Metal‐Organic Framework Composites and Their Derivatives as Efficient Electrodes for Energy Storage Applications: Recent Progress and Future Perspectives
Metal‐organic frameworks (MOFs) have been important electrochemical energy storage (EES) materials because of their rich species, large specific surface area, high porosity and rich active sites. Nevertheless, the poor conductivity, low mechanical and electrochemical stability of pristine MOFs have...
Saved in:
Published in | Chemical record Vol. 23; no. 6; pp. e202300006 - n/a |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.06.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Metal‐organic frameworks (MOFs) have been important electrochemical energy storage (EES) materials because of their rich species, large specific surface area, high porosity and rich active sites. Nevertheless, the poor conductivity, low mechanical and electrochemical stability of pristine MOFs have hindered their further applications. Although single component MOF derivatives have higher conductivity, self‐aggregation often occurs during preparation. Composite design can overcome the shortcomings of MOFs and derivatives and create synergistic effects, resulting in improved electrochemical properties for EES. In this review, recent applications of MOF composites and derivatives as electrodes in different types of batteries and supercapacitors are critically discussed. The advantages, challenges, and future perspectives of MOF composites and derivatives have been given. This review may guide the development of high‐performance MOF composites and derivatives in the field of EES.
Recent applications of metal–organic framework (MOF) composites and derivatives as electrodes in different types of batteries and supercapacitors are presented. Effective material design strategies are raised for obtaining high‐performance MOF composites for electrochemical energy storage (EES) devices. The current issues and future perspectives of MOF composites and derivatives in the field have been given to guide their development in future. |
---|---|
AbstractList | Abstract
Metal‐organic frameworks (MOFs) have been important electrochemical energy storage (EES) materials because of their rich species, large specific surface area, high porosity and rich active sites. Nevertheless, the poor conductivity, low mechanical and electrochemical stability of pristine MOFs have hindered their further applications. Although single component MOF derivatives have higher conductivity, self‐aggregation often occurs during preparation. Composite design can overcome the shortcomings of MOFs and derivatives and create synergistic effects, resulting in improved electrochemical properties for EES. In this review, recent applications of MOF composites and derivatives as electrodes in different types of batteries and supercapacitors are critically discussed. The advantages, challenges, and future perspectives of MOF composites and derivatives have been given. This review may guide the development of high‐performance MOF composites and derivatives in the field of EES. Metal‐organic frameworks (MOFs) have been important electrochemical energy storage (EES) materials because of their rich species, large specific surface area, high porosity and rich active sites. Nevertheless, the poor conductivity, low mechanical and electrochemical stability of pristine MOFs have hindered their further applications. Although single component MOF derivatives have higher conductivity, self‐aggregation often occurs during preparation. Composite design can overcome the shortcomings of MOFs and derivatives and create synergistic effects, resulting in improved electrochemical properties for EES. In this review, recent applications of MOF composites and derivatives as electrodes in different types of batteries and supercapacitors are critically discussed. The advantages, challenges, and future perspectives of MOF composites and derivatives have been given. This review may guide the development of high‐performance MOF composites and derivatives in the field of EES. Recent applications of metal–organic framework (MOF) composites and derivatives as electrodes in different types of batteries and supercapacitors are presented. Effective material design strategies are raised for obtaining high‐performance MOF composites for electrochemical energy storage (EES) devices. The current issues and future perspectives of MOF composites and derivatives in the field have been given to guide their development in future. Metal‐organic frameworks (MOFs) have been important electrochemical energy storage (EES) materials because of their rich species, large specific surface area, high porosity and rich active sites. Nevertheless, the poor conductivity, low mechanical and electrochemical stability of pristine MOFs have hindered their further applications. Although single component MOF derivatives have higher conductivity, self‐aggregation often occurs during preparation. Composite design can overcome the shortcomings of MOFs and derivatives and create synergistic effects, resulting in improved electrochemical properties for EES. In this review, recent applications of MOF composites and derivatives as electrodes in different types of batteries and supercapacitors are critically discussed. The advantages, challenges, and future perspectives of MOF composites and derivatives have been given. This review may guide the development of high‐performance MOF composites and derivatives in the field of EES. |
Author | Chen, Shaoqian Chen, Kai‐Jie Wang, Teng |
Author_xml | – sequence: 1 givenname: Teng orcidid: 0000-0002-4771-126X surname: Wang fullname: Wang, Teng email: wangt42@nwpu.edu.cn organization: Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi' an – sequence: 2 givenname: Shaoqian surname: Chen fullname: Chen, Shaoqian organization: Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi' an – sequence: 3 givenname: Kai‐Jie surname: Chen fullname: Chen, Kai‐Jie email: ckjiscon@nwpu.edu.cn organization: Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi' an |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36942948$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1u1DAURi1URH9gyRZZYsMmxXYcO2FXDTNQqahVGdaR49wMLkmcXietZscjsOfteJI6TFukLvDG1vXxsa-_Q7LX-x4Iec3ZMWdMvB8tHgsmUhaHekYOeCbyhKmC7_1d6yQvimKfHIZwxRjnUusXZD9VhRSFzA_I7y8wmvbPz1_nuDG9s3SFpoNbjz_owneDD26EQE1f0_V3cEg_ArobM7qbuRrosmmcddCPdNmCHdHXsd54pMsecLOlX0ePZgP0ZBhaZ-M534cP9BLsfOQC_QYh7PSraZwQ6AVgGKJpvuAled6YNsCr-_mIfFst14vPydn5p9PFyVliYx8qEbWRtYxtZ6JqGNeSy0rVSgot8loqWeS1inuSCQ2q4WAay42qqjSrKpZVKj0i73beAf31BGEsOxcstK3pwU-hFDovRKqEziL69gl65Sfs4-tKkYt8_lc5C5MdZdGHgNCUA7rO4LbkrJxTK2Nq5WNqkX9zb52qDupH-iGmCOgdcOta2P7fVq4Xl__Ud9F4pyk |
CitedBy_id | crossref_primary_10_1016_j_jelechem_2024_118178 crossref_primary_10_1016_j_cej_2024_149624 crossref_primary_10_1002_smll_202402998 crossref_primary_10_1080_25740881_2024_2310529 crossref_primary_10_1016_j_jpowsour_2024_234576 crossref_primary_10_1039_D3CC03146B |
Cites_doi | 10.1039/c1ee01776d 10.1002/EXP.20210178 10.1002/anie.201712872 10.1016/j.jtice.2017.04.010 10.1016/j.jssc.2021.122736 10.1007/s12274-018-2250-2 10.1039/C8TA07686C 10.1016/j.electacta.2019.135130 10.1002/ange.202000352 10.1016/j.colsurfa.2022.128954 10.1021/acsnano.0c09898 10.1002/smll.202202313 10.1016/j.cej.2019.01.178 10.1016/j.ensm.2018.07.018 10.1021/cr500207g 10.1002/smll.201704435 10.1002/anie.201908542 10.1016/j.rser.2014.11.066 10.1039/b813846j 10.1002/sstr.202000078 10.1002/tcr.201700057 10.1002/aenm.202003203 10.1016/j.ensm.2021.10.039 10.1126/science.aam5852 10.1021/acs.inorgchem.8b01574 10.1007/s11581-022-04655-8 10.1016/j.diamond.2022.108912 10.1016/j.ensm.2020.05.024 10.1021/acsami.7b04584 10.1038/s41586-020-1972-y 10.1039/C8TA00612A 10.1016/j.jpowsour.2015.03.106 10.1007/s41918-018-0024-x 10.1002/asia.201900629 10.1038/s41598-021-04409-y 10.1002/adma.201704303 10.1016/j.est.2021.103698 10.1016/j.jallcom.2021.158764 10.1016/j.jallcom.2019.01.157 10.1021/acs.nanolett.9b01033 10.1016/j.cej.2022.138287 10.1039/C8TA11419F 10.1002/adfm.201906081 10.1002/aenm.201602733 10.1002/smll.201904255 10.1016/j.rser.2011.01.007 10.1039/D0NR03219K 10.1016/j.jpowsour.2022.231030 10.1039/C5RA08226A 10.1007/s40820-021-00699-z 10.1002/cssc.201702270 10.1021/acs.jpclett.6b01236 10.1016/j.nanoen.2019.104032 10.1002/adma.202003313 10.1021/acsami.9b02859 10.1039/D0TA08006C 10.1039/C8TA05065A 10.1021/acsami.5b07024 10.1016/j.est.2022.104238 10.1007/s11581-022-04443-4 10.1016/j.cej.2021.132146 10.1007/s10853-020-05559-6 10.1016/j.cclet.2021.09.103 10.1002/asia.201900848 10.1007/s10934-021-01125-w 10.1002/adfm.201302631 10.1016/j.nanoen.2015.10.029 10.1038/nmat3191 10.1007/s40843-021-1727-3 10.1002/ange.201908542 10.1002/aenm.202001050 10.1016/j.jssc.2020.121568 10.1021/acsami.0c15793 10.1021/acsaem.1c03649 10.1002/celc.201500254 10.1016/j.ensm.2019.08.004 10.1016/j.fuel.2022.124724 10.1007/s40820-021-00728-x 10.1002/ange.201712872 10.1016/j.jpowsour.2012.12.102 10.1016/j.colsurfa.2021.127810 10.1002/adma.201704124 10.1016/j.jallcom.2022.164845 10.1021/acsnano.0c03488 10.1016/j.electacta.2019.04.121 10.1016/j.electacta.2018.01.210 10.1002/adma.201901220 10.1039/C8CC09847F 10.1016/j.energy.2021.123043 10.1016/j.coelec.2017.10.014 10.1016/j.jcis.2020.08.044 10.1016/j.ceramint.2022.02.225 10.1002/aenm.202100321 10.1039/D0TA10603H 10.1002/ente.202000808 10.1039/C8CC05366A 10.1016/j.matchemphys.2022.126311 10.1002/aenm.202200113 10.1002/adfm.201702046 10.1016/j.nanoen.2020.104868 10.1016/j.jechem.2020.04.061 10.1002/adma.202170028 10.1002/advs.201802362 10.1016/j.cej.2022.135945 10.1016/j.jallcom.2022.163649 10.1002/aenm.201801090 10.1002/aenm.201600426 10.1039/D2TA05202D 10.1016/j.electacta.2020.136378 10.1002/aenm.201901892 10.1016/j.rser.2011.11.011 10.1016/j.jpowsour.2016.03.040 10.1002/adma.201902228 10.1016/j.jpowsour.2018.01.028 10.1016/j.jcis.2021.11.129 10.1016/j.jcis.2021.11.175 10.1002/aenm.202100346 10.1007/s12274-020-2848-z 10.1021/acssuschemeng.8b06288 10.1002/adma.202101204 10.1002/aenm.201703268 10.1016/j.jallcom.2021.160531 10.1039/C8TA09528K 10.1016/j.cej.2022.135042 10.1002/admi.201901571 10.1002/adfm.201702634 10.1016/j.electacta.2019.135104 10.1016/j.est.2021.103550 10.1039/C9RA07061C 10.1126/sciadv.aao7233 10.1016/j.electacta.2016.09.004 10.1016/j.ensm.2019.03.001 10.1002/ente.202101024 10.1039/D1QI00191D 10.1038/nmat2011 10.1039/C3CS60472A 10.1002/smll.202103517 10.1016/j.matchemphys.2020.123484 10.1016/j.nanoen.2020.104523 10.1039/D1NJ01394G 10.1002/adma.201904320 10.1002/smll.202006424 10.1021/acs.accounts.6b00457 10.1039/C8TA03408G 10.1016/j.flatc.2021.100332 10.1016/j.jpowsour.2020.227937 10.1002/adma.201001068 10.1016/j.nanoen.2022.107146 10.1016/j.jcis.2019.06.031 10.4236/chnstd.2016.52003 10.1016/j.apsusc.2019.144882 10.1016/j.jcis.2018.07.037 10.1016/j.carbon.2016.03.032 10.1016/j.electacta.2020.137154 10.1016/j.electacta.2014.05.023 10.1016/S0378-7753(01)00617-6 10.1021/acsami.7b02987 10.1002/aenm.201800716 10.1039/D1SC00095K 10.1021/acsami.6b10640 10.1039/C9NR10491G 10.1039/C6RA23049K 10.1002/adma.201606802 10.1039/C9NR10015F 10.1016/j.cej.2021.132489 10.1021/acsnano.0c02762 10.1016/j.electacta.2019.01.142 10.1016/j.electacta.2019.135394 10.1007/s11705-021-2085-3 10.1016/j.jallcom.2021.162640 10.1038/am.2016.104 10.1021/acs.energyfuels.2c00718 10.1007/s12274-022-4511-3 10.1039/D2TA02114E 10.1007/s11664-019-07505-y 10.1002/anie.202000352 10.1021/acs.energyfuels.0c03380 10.1039/D0DT00976H 10.1002/aenm.201904162 10.1002/aenm.201000010 10.1016/j.ccr.2020.213341 10.1016/j.matt.2019.05.007 10.1021/acsnano.1c06402 10.1126/science.aas9343 10.1038/nmat2460 10.1039/C9TA05812E 10.1039/C6CS00426A 10.1039/C7MH00512A 10.1016/j.electacta.2016.08.110 10.1002/adfm.201707592 10.1016/j.ensm.2018.09.007 10.1016/j.ensm.2018.11.014 10.1002/smll.201805061 10.1007/s40820-021-00594-7 10.1002/aenm.201500110 10.1002/adfm.201902915 10.1039/D0DT03971C 10.1016/j.ceramint.2020.06.067 10.1016/j.nanoen.2019.103935 10.1021/acs.energyfuels.2c01489 10.1149/2162-8777/ac44f8 10.1002/adma.201600319 10.1016/j.jcis.2021.06.145 10.1016/j.cej.2019.123661 10.1002/aenm.201801445 10.1021/am506292b 10.1007/s40820-019-0313-x 10.1039/C5NR04383B 10.1002/aenm.201800013 10.1038/s41560-019-0338-x 10.1016/j.micromeso.2013.11.011 10.1021/acsenergylett.0c00502 10.1039/C9TA08253K 10.1016/j.joule.2020.03.002 10.1039/D0TA02825H 10.1021/acsami.8b04502 10.1002/adfm.202113235 10.1016/j.jcis.2021.12.157 10.1126/science.1230444 10.1016/j.cej.2019.122652 10.1016/j.compositesb.2022.109812 10.1021/jacs.9b11446 10.1021/acs.nanolett.9b01127 10.1002/smll.202203307 10.1016/j.jcis.2018.11.101 10.1039/C9DT04101J 10.1002/anie.202116282 10.1039/C4TA01241K 10.1016/j.jallcom.2020.157181 10.3390/nano10040695 10.1002/er.8452 10.1002/aenm.201904215 10.1016/j.carbon.2020.01.108 10.1016/j.cej.2020.124979 10.1039/c3ra41061g |
ContentType | Journal Article |
Copyright | 2023 The Chemical Society of Japan & Wiley‐VCH GmbH 2023 The Chemical Society of Japan & Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 The Chemical Society of Japan & Wiley‐VCH GmbH – notice: 2023 The Chemical Society of Japan & Wiley-VCH GmbH. |
DBID | NPM AAYXX CITATION 7QO 7T7 8FD C1K FR3 P64 7X8 |
DOI | 10.1002/tcr.202300006 |
DatabaseName | PubMed CrossRef Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Engineering Research Database Biotechnology Research Abstracts Technology Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | CrossRef Engineering Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1528-0691 |
EndPage | n/a |
ExternalDocumentID | 10_1002_tcr_202300006 36942948 TCR202300006 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21905229; 22071195 – fundername: Key Research and Development Projects of Shaanxi Province funderid: 2023-YBGY-293; 2023-YBGY-425 – fundername: Youth Innovation Team of Shaanxi Universities, and the National College Student Innovation and Entrepreneurship Training Program funderid: S202210699717 – fundername: National Natural Science Foundation of China grantid: 21905229 – fundername: Key Research and Development Projects of Shaanxi Province grantid: 2023-YBGY-293 – fundername: National Natural Science Foundation of China grantid: 22071195 – fundername: Key Research and Development Projects of Shaanxi Province grantid: 2023-YBGY-425 – fundername: Youth Innovation Team of Shaanxi Universities, and the National College Student Innovation and Entrepreneurship Training Program grantid: S202210699717 |
GroupedDBID | --- .3N .Y3 05W 0R~ 10A 123 1OC 29B 31~ 33P 3WU 4.4 50Y 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 53G 5VS 66C 702 7PT 8-1 8UM A00 AAESR AAHHS AANLZ AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ASPBG AVWKF AZFZN AZVAB BDRZF BFHJK BMXJE BROTX BRXPI BY8 CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD F5P FEDTE G-S G.N GODZA HF~ HGLYW HVGLF HZ~ IX1 J0M LATKE LAW LC2 LC3 LEEKS LH- LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MSFUL MSSTM MXFUL MXSTM MY~ N9A O9- OIG P2W P4D Q11 QB0 QRW R.K RAD ROL RX1 SUPJJ V2E W99 WBKPD WOHZO WQJ WXSBR WYJ WYUIH XG1 XV2 ZZTAW ~IA NPM AAYXX CITATION 7QO 7T7 8FD C1K FR3 P64 7X8 |
ID | FETCH-LOGICAL-c3696-2da4d452852bf017414b6d642728d46498d68524027e6f1eafc1a6bb35bb05b63 |
IEDL.DBID | DR2 |
ISSN | 1527-8999 |
IngestDate | Sat Oct 05 05:45:18 EDT 2024 Thu Oct 10 19:18:07 EDT 2024 Thu Sep 12 19:14:52 EDT 2024 Wed Oct 16 00:38:47 EDT 2024 Sat Aug 24 01:20:30 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Metal-organic framework MOF composites batteries supercapacitors MOF derivatives |
Language | English |
License | 2023 The Chemical Society of Japan & Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3696-2da4d452852bf017414b6d642728d46498d68524027e6f1eafc1a6bb35bb05b63 |
Notes | Both authors contributed equally . ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ORCID | 0000-0002-4771-126X |
PMID | 36942948 |
PQID | 2828369446 |
PQPubID | 1006501 |
PageCount | 25 |
ParticipantIDs | proquest_miscellaneous_2789236275 proquest_journals_2828369446 crossref_primary_10_1002_tcr_202300006 pubmed_primary_36942948 wiley_primary_10_1002_tcr_202300006_TCR202300006 |
PublicationCentury | 2000 |
PublicationDate | June 2023 2023-Jun 2023-06-00 20230601 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: June 2023 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Chemical record |
PublicationTitleAlternate | Chem Rec |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 604 2022; 450 2021; 65 2013; 3 2019; 11 2019; 12 2019; 15 2019; 14 2020; 161 2019; 17 2019; 16 2019; 19 2020; 14 2020; 13 2020; 12 2012; 16 2020; 11 2020; 10 2022; 613 2020; 329 2022; 610 2022; 28 2022; 611 2014; 135 2022; 441 2022; 287 2018; 6 2010; 22 2018; 8 2018; 2 2010; 1 2016; 316 2017; 76 2020; 290 2019; 23 2020; 578 2022; 36 2007; 6 2019; 553 2019; 311 2019; 29 2018; 30 2020; 331 2022; 32 2013; 231 2020; 455 2022; 33 2022; 324 2019; 7 2018; 28 2019; 9 2019; 4 2019; 6 2021; 45 2019; 31 2019; 1 2020; 381 2020; 34 2013; 341 2020; 32 2011; 4 2021; 50 2021; 52 2022; 910 2022; 632 2022; 236 2014; 43 2017; 50 2016; 6 2018; 18 2016; 7 2021; 56 2020; 31 2020; 30 2016; 219 2022; 5 2020; 395 2001; 97–98 2020; 392 2019; 48 2022; 12 2022; 15 2020; 24 2016; 215 2022; 0 2022; 97 2022; 10 2022; 11 2016; 28 2022; 901 2018; 11 2018; 10 2016; 8 2018; 14 2022; 18 2017; 6 2018; 361 2017; 7 2017; 3 2017; 4 2013; 24 2019; 55 2020; 362 2021; 28 2017; 46 2020 2020; 59 132 2011; 11 2019; 366 2011; 15 2021; 881 2016; 103 2017; 356 2017; 9 2022; 897 2020; 8 2022; 243 2022; 123 2017; 30 2020; 5 2020; 4 2014; 2 2021; 33 2019; 64 2019; 65 2018; 531 2018 2018; 57 130 2018; 379 2015; 43 2020; 9 2020; 49 2020; 255 2020; 46 2016; 05 2014; 6 2022; 646 2022; 523 2020; 416 2015; 2 2022; 430 2021; 9 2021; 8 2018; 265 2015; 5 2015; 18 2021; 2 2017; 27 2022; 51 2021; 867 2015; 285 2022; 46 2019; 784 2020; 349 2022; 47 2022; 48 2019; 301 2021; 582 2017; 29 2022; 44 2020; 509 2021; 1 2019; 141 2015; 7 2014; 114 2019 2019; 58 131 2022; 435 2021; 13 2021; 15 2021; 12 2020; 74 2019; 539 2022; 61 2021; 854 2021; 17 2020; 70 2009; 8 2019; 538 2022; 429 2022; 307 2014; 185 2018; 54 2009; 38 2018; 57 e_1_2_7_3_1 e_1_2_7_104_1 e_1_2_7_127_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_191_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_142_1 e_1_2_7_165_1 e_1_2_7_188_1 e_1_2_7_202_1 e_1_2_7_225_1 e_1_2_7_116_1 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_180_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_56_1 e_1_2_7_79_1 e_1_2_7_131_1 e_1_2_7_131_2 e_1_2_7_154_1 e_1_2_7_237_1 e_1_2_7_177_1 e_1_2_7_214_1 e_1_2_7_139_1 e_1_2_7_4_1 e_1_2_7_128_1 e_1_2_7_105_1 e_1_2_7_82_1 e_1_2_7_120_1 e_1_2_7_192_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_67_1 e_1_2_7_143_1 e_1_2_7_189_1 e_1_2_7_29_1 e_1_2_7_203_1 e_1_2_7_226_1 e_1_2_7_166_1 e_1_2_7_117_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_181_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_238_1 e_1_2_7_78_1 e_1_2_7_193_1 e_1_2_7_132_1 e_1_2_7_155_1 e_1_2_7_178_1 e_1_2_7_215_1 e_1_2_7_230_1 e_1_2_7_106_1 e_1_2_7_129_1 e_1_2_7_9_1 e_1_2_7_81_1 e_1_2_7_121_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_170_1 e_1_2_7_227_1 e_1_2_7_89_1 e_1_2_7_182_1 e_1_2_7_28_1 e_1_2_7_144_1 e_1_2_7_167_1 e_1_2_7_204_1 e_1_2_7_118_1 e_1_2_7_110_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_171_1 e_1_2_7_216_1 e_1_2_7_194_1 e_1_2_7_39_1 e_1_2_7_133_1 e_1_2_7_156_1 e_1_2_7_179_1 e_1_2_7_231_1 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_122_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_205_1 e_1_2_7_228_1 e_1_2_7_160_1 e_1_2_7_183_1 e_1_2_7_27_1 e_1_2_7_145_1 e_1_2_7_220_1 e_1_2_7_168_1 e_1_2_7_119_1 e_1_2_7_91_1 e_1_2_7_111_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_172_1 e_1_2_7_195_1 e_1_2_7_217_1 e_1_2_7_38_1 e_1_2_7_134_1 e_1_2_7_232_1 e_1_2_7_157_1 e_1_2_7_108_1 e_1_2_7_7_1 e_1_2_7_100_1 e_1_2_7_123_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_161_1 e_1_2_7_184_1 e_1_2_7_206_1 e_1_2_7_26_1 e_1_2_7_229_1 e_1_2_7_49_1 e_1_2_7_146_1 e_1_2_7_169_1 e_1_2_7_221_1 e_1_2_7_90_1 e_1_2_7_112_1 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_75_1 Ji J. (e_1_2_7_138_1) 2022; 0 e_1_2_7_150_1 e_1_2_7_196_1 e_1_2_7_37_1 e_1_2_7_173_1 e_1_2_7_218_1 e_1_2_7_135_1 e_1_2_7_158_1 e_1_2_7_233_1 e_1_2_7_210_1 e_1_2_7_109_1 e_1_2_7_8_1 e_1_2_7_124_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_63_1 e_1_2_7_86_1 e_1_2_7_185_1 e_1_2_7_207_1 e_1_2_7_48_1 e_1_2_7_162_1 Niu H. (e_1_2_7_209_1) 2019; 539 e_1_2_7_147_1 e_1_2_7_222_1 e_1_2_7_113_1 e_1_2_7_51_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_151_1 e_1_2_7_174_1 e_1_2_7_219_1 e_1_2_7_197_1 e_1_2_7_234_1 e_1_2_7_136_1 e_1_2_7_211_1 e_1_2_7_159_1 e_1_2_7_5_1 e_1_2_7_102_1 e_1_2_7_125_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_85_1 e_1_2_7_47_1 e_1_2_7_140_1 e_1_2_7_163_1 e_1_2_7_208_1 e_1_2_7_223_1 e_1_2_7_186_1 e_1_2_7_148_1 e_1_2_7_200_1 e_1_2_7_114_1 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_152_1 e_1_2_7_235_2 e_1_2_7_175_1 e_1_2_7_212_1 e_1_2_7_198_1 e_1_2_7_235_1 e_1_2_7_137_1 e_1_2_7_6_1 e_1_2_7_103_2 e_1_2_7_126_1 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_61_2 e_1_2_7_61_1 e_1_2_7_190_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_69_1 e_1_2_7_141_1 e_1_2_7_201_1 e_1_2_7_224_1 e_1_2_7_164_1 e_1_2_7_187_1 e_1_2_7_149_1 e_1_2_7_115_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_130_1 e_1_2_7_153_1 e_1_2_7_176_1 e_1_2_7_199_1 e_1_2_7_213_1 e_1_2_7_236_1 |
References_xml | – volume: 70 year: 2020 publication-title: Nano Energy – volume: 49 start-page: 5730 year: 2020 end-page: 5735 publication-title: Dalton Trans. – volume: 56 start-page: 5868 year: 2021 end-page: 5877 publication-title: J. Mater. Sci. – volume: 18 year: 2022 publication-title: Small – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 901 year: 2022 publication-title: J. Alloys Compd. – volume: 1 start-page: 90 year: 2019 end-page: 114 publication-title: Matter – volume: 9 start-page: 36123 year: 2019 end-page: 36135 publication-title: RSC Adv. – volume: 24 start-page: 22 year: 2020 end-page: 51 publication-title: Energy Storage Mater. – volume: 6 start-page: 100 year: 2017 end-page: 107 publication-title: Curr. Opin. Electrochem. – volume: 31 start-page: 27 year: 2020 end-page: 35 publication-title: Energy Storage Mater. – volume: 12 start-page: 4552 year: 2020 end-page: 4561 publication-title: Nanoscale – volume: 349 year: 2020 publication-title: Electrochim. Acta – volume: 46 start-page: 22934 year: 2020 end-page: 22943 publication-title: Ceram. Int. – volume: 14 start-page: 8495 year: 2020 end-page: 8507 publication-title: ACS Nano – volume: 15 start-page: 1487 year: 2021 end-page: 1499 publication-title: Front. Chem. Sci. Eng. – volume: 435 year: 2022 publication-title: Chem. Eng. J. – volume: 57 start-page: 10953 year: 2018 end-page: 10960 publication-title: Inorg. Chem. – volume: 9 start-page: 14309 year: 2017 end-page: 14318 publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 15040 year: 2018 end-page: 15046 publication-title: J. Mater. Chem. A – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 34 start-page: 16879 year: 2020 end-page: 16884 publication-title: Energy Fuels – volume: 12 year: 2021 publication-title: Adv. Energy Mater. – volume: 307 year: 2022 publication-title: J. Solid State Chem. – volume: 28 start-page: 1837 year: 2021 end-page: 1865 publication-title: J. Porous Mater. – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 881 year: 2021 publication-title: J. Alloys Compd. – volume: 7 start-page: 1725 year: 2019 end-page: 1736 publication-title: J. Mater. Chem. A – volume: 28 start-page: 4185 year: 2022 end-page: 4194 publication-title: Ionics – volume: 10 year: 2022 publication-title: Energy Technol. – volume: 0 start-page: 1 year: 2022 end-page: 10 publication-title: Energy Environ. Mater. – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 531 start-page: 148 year: 2018 end-page: 159 publication-title: J. Colloid Interface Sci. – volume: 7 start-page: 1315 year: 2019 end-page: 1322 publication-title: J. Mater. Chem. A – volume: 285 start-page: 281 year: 2015 end-page: 290 publication-title: J. Power Sources – volume: 381 year: 2020 publication-title: Chem. Eng. J. – volume: 10 start-page: 16962 year: 2022 end-page: 16975 publication-title: J. Mater. Chem. A – volume: 5 start-page: 1235 year: 2022 end-page: 1243 publication-title: ACS Appl. Energ. Mater. – volume: 48 start-page: 7011 year: 2019 end-page: 7024 publication-title: J. Electron. Mater. – volume: 6 start-page: 13908 year: 2018 end-page: 13917 publication-title: J. Mater. Chem. A – volume: 97–98 start-page: 188 year: 2001 end-page: 190 publication-title: J. Power Sources – volume: 7 start-page: 20999 year: 2015 end-page: 21004 publication-title: ACS Appl. Mater. Interfaces – volume: 243 year: 2022 publication-title: Energy – volume: 11 start-page: 709 year: 2018 end-page: 715 publication-title: ChemSusChem – volume: 6 year: 2019 publication-title: Adv. Mater. Interfaces – volume: 6 start-page: 858 year: 2007 end-page: 861 publication-title: Nat. Mater. – volume: 11 start-page: 78 year: 2019 publication-title: Nano-Micro Lett. – volume: 4 start-page: 771 year: 2020 end-page: 799 publication-title: Joule – volume: 450 year: 2022 publication-title: Chem. Eng. J. – volume: 236 year: 2022 publication-title: Composites Part B – volume: 47 year: 2022 publication-title: J. Energy Storage – volume: 65 start-page: 59 year: 2021 end-page: 68 publication-title: Sci. China Mater. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 324 year: 2022 publication-title: Fuel – volume: 32 year: 2022 publication-title: FlatChem – volume: 50 start-page: 857 year: 2017 end-page: 865 publication-title: Acc. Chem. Res. – volume: 2 year: 2021 publication-title: Small Structures – volume: 48 start-page: 16754 year: 2022 end-page: 16763 publication-title: Ceram. Int. – volume: 123 year: 2022 publication-title: Diamond Relat. Mater. – volume: 11 start-page: 15662 year: 2019 end-page: 15669 publication-title: ACS Appl. Mater. Interfaces – volume: 14 start-page: 10210 year: 2020 end-page: 10218 publication-title: ACS Nano – volume: 74 year: 2020 publication-title: Nano Energy – volume: 8 start-page: 3325 year: 2021 end-page: 3335 publication-title: Inorg. Chem. Front. – volume: 231 start-page: 153 year: 2013 end-page: 162 publication-title: J. Power Sources – volume: 103 start-page: 356 year: 2016 end-page: 362 publication-title: Carbon – volume: 7 start-page: 2945 year: 2016 end-page: 2950 publication-title: J. Phys. Chem. Lett. – volume: 55 start-page: 1746 year: 2019 end-page: 1749 publication-title: Chem. Commun. – volume: 8 start-page: 500 year: 2009 end-page: 506 publication-title: Nat. Mater. – volume: 17 start-page: 167 year: 2019 end-page: 177 publication-title: Energy Storage Mater. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 33 start-page: 2669 year: 2022 end-page: 2676 publication-title: Chin. Chem. Lett. – volume: 18 start-page: 459 year: 2018 end-page: 479 publication-title: Chem. Rec. – volume: 23 start-page: 664 year: 2019 end-page: 669 publication-title: Energy Storage Mater. – volume: 4 start-page: 1122 year: 2017 end-page: 1127 publication-title: Mater. Horiz. – volume: 611 start-page: 718 year: 2022 end-page: 725 publication-title: J. Colloid Interface Sci. – volume: 1 start-page: 34 year: 2010 end-page: 50 publication-title: Adv. Energy Mater. – volume: 610 start-page: 863 year: 2022 end-page: 878 publication-title: J. Colloid Interface Sci. – volume: 3 year: 2017 publication-title: Sci. Adv. – volume: 578 start-page: 251 year: 2020 end-page: 255 publication-title: Nature – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 8 start-page: e294 year: 2016 end-page: e294 publication-title: NPG Asia Mater. – volume: 19 start-page: 4391 year: 2019 end-page: 4399 publication-title: Nano Lett. – volume: 15 start-page: 3228 year: 2021 end-page: 3240 publication-title: ACS Nano – volume: 8 start-page: 9355 year: 2020 end-page: 9363 publication-title: J. Mater. Chem. A – volume: 76 start-page: 65 year: 2017 end-page: 72 publication-title: J. Taiwan Inst. Chem. Eng. – volume: 49 start-page: 411 year: 2020 end-page: 417 publication-title: Dalton Trans. – volume: 290 year: 2020 publication-title: J. Solid State Chem. – volume: 455 year: 2020 publication-title: J. Power Sources – volume: 141 start-page: 20037 year: 2019 end-page: 20042 publication-title: J. Am. Chem. Soc. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 392 year: 2020 publication-title: Chem. Eng. J. – volume: 24 start-page: 1243 year: 2013 end-page: 1250 publication-title: Adv. Funct. Mater. – volume: 265 start-page: 336 year: 2018 end-page: 347 publication-title: Electrochim. Acta – volume: 15 start-page: 2149 year: 2011 end-page: 2163 publication-title: Renewable Sustainable Energy Rev. – volume: 16 start-page: 1412 year: 2012 end-page: 1425 publication-title: Renewable Sustainable Energy Rev. – volume: 316 start-page: 176 year: 2016 end-page: 182 publication-title: J. Power Sources – volume: 361 start-page: 777 year: 2018 end-page: 781 publication-title: Science – volume: 255 year: 2020 publication-title: Mater. Chem. Phys. – volume: 15 year: 2019 publication-title: Small – volume: 2 start-page: 29 year: 2018 end-page: 104 publication-title: Electrochem. Energy Rev. – volume: 28 start-page: 2349 year: 2022 end-page: 2362 publication-title: Ionics – volume: 509 year: 2020 publication-title: Appl. Surf. Sci. – volume: 7 start-page: 6113 year: 2019 end-page: 6121 publication-title: ACS Sustainable Chem. Eng. – volume: 48 year: 2022 publication-title: J. Energy Storage – volume: 14 start-page: 3566 year: 2019 end-page: 3571 publication-title: Chem. Asian J. – volume: 8 start-page: 28904 year: 2016 end-page: 28916 publication-title: ACS Appl. Mater. Interfaces – volume: 46 start-page: 2660 year: 2017 end-page: 2677 publication-title: Chem. Soc. Rev. – volume: 215 start-page: 410 year: 2016 end-page: 419 publication-title: Electrochim. Acta – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 3 start-page: 11774 year: 2013 publication-title: RSC Adv. – volume: 7 start-page: 1479 year: 2019 end-page: 1490 publication-title: J. Mater. Chem. A – volume: 538 start-page: 267 year: 2019 end-page: 276 publication-title: J. Colloid Interface Sci. – volume: 10 start-page: 23063 year: 2018 end-page: 23073 publication-title: ACS Appl. Mater. Interfaces – volume: 14 start-page: 3577 year: 2019 end-page: 3582 publication-title: Chem. Asian J. – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 13 start-page: 73 year: 2021 publication-title: Nano-Micro Lett. – volume: 553 start-page: 328 year: 2019 end-page: 340 publication-title: J. Colloid Interface Sci. – volume: 12 start-page: 5737 year: 2021 end-page: 5766 publication-title: Chem. Sci. – volume: 9 start-page: 15510 year: 2017 end-page: 15524 publication-title: ACS Appl. Mater. Interfaces – volume: 379 start-page: 350 year: 2018 end-page: 361 publication-title: J. Power Sources – volume: 30 year: 2017 publication-title: Adv. Mater. – volume: 5 start-page: 1665 year: 2020 end-page: 1675 publication-title: ACS Energy Lett. – volume: 45 start-page: 11174 year: 2021 end-page: 11182 publication-title: New J. Chem. – volume: 14 year: 2018 publication-title: Small – volume: 4 start-page: 4710 year: 2011 end-page: 4717 publication-title: Energy Environ. Sci. – volume: 13 start-page: 167 year: 2021 publication-title: Nano-Micro Lett. – volume: 7 start-page: 24059 year: 2019 end-page: 24091 publication-title: J. Mater. Chem. A – volume: 15 start-page: 18742 year: 2021 end-page: 18776 publication-title: ACS Nano – volume: 64 year: 2019 publication-title: Nano Energy – volume: 2 start-page: 13509 year: 2014 end-page: 13512 publication-title: J. Mater. Chem. A – volume: 11 year: 2022 publication-title: ECS J. Solid State Sci. Technol. – volume: 329 year: 2020 publication-title: Electrochim. Acta – volume: 114 start-page: 11444 year: 2014 end-page: 11502 publication-title: Chem. Rev. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 59 132 start-page: 8247 8324 year: 2020 2020 end-page: 8254 8331 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 05 start-page: 15 year: 2016 end-page: 26 publication-title: Chinese Studies – volume: 185 start-page: 92 year: 2014 end-page: 96 publication-title: Microporous Mesoporous Mater. – volume: 6 start-page: 6754 year: 2018 end-page: 6771 publication-title: J. Mater. Chem. A – volume: 441 year: 2022 publication-title: Chem. Eng. J. – volume: 646 year: 2022 publication-title: Colloids Surf. A – volume: 395 year: 2020 publication-title: Chem. Eng. J. – volume: 43 start-page: 843 year: 2015 end-page: 862 publication-title: Renewable Sustainable Energy Rev. – volume: 429 year: 2022 publication-title: Chem. Eng. J. – volume: 43 start-page: 5468 year: 2014 end-page: 5512 publication-title: Chem. Soc. Rev. – volume: 16 start-page: 545 year: 2019 end-page: 573 publication-title: Energy Storage Mater. – volume: 17 year: 2021 publication-title: Small – volume: 52 start-page: 277 year: 2021 end-page: 283 publication-title: J. Energy Chem. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 523 year: 2022 publication-title: J. Power Sources – volume: 867 year: 2021 publication-title: J. Alloys Compd. – volume: 362 year: 2020 publication-title: Electrochim. Acta – volume: 9 year: 2020 publication-title: Energy Technol. – volume: 13 start-page: 2289 year: 2020 end-page: 2298 publication-title: Nano Res. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 311 start-page: 62 year: 2019 end-page: 71 publication-title: Electrochim. Acta – volume: 65 year: 2019 publication-title: Nano Energy – volume: 17 start-page: 194 year: 2019 end-page: 203 publication-title: Energy Storage Mater. – volume: 51 year: 2022 publication-title: J. Energy Storage – volume: 613 start-page: 23 year: 2022 end-page: 34 publication-title: J. Colloid Interface Sci. – volume: 582 start-page: 236 year: 2021 end-page: 245 publication-title: J. Colloid Interface Sci. – volume: 50 start-page: 2093 year: 2021 end-page: 2101 publication-title: Dalton Trans. – volume: 12 start-page: 54644 year: 2020 end-page: 54652 publication-title: ACS Appl. Mater. Interfaces – volume: 11 year: 2020 publication-title: Adv. Energy Mater. – volume: 135 start-page: 420 year: 2014 end-page: 427 publication-title: Electrochim. Acta – volume: 287 year: 2022 publication-title: Mater. Chem. Phys. – volume: 57 130 start-page: 3916 3980 year: 2018 2018 end-page: 3921 3985 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 18 start-page: 265 year: 2015 end-page: 272 publication-title: Nano Energy – volume: 416 year: 2020 publication-title: Coord. Chem. Rev. – volume: 15 start-page: 6831 year: 2022 end-page: 6840 publication-title: Nano Res. – volume: 12 start-page: 16901 year: 2020 end-page: 16909 publication-title: Nanoscale – volume: 36 start-page: 5483 year: 2022 end-page: 5491 publication-title: Energy Fuels – volume: 6 start-page: 21325 year: 2014 end-page: 21334 publication-title: ACS Appl. Mater. Interfaces – volume: 301 start-page: 117 year: 2019 end-page: 125 publication-title: Electrochim. Acta – volume: 910 year: 2022 publication-title: J. Alloys Compd. – volume: 10 start-page: 695 year: 2020 publication-title: Nanomaterials – volume: 28 start-page: 5242 year: 2016 end-page: 5248 publication-title: Adv. Mater. – volume: 632 year: 2022 publication-title: Colloids Surf. A – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 341 year: 2013 publication-title: Science – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 36 start-page: 8471 year: 2022 end-page: 8479 publication-title: Energy Fuels – volume: 9 start-page: 2948 year: 2021 end-page: 2958 publication-title: J. Mater. Chem. A – volume: 897 year: 2022 publication-title: J. Alloys Compd. – volume: 46 start-page: 18379 year: 2022 end-page: 18393 publication-title: Int. J. Energy Res. – volume: 2 start-page: 1645 year: 2015 end-page: 1651 publication-title: ChemElectroChem – volume: 61 year: 2022 publication-title: Angew. Chem. Int. Ed. – volume: 44 start-page: 508 year: 2022 end-page: 516 publication-title: Energy Storage Mater. – volume: 854 year: 2021 publication-title: J. Alloys Compd. – volume: 12 start-page: 664 year: 2022 publication-title: Sci. Rep. – volume: 5 start-page: 58772 year: 2015 end-page: 58776 publication-title: RSC Adv. – volume: 4 start-page: 180 year: 2019 end-page: 186 publication-title: Nat. Energy – volume: 7 start-page: 19465 year: 2019 end-page: 19470 publication-title: J. Mater. Chem. A – volume: 8 start-page: 3296 year: 2016 end-page: 3306 publication-title: Nanoscale – volume: 784 start-page: 869 year: 2019 end-page: 876 publication-title: J. Alloys Compd. – volume: 97 year: 2022 publication-title: Nano Energy – volume: 539 start-page: 545 year: 2019 end-page: 552 publication-title: J. Alloys Compd. – volume: 10 start-page: 12225 year: 2022 end-page: 12234 publication-title: J. Mater. Chem. A – volume: 11 start-page: 19 year: 2011 end-page: 29 publication-title: Nat. Mater. – volume: 19 start-page: 4965 year: 2019 end-page: 4973 publication-title: Nano Lett. – volume: 12 start-page: 15214 year: 2020 end-page: 15221 publication-title: Nanoscale – volume: 8 start-page: 22163 year: 2020 end-page: 22174 publication-title: J. Mater. Chem. A – volume: 161 start-page: 502 year: 2020 end-page: 509 publication-title: Carbon – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 366 start-page: 622 year: 2019 end-page: 630 publication-title: Chem. Eng. J. – volume: 430 year: 2022 publication-title: Chem. Eng. J. – volume: 12 start-page: 2218 year: 2019 end-page: 2223 publication-title: Nano Res. – volume: 58 131 start-page: 14740 14882 year: 2019 2019 end-page: 14747 14889 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 6 start-page: 99179 year: 2016 end-page: 99183 publication-title: RSC Adv. – volume: 13 start-page: 202 year: 2021 publication-title: Nano-Micro Lett. – volume: 219 start-page: 492 year: 2016 end-page: 501 publication-title: Electrochim. Acta – volume: 1 year: 2021 publication-title: Exploration – volume: 38 start-page: 2520 year: 2009 publication-title: Chem. Soc. Rev. – volume: 331 year: 2020 publication-title: Electrochim. Acta – volume: 54 start-page: 9474 year: 2018 end-page: 9477 publication-title: Chem. Commun. – volume: 356 start-page: 599 year: 2017 end-page: 604 publication-title: Science – volume: 604 start-page: 319 year: 2021 end-page: 326 publication-title: J. Colloid Interface Sci. – volume: 22 start-page: 3906 year: 2010 end-page: 3924 publication-title: Adv. Mater. – ident: e_1_2_7_159_1 doi: 10.1039/c1ee01776d – ident: e_1_2_7_187_1 doi: 10.1002/EXP.20210178 – ident: e_1_2_7_103_1 doi: 10.1002/anie.201712872 – ident: e_1_2_7_23_1 doi: 10.1016/j.jtice.2017.04.010 – ident: e_1_2_7_121_1 doi: 10.1016/j.jssc.2021.122736 – ident: e_1_2_7_120_1 doi: 10.1007/s12274-018-2250-2 – ident: e_1_2_7_27_1 doi: 10.1039/C8TA07686C – ident: e_1_2_7_210_1 doi: 10.1016/j.electacta.2019.135130 – ident: e_1_2_7_235_2 doi: 10.1002/ange.202000352 – ident: e_1_2_7_222_1 doi: 10.1016/j.colsurfa.2022.128954 – ident: e_1_2_7_126_1 doi: 10.1021/acsnano.0c09898 – ident: e_1_2_7_176_1 doi: 10.1002/smll.202202313 – ident: e_1_2_7_50_1 doi: 10.1016/j.cej.2019.01.178 – ident: e_1_2_7_10_1 doi: 10.1016/j.ensm.2018.07.018 – ident: e_1_2_7_69_1 doi: 10.1021/cr500207g – ident: e_1_2_7_17_1 doi: 10.1002/smll.201704435 – ident: e_1_2_7_131_1 doi: 10.1002/anie.201908542 – ident: e_1_2_7_3_1 doi: 10.1016/j.rser.2014.11.066 – ident: e_1_2_7_16_1 doi: 10.1039/b813846j – ident: e_1_2_7_182_1 doi: 10.1002/sstr.202000078 – ident: e_1_2_7_115_1 doi: 10.1002/tcr.201700057 – ident: e_1_2_7_141_1 doi: 10.1002/aenm.202003203 – ident: e_1_2_7_9_1 doi: 10.1016/j.ensm.2021.10.039 – ident: e_1_2_7_43_1 doi: 10.1126/science.aam5852 – ident: e_1_2_7_191_1 doi: 10.1021/acs.inorgchem.8b01574 – ident: e_1_2_7_52_1 doi: 10.1007/s11581-022-04655-8 – ident: e_1_2_7_227_1 doi: 10.1016/j.diamond.2022.108912 – ident: e_1_2_7_13_1 doi: 10.1016/j.ensm.2020.05.024 – ident: e_1_2_7_74_1 doi: 10.1021/acsami.7b04584 – ident: e_1_2_7_86_1 doi: 10.1038/s41586-020-1972-y – ident: e_1_2_7_18_1 doi: 10.1039/C8TA00612A – ident: e_1_2_7_211_1 doi: 10.1016/j.jpowsour.2015.03.106 – ident: e_1_2_7_34_1 doi: 10.1007/s41918-018-0024-x – ident: e_1_2_7_208_1 doi: 10.1002/asia.201900629 – ident: e_1_2_7_225_1 doi: 10.1038/s41598-021-04409-y – ident: e_1_2_7_29_1 doi: 10.1002/adma.201704303 – ident: e_1_2_7_193_1 doi: 10.1016/j.est.2021.103698 – ident: e_1_2_7_12_1 doi: 10.1016/j.jallcom.2021.158764 – ident: e_1_2_7_56_1 doi: 10.1016/j.jallcom.2019.01.157 – ident: e_1_2_7_104_1 doi: 10.1021/acs.nanolett.9b01033 – ident: e_1_2_7_78_1 doi: 10.1016/j.cej.2022.138287 – ident: e_1_2_7_117_1 doi: 10.1039/C8TA11419F – ident: e_1_2_7_147_1 doi: 10.1002/adfm.201906081 – ident: e_1_2_7_190_1 doi: 10.1002/aenm.201602733 – ident: e_1_2_7_63_1 doi: 10.1002/smll.201904255 – ident: e_1_2_7_7_1 doi: 10.1016/j.rser.2011.01.007 – ident: e_1_2_7_48_1 doi: 10.1039/D0NR03219K – ident: e_1_2_7_59_1 doi: 10.1016/j.jpowsour.2022.231030 – ident: e_1_2_7_25_1 doi: 10.1039/C5RA08226A – ident: e_1_2_7_139_1 doi: 10.1007/s40820-021-00699-z – ident: e_1_2_7_177_1 doi: 10.1002/cssc.201702270 – ident: e_1_2_7_112_1 doi: 10.1021/acs.jpclett.6b01236 – ident: e_1_2_7_54_1 doi: 10.1016/j.nanoen.2019.104032 – ident: e_1_2_7_170_1 doi: 10.1002/adma.202003313 – ident: e_1_2_7_149_1 doi: 10.1021/acsami.9b02859 – ident: e_1_2_7_11_1 doi: 10.1039/D0TA08006C – ident: e_1_2_7_21_1 doi: 10.1039/C8TA05065A – ident: e_1_2_7_91_1 doi: 10.1021/acsami.5b07024 – ident: e_1_2_7_212_1 doi: 10.1016/j.est.2022.104238 – ident: e_1_2_7_224_1 doi: 10.1007/s11581-022-04443-4 – ident: e_1_2_7_47_1 doi: 10.1016/j.cej.2021.132146 – ident: e_1_2_7_80_1 doi: 10.1007/s10853-020-05559-6 – ident: e_1_2_7_186_1 doi: 10.1016/j.cclet.2021.09.103 – ident: e_1_2_7_97_1 doi: 10.1002/asia.201900848 – ident: e_1_2_7_180_1 doi: 10.1039/C8TA05065A – ident: e_1_2_7_238_1 doi: 10.1007/s10934-021-01125-w – ident: e_1_2_7_83_1 doi: 10.1002/adfm.201302631 – ident: e_1_2_7_155_1 doi: 10.1016/j.nanoen.2015.10.029 – ident: e_1_2_7_45_1 doi: 10.1038/nmat3191 – ident: e_1_2_7_61_2 doi: 10.1002/ange.202000352 – ident: e_1_2_7_8_1 doi: 10.1007/s40843-021-1727-3 – ident: e_1_2_7_131_2 doi: 10.1002/ange.201908542 – ident: e_1_2_7_140_1 doi: 10.1002/aenm.202001050 – ident: e_1_2_7_75_1 doi: 10.1016/j.jssc.2020.121568 – ident: e_1_2_7_119_1 doi: 10.1021/acsami.0c15793 – ident: e_1_2_7_219_1 doi: 10.1021/acsaem.1c03649 – ident: e_1_2_7_70_1 doi: 10.1002/celc.201500254 – ident: e_1_2_7_85_1 doi: 10.1016/j.ensm.2019.08.004 – ident: e_1_2_7_204_1 doi: 10.1016/j.fuel.2022.124724 – ident: e_1_2_7_64_1 doi: 10.1007/s40820-021-00728-x – ident: e_1_2_7_103_2 doi: 10.1002/ange.201712872 – ident: e_1_2_7_88_1 doi: 10.1016/j.jpowsour.2012.12.102 – ident: e_1_2_7_46_1 doi: 10.1016/j.colsurfa.2021.127810 – ident: e_1_2_7_30_1 doi: 10.1002/adma.201704124 – ident: e_1_2_7_130_1 doi: 10.1016/j.jallcom.2022.164845 – ident: e_1_2_7_133_1 doi: 10.1021/acsnano.0c03488 – ident: e_1_2_7_206_1 doi: 10.1016/j.electacta.2019.04.121 – ident: e_1_2_7_26_1 doi: 10.1016/j.electacta.2018.01.210 – ident: e_1_2_7_99_1 doi: 10.1002/adma.201901220 – ident: e_1_2_7_216_1 doi: 10.1039/C8CC09847F – ident: e_1_2_7_123_1 doi: 10.1016/j.energy.2021.123043 – ident: e_1_2_7_150_1 doi: 10.1016/j.coelec.2017.10.014 – ident: e_1_2_7_57_1 doi: 10.1016/j.jcis.2020.08.044 – ident: e_1_2_7_98_1 doi: 10.1016/j.ceramint.2022.02.225 – ident: e_1_2_7_110_1 doi: 10.1002/aenm.202100321 – ident: e_1_2_7_223_1 doi: 10.1039/D0TA10603H – ident: e_1_2_7_79_1 doi: 10.1002/ente.202000808 – ident: e_1_2_7_174_1 doi: 10.1039/C8CC05366A – ident: e_1_2_7_194_1 doi: 10.1016/j.matchemphys.2022.126311 – ident: e_1_2_7_135_1 doi: 10.1002/aenm.202200113 – ident: e_1_2_7_113_1 doi: 10.1002/adfm.201702046 – ident: e_1_2_7_55_1 doi: 10.1016/j.nanoen.2020.104868 – ident: e_1_2_7_142_1 doi: 10.1016/j.jechem.2020.04.061 – ident: e_1_2_7_196_1 doi: 10.1002/adma.202170028 – ident: e_1_2_7_36_1 doi: 10.1002/advs.201802362 – ident: e_1_2_7_96_1 doi: 10.1016/j.cej.2022.135945 – ident: e_1_2_7_102_1 doi: 10.1016/j.jallcom.2022.163649 – ident: e_1_2_7_145_1 doi: 10.1002/aenm.201801090 – ident: e_1_2_7_41_1 doi: 10.1002/aenm.201600426 – ident: e_1_2_7_124_1 doi: 10.1039/D2TA05202D – ident: e_1_2_7_107_1 doi: 10.1016/j.electacta.2020.136378 – ident: e_1_2_7_192_1 doi: 10.1002/smll.201704435 – ident: e_1_2_7_221_1 doi: 10.1002/aenm.201901892 – ident: e_1_2_7_6_1 doi: 10.1016/j.rser.2011.11.011 – ident: e_1_2_7_218_1 doi: 10.1016/j.jpowsour.2016.03.040 – ident: e_1_2_7_37_1 doi: 10.1002/adma.201902228 – ident: e_1_2_7_220_1 doi: 10.1016/j.jpowsour.2018.01.028 – ident: e_1_2_7_233_1 doi: 10.1016/j.jcis.2021.11.129 – ident: e_1_2_7_128_1 doi: 10.1016/j.jcis.2021.11.175 – ident: e_1_2_7_32_1 doi: 10.1002/aenm.202100346 – ident: e_1_2_7_127_1 doi: 10.1007/s12274-020-2848-z – ident: e_1_2_7_175_1 doi: 10.1021/acssuschemeng.8b06288 – ident: e_1_2_7_100_1 doi: 10.1002/adma.202101204 – ident: e_1_2_7_44_1 doi: 10.1002/aenm.201703268 – ident: e_1_2_7_58_1 doi: 10.1016/j.jallcom.2021.160531 – ident: e_1_2_7_202_1 doi: 10.1039/C8TA09528K – ident: e_1_2_7_203_1 doi: 10.1016/j.cej.2022.135042 – ident: e_1_2_7_231_1 doi: 10.1002/admi.201901571 – ident: e_1_2_7_114_1 doi: 10.1002/adfm.201702634 – ident: e_1_2_7_229_1 doi: 10.1016/j.electacta.2019.135104 – ident: e_1_2_7_232_1 doi: 10.1016/j.est.2021.103550 – ident: e_1_2_7_200_1 doi: 10.1039/C9RA07061C – ident: e_1_2_7_156_1 doi: 10.1126/sciadv.aao7233 – ident: e_1_2_7_161_1 doi: 10.1016/j.electacta.2016.09.004 – ident: e_1_2_7_157_1 doi: 10.1016/j.ensm.2019.03.001 – ident: e_1_2_7_125_1 doi: 10.1002/ente.202101024 – ident: e_1_2_7_188_1 doi: 10.1039/D1QI00191D – ident: e_1_2_7_72_1 doi: 10.1038/nmat2011 – ident: e_1_2_7_2_1 doi: 10.1039/C3CS60472A – ident: e_1_2_7_166_1 doi: 10.1002/smll.202103517 – ident: e_1_2_7_95_1 doi: 10.1016/j.matchemphys.2020.123484 – ident: e_1_2_7_143_1 doi: 10.1016/j.nanoen.2020.104523 – ident: e_1_2_7_213_1 doi: 10.1039/D1NJ01394G – ident: e_1_2_7_118_1 doi: 10.1002/adma.201904320 – ident: e_1_2_7_35_1 doi: 10.1002/smll.202006424 – ident: e_1_2_7_181_1 doi: 10.1021/acs.accounts.6b00457 – ident: e_1_2_7_178_1 doi: 10.1039/C8TA03408G – ident: e_1_2_7_20_1 doi: 10.1016/j.flatc.2021.100332 – ident: e_1_2_7_132_1 doi: 10.1016/j.jpowsour.2020.227937 – ident: e_1_2_7_71_1 doi: 10.1002/adma.201001068 – ident: e_1_2_7_226_1 doi: 10.1016/j.nanoen.2022.107146 – ident: e_1_2_7_197_1 doi: 10.1016/j.jcis.2019.06.031 – ident: e_1_2_7_109_1 doi: 10.4236/chnstd.2016.52003 – ident: e_1_2_7_65_1 doi: 10.1016/j.apsusc.2019.144882 – ident: e_1_2_7_24_1 doi: 10.1016/j.jcis.2018.07.037 – ident: e_1_2_7_73_1 doi: 10.1016/j.carbon.2016.03.032 – ident: e_1_2_7_199_1 doi: 10.1016/j.electacta.2020.137154 – ident: e_1_2_7_39_1 doi: 10.1016/j.electacta.2014.05.023 – ident: e_1_2_7_68_1 doi: 10.1016/S0378-7753(01)00617-6 – ident: e_1_2_7_184_1 doi: 10.1021/acsami.7b02987 – ident: e_1_2_7_189_1 doi: 10.1002/aenm.201800716 – ident: e_1_2_7_236_1 doi: 10.1039/D1SC00095K – ident: e_1_2_7_207_1 doi: 10.1021/acsami.6b10640 – ident: e_1_2_7_93_1 doi: 10.1039/C9NR10491G – ident: e_1_2_7_162_1 doi: 10.1039/C6RA23049K – ident: e_1_2_7_87_1 doi: 10.1002/adma.201606802 – ident: e_1_2_7_51_1 doi: 10.1039/C9NR10015F – ident: e_1_2_7_154_1 doi: 10.1016/j.cej.2021.132489 – ident: e_1_2_7_38_1 doi: 10.1021/acsnano.0c02762 – ident: e_1_2_7_230_1 doi: 10.1016/j.electacta.2019.01.142 – ident: e_1_2_7_169_1 doi: 10.1016/j.electacta.2019.135394 – ident: e_1_2_7_153_1 doi: 10.1007/s11705-021-2085-3 – ident: e_1_2_7_205_1 doi: 10.1016/j.jallcom.2021.162640 – ident: e_1_2_7_158_1 doi: 10.1038/am.2016.104 – ident: e_1_2_7_67_1 doi: 10.1021/acs.energyfuels.2c00718 – ident: e_1_2_7_4_1 doi: 10.1007/s12274-022-4511-3 – ident: e_1_2_7_215_1 doi: 10.1039/D2TA02114E – ident: e_1_2_7_195_1 doi: 10.1007/s11664-019-07505-y – ident: e_1_2_7_235_1 doi: 10.1002/anie.202000352 – ident: e_1_2_7_61_1 doi: 10.1002/anie.202000352 – ident: e_1_2_7_201_1 doi: 10.1021/acs.energyfuels.0c03380 – ident: e_1_2_7_148_1 doi: 10.1039/D0DT00976H – ident: e_1_2_7_116_1 doi: 10.1002/aenm.201904162 – ident: e_1_2_7_151_1 doi: 10.1002/aenm.201000010 – ident: e_1_2_7_234_1 doi: 10.1016/j.ccr.2020.213341 – ident: e_1_2_7_22_1 doi: 10.1016/j.matt.2019.05.007 – ident: e_1_2_7_77_1 doi: 10.1021/acsnano.1c06402 – ident: e_1_2_7_152_1 doi: 10.1126/science.aas9343 – ident: e_1_2_7_82_1 doi: 10.1038/nmat2460 – ident: e_1_2_7_101_1 doi: 10.1039/C9TA05812E – ident: e_1_2_7_1_1 doi: 10.1039/C6CS00426A – ident: e_1_2_7_5_1 doi: 10.1039/C7MH00512A – ident: e_1_2_7_60_1 doi: 10.1016/j.electacta.2016.08.110 – ident: e_1_2_7_105_1 doi: 10.1002/adfm.201707592 – ident: e_1_2_7_19_1 doi: 10.1016/j.ensm.2018.09.007 – ident: e_1_2_7_171_1 doi: 10.1016/j.ensm.2018.11.014 – ident: e_1_2_7_15_1 doi: 10.1002/smll.201805061 – ident: e_1_2_7_237_1 doi: 10.1039/D0DT00976H – ident: e_1_2_7_164_1 doi: 10.1007/s40820-021-00594-7 – volume: 0 start-page: 1 year: 2022 ident: e_1_2_7_138_1 publication-title: Energy Environ. Mater. contributor: fullname: Ji J. – ident: e_1_2_7_89_1 doi: 10.1002/aenm.201500110 – ident: e_1_2_7_172_1 doi: 10.1002/adfm.201902915 – ident: e_1_2_7_168_1 doi: 10.1039/D0DT03971C – ident: e_1_2_7_185_1 doi: 10.1016/j.ceramint.2020.06.067 – ident: e_1_2_7_146_1 doi: 10.1016/j.nanoen.2019.103935 – ident: e_1_2_7_49_1 doi: 10.1021/acs.energyfuels.2c01489 – ident: e_1_2_7_198_1 doi: 10.1149/2162-8777/ac44f8 – ident: e_1_2_7_76_1 doi: 10.1002/adma.201600319 – ident: e_1_2_7_134_1 doi: 10.1016/j.jcis.2021.06.145 – ident: e_1_2_7_179_1 doi: 10.1016/j.cej.2019.123661 – ident: e_1_2_7_163_1 doi: 10.1002/aenm.201801445 – ident: e_1_2_7_40_1 doi: 10.1021/am506292b – ident: e_1_2_7_108_1 doi: 10.1007/s40820-019-0313-x – ident: e_1_2_7_160_1 doi: 10.1039/C5NR04383B – ident: e_1_2_7_33_1 doi: 10.1002/aenm.201800013 – ident: e_1_2_7_42_1 doi: 10.1038/s41560-019-0338-x – ident: e_1_2_7_90_1 doi: 10.1016/j.micromeso.2013.11.011 – ident: e_1_2_7_136_1 doi: 10.1021/acsenergylett.0c00502 – ident: e_1_2_7_111_1 doi: 10.1039/C9TA08253K – volume: 539 start-page: 545 year: 2019 ident: e_1_2_7_209_1 publication-title: J. Alloys Compd. contributor: fullname: Niu H. – ident: e_1_2_7_137_1 doi: 10.1016/j.joule.2020.03.002 – ident: e_1_2_7_165_1 doi: 10.1039/D0TA02825H – ident: e_1_2_7_28_1 doi: 10.1021/acsami.8b04502 – ident: e_1_2_7_173_1 doi: 10.1002/adfm.202113235 – ident: e_1_2_7_122_1 doi: 10.1016/j.jcis.2021.12.157 – ident: e_1_2_7_183_1 doi: 10.1126/science.1230444 – ident: e_1_2_7_94_1 doi: 10.1016/j.cej.2019.122652 – ident: e_1_2_7_228_1 doi: 10.1016/j.compositesb.2022.109812 – ident: e_1_2_7_81_1 doi: 10.1021/jacs.9b11446 – ident: e_1_2_7_129_1 doi: 10.1021/acs.nanolett.9b01127 – ident: e_1_2_7_31_1 doi: 10.1002/smll.202203307 – ident: e_1_2_7_66_1 doi: 10.1016/j.jcis.2018.11.101 – ident: e_1_2_7_14_1 doi: 10.1039/C9DT04101J – ident: e_1_2_7_214_1 doi: 10.1002/anie.202116282 – ident: e_1_2_7_92_1 doi: 10.1039/C4TA01241K – ident: e_1_2_7_217_1 doi: 10.1016/j.jallcom.2020.157181 – ident: e_1_2_7_62_1 doi: 10.3390/nano10040695 – ident: e_1_2_7_53_1 doi: 10.1002/er.8452 – ident: e_1_2_7_144_1 doi: 10.1002/aenm.201904215 – ident: e_1_2_7_167_1 doi: 10.1016/j.carbon.2020.01.108 – ident: e_1_2_7_106_1 doi: 10.1016/j.cej.2020.124979 – ident: e_1_2_7_84_1 doi: 10.1039/c3ra41061g |
SSID | ssj0011477 |
Score | 2.4977913 |
SecondaryResourceType | review_article |
Snippet | Metal‐organic frameworks (MOFs) have been important electrochemical energy storage (EES) materials because of their rich species, large specific surface area,... Metal-organic frameworks (MOFs) have been important electrochemical energy storage (EES) materials because of their rich species, large specific surface area,... Abstract Metal‐organic frameworks (MOFs) have been important electrochemical energy storage (EES) materials because of their rich species, large specific... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e202300006 |
SubjectTerms | batteries Composite materials Conductivity Electrochemical analysis Electrochemistry Electrodes Energy storage Metal-organic framework Metal-organic frameworks MOF composites MOF derivatives Porosity supercapacitors Synergistic effect |
Title | Metal‐Organic Framework Composites and Their Derivatives as Efficient Electrodes for Energy Storage Applications: Recent Progress and Future Perspectives |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ftcr.202300006 https://www.ncbi.nlm.nih.gov/pubmed/36942948 https://www.proquest.com/docview/2828369446 https://search.proquest.com/docview/2789236275 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5VXOilPEvDS0aquGVZx46TcEPLrlClVggWiVuIY-dSKVTNLgdO_Qm98-_6SzpjJ4EFCQlxS-JM4vgx_iae-Qbgq7JWWG7IVarIQlnqONSCq7AapgYHWIL2m_O2-KHOruS36_i6zXNKsTCeH6L_4UYzw-lrmuCFbo4eSUNRUQ0o97fTuKiDuUjIpev0oqePQqjvMi9S5tYQ7Yqs5dhE-aMF6cU16QXQXMStbuGZrMBNV2Xvb_JzMJ_pQXn_jM3xHd-0Cp9aUMpO_Chagw-2XoflUZcLbgMevlsE6f_-_PWhmyWbdD5djBQKOX7ZhhW1YVPaeGCnOK7vHKU4Xm3Y2PFU4PLGxj7rjsHriJbZ2EUesks0_FGvsZMnu-nHDBEtiZyTBxnqY_f4iaNAYeePIaLNJlxNxtPRWdimdQhLSh4YRqaQRsZRGke6QoUgudTKoB2URKmRSmapUViGhm1iVcVtUZW8UFqLWOthrJX4DEv1bW2_ANOVUNxUvNTWyExkeiiEiUvBjcmyqCwCOOw6Nv_l2Ttyz9Mc5djWed_WAex23Z63k7jJyRrFGqPBHMBBX4wtT3sqRW1v53hPkiJEJqrnALb8cOnfRLJRJtMAhq7TX69CPh1d9CfbbxfZgY907N3YdmFp9ntu9xAwzfS-mxX_Acr5D6c |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB7xOMCF5bWQ5bFGQtxSmthxE26otOryEoIicYvi2LkgBURbDpz2J-ydf8cvYcZuAgUJacUxduw4tmf8jT3-BmBXGsNNoMlVKkt8kavIVzyQftGMNU6wFtpv1tviXPauxfFNdPPuFr_jh6g33EgyrL4mAacN6f031lDUVA0K_m1V7jTMoshzCt5wdFkTSCHYt7EXKXarj5ZFMmbZxAr2J4pPrkqfoOYkcrVLT_cHZFWjncfJbWM0VI386QOf43f-ahEWxriUHbqJtARTplyGuXYVDm4Fns8M4vSXv__c7c2cdSu3LkY6hXy_zIBlpWZ9OntgRzi1Hy2rOKYOWMdSVeAKxzou8I7GdATMrGMvH7IrtP1RtbHDdwfqBwxBLRW5ICcyVMm2-q5lQWEXb7dEB6tw3e302z1_HNnBzyl-oB_qTGgRhXEUqgJ1ggiEkhpNoVYYayFFEmuJeWjbtowsApMVeZBJpXikVDNSkv-EmfKuNOvAVMFloIsgV0aLhCeqybmOch5onSRhnnmwV41seu8IPFJH1Rym2Ndp3dcebFbjno7leJCSQYotRpvZg506G3uejlWy0tyN8J1WjCiZ2J49WHPzpf4SlQ0TEXvQtKP-dRPSfvuyfvj1_0V-w1yvf3aanv45P9mAeUp3Xm2bMDN8GJktxE9DtW1F5BWs7BO_ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7RRWq5AH3QhkdrpKq3LJvY8Sbc0LIRLQ-t6CJxS-PYuVQKK3a3B079Cb3z7_glzNhJYKmEVPUYJ3Yc2zP-Jp75BuCzNIabQJOrVJ74olCRr3gg_bIXa1xgfbTfrLfFmTy6EN8uo8s6zynFwjh-iPaHG0mG1dck4BNd7j2QhqKi6lLub6txX8CykIh-CRWdt_xRiPVt6kVK3eqjYZHUJJvYwN5C9cVN6S-kuQhc7c6TrsGPps_O4eRndz5T3eLmCZ3jf3zUOqzWqJQduGX0GpZM9QZeDZpkcG_h9tQgSr_7_cfFbhYsbZy6GGkU8vwyU5ZXmo3p5IEd4sL-ZTnFsXTKhpaoAvc3NnRpdzSWI1xmQxt6yL6j5Y-KjR08Ok7fZwhpqcqIXMhQIdvmU8uBwkYPMaLTd3CRDseDI7_O6-AXlD3QD3UutIjCOApViRpBBEJJjYZQP4y1kCKJtcR7aNn2jSwDk5dFkEuleKRUL1KSb0CnuqrMB2Cq5DLQZVAoo0XCE9XjXEcFD7ROkrDIPfjSTGw2cfQdmSNqDjMc66wdaw-2m2nPaimeZmSOYo_RYvZgt72NI0-HKnllrub4TD9GjExczx68d8ulfRPVDRMRe9Czk_58F7Lx4Ly92Pz3Kp_g5egwzU6-nh1vwQoVO5e2bejMrudmB8HTTH20AnIPZC0Sbg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal-Organic+Framework+Composites+and+Their+Derivatives+as+Efficient+Electrodes+for+Energy+Storage+Applications%3A+Recent+Progress+and+Future+Perspectives&rft.jtitle=Chemical+record&rft.au=Wang%2C+Teng&rft.au=Chen%2C+Shaoqian&rft.au=Chen%2C+Kai-Jie&rft.date=2023-06-01&rft.eissn=1528-0691&rft.volume=23&rft.issue=6&rft.spage=e202300006&rft.epage=e202300006&rft_id=info:doi/10.1002%2Ftcr.202300006&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1527-8999&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1527-8999&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1527-8999&client=summon |