrochim. Acta
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 3
  start-page: 11774
  year: 2013
  publication-title: RSC Adv.
– volume: 7
  start-page: 1479
  year: 2019
  end-page: 1490
  publication-title: J. Mater. Chem. A
– volume: 538
  start-page: 267
  year: 2019
  end-page: 276
  publication-title: J. Colloid Interface Sci.
– volume: 10
  start-page: 23063
  year: 2018
  end-page: 23073
  publication-title: ACS Appl. Mater. Interfaces
– volume: 14
  start-page: 3577
  year: 2019
  end-page: 3582
  publication-title: Chem. Asian J.
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 13
  start-page: 73
  year: 2021
  publication-title: Nano-Micro Lett.
– volume: 553
  start-page: 328
  year: 2019
  end-page: 340
  publication-title: J. Colloid Interface Sci.
– volume: 12
  start-page: 5737
  year: 2021
  end-page: 5766
  publication-title: Chem. Sci.
– volume: 9
  start-page: 15510
  year: 2017
  end-page: 15524
  publication-title: ACS Appl. Mater. Interfaces
– volume: 379
  start-page: 350
  year: 2018
  end-page: 361
  publication-title: J. Power Sources
– volume: 30
  year: 2017
  publication-title: Adv. Mater.
– volume: 5
  start-page: 1665
  year: 2020
  end-page: 1675
  publication-title: ACS Energy Lett.
– volume: 45
  start-page: 11174
  year: 2021
  end-page: 11182
  publication-title: New J. Chem.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 4
  start-page: 4710
  year: 2011
  end-page: 4717
  publication-title: Energy Environ. Sci.
– volume: 13
  start-page: 167
  year: 2021
  publication-title: Nano-Micro Lett.
– volume: 7
  start-page: 24059
  year: 2019
  end-page: 24091
  publication-title: J. Mater. Chem. A
– volume: 15
  start-page: 18742
  year: 2021
  end-page: 18776
  publication-title: ACS Nano
– volume: 64
  year: 2019
  publication-title: Nano Energy
– volume: 2
  start-page: 13509
  year: 2014
  end-page: 13512
  publication-title: J. Mater. Chem. A
– volume: 11
  year: 2022
  publication-title: ECS J. Solid State Sci. Technol.
– volume: 329
  year: 2020
  publication-title: Electrochim. Acta
– volume: 114
  start-page: 11444
  year: 2014
  end-page: 11502
  publication-title: Chem. Rev.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 59 132
  start-page: 8247 8324
  year: 2020 2020
  end-page: 8254 8331
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 05
  start-page: 15
  year: 2016
  end-page: 26
  publication-title: Chinese Studies
– volume: 185
  start-page: 92
  year: 2014
  end-page: 96
  publication-title: Microporous Mesoporous Mater.
– volume: 6
  start-page: 6754
  year: 2018
  end-page: 6771
  publication-title: J. Mater. Chem. A
– volume: 441
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 646
  year: 2022
  publication-title: Colloids Surf. A
– volume: 395
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 43
  start-page: 843
  year: 2015
  end-page: 862
  publication-title: Renewable Sustainable Energy Rev.
– volume: 429
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 43
  start-page: 5468
  year: 2014
  end-page: 5512
  publication-title: Chem. Soc. Rev.
– volume: 16
  start-page: 545
  year: 2019
  end-page: 573
  publication-title: Energy Storage Mater.
– volume: 17
  year: 2021
  publication-title: Small
– volume: 52
  start-page: 277
  year: 2021
  end-page: 283
  publication-title: J. Energy Chem.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 523
  year: 2022
  publication-title: J. Power Sources
– volume: 867
  year: 2021
  publication-title: J. Alloys Compd.
– volume: 362
  year: 2020
  publication-title: Electrochim. Acta
– volume: 9
  year: 2020
  publication-title: Energy Technol.
– volume: 13
  start-page: 2289
  year: 2020
  end-page: 2298
  publication-title: Nano Res.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 311
  start-page: 62
  year: 2019
  end-page: 71
  publication-title: Electrochim. Acta
– volume: 65
  year: 2019
  publication-title: Nano Energy
– volume: 17
  start-page: 194
  year: 2019
  end-page: 203
  publication-title: Energy Storage Mater.
– volume: 51
  year: 2022
  publication-title: J. Energy Storage
– volume: 613
  start-page: 23
  year: 2022
  end-page: 34
  publication-title: J. Colloid Interface Sci.
– volume: 582
  start-page: 236
  year: 2021
  end-page: 245
  publication-title: J. Colloid Interface Sci.
– volume: 50
  start-page: 2093
  year: 2021
  end-page: 2101
  publication-title: Dalton Trans.
– volume: 12
  start-page: 54644
  year: 2020
  end-page: 54652
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 135
  start-page: 420
  year: 2014
  end-page: 427
  publication-title: Electrochim. Acta
– volume: 287
  year: 2022
  publication-title: Mater. Chem. Phys.
– volume: 57 130
  start-page: 3916 3980
  year: 2018 2018
  end-page: 3921 3985
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 18
  start-page: 265
  year: 2015
  end-page: 272
  publication-title: Nano Energy
– volume: 416
  year: 2020
  publication-title: Coord. Chem. Rev.
– volume: 15
  start-page: 6831
  year: 2022
  end-page: 6840
  publication-title: Nano Res.
– volume: 12
  start-page: 16901
  year: 2020
  end-page: 16909
  publication-title: Nanoscale
– volume: 36
  start-page: 5483
  year: 2022
  end-page: 5491
  publication-title: Energy Fuels
– volume: 6
  start-page: 21325
  year: 2014
  end-page: 21334
  publication-title: ACS Appl. Mater. Interfaces
– volume: 301
  start-page: 117
  year: 2019
  end-page: 125
  publication-title: Electrochim. Acta
– volume: 910
  year: 2022
  publication-title: J. Alloys Compd.
– volume: 10
  start-page: 695
  year: 2020
  publication-title: Nanomaterials
– volume: 28
  start-page: 5242
  year: 2016
  end-page: 5248
  publication-title: Adv. Mater.
– volume: 632
  year: 2022
  publication-title: Colloids Surf. A
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 341
  year: 2013
  publication-title: Science
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 36
  start-page: 8471
  year: 2022
  end-page: 8479
  publication-title: Energy Fuels
– volume: 9
  start-page: 2948
  year: 2021
  end-page: 2958
  publication-title: J. Mater. Chem. A
– volume: 897
  year: 2022
  publication-title: J. Alloys Compd.
– volume: 46
  start-page: 18379
  year: 2022
  end-page: 18393
  publication-title: Int. J. Energy Res.
– volume: 2
  start-page: 1645
  year: 2015
  end-page: 1651
  publication-title: ChemElectroChem
– volume: 61
  year: 2022
  publication-title: Angew. Chem. Int. Ed.
– volume: 44
  start-page: 508
  year: 2022
  end-page: 516
  publication-title: Energy Storage Mater.
– volume: 854
  year: 2021
  publication-title: J. Alloys Compd.
– volume: 12
  start-page: 664
  year: 2022
  publication-title: Sci. Rep.
– volume: 5
  start-page: 58772
  year: 2015
  end-page: 58776
  publication-title: RSC Adv.
– volume: 4
  start-page: 180
  year: 2019
  end-page: 186
  publication-title: Nat. Energy
– volume: 7
  start-page: 19465
  year: 2019
  end-page: 19470
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 3296
  year: 2016
  end-page: 3306
  publication-title: Nanoscale
– volume: 784
  start-page: 869
  year: 2019
  end-page: 876
  publication-title: J. Alloys Compd.
– volume: 97
  year: 2022
  publication-title: Nano Energy
– volume: 539
  start-page: 545
  year: 2019
  end-page: 552
  publication-title: J. Alloys Compd.
– volume: 10
  start-page: 12225
  year: 2022
  end-page: 12234
  publication-title: J. Mater. Chem. A
– volume: 11
  start-page: 19
  year: 2011
  end-page: 29
  publication-title: Nat. Mater.
– volume: 19
  start-page: 4965
  year: 2019
  end-page: 4973
  publication-title: Nano Lett.
– volume: 12
  start-page: 15214
  year: 2020
  end-page: 15221
  publication-title: Nanoscale
– volume: 8
  start-page: 22163
  year: 2020
  end-page: 22174
  publication-title: J. Mater. Chem. A
– volume: 161
  start-page: 502
  year: 2020
  end-page: 509
  publication-title: Carbon
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 366
  start-page: 622
  year: 2019
  end-page: 630
  publication-title: Chem. Eng. J.
– volume: 430
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 12
  start-page: 2218
  year: 2019
  end-page: 2223
  publication-title: Nano Res.
– volume: 58 131
  start-page: 14740 14882
  year: 2019 2019
  end-page: 14747 14889
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 6
  start-page: 99179
  year: 2016
  end-page: 99183
  publication-title: RSC Adv.
– volume: 13
  start-page: 202
  year: 2021
  publication-title: Nano-Micro Lett.
– volume: 219
  start-page: 492
  year: 2016
  end-page: 501
  publication-title: Electrochim. Acta
– volume: 1
  year: 2021
  publication-title: Exploration
– volume: 38
  start-page: 2520
  year: 2009
  publication-title: Chem. Soc. Rev.
– volume: 331
  year: 2020
  publication-title: Electrochim. Acta
– volume: 54
  start-page: 9474
  year: 2018
  end-page: 9477
  publication-title: Chem. Commun.
– volume: 356
  start-page: 599
  year: 2017
  end-page: 604
  publication-title: Science
– volume: 604
  start-page: 319
  year: 2021
  end-page: 326
  publication-title: J. Colloid Interface Sci.
– volume: 22
  start-page: 3906
  year: 2010
  end-page: 3924
  publication-title: Adv. Mater.
– ident: e_1_2_7_159_1
  doi: 10.1039/c1ee01776d
– ident: e_1_2_7_187_1
  doi: 10.1002/EXP.20210178
– ident: e_1_2_7_103_1
  doi: 10.1002/anie.201712872
– ident: e_1_2_7_23_1
  doi: 10.1016/j.jtice.2017.04.010
– ident: e_1_2_7_121_1
  doi: 10.1016/j.jssc.2021.122736
– ident: e_1_2_7_120_1
  doi: 10.1007/s12274-018-2250-2
– ident: e_1_2_7_27_1
  doi: 10.1039/C8TA07686C
– ident: e_1_2_7_210_1
  doi: 10.1016/j.electacta.2019.135130
– ident: e_1_2_7_235_2
  doi: 10.1002/ange.202000352
– ident: e_1_2_7_222_1
  doi: 10.1016/j.colsurfa.2022.128954
– ident: e_1_2_7_126_1
  doi: 10.1021/acsnano.0c09898
– ident: e_1_2_7_176_1
  doi: 10.1002/smll.202202313
– ident: e_1_2_7_50_1
  doi: 10.1016/j.cej.2019.01.178
– ident: e_1_2_7_10_1
  doi: 10.1016/j.ensm.2018.07.018
– ident: e_1_2_7_69_1
  doi: 10.1021/cr500207g
– ident: e_1_2_7_17_1
  doi: 10.1002/smll.201704435
– ident: e_1_2_7_131_1
  doi: 10.1002/anie.201908542
– ident: e_1_2_7_3_1
  doi: 10.1016/j.rser.2014.11.066
– ident: e_1_2_7_16_1
  doi: 10.1039/b813846j
– ident: e_1_2_7_182_1
  doi: 10.1002/sstr.202000078
– ident: e_1_2_7_115_1
  doi: 10.1002/tcr.201700057
– ident: e_1_2_7_141_1
  doi: 10.1002/aenm.202003203
– ident: e_1_2_7_9_1
  doi: 10.1016/j.ensm.2021.10.039
– ident: e_1_2_7_43_1
  doi: 10.1126/science.aam5852
– ident: e_1_2_7_191_1
  doi: 10.1021/acs.inorgchem.8b01574
– ident: e_1_2_7_52_1
  doi: 10.1007/s11581-022-04655-8
– ident: e_1_2_7_227_1
  doi: 10.1016/j.diamond.2022.108912
– ident: e_1_2_7_13_1
  doi: 10.1016/j.ensm.2020.05.024
– ident: e_1_2_7_74_1
  doi: 10.1021/acsami.7b04584
– ident: e_1_2_7_86_1
  doi: 10.1038/s41586-020-1972-y
– ident: e_1_2_7_18_1
  doi: 10.1039/C8TA00612A
– ident: e_1_2_7_211_1
  doi: 10.1016/j.jpowsour.2015.03.106
– ident: e_1_2_7_34_1
  doi: 10.1007/s41918-018-0024-x
– ident: e_1_2_7_208_1
  doi: 10.1002/asia.201900629
– ident: e_1_2_7_225_1
  doi: 10.1038/s41598-021-04409-y
– ident: e_1_2_7_29_1
  doi: 10.1002/adma.201704303
– ident: e_1_2_7_193_1
  doi: 10.1016/j.est.2021.103698
– ident: e_1_2_7_12_1
  doi: 10.1016/j.jallcom.2021.158764
– ident: e_1_2_7_56_1
  doi: 10.1016/j.jallcom.2019.01.157
– ident: e_1_2_7_104_1
  doi: 10.1021/acs.nanolett.9b01033
– ident: e_1_2_7_78_1
  doi: 10.1016/j.cej.2022.138287
– ident: e_1_2_7_117_1
  doi: 10.1039/C8TA11419F
– ident: e_1_2_7_147_1
  doi: 10.1002/adfm.201906081
– ident: e_1_2_7_190_1
  doi: 10.1002/aenm.201602733
– ident: e_1_2_7_63_1
  doi: 10.1002/smll.201904255
– ident: e_1_2_7_7_1
  doi: 10.1016/j.rser.2011.01.007
– ident: e_1_2_7_48_1
  doi: 10.1039/D0NR03219K
– ident: e_1_2_7_59_1
  doi: 10.1016/j.jpowsour.2022.231030
– ident: e_1_2_7_25_1
  doi: 10.1039/C5RA08226A
– ident: e_1_2_7_139_1
  doi: 10.1007/s40820-021-00699-z
– ident: e_1_2_7_177_1
  doi: 10.1002/cssc.201702270
– ident: e_1_2_7_112_1
  doi: 10.1021/acs.jpclett.6b01236
– ident: e_1_2_7_54_1
  doi: 10.1016/j.nanoen.2019.104032
– ident: e_1_2_7_170_1
  doi: 10.1002/adma.202003313
– ident: e_1_2_7_149_1
  doi: 10.1021/acsami.9b02859
– ident: e_1_2_7_11_1
  doi: 10.1039/D0TA08006C
– ident: e_1_2_7_21_1
  doi: 10.1039/C8TA05065A
– ident: e_1_2_7_91_1
  doi: 10.1021/acsami.5b07024
– ident: e_1_2_7_212_1
  doi: 10.1016/j.est.2022.104238
– ident: e_1_2_7_224_1
  doi: 10.1007/s11581-022-04443-4
– ident: e_1_2_7_47_1
  doi: 10.1016/j.cej.2021.132146
– ident: e_1_2_7_80_1
  doi: 10.1007/s10853-020-05559-6
– ident: e_1_2_7_186_1
  doi: 10.1016/j.cclet.2021.09.103
– ident: e_1_2_7_97_1
  doi: 10.1002/asia.201900848
– ident: e_1_2_7_180_1
  doi: 10.1039/C8TA05065A
– ident: e_1_2_7_238_1
  doi: 10.1007/s10934-021-01125-w
– ident: e_1_2_7_83_1
  doi: 10.1002/adfm.201302631
– ident: e_1_2_7_155_1
  doi: 10.1016/j.nanoen.2015.10.029
– ident: e_1_2_7_45_1
  doi: 10.1038/nmat3191
– ident: e_1_2_7_61_2
  doi: 10.1002/ange.202000352
– ident: e_1_2_7_8_1
  doi: 10.1007/s40843-021-1727-3
– ident: e_1_2_7_131_2
  doi: 10.1002/ange.201908542
– ident: e_1_2_7_140_1
  doi: 10.1002/aenm.202001050
– ident: e_1_2_7_75_1
  doi: 10.1016/j.jssc.2020.121568
– ident: e_1_2_7_119_1
  doi: 10.1021/acsami.0c15793
– ident: e_1_2_7_219_1
  doi: 10.1021/acsaem.1c03649
– ident: e_1_2_7_70_1
  doi: 10.1002/celc.201500254
– ident: e_1_2_7_85_1
  doi: 10.1016/j.ensm.2019.08.004
– ident: e_1_2_7_204_1
  doi: 10.1016/j.fuel.2022.124724
– ident: e_1_2_7_64_1
  doi: 10.1007/s40820-021-00728-x
– ident: e_1_2_7_103_2
  doi: 10.1002/ange.201712872
– ident: e_1_2_7_88_1
  doi: 10.1016/j.jpowsour.2012.12.102
– ident: e_1_2_7_46_1
  doi: 10.1016/j.colsurfa.2021.127810
– ident: e_1_2_7_30_1
  doi: 10.1002/adma.201704124
– ident: e_1_2_7_130_1
  doi: 10.1016/j.jallcom.2022.164845
– ident: e_1_2_7_133_1
  doi: 10.1021/acsnano.0c03488
– ident: e_1_2_7_206_1
  doi: 10.1016/j.electacta.2019.04.121
– ident: e_1_2_7_26_1
  doi: 10.1016/j.electacta.2018.01.210
– ident: e_1_2_7_99_1
  doi: 10.1002/adma.201901220
– ident: e_1_2_7_216_1
  doi: 10.1039/C8CC09847F
– ident: e_1_2_7_123_1
  doi: 10.1016/j.energy.2021.123043
– ident: e_1_2_7_150_1
  doi: 10.1016/j.coelec.2017.10.014
– ident: e_1_2_7_57_1
  doi: 10.1016/j.jcis.2020.08.044
– ident: e_1_2_7_98_1
  doi: 10.1016/j.ceramint.2022.02.225
– ident: e_1_2_7_110_1
  doi: 10.1002/aenm.202100321
– ident: e_1_2_7_223_1
  doi: 10.1039/D0TA10603H
– ident: e_1_2_7_79_1
  doi: 10.1002/ente.202000808
– ident: e_1_2_7_174_1
  doi: 10.1039/C8CC05366A
– ident: e_1_2_7_194_1
  doi: 10.1016/j.matchemphys.2022.126311
– ident: e_1_2_7_135_1
  doi: 10.1002/aenm.202200113
– ident: e_1_2_7_113_1
  doi: 10.1002/adfm.201702046
– ident: e_1_2_7_55_1
  doi: 10.1016/j.nanoen.2020.104868
– ident: e_1_2_7_142_1
  doi: 10.1016/j.jechem.2020.04.061
– ident: e_1_2_7_196_1
  doi: 10.1002/adma.202170028
– ident: e_1_2_7_36_1
  doi: 10.1002/advs.201802362
– ident: e_1_2_7_96_1
  doi: 10.1016/j.cej.2022.135945
– ident: e_1_2_7_102_1
  doi: 10.1016/j.jallcom.2022.163649
– ident: e_1_2_7_145_1
  doi: 10.1002/aenm.201801090
– ident: e_1_2_7_41_1
  doi: 10.1002/aenm.201600426
– ident: e_1_2_7_124_1
  doi: 10.1039/D2TA05202D
– ident: e_1_2_7_107_1
  doi: 10.1016/j.electacta.2020.136378
– ident: e_1_2_7_192_1
  doi: 10.1002/smll.201704435
– ident: e_1_2_7_221_1
  doi: 10.1002/aenm.201901892
– ident: e_1_2_7_6_1
  doi: 10.1016/j.rser.2011.11.011
– ident: e_1_2_7_218_1
  doi: 10.1016/j.jpowsour.2016.03.040
– ident: e_1_2_7_37_1
  doi: 10.1002/adma.201902228
– ident: e_1_2_7_220_1
  doi: 10.1016/j.jpowsour.2018.01.028
– ident: e_1_2_7_233_1
  doi: 10.1016/j.jcis.2021.11.129
– ident: e_1_2_7_128_1
  doi: 10.1016/j.jcis.2021.11.175
– ident: e_1_2_7_32_1
  doi: 10.1002/aenm.202100346
– ident: e_1_2_7_127_1
  doi: 10.1007/s12274-020-2848-z
– ident: e_1_2_7_175_1
  doi: 10.1021/acssuschemeng.8b06288
– ident: e_1_2_7_100_1
  doi: 10.1002/adma.202101204
– ident: e_1_2_7_44_1
  doi: 10.1002/aenm.201703268
– ident: e_1_2_7_58_1
  doi: 10.1016/j.jallcom.2021.160531
– ident: e_1_2_7_202_1
  doi: 10.1039/C8TA09528K
– ident: e_1_2_7_203_1
  doi: 10.1016/j.cej.2022.135042
– ident: e_1_2_7_231_1
  doi: 10.1002/admi.201901571
– ident: e_1_2_7_114_1
  doi: 10.1002/adfm.201702634
– ident: e_1_2_7_229_1
  doi: 10.1016/j.electacta.2019.135104
– ident: e_1_2_7_232_1
  doi: 10.1016/j.est.2021.103550
– ident: e_1_2_7_200_1
  doi: 10.1039/C9RA07061C
– ident: e_1_2_7_156_1
  doi: 10.1126/sciadv.aao7233
– ident: e_1_2_7_161_1
  doi: 10.1016/j.electacta.2016.09.004
– ident: e_1_2_7_157_1
  doi: 10.1016/j.ensm.2019.03.001
– ident: e_1_2_7_125_1
  doi: 10.1002/ente.202101024
– ident: e_1_2_7_188_1
  doi: 10.1039/D1QI00191D
– ident: e_1_2_7_72_1
  doi: 10.1038/nmat2011
– ident: e_1_2_7_2_1
  doi: 10.1039/C3CS60472A
– ident: e_1_2_7_166_1
  doi: 10.1002/smll.202103517
– ident: e_1_2_7_95_1
  doi: 10.1016/j.matchemphys.2020.123484
– ident: e_1_2_7_143_1
  doi: 10.1016/j.nanoen.2020.104523
– ident: e_1_2_7_213_1
  doi: 10.1039/D1NJ01394G
– ident: e_1_2_7_118_1
  doi: 10.1002/adma.201904320
– ident: e_1_2_7_35_1
  doi: 10.1002/smll.202006424
– ident: e_1_2_7_181_1
  doi: 10.1021/acs.accounts.6b00457
– ident: e_1_2_7_178_1
  doi: 10.1039/C8TA03408G
– ident: e_1_2_7_20_1
  doi: 10.1016/j.flatc.2021.100332
– ident: e_1_2_7_132_1
  doi: 10.1016/j.jpowsour.2020.227937
– ident: e_1_2_7_71_1
  doi: 10.1002/adma.201001068
– ident: e_1_2_7_226_1
  doi: 10.1016/j.nanoen.2022.107146
– ident: e_1_2_7_197_1
  doi: 10.1016/j.jcis.2019.06.031
– ident: e_1_2_7_109_1
  doi: 10.4236/chnstd.2016.52003
– ident: e_1_2_7_65_1
  doi: 10.1016/j.apsusc.2019.144882
– ident: e_1_2_7_24_1
  doi: 10.1016/j.jcis.2018.07.037
– ident: e_1_2_7_73_1
  doi: 10.1016/j.carbon.2016.03.032
– ident: e_1_2_7_199_1
  doi: 10.1016/j.electacta.2020.137154
– ident: e_1_2_7_39_1
  doi: 10.1016/j.electacta.2014.05.023
– ident: e_1_2_7_68_1
  doi: 10.1016/S0378-7753(01)00617-6
– ident: e_1_2_7_184_1
  doi: 10.1021/acsami.7b02987
– ident: e_1_2_7_189_1
  doi: 10.1002/aenm.201800716
– ident: e_1_2_7_236_1
  doi: 10.1039/D1SC00095K
– ident: e_1_2_7_207_1
  doi: 10.1021/acsami.6b10640
– ident: e_1_2_7_93_1
  doi: 10.1039/C9NR10491G
– ident: e_1_2_7_162_1
  doi: 10.1039/C6RA23049K
– ident: e_1_2_7_87_1
  doi: 10.1002/adma.201606802
– ident: e_1_2_7_51_1
  doi: 10.1039/C9NR10015F
– ident: e_1_2_7_154_1
  doi: 10.1016/j.cej.2021.132489
– ident: e_1_2_7_38_1
  doi: 10.1021/acsnano.0c02762
– ident: e_1_2_7_230_1
  doi: 10.1016/j.electacta.2019.01.142
– ident: e_1_2_7_169_1
  doi: 10.1016/j.electacta.2019.135394
– ident: e_1_2_7_153_1
  doi: 10.1007/s11705-021-2085-3
– ident: e_1_2_7_205_1
  doi: 10.1016/j.jallcom.2021.162640
– ident: e_1_2_7_158_1
  doi: 10.1038/am.2016.104
– ident: e_1_2_7_67_1
  doi: 10.1021/acs.energyfuels.2c00718
– ident: e_1_2_7_4_1
  doi: 10.1007/s12274-022-4511-3
– ident: e_1_2_7_215_1
  doi: 10.1039/D2TA02114E
– ident: e_1_2_7_195_1
  doi: 10.1007/s11664-019-07505-y
– ident: e_1_2_7_235_1
  doi: 10.1002/anie.202000352
– ident: e_1_2_7_61_1
  doi: 10.1002/anie.202000352
– ident: e_1_2_7_201_1
  doi: 10.1021/acs.energyfuels.0c03380
– ident: e_1_2_7_148_1
  doi: 10.1039/D0DT00976H
– ident: e_1_2_7_116_1
  doi: 10.1002/aenm.201904162
– ident: e_1_2_7_151_1
  doi: 10.1002/aenm.201000010
– ident: e_1_2_7_234_1
  doi: 10.1016/j.ccr.2020.213341
– ident: e_1_2_7_22_1
  doi: 10.1016/j.matt.2019.05.007
– ident: e_1_2_7_77_1
  doi: 10.1021/acsnano.1c06402
– ident: e_1_2_7_152_1
  doi: 10.1126/science.aas9343
– ident: e_1_2_7_82_1
  doi: 10.1038/nmat2460
– ident: e_1_2_7_101_1
  doi: 10.1039/C9TA05812E
– ident: e_1_2_7_1_1
  doi: 10.1039/C6CS00426A
– ident: e_1_2_7_5_1
  doi: 10.1039/C7MH00512A
– ident: e_1_2_7_60_1
  doi: 10.1016/j.electacta.2016.08.110
– ident: e_1_2_7_105_1
  doi: 10.1002/adfm.201707592
– ident: e_1_2_7_19_1
  doi: 10.1016/j.ensm.2018.09.007
– ident: e_1_2_7_171_1
  doi: 10.1016/j.ensm.2018.11.014
– ident: e_1_2_7_15_1
  doi: 10.1002/smll.201805061
– ident: e_1_2_7_237_1
  doi: 10.1039/D0DT00976H
– ident: e_1_2_7_164_1
  doi: 10.1007/s40820-021-00594-7
– volume: 0
  start-page: 1
  year: 2022
  ident: e_1_2_7_138_1
  publication-title: Energy Environ. Mater.
  contributor:
    fullname: Ji J.
– ident: e_1_2_7_89_1
  doi: 10.1002/aenm.201500110
– ident: e_1_2_7_172_1
  doi: 10.1002/adfm.201902915
– ident: e_1_2_7_168_1
  doi: 10.1039/D0DT03971C
– ident: e_1_2_7_185_1
  doi: 10.1016/j.ceramint.2020.06.067
– ident: e_1_2_7_146_1
  doi: 10.1016/j.nanoen.2019.103935
– ident: e_1_2_7_49_1
  doi: 10.1021/acs.energyfuels.2c01489
– ident: e_1_2_7_198_1
  doi: 10.1149/2162-8777/ac44f8
– ident: e_1_2_7_76_1
  doi: 10.1002/adma.201600319
– ident: e_1_2_7_134_1
  doi: 10.1016/j.jcis.2021.06.145
– ident: e_1_2_7_179_1
  doi: 10.1016/j.cej.2019.123661
– ident: e_1_2_7_163_1
  doi: 10.1002/aenm.201801445
– ident: e_1_2_7_40_1
  doi: 10.1021/am506292b
– ident: e_1_2_7_108_1
  doi: 10.1007/s40820-019-0313-x
– ident: e_1_2_7_160_1
  doi: 10.1039/C5NR04383B
– ident: e_1_2_7_33_1
  doi: 10.1002/aenm.201800013
– ident: e_1_2_7_42_1
  doi: 10.1038/s41560-019-0338-x
– ident: e_1_2_7_90_1
  doi: 10.1016/j.micromeso.2013.11.011
– ident: e_1_2_7_136_1
  doi: 10.1021/acsenergylett.0c00502
– ident: e_1_2_7_111_1
  doi: 10.1039/C9TA08253K
– volume: 539
  start-page: 545
  year: 2019
  ident: e_1_2_7_209_1
  publication-title: J. Alloys Compd.
  contributor:
    fullname: Niu H.
– ident: e_1_2_7_137_1
  doi: 10.1016/j.joule.2020.03.002
– ident: e_1_2_7_165_1
  doi: 10.1039/D0TA02825H
– ident: e_1_2_7_28_1
  doi: 10.1021/acsami.8b04502
– ident: e_1_2_7_173_1
  doi: 10.1002/adfm.202113235
– ident: e_1_2_7_122_1
  doi: 10.1016/j.jcis.2021.12.157
– ident: e_1_2_7_183_1
  doi: 10.1126/science.1230444
– ident: e_1_2_7_94_1
  doi: 10.1016/j.cej.2019.122652
– ident: e_1_2_7_228_1
  doi: 10.1016/j.compositesb.2022.109812
– ident: e_1_2_7_81_1
  doi: 10.1021/jacs.9b11446
– ident: e_1_2_7_129_1
  doi: 10.1021/acs.nanolett.9b01127
– ident: e_1_2_7_31_1
  doi: 10.1002/smll.202203307
– ident: e_1_2_7_66_1
  doi: 10.1016/j.jcis.2018.11.101
– ident: e_1_2_7_14_1
  doi: 10.1039/C9DT04101J
– ident: e_1_2_7_214_1
  doi: 10.1002/anie.202116282
– ident: e_1_2_7_92_1
  doi: 10.1039/C4TA01241K
– ident: e_1_2_7_217_1
  doi: 10.1016/j.jallcom.2020.157181
– ident: e_1_2_7_62_1
  doi: 10.3390/nano10040695
– ident: e_1_2_7_53_1
  doi: 10.1002/er.8452
– ident: e_1_2_7_144_1
  doi: 10.1002/aenm.201904215
– ident: e_1_2_7_167_1
  doi: 10.1016/j.carbon.2020.01.108
– ident: e_1_2_7_106_1
  doi: 10.1016/j.cej.2020.124979
– ident: e_1_2_7_84_1
  doi: 10.1039/c3ra41061g
SSID ssj0011477
Score 2.4977913
SecondaryResourceType review_article
Snippet Metal‐organic frameworks (MOFs) have been important electrochemical energy storage (EES) materials because of their rich species, large specific surface area,...
Metal-organic frameworks (MOFs) have been important electrochemical energy storage (EES) materials because of their rich species, large specific surface area,...
Abstract Metal‐organic frameworks (MOFs) have been important electrochemical energy storage (EES) materials because of their rich species, large specific...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e202300006
SubjectTerms batteries
Composite materials
Conductivity
Electrochemical analysis
Electrochemistry
Electrodes
Energy storage
Metal-organic framework
Metal-organic frameworks
MOF composites
MOF derivatives
Porosity
supercapacitors
Synergistic effect
Title Metal‐Organic Framework Composites and Their Derivatives as Efficient Electrodes for Energy Storage Applications: Recent Progress and Future Perspectives
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ftcr.202300006
https://www.ncbi.nlm.nih.gov/pubmed/36942948
https://www.proquest.com/docview/2828369446
https://search.proquest.com/docview/2789236275
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5VXOilPEvDS0aquGVZx46TcEPLrlClVggWiVuIY-dSKVTNLgdO_Qm98-_6SzpjJ4EFCQlxS-JM4vgx_iae-Qbgq7JWWG7IVarIQlnqONSCq7AapgYHWIL2m_O2-KHOruS36_i6zXNKsTCeH6L_4UYzw-lrmuCFbo4eSUNRUQ0o97fTuKiDuUjIpev0oqePQqjvMi9S5tYQ7Yqs5dhE-aMF6cU16QXQXMStbuGZrMBNV2Xvb_JzMJ_pQXn_jM3xHd-0Cp9aUMpO_Chagw-2XoflUZcLbgMevlsE6f_-_PWhmyWbdD5djBQKOX7ZhhW1YVPaeGCnOK7vHKU4Xm3Y2PFU4PLGxj7rjsHriJbZ2EUesks0_FGvsZMnu-nHDBEtiZyTBxnqY_f4iaNAYeePIaLNJlxNxtPRWdimdQhLSh4YRqaQRsZRGke6QoUgudTKoB2URKmRSmapUViGhm1iVcVtUZW8UFqLWOthrJX4DEv1bW2_ANOVUNxUvNTWyExkeiiEiUvBjcmyqCwCOOw6Nv_l2Ttyz9Mc5djWed_WAex23Z63k7jJyRrFGqPBHMBBX4wtT3sqRW1v53hPkiJEJqrnALb8cOnfRLJRJtMAhq7TX69CPh1d9CfbbxfZgY907N3YdmFp9ntu9xAwzfS-mxX_Acr5D6c
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB7xOMCF5bWQ5bFGQtxSmthxE26otOryEoIicYvi2LkgBURbDpz2J-ydf8cvYcZuAgUJacUxduw4tmf8jT3-BmBXGsNNoMlVKkt8kavIVzyQftGMNU6wFtpv1tviXPauxfFNdPPuFr_jh6g33EgyrL4mAacN6f031lDUVA0K_m1V7jTMoshzCt5wdFkTSCHYt7EXKXarj5ZFMmbZxAr2J4pPrkqfoOYkcrVLT_cHZFWjncfJbWM0VI386QOf43f-ahEWxriUHbqJtARTplyGuXYVDm4Fns8M4vSXv__c7c2cdSu3LkY6hXy_zIBlpWZ9OntgRzi1Hy2rOKYOWMdSVeAKxzou8I7GdATMrGMvH7IrtP1RtbHDdwfqBwxBLRW5ICcyVMm2-q5lQWEXb7dEB6tw3e302z1_HNnBzyl-oB_qTGgRhXEUqgJ1ggiEkhpNoVYYayFFEmuJeWjbtowsApMVeZBJpXikVDNSkv-EmfKuNOvAVMFloIsgV0aLhCeqybmOch5onSRhnnmwV41seu8IPFJH1Rym2Ndp3dcebFbjno7leJCSQYotRpvZg506G3uejlWy0tyN8J1WjCiZ2J49WHPzpf4SlQ0TEXvQtKP-dRPSfvuyfvj1_0V-w1yvf3aanv45P9mAeUp3Xm2bMDN8GJktxE9DtW1F5BWs7BO_
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7RRWq5AH3QhkdrpKq3LJvY8Sbc0LIRLQ-t6CJxS-PYuVQKK3a3B079Cb3z7_glzNhJYKmEVPUYJ3Yc2zP-Jp75BuCzNIabQJOrVJ74olCRr3gg_bIXa1xgfbTfrLfFmTy6EN8uo8s6zynFwjh-iPaHG0mG1dck4BNd7j2QhqKi6lLub6txX8CykIh-CRWdt_xRiPVt6kVK3eqjYZHUJJvYwN5C9cVN6S-kuQhc7c6TrsGPps_O4eRndz5T3eLmCZ3jf3zUOqzWqJQduGX0GpZM9QZeDZpkcG_h9tQgSr_7_cfFbhYsbZy6GGkU8vwyU5ZXmo3p5IEd4sL-ZTnFsXTKhpaoAvc3NnRpdzSWI1xmQxt6yL6j5Y-KjR08Ok7fZwhpqcqIXMhQIdvmU8uBwkYPMaLTd3CRDseDI7_O6-AXlD3QD3UutIjCOApViRpBBEJJjYZQP4y1kCKJtcR7aNn2jSwDk5dFkEuleKRUL1KSb0CnuqrMB2Cq5DLQZVAoo0XCE9XjXEcFD7ROkrDIPfjSTGw2cfQdmSNqDjMc66wdaw-2m2nPaimeZmSOYo_RYvZgt72NI0-HKnllrub4TD9GjExczx68d8ulfRPVDRMRe9Czk_58F7Lx4Ly92Pz3Kp_g5egwzU6-nh1vwQoVO5e2bejMrudmB8HTTH20AnIPZC0Sbg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal-Organic+Framework+Composites+and+Their+Derivatives+as+Efficient+Electrodes+for+Energy+Storage+Applications%3A+Recent+Progress+and+Future+Perspectives&rft.jtitle=Chemical+record&rft.au=Wang%2C+Teng&rft.au=Chen%2C+Shaoqian&rft.au=Chen%2C+Kai-Jie&rft.date=2023-06-01&rft.eissn=1528-0691&rft.volume=23&rft.issue=6&rft.spage=e202300006&rft.epage=e202300006&rft_id=info:doi/10.1002%2Ftcr.202300006&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1527-8999&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1527-8999&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1527-8999&client=summon