Recent Advances of Transition Metal Dichalcogenides‐Based Materials for Energy Storage Devices, in View of Monovalent to Divalent Ions
The fast growth of electrochemical energy storage (EES) systems necessitates using innovative, high‐performance electrode materials. Among the various EES devices, rechargeable batteries (RBs) with potential features like high energy density and extensive lifetime are well suited to meet rapidly inc...
Saved in:
Published in | Chemical record Vol. 24; no. 1; pp. e202300145 - n/a |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The fast growth of electrochemical energy storage (EES) systems necessitates using innovative, high‐performance electrode materials. Among the various EES devices, rechargeable batteries (RBs) with potential features like high energy density and extensive lifetime are well suited to meet rapidly increasing energy demands. Layered transition metal dichalcogenides (TMDs), typical two dimensional (2D) nanomaterial, are considered auspicious materials for RBs because of their layered structures and large specific surface areas (SSA) that benefit quick ion transportation. This review summarizes and highlights recent advances in TMDs with improved performance for various RBs. Through novel engineering and functionalization used for high‐performance RBs, we briefly discuss the properties, characterizations, and electrochemistry phenomena of TMDs. We summarised that engineering with multiple techniques, like nanocomposites used for TMDs receives special attention. In conclusion, the recent issues and promising upcoming research openings for developing TMDs‐based electrodes for RBs are discussed.
In this review work, 2D TMDs‐based materials and their physical, chemical, morphological, and electrochemical properties and challenges are discussed for RBs. 2D TMDs‐based cathode, anode, and electrolyte materials for RBs comprehensively studied and compared with their recent development. In conclusion, the progress and strategies to improve the performance of 2D TMDs for RBs are discussed. |
---|---|
AbstractList | The fast growth of electrochemical energy storage (EES) systems necessitates using innovative, high-performance electrode materials. Among the various EES devices, rechargeable batteries (RBs) with potential features like high energy density and extensive lifetime are well suited to meet rapidly increasing energy demands. Layered transition metal dichalcogenides (TMDs), typical two dimensional (2D) nanomaterial, are considered auspicious materials for RBs because of their layered structures and large specific surface areas (SSA) that benefit quick ion transportation. This review summarizes and highlights recent advances in TMDs with improved performance for various RBs. Through novel engineering and functionalization used for high-performance RBs, we briefly discuss the properties, characterizations, and electrochemistry phenomena of TMDs. We summarised that engineering with multiple techniques, like nanocomposites used for TMDs receives special attention. In conclusion, the recent issues and promising upcoming research openings for developing TMDs-based electrodes for RBs are discussed.The fast growth of electrochemical energy storage (EES) systems necessitates using innovative, high-performance electrode materials. Among the various EES devices, rechargeable batteries (RBs) with potential features like high energy density and extensive lifetime are well suited to meet rapidly increasing energy demands. Layered transition metal dichalcogenides (TMDs), typical two dimensional (2D) nanomaterial, are considered auspicious materials for RBs because of their layered structures and large specific surface areas (SSA) that benefit quick ion transportation. This review summarizes and highlights recent advances in TMDs with improved performance for various RBs. Through novel engineering and functionalization used for high-performance RBs, we briefly discuss the properties, characterizations, and electrochemistry phenomena of TMDs. We summarised that engineering with multiple techniques, like nanocomposites used for TMDs receives special attention. In conclusion, the recent issues and promising upcoming research openings for developing TMDs-based electrodes for RBs are discussed. The fast growth of electrochemical energy storage (EES) systems necessitates using innovative, high-performance electrode materials. Among the various EES devices, rechargeable batteries (RBs) with potential features like high energy density and extensive lifetime are well suited to meet rapidly increasing energy demands. Layered transition metal dichalcogenides (TMDs), typical two dimensional (2D) nanomaterial, are considered auspicious materials for RBs because of their layered structures and large specific surface areas (SSA) that benefit quick ion transportation. This review summarizes and highlights recent advances in TMDs with improved performance for various RBs. Through novel engineering and functionalization used for high-performance RBs, we briefly discuss the properties, characterizations, and electrochemistry phenomena of TMDs. We summarised that engineering with multiple techniques, like nanocomposites used for TMDs receives special attention. In conclusion, the recent issues and promising upcoming research openings for developing TMDs-based electrodes for RBs are discussed. The fast growth of electrochemical energy storage (EES) systems necessitates using innovative, high‐performance electrode materials. Among the various EES devices, rechargeable batteries (RBs) with potential features like high energy density and extensive lifetime are well suited to meet rapidly increasing energy demands. Layered transition metal dichalcogenides (TMDs), typical two dimensional (2D) nanomaterial, are considered auspicious materials for RBs because of their layered structures and large specific surface areas (SSA) that benefit quick ion transportation. This review summarizes and highlights recent advances in TMDs with improved performance for various RBs. Through novel engineering and functionalization used for high‐performance RBs, we briefly discuss the properties, characterizations, and electrochemistry phenomena of TMDs. We summarised that engineering with multiple techniques, like nanocomposites used for TMDs receives special attention. In conclusion, the recent issues and promising upcoming research openings for developing TMDs‐based electrodes for RBs are discussed. In this review work, 2D TMDs‐based materials and their physical, chemical, morphological, and electrochemical properties and challenges are discussed for RBs. 2D TMDs‐based cathode, anode, and electrolyte materials for RBs comprehensively studied and compared with their recent development. In conclusion, the progress and strategies to improve the performance of 2D TMDs for RBs are discussed. |
Author | Ali, Salamat Eldin, Sayed M. M. Rahman, Mohammed M. Bajaber, Majed A. Ahmad Shah, Syed Shoaib Sufyan Javed, Muhammad Najam, Tayyaba Tayeb, Roaa A. Qi, Jing Parkash, Anand Khan, Shaukat |
Author_xml | – sequence: 1 givenname: Salamat surname: Ali fullname: Ali, Salamat organization: Lanzhou University, Lanzhou – sequence: 2 givenname: Syed Shoaib surname: Ahmad Shah fullname: Ahmad Shah, Syed Shoaib organization: National University of Sciences and Technology – sequence: 3 givenname: Muhammad surname: Sufyan Javed fullname: Sufyan Javed, Muhammad email: safisabri@gmail.com organization: School of Physical Science and Technology Lanzhou University – sequence: 4 givenname: Tayyaba surname: Najam fullname: Najam, Tayyaba organization: Shenzhen University – sequence: 5 givenname: Anand surname: Parkash fullname: Parkash, Anand organization: Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences – sequence: 6 givenname: Shaukat surname: Khan fullname: Khan, Shaukat organization: Dhofar University – sequence: 7 givenname: Majed A. surname: Bajaber fullname: Bajaber, Majed A. organization: King Khalid University – sequence: 8 givenname: Sayed M. M. surname: Eldin fullname: Eldin, Sayed M. M. organization: Future University in Egypt – sequence: 9 givenname: Roaa A. surname: Tayeb fullname: Tayeb, Roaa A. organization: University of Jeddah, Alfaisaliah – sequence: 10 givenname: Mohammed M. orcidid: 0000-0003-2773-1244 surname: Rahman fullname: Rahman, Mohammed M. email: mmrahman@kau.edu.sa organization: King Abdulaziz University – sequence: 11 givenname: Jing surname: Qi fullname: Qi, Jing email: qijing@lzu.edu.cn organization: Lanzhou University, Lanzhou |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37358343$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kb1uFDEUhUcoiPxASYss0VAwwT_j8bgMmwQiZYUUFlrL47leHM3aie3daDvKlDwjT4KX3YAUCSrf4jvfte45rPZ88FBVLwk-JhjTd9nEY4opw5g0_El1QDjtatxKsvd7FnUnpdyvDlO6LghphHhW7TPBeMcadlDdX4EBn9HJsNLeQELBolnUPrnsgkdTyHpEp85806MJc_BugPTz-4_3OsGApjpDdHpMyIaIzjzE-Rp9ziHqOaBTWLkifIucR18d3G3M0-DDSo-bhTkU7W6-CD49r57aYoIXu_eo-nJ-Npt8rC8_fbiYnFzWhrWS14PRbJC07aXsqcbtYIFbSW0HwnZ9Tzra81YMnWg5xrYVgmM-WCsBc80bYdlR9WbrvYnhdgkpq4VLBsZRewjLpGhHpcCcya6grx-h12EZffmdopIwKpqWkkK92lHLfgGDuoluoeNaPdy4AGwLmBhSimCVcVlvzpujdqMiWG2aVKVJ9afJkqofpR7E_-LFlr9zI6z_D6vZ5Opv8hfUpbC2 |
CitedBy_id | crossref_primary_10_1021_acsami_4c18684 crossref_primary_10_1038_s41598_024_75235_1 crossref_primary_10_1016_j_matchemphys_2025_130747 crossref_primary_10_1016_j_jpowsour_2025_236662 crossref_primary_10_3390_chemengineering8010025 crossref_primary_10_1007_s42114_025_01289_y crossref_primary_10_1016_j_jpcs_2024_112070 crossref_primary_10_1007_s11581_024_05642_x crossref_primary_10_1016_j_cej_2024_158882 crossref_primary_10_1016_j_nanoso_2024_101290 crossref_primary_10_1039_D4CP01445F crossref_primary_10_1149_2162_8777_ad709f crossref_primary_10_1016_j_est_2024_114510 crossref_primary_10_1016_j_matchemphys_2025_130483 crossref_primary_10_1016_j_est_2024_113040 crossref_primary_10_1016_j_ceramint_2023_11_222 crossref_primary_10_1016_j_jpowsour_2025_236811 crossref_primary_10_1016_j_cej_2025_161495 crossref_primary_10_1016_j_matchemphys_2024_130125 crossref_primary_10_1016_j_jpowsour_2024_235728 crossref_primary_10_1016_j_mtchem_2024_102477 crossref_primary_10_1016_j_fuel_2024_132783 crossref_primary_10_1016_j_jpowsour_2025_236453 crossref_primary_10_1016_j_matt_2024_11_011 crossref_primary_10_1016_j_jpowsour_2024_235486 crossref_primary_10_1016_j_jpowsour_2024_236114 crossref_primary_10_1016_j_cej_2024_158074 crossref_primary_10_1016_j_jpowsour_2024_235781 crossref_primary_10_1016_j_jpowsour_2024_234275 crossref_primary_10_3390_en18061420 crossref_primary_10_1016_j_microc_2024_112218 crossref_primary_10_1016_j_jpowsour_2024_235999 crossref_primary_10_1016_j_cej_2024_154775 crossref_primary_10_1039_D4RA05473C crossref_primary_10_1016_j_cej_2025_159449 crossref_primary_10_1016_j_jpowsour_2024_235796 crossref_primary_10_1002_ente_202401761 crossref_primary_10_1016_j_est_2024_114040 crossref_primary_10_1016_j_mtchem_2025_102613 |
Cites_doi | 10.1038/ncomms14264 10.1038/nchem.1589 10.1039/C7EE00566K 10.1016/j.jechem.2021.02.028 10.1002/aenm.201601920 10.1002/tcr.202200013 10.1021/acs.accounts.7b00527 10.1038/nchem.2085 10.1002/aenm.201702384 10.1016/0079-6786(78)90003-1 10.1002/ange.201903941 10.1016/j.joule.2020.06.011 10.1016/j.mattod.2019.05.017 10.1002/adma.201304120 10.1039/C8CS00561C 10.3390/mi14030691 10.7717/peerj-matsci.3 10.1016/j.jpowsour.2013.11.061 10.1016/j.ensm.2022.10.005 10.1016/j.jpowsour.2021.229882 10.1002/aenm.202003493 10.3390/ma15072654 10.1039/C5NR06718A 10.9734/JSRR/2015/14076 10.1021/acsnano.2c03398 10.1002/adma.201003560 10.1016/j.coelec.2020.01.014 10.1016/j.cclet.2020.08.026 10.1038/35037553 10.1021/acsnano.9b08039 10.1039/c3ee40871j 10.1039/C9TA08677C 10.1002/slct.201801692 10.1039/D0EE02769C 10.1039/C9EE03549D 10.1039/C5TA08574H 10.1186/s40580-014-0034-2 10.1021/acsnano.7b08895 10.1038/natrevmats.2016.103 10.1016/j.mattod.2016.10.002 10.1038/nmat4041 10.1039/C6MH00075D 10.1126/science.aal4263 10.1016/j.cclet.2020.09.029 10.1016/j.ensm.2017.09.002 10.1016/j.ensm.2018.05.026 10.1007/s40820-023-01086-6 10.1002/adma.201903826 10.1021/acs.nanolett.5b00388 10.1016/j.cej.2020.124405 10.1126/science.1194975 10.1002/adfm.202103912 10.1049/hve2.12278 10.1039/C6NR06836G 10.1021/cr500003w 10.1039/D0TA02984J 10.1016/j.est.2022.106469 10.1002/aenm.201700571 10.1021/acsnano.6b05746 10.1111/jace.17082 10.1016/j.apsusc.2022.156003 10.1016/j.electacta.2016.09.059 10.1007/s41918-022-00167-1 10.1002/aenm.202001769 10.1039/C4CS00287C 10.1039/C5CS00275C 10.1126/science.1132195 10.1002/adma.202302086 10.1039/C4CS00282B 10.1016/j.jcis.2020.12.083 10.1016/j.est.2022.104150 10.1039/C8CS00094H 10.1021/acsanm.1c03946 10.1038/s41586-021-03885-6 10.1016/j.nantod.2012.08.004 10.1038/s41557-018-0045-4 10.1038/s41467-019-09400-w 10.1016/j.carbon.2016.12.002 10.1021/acs.chemrev.6b00614 10.1039/C5EE03761A 10.1063/5.0100522 10.1016/j.ensm.2016.04.001 10.1016/j.apenergy.2014.09.081 10.1002/aenm.201600671 10.1016/j.mattod.2014.04.024 10.1126/science.abq3750 10.1002/adma.201404140 10.1038/srep26666 10.1021/acs.chemrev.9b00618 10.1002/adma.201907818 10.1039/C5QI00242G 10.1021/acsnano.5b05891 10.1002/smll.202000698 10.1002/anie.201713291 10.1016/j.pmatsci.2018.03.007 10.1002/adma.201800036 10.1016/j.joule.2019.06.008 10.1002/smtd.201800020 10.1002/sstr.202000054 10.1016/j.jcis.2022.11.107 10.1021/acsenergylett.1c02084 10.1002/adfm.201802564 10.1021/acsenergylett.7b00476 10.1021/am3022015 10.1038/s41578-019-0142-z 10.1002/adma.201702061 10.1021/acs.chemrev.9b00760 10.1021/nl501793a 10.1002/adfm.202205600 10.1016/j.electacta.2018.10.191 10.1016/j.cej.2019.122033 10.1002/smtd.202000815 10.1016/j.matdes.2023.111952 10.1039/C7TA01821E 10.1002/aenm.201502588 10.1088/1674-1056/27/3/034402 10.1039/C5CS00937E 10.1021/acsnano.9b05865 10.1039/D1QI01077H 10.1016/j.bios.2022.114674 10.1039/D1SC04023E 10.1088/1361-6528/aae3da |
ContentType | Journal Article |
Copyright | 2023 The Chemical Society of Japan & Wiley‐VCH GmbH 2023 The Chemical Society of Japan & Wiley-VCH GmbH. 2024 The Chemical Society of Japan & Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 The Chemical Society of Japan & Wiley‐VCH GmbH – notice: 2023 The Chemical Society of Japan & Wiley-VCH GmbH. – notice: 2024 The Chemical Society of Japan & Wiley‐VCH GmbH |
DBID | AAYXX CITATION NPM 7QO 7T7 8FD C1K FR3 P64 7X8 |
DOI | 10.1002/tcr.202300145 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Engineering Research Database Biotechnology Research Abstracts Technology Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1528-0691 |
EndPage | n/a |
ExternalDocumentID | 37358343 10_1002_tcr_202300145 TCR202300145 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: Scientific Research start-up grant for Youth Researchers at Lanzhou University – fundername: Natural Science Foundation of Gansu Province funderid: 20JR5RA240 – fundername: Lanzhou University, the National Natural Science Foundation of China – fundername: 51972153 – fundername: Research Fund for International Scientists funderid: 52250410342 – fundername: Natural Science Foundation of Gansu Province grantid: 20JR5RA240 – fundername: Research Fund for International Scientists grantid: 52250410342 |
GroupedDBID | --- .3N .Y3 05W 0R~ 10A 123 1OC 29B 31~ 33P 3WU 4.4 50Y 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 53G 5VS 66C 702 7PT 8-1 8UM A00 AAESR AAHHS AAHQN AAMNL AANHP AANLZ AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ASPBG AVWKF AZFZN AZVAB BDRZF BFHJK BMXJE BROTX BRXPI BY8 CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD F5P FEDTE G-S G.N GODZA HF~ HGLYW HVGLF HZ~ IX1 J0M LATKE LAW LC2 LC3 LEEKS LH- LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MSFUL MSSTM MXFUL MXSTM MY~ N9A O9- OIG P2W P4D Q11 QB0 QRW R.K ROL RX1 SUPJJ V2E W99 WBKPD WOHZO WQJ WXSBR WYJ WYUIH XG1 XV2 ZZTAW ~IA AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION NPM 7QO 7T7 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 P64 7X8 |
ID | FETCH-LOGICAL-c3695-dca3d926b99b2a06dfe5f92f8e7f8bb182b567d876500f677505dff9e05a547f3 |
IEDL.DBID | DR2 |
ISSN | 1527-8999 1528-0691 |
IngestDate | Fri Jul 11 09:43:18 EDT 2025 Fri Jul 25 12:15:36 EDT 2025 Wed Feb 19 02:07:16 EST 2025 Tue Jul 01 02:40:11 EDT 2025 Thu Apr 24 22:53:14 EDT 2025 Wed Jan 22 16:15:33 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | NIBs MIBs ZIBs KIBs Transition metal dichalcogenides LIBs |
Language | English |
License | 2023 The Chemical Society of Japan & Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3695-dca3d926b99b2a06dfe5f92f8e7f8bb182b567d876500f677505dff9e05a547f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-2773-1244 |
PMID | 37358343 |
PQID | 2913274621 |
PQPubID | 1006501 |
PageCount | 20 |
ParticipantIDs | proquest_miscellaneous_2829705398 proquest_journals_2913274621 pubmed_primary_37358343 crossref_citationtrail_10_1002_tcr_202300145 crossref_primary_10_1002_tcr_202300145 wiley_primary_10_1002_tcr_202300145_TCR202300145 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2024 2024-01-00 2024-Jan 20240101 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: January 2024 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Chemical record |
PublicationTitleAlternate | Chem Rec |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 10 2019; 13 2014; 26 2019; 16 2020; 16 2020; 13 2022; 22 2020; 10 2014; 251 2022; 216 2013; 5 2013; 6 2018; 47 2000; 407 2018; 8 2018; 3 2018; 2 2015; 137 2014; 14 2014; 13 2018; 30 2022; 32 2014; 17 2023; 613 2016; 45 2019; 7 2018; 29 2018; 28 2019; 3 2019; 30 2023; 59 2016; 10 2020; 389 2020; 32 2018; 27 2016; 4 2016; 6 2016; 3 2021; 497 2022; 5 2016; 217 2022; 9 2022; 15 2018; 96 2020; 21 2021; 61 2018; 12 2019; 295 2018; 11 2018; 10 2016; 8 2022; 16 2016; 9 2017; 5 2017; 7 2017; 8 2022; 132 2017; 2 2020; 120 2023; 6 2023; 8 2017; 114 2017; 356 2017; 117 2022; 378 2020; 8 2020; 5 2021; 32 2020; 4 2021; 31 2020; 2 2021; 33 2021; 598 2015; 44 2011; 23 2015; 2 2017; 20 2015; 15 2021; 6 2021; 5 2023; 14 2015; 5 2021; 2 1978; 12 2021; 588 2023; 15 2017; 29 2020; 103 2015; 9 2006; 313 2015; 7 2022; 49 2014; 114 2011; 331 2015; 27 2022; 2022 2021; 12 2021; 11 2023; 230 2022 2021 2017; 10 2023; 633 2023; /a 2022; 53 2018; 51 2012; 7 2019; 375 2019; 131 2018; 57 e_1_2_11_70_1 e_1_2_11_93_1 e_1_2_11_32_1 e_1_2_11_55_1 e_1_2_11_78_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_74_1 e_1_2_11_97_1 e_1_2_11_13_1 e_1_2_11_118_1 e_1_2_11_29_1 e_1_2_11_125_1 e_1_2_11_4_1 e_1_2_11_106_1 e_1_2_11_48_1 e_1_2_11_121_1 e_1_2_11_102_1 Liu W. (e_1_2_11_111_1) 2022; 2022 e_1_2_11_81_1 e_1_2_11_66_1 e_1_2_11_47_1 e_1_2_11_89_1 e_1_2_11_24_1 e_1_2_11_62_1 e_1_2_11_8_1 e_1_2_11_43_1 e_1_2_11_85_1 e_1_2_11_17_1 e_1_2_11_117_1 e_1_2_11_59_1 e_1_2_11_113_1 Zheng B. (e_1_2_11_20_1) 2022 e_1_2_11_50_1 e_1_2_11_92_1 e_1_2_11_31_1 e_1_2_11_77_1 e_1_2_11_58_1 e_1_2_11_119_1 e_1_2_11_35_1 e_1_2_11_12_1 e_1_2_11_54_1 e_1_2_11_96_1 e_1_2_11_103_1 e_1_2_11_126_1 e_1_2_11_5_1 e_1_2_11_1_1 Li W. (e_1_2_11_28_1) 2022 e_1_2_11_61_1 e_1_2_11_80_1 e_1_2_11_46_1 e_1_2_11_69_1 e_1_2_11_88_1 e_1_2_11_107_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_65_1 e_1_2_11_84_1 e_1_2_11_114_1 e_1_2_11_16_1 e_1_2_11_110_1 e_1_2_11_39_1 e_1_2_11_72_1 e_1_2_11_91_1 e_1_2_11_30_1 e_1_2_11_57_1 e_1_2_11_99_1 e_1_2_11_34_1 e_1_2_11_53_1 e_1_2_11_76_1 e_1_2_11_95_1 e_1_2_11_11_1 e_1_2_11_6_1 e_1_2_11_104_1 e_1_2_11_27_1 e_1_2_11_127_1 e_1_2_11_2_1 e_1_2_11_100_1 Zhang X. (e_1_2_11_10_1) 2022 e_1_2_11_123_1 Wei T. (e_1_2_11_73_1) 2022 e_1_2_11_83_1 e_1_2_11_60_1 e_1_2_11_45_1 e_1_2_11_68_1 e_1_2_11_41_1 e_1_2_11_87_1 e_1_2_11_108_1 e_1_2_11_22_1 e_1_2_11_64_1 e_1_2_11_115_1 e_1_2_11_15_1 e_1_2_11_38_1 e_1_2_11_19_1 e_1_2_11_94_1 e_1_2_11_71_1 e_1_2_11_90_1 e_1_2_11_56_1 e_1_2_11_79_1 e_1_2_11_14_1 e_1_2_11_52_1 e_1_2_11_98_1 Wang H. (e_1_2_11_122_1) 2021 e_1_2_11_33_1 e_1_2_11_75_1 e_1_2_11_7_1 e_1_2_11_105_1 e_1_2_11_128_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_49_1 e_1_2_11_101_1 e_1_2_11_124_1 e_1_2_11_120_1 e_1_2_11_82_1 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_67_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_63_1 e_1_2_11_86_1 e_1_2_11_109_1 e_1_2_11_18_1 e_1_2_11_116_1 e_1_2_11_37_1 e_1_2_11_112_1 |
References_xml | – volume: 2 start-page: 1 year: 2015 end-page: 14 publication-title: Nano Convergence – volume: 7 year: 2017 publication-title: Advanced Energy Materials – volume: 313 start-page: 1760 year: 2006 end-page: 1763 publication-title: Science – volume: 4 start-page: 103 year: 2016 end-page: 129 publication-title: Energy Storage Materials – volume: 28 year: 2018 publication-title: Advanced Functional Materials – volume: 96 start-page: 51 year: 2018 end-page: 85 publication-title: Progress in Materials Science – year: 2022 publication-title: Chinese Physics B – volume: 16 start-page: 9736 year: 2022 end-page: 9747 publication-title: ACS Nano – volume: 47 start-page: 7426 year: 2018 end-page: 7451 publication-title: Chemical Society Reviews – volume: 12 start-page: 13248 year: 2021 end-page: 13272 publication-title: Chemical Science – volume: 378 year: 2022 publication-title: Science – volume: 5 start-page: 3361 year: 2022 end-page: 3373 publication-title: ACS Applied Nano Materials – volume: 53 start-page: 827 year: 2022 end-page: 872 publication-title: Energy Storage Materials – volume: 29 year: 2018 publication-title: Nanotechnology – volume: 15 start-page: 121 year: 2023 publication-title: Nano-Micro Letters – volume: 5 start-page: 5 year: 2020 end-page: 19 publication-title: Nature Reviews Materials – volume: /a year: 2023 publication-title: Advanced Materials – volume: 375 year: 2019 publication-title: Chemical Engineering Journal – volume: 17 start-page: 276 year: 2014 end-page: 284 publication-title: Materials Today – volume: 11 start-page: 1 year: 2018 end-page: 7 publication-title: Energy Storage Materials – volume: 120 start-page: 4169 year: 2020 end-page: 4221 publication-title: Chemical reviews – volume: 13 start-page: 14447 year: 2019 end-page: 14458 publication-title: ACS Nano – volume: 295 start-page: 591 year: 2019 end-page: 598 publication-title: Electrochimica Acta – volume: 2 year: 2020 publication-title: PeerJ Materials Science – volume: 6 start-page: 2265 year: 2013 end-page: 2279 publication-title: Energy & Environmental Science – volume: 5 start-page: 1 year: 2015 end-page: 9 publication-title: Scientific reports – volume: 32 year: 2022 publication-title: Advanced Functional Materials – volume: 230 year: 2023 publication-title: Materials & Design – volume: 33 year: 2021 publication-title: Advanced Materials – volume: 10 start-page: 667 year: 2018 end-page: 672 publication-title: Nature Chemistry – volume: 5 start-page: 263 year: 2013 end-page: 275 publication-title: Nature chemistry – volume: 103 start-page: 4453 year: 2020 end-page: 4462 publication-title: Journal of the American Ceramic Society – volume: 59 year: 2023 publication-title: Journal of Energy Storage – volume: 45 start-page: 4042 year: 2016 end-page: 4073 publication-title: Chemical Society Reviews – volume: 331 start-page: 568 year: 2011 end-page: 571 publication-title: Science – year: 2022 publication-title: Accounts of Materials Research – volume: 3 start-page: 9807 year: 2018 end-page: 9811 publication-title: ChemistrySelect – volume: 117 start-page: 4287 year: 2017 end-page: 4341 publication-title: Chemical Reviews – volume: 497 year: 2021 publication-title: Journal of Power Sources – volume: 44 start-page: 7715 year: 2015 end-page: 7736 publication-title: Chemical Society Reviews – volume: 27 start-page: 339 year: 2015 end-page: 345 publication-title: Advanced materials – year: 2021 publication-title: Chinese Chemical Letters – volume: 8 start-page: 1 year: 2017 end-page: 11 publication-title: Nature communications – volume: 4 start-page: 1776 year: 2020 end-page: 1789 publication-title: Joule – volume: 13 start-page: 11843 year: 2019 end-page: 11852 publication-title: ACS nano – volume: 11 year: 2021 publication-title: Advanced Energy Materials – volume: 49 year: 2022 publication-title: Journal of Energy Storage – volume: 29 year: 2017 publication-title: Advanced Materials – start-page: 1 year: 2022 end-page: 1 publication-title: IEEE Transactions on Transportation Electrification – volume: 5 year: 2021 publication-title: Small Methods – volume: 588 start-page: 378 year: 2021 end-page: 383 publication-title: Journal of Colloid and Interface Science – volume: 216 year: 2022 publication-title: Biosensors and Bioelectronics – volume: 132 year: 2022 publication-title: Journal of Applied Physics – volume: 2 year: 2021 publication-title: Small Structures – volume: 3 start-page: 402 year: 2016 end-page: 421 publication-title: Materials Horizons – volume: 5 start-page: 10406 year: 2017 end-page: 10415 publication-title: Journal of Materials Chemistry A – volume: 14 start-page: 5097 year: 2014 end-page: 5103 publication-title: Nano letters – volume: 217 start-page: 1 year: 2016 end-page: 8 publication-title: Electrochimica Acta – volume: 5 start-page: 1240 year: 2013 end-page: 1247 publication-title: ACS applied materials interfaces – volume: 15 start-page: 2194 year: 2015 end-page: 2202 publication-title: Nano letters – volume: 8 year: 2018 publication-title: Advanced Energy Materials – volume: 8 start-page: 305 year: 2023 end-page: 314 publication-title: High Voltage – volume: 6 year: 2016 publication-title: Advanced Energy Materials – volume: 32 year: 2020 publication-title: Advanced Materials – volume: 356 year: 2017 publication-title: Science – volume: 633 start-page: 82 year: 2023 end-page: 91 publication-title: Journal of Colloid and Interface Science – volume: 32 start-page: 1491 year: 2021 end-page: 1496 publication-title: Chinese Chemical Letters – volume: 30 start-page: 80 year: 2019 end-page: 102 publication-title: Materials Today – volume: 9 start-page: 1190 year: 2016 end-page: 1209 publication-title: Energy & Environmental Science – volume: 15 start-page: 2654 year: 2022 publication-title: Materials – volume: 12 start-page: 3369 year: 2018 end-page: 3377 publication-title: ACS nano – volume: 2022 year: 2022 publication-title: Journal of Chemistry – volume: 2 year: 2018 publication-title: Small Methods – volume: 27 year: 2018 publication-title: Chinese Physics B – volume: 7 start-page: 24462 year: 2019 end-page: 24476 publication-title: Journal of Materials Chemistry A – volume: 2 start-page: 2026 year: 2017 end-page: 2034 publication-title: ACS Energy Letters – volume: 16 year: 2020 publication-title: Small – volume: 8 start-page: 18250 year: 2016 end-page: 18269 publication-title: Nanoscale – volume: 61 start-page: 104 year: 2021 end-page: 134 publication-title: Journal of Energy Chemistry – volume: 32 start-page: 1111 year: 2021 end-page: 1116 publication-title: Chinese Chemical Letters – volume: 7 start-page: 414 year: 2012 end-page: 429 publication-title: Nano today – volume: 2 start-page: 1 year: 2017 end-page: 16 publication-title: Nature Reviews Materials – volume: 13 start-page: 961 year: 2014 end-page: 969 publication-title: Nature Materials – volume: 598 start-page: 590 year: 2021 end-page: 596 publication-title: Nature – volume: 6 start-page: 4426 year: 2021 end-page: 4430 publication-title: ACS Energy Letters – volume: 44 start-page: 2757 year: 2015 end-page: 2785 publication-title: Chemical Society Reviews – volume: 407 start-page: 724 year: 2000 end-page: 727 publication-title: Nature – volume: 16 start-page: 323 year: 2019 end-page: 343 publication-title: Energy Storage Materials – volume: 137 start-page: 511 year: 2015 end-page: 536 publication-title: Applied energy – volume: 6 start-page: 15 year: 2023 publication-title: Electrochemical Energy Reviews – volume: 120 start-page: 6934 year: 2020 end-page: 6976 publication-title: Chemical Reviews – volume: 10 start-page: 9208 year: 2016 end-page: 9215 publication-title: Acs Nano – volume: 57 start-page: 3943 year: 2018 end-page: 3948 publication-title: Angewandte Chemie International Edition – volume: 3 start-page: 1986 year: 2019 end-page: 2000 publication-title: Joule – volume: 251 start-page: 108 year: 2014 end-page: 112 publication-title: Journal of Power Sources – volume: 14 start-page: 691 year: 2023 publication-title: Micromachines – year: 2022 publication-title: Chinese Chemical Letters – volume: 31 year: 2021 publication-title: Advanced Functional Materials – volume: 51 start-page: 258 year: 2018 end-page: 264 publication-title: Accounts of Chemical Research – volume: 30 year: 2018 publication-title: Advanced Materials – volume: 389 year: 2020 publication-title: Chemical Engineering Journal – volume: 21 start-page: 84 year: 2020 end-page: 92 publication-title: Current Opinion in Electrochemistry – volume: 131 start-page: 16508 year: 2019 end-page: 16517 publication-title: Angewandte Chemie – volume: 3 start-page: 452 year: 2016 end-page: 463 publication-title: Inorganic Chemistry Frontiers – volume: 114 start-page: 11503 year: 2014 end-page: 11618 publication-title: Chemical reviews – volume: 22 year: 2022 publication-title: The Chemical Record – volume: 7 start-page: 19 year: 2015 end-page: 29 publication-title: Nature chemistry – volume: 10 year: 2020 publication-title: Advanced Energy Materials – volume: 4 start-page: 3253 year: 2016 end-page: 3266 publication-title: Journal of Materials Chemistry A – volume: 8 start-page: 10150 year: 2020 end-page: 10167 publication-title: Journal of Materials Chemistry A – volume: 114 start-page: 125 year: 2017 end-page: 133 publication-title: Carbon – volume: 23 start-page: 640 year: 2011 end-page: 643 publication-title: Advanced Materials – volume: 20 start-page: 116 year: 2017 end-page: 130 publication-title: Materials Today – volume: 13 start-page: 4122 year: 2020 end-page: 4131 publication-title: Energy & Environmental Science – volume: 12 start-page: 41 year: 1978 end-page: 99 publication-title: Progress in Solid State Chemistry – volume: 26 start-page: 964 year: 2014 end-page: 969 publication-title: Advanced Materials – volume: 10 start-page: 1051 year: 2017 end-page: 1074 publication-title: Energy & Environmental Science – volume: 6 start-page: 26666 year: 2016 publication-title: Scientific Reports – volume: 47 start-page: 3301 year: 2018 end-page: 3338 publication-title: Chemical Society Reviews – volume: 7 start-page: 19764 year: 2015 end-page: 19788 publication-title: Nanoscale – volume: 9 start-page: 35 year: 2022 end-page: 43 publication-title: Inorganic chemistry frontiers – volume: 10 start-page: 1764 year: 2019 publication-title: Nature communications – volume: 9 start-page: 12464 year: 2015 end-page: 12472 publication-title: ACS nano – volume: 44 start-page: 2664 year: 2015 end-page: 2680 publication-title: Chemical Society Reviews – volume: 613 year: 2023 publication-title: Applied Surface Science – ident: e_1_2_11_11_1 doi: 10.1038/ncomms14264 – ident: e_1_2_11_50_1 doi: 10.1038/nchem.1589 – ident: e_1_2_11_85_1 doi: 10.1039/C7EE00566K – ident: e_1_2_11_23_1 doi: 10.1016/j.jechem.2021.02.028 – ident: e_1_2_11_100_1 doi: 10.1002/aenm.201601920 – ident: e_1_2_11_6_1 doi: 10.1002/tcr.202200013 – ident: e_1_2_11_105_1 doi: 10.1021/acs.accounts.7b00527 – ident: e_1_2_11_4_1 doi: 10.1038/nchem.2085 – ident: e_1_2_11_68_1 doi: 10.1002/aenm.201702384 – ident: e_1_2_11_75_1 doi: 10.1016/0079-6786(78)90003-1 – ident: e_1_2_11_94_1 doi: 10.1002/ange.201903941 – ident: e_1_2_11_127_1 doi: 10.1016/j.joule.2020.06.011 – ident: e_1_2_11_26_1 doi: 10.1016/j.mattod.2019.05.017 – ident: e_1_2_11_45_1 doi: 10.1002/adma.201304120 – ident: e_1_2_11_19_1 doi: 10.1039/C8CS00561C – ident: e_1_2_11_57_1 doi: 10.3390/mi14030691 – ident: e_1_2_11_27_1 doi: 10.7717/peerj-matsci.3 – start-page: 1 year: 2022 ident: e_1_2_11_10_1 publication-title: IEEE Transactions on Transportation Electrification – ident: e_1_2_11_8_1 doi: 10.1016/j.jpowsour.2013.11.061 – ident: e_1_2_11_24_1 doi: 10.1016/j.ensm.2022.10.005 – year: 2022 ident: e_1_2_11_20_1 publication-title: Chinese Physics B – ident: e_1_2_11_60_1 doi: 10.1016/j.jpowsour.2021.229882 – ident: e_1_2_11_22_1 doi: 10.1002/aenm.202003493 – ident: e_1_2_11_42_1 doi: 10.3390/ma15072654 – ident: e_1_2_11_38_1 doi: 10.1039/C5NR06718A – ident: e_1_2_11_109_1 doi: 10.9734/JSRR/2015/14076 – ident: e_1_2_11_92_1 doi: 10.1021/acsnano.2c03398 – ident: e_1_2_11_108_1 doi: 10.1002/adma.201003560 – ident: e_1_2_11_96_1 doi: 10.1016/j.coelec.2020.01.014 – ident: e_1_2_11_3_1 doi: 10.1016/j.cclet.2020.08.026 – ident: e_1_2_11_102_1 doi: 10.1038/35037553 – ident: e_1_2_11_90_1 doi: 10.1021/acsnano.9b08039 – ident: e_1_2_11_106_1 doi: 10.1039/c3ee40871j – ident: e_1_2_11_54_1 doi: 10.1039/C9TA08677C – ident: e_1_2_11_88_1 doi: 10.1002/slct.201801692 – ident: e_1_2_11_128_1 doi: 10.1039/D0EE02769C – ident: e_1_2_11_47_1 doi: 10.1039/C9EE03549D – ident: e_1_2_11_118_1 doi: 10.1039/C5TA08574H – ident: e_1_2_11_35_1 doi: 10.1186/s40580-014-0034-2 – ident: e_1_2_11_58_1 doi: 10.1021/acsnano.7b08895 – ident: e_1_2_11_114_1 doi: 10.1038/natrevmats.2016.103 – ident: e_1_2_11_51_1 doi: 10.1016/j.mattod.2016.10.002 – ident: e_1_2_11_126_1 doi: 10.1038/nmat4041 – ident: e_1_2_11_1_1 doi: 10.1039/C6MH00075D – ident: e_1_2_11_121_1 doi: 10.1126/science.aal4263 – ident: e_1_2_11_17_1 doi: 10.1016/j.cclet.2020.09.029 – ident: e_1_2_11_87_1 doi: 10.1016/j.ensm.2017.09.002 – ident: e_1_2_11_66_1 doi: 10.1016/j.ensm.2018.05.026 – ident: e_1_2_11_113_1 doi: 10.1007/s40820-023-01086-6 – ident: e_1_2_11_86_1 doi: 10.1002/adma.201903826 – ident: e_1_2_11_98_1 doi: 10.1021/acs.nanolett.5b00388 – ident: e_1_2_11_99_1 doi: 10.1016/j.cej.2020.124405 – ident: e_1_2_11_56_1 doi: 10.1126/science.1194975 – ident: e_1_2_11_80_1 doi: 10.1002/adfm.202103912 – ident: e_1_2_11_5_1 doi: 10.1049/hve2.12278 – ident: e_1_2_11_14_1 doi: 10.1039/C6NR06836G – ident: e_1_2_11_116_1 doi: 10.1021/cr500003w – ident: e_1_2_11_119_1 doi: 10.1039/D0TA02984J – ident: e_1_2_11_18_1 doi: 10.1016/j.est.2022.106469 – ident: e_1_2_11_70_1 doi: 10.1002/aenm.201700571 – ident: e_1_2_11_48_1 doi: 10.1021/acsnano.6b05746 – ident: e_1_2_11_40_1 doi: 10.1111/jace.17082 – ident: e_1_2_11_74_1 doi: 10.1016/j.apsusc.2022.156003 – ident: e_1_2_11_61_1 doi: 10.1016/j.electacta.2016.09.059 – ident: e_1_2_11_71_1 doi: 10.1007/s41918-022-00167-1 – ident: e_1_2_11_95_1 doi: 10.1002/aenm.202001769 – ident: e_1_2_11_37_1 doi: 10.1039/C4CS00287C – ident: e_1_2_11_49_1 doi: 10.1039/C5CS00275C – ident: e_1_2_11_125_1 doi: 10.1126/science.1132195 – year: 2022 ident: e_1_2_11_28_1 publication-title: Accounts of Materials Research – ident: e_1_2_11_64_1 doi: 10.1002/adma.202302086 – ident: e_1_2_11_36_1 doi: 10.1039/C4CS00282B – ident: e_1_2_11_107_1 doi: 10.1016/j.jcis.2020.12.083 – ident: e_1_2_11_16_1 doi: 10.1016/j.est.2022.104150 – ident: e_1_2_11_30_1 doi: 10.1039/C8CS00094H – ident: e_1_2_11_69_1 doi: 10.1021/acsanm.1c03946 – ident: e_1_2_11_117_1 doi: 10.1038/s41586-021-03885-6 – ident: e_1_2_11_76_1 doi: 10.1016/j.nantod.2012.08.004 – ident: e_1_2_11_112_1 doi: 10.1038/s41557-018-0045-4 – ident: e_1_2_11_79_1 doi: 10.1038/s41467-019-09400-w – ident: e_1_2_11_33_1 doi: 10.1016/j.carbon.2016.12.002 – ident: e_1_2_11_104_1 doi: 10.1021/acs.chemrev.6b00614 – ident: e_1_2_11_39_1 doi: 10.1039/C5EE03761A – ident: e_1_2_11_34_1 doi: 10.1063/5.0100522 – ident: e_1_2_11_65_1 doi: 10.1016/j.ensm.2016.04.001 – ident: e_1_2_11_13_1 doi: 10.1016/j.apenergy.2014.09.081 – ident: e_1_2_11_72_1 doi: 10.1002/aenm.201600671 – ident: e_1_2_11_7_1 doi: 10.1016/j.mattod.2014.04.024 – ident: e_1_2_11_110_1 doi: 10.1126/science.abq3750 – ident: e_1_2_11_59_1 doi: 10.1002/adma.201404140 – ident: e_1_2_11_44_1 doi: 10.1038/srep26666 – ident: e_1_2_11_21_1 doi: 10.1021/acs.chemrev.9b00618 – ident: e_1_2_11_46_1 doi: 10.1002/adma.201907818 – ident: e_1_2_11_97_1 doi: 10.1039/C5QI00242G – year: 2022 ident: e_1_2_11_73_1 publication-title: Chinese Chemical Letters – ident: e_1_2_11_77_1 doi: 10.1021/acsnano.5b05891 – ident: e_1_2_11_101_1 doi: 10.1002/smll.202000698 – ident: e_1_2_11_91_1 doi: 10.1002/anie.201713291 – ident: e_1_2_11_32_1 doi: 10.1016/j.pmatsci.2018.03.007 – ident: e_1_2_11_83_1 doi: 10.1002/adma.201800036 – ident: e_1_2_11_123_1 doi: 10.1016/j.joule.2019.06.008 – ident: e_1_2_11_103_1 doi: 10.1002/smtd.201800020 – ident: e_1_2_11_81_1 doi: 10.1002/sstr.202000054 – ident: e_1_2_11_15_1 doi: 10.1016/j.jcis.2022.11.107 – ident: e_1_2_11_124_1 doi: 10.1021/acsenergylett.1c02084 – ident: e_1_2_11_67_1 doi: 10.1002/adfm.201802564 – ident: e_1_2_11_25_1 doi: 10.1021/acsenergylett.7b00476 – ident: e_1_2_11_41_1 doi: 10.1021/am3022015 – ident: e_1_2_11_63_1 doi: 10.1038/s41578-019-0142-z – ident: e_1_2_11_82_1 doi: 10.1002/adma.201702061 – volume: 2022 year: 2022 ident: e_1_2_11_111_1 publication-title: Journal of Chemistry – ident: e_1_2_11_115_1 doi: 10.1021/acs.chemrev.9b00760 – ident: e_1_2_11_53_1 doi: 10.1021/nl501793a – ident: e_1_2_11_93_1 doi: 10.1002/adfm.202205600 – ident: e_1_2_11_55_1 doi: 10.1016/j.electacta.2018.10.191 – ident: e_1_2_11_78_1 doi: 10.1016/j.cej.2019.122033 – ident: e_1_2_11_43_1 doi: 10.1002/smtd.202000815 – ident: e_1_2_11_12_1 doi: 10.1016/j.matdes.2023.111952 – ident: e_1_2_11_89_1 doi: 10.1039/C7TA01821E – ident: e_1_2_11_62_1 doi: 10.1002/aenm.201502588 – ident: e_1_2_11_52_1 doi: 10.1088/1674-1056/27/3/034402 – ident: e_1_2_11_29_1 doi: 10.1039/C5CS00937E – ident: e_1_2_11_84_1 doi: 10.1021/acsnano.9b05865 – year: 2021 ident: e_1_2_11_122_1 publication-title: Chinese Chemical Letters – ident: e_1_2_11_9_1 doi: 10.1039/D1QI01077H – ident: e_1_2_11_31_1 doi: 10.1016/j.bios.2022.114674 – ident: e_1_2_11_120_1 doi: 10.1039/D1SC04023E – ident: e_1_2_11_2_1 doi: 10.1088/1361-6528/aae3da |
SSID | ssj0011477 |
Score | 2.5638263 |
SecondaryResourceType | review_article |
Snippet | The fast growth of electrochemical energy storage (EES) systems necessitates using innovative, high‐performance electrode materials. Among the various EES... The fast growth of electrochemical energy storage (EES) systems necessitates using innovative, high-performance electrode materials. Among the various EES... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202300145 |
SubjectTerms | Chalcogenides Electrochemistry Electrode materials Electrodes Energy storage KIBs LIBs MIBs Nanocomposites Nanomaterials NIBs Rechargeable batteries Transition metal compounds Transition metal dichalcogenides ZIBs |
Title | Recent Advances of Transition Metal Dichalcogenides‐Based Materials for Energy Storage Devices, in View of Monovalent to Divalent Ions |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ftcr.202300145 https://www.ncbi.nlm.nih.gov/pubmed/37358343 https://www.proquest.com/docview/2913274621 https://www.proquest.com/docview/2829705398 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ja9wwFH6EXNpL98VtElQoPcUTj631mEwS0sD0kI3cXNmSYGiwS8dDoaccc-xv7C_Jk-RxmZQUSm8y1mbrLd-z3wLw3hrFqXR1Okb7KqVc61SO6zqVzjitHaoI7QOcp5_40Tk9vmSXfZ1THwsT80MMH9w8ZwR57RlcV_Od30lDUVCNfO1vD_J9kLn31_Kg6GRIH4VQP1Re9JVbU7QrVJ9jE8fvrIxe1Ul_AM1V3BoUz-Fj-LzccvQ3-TJadNWo_nEnm-N_PNMTeNSDUrIbqegprNnmGTyYLGvBPYcbRJeonchu9BiYk9aRoOWCwxeZWoTwZN974F_VLZLkzNj5r-ufe6giDZnqLpI5QYBMDkKwITlFWx9FGdm3QVRtk1lDLmb2u58Z5UyLDOAX7Fqctm9_RAZ5AeeHB2eTo7Sv4ZDWBVcsNbUujMp5pVSV64wbZ5lTuZNWOFlVaN1UjAuDMpllmeMCAQwzzimbMc2ocMVLWG_axr4GIgzCFUMpwwmoFkIyZ-jY-nN3TBqRwPbyFMu6T3Du62xclTE1c17i6y2H15vAh6H715jZ476OG0uSKHsGn5e5QjNeUJ6PE3g33MZT8f9bdGPbBfbxYcso5JRM4FUkpWGlQhRMFrRIIAsE8fctlGeTk-Hizb8PeQsPsU3jp6MNWO--Lewmgqmu2goccwv2mRdp |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VcigX3o9AASMBp2abhx3HBw5lt9Uu7fZQtqi34MQ2WlEliM2qghNHjvwU_gp_gV_COE6CFgQShx647cPrWPY8vvHOfAPwWCuR0NQUfojxlU8TKf00LAo_NcpIadBFSFvgPD1Mxsf0xQk7WYOvXS2M44foL9ysZjT22iq4vZDe_skaipZqYJt_W5TfpVXu6w9nGLQtnk1GeMJPomhvdzYc-21fAb-IE8F8VchYiSjJhcgjGSTKaGZEZFLNTZrniLhzlnCFdoIFgUk4OlWmjBE6YJJRbmKc9wJctF3ELVv_6KgnrMLgoun1aHvF-hjJiJbVExe8vbLcVS_4G7RdRcqNq9u7At-6TXIZLm8HyzofFB9_4Y_8n3bxKlxucTfZcYpyDdZ0eR02hl27uxvwGQE0OmCy45IiFqQypHHkTU4bmWqMUsjIFhmcFhVq3VzpxfdPX54jClBkKmunyQRjALLb1FOSlzWq1xtNRrqxxltkXpJXc31mZ0ZTWqGO2wfWFU7bvp6gDbgJx-eyEbdgvaxKfQcIV4jIFKUMJ6CS85QZRUNtUxENSxX3YKsTm6xoOdxtK5HTzLFPRxkeZ9YfpwdP--HvHHnJnwZudjKYtTZskUUijCNOkyj04FH_NZ6K_UtJlrpa4hhbmY12XKQe3Hay2z8p5jFLYxp7EDQS-PclZLPhUf_m7r__5CFsjGfTg-xgcrh_Dy7h59TdlG3Cev1-qe8jdqzzB426Enh93pL9A-cAdb0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qRQIu7EuggJGAUzPN4iU-cCgzHXUoU6HSVr0FJ7bRiCqpmIwqOHHkyD_hr_Ab-CU8Z0MDAolDD9yyOLZlv-V7zlsAHhstOU1s7odoX_mUK-UnYZ77idVWKYsqQrkA5-ku3z6gL47Y0Qp87WJhmvwQ_YGb44xaXjsGP9F242fSUBRUA1f724H8zqtyx3w4RZtt_mwywg1-EkXjrf3htt-WFfDzmEvm61zFWkY8kzKLVMC1NczKyCZG2CTLEHBnjAuNYoIFgeUCdSrT1koTMMWosDH2ew7OUx5IVytitNfnq0Lboi716ErF-mjIyDapJ054Y2m6y0rwN2S7DJRrTTe-At-6NWocXN4NFlU2yD_-kj7yP1rEq3C5Rd1ks2GTa7BiiutwcdgVu7sBnxE-o_olm41LxJyUltRqvPZoI1ODNgoZuRCD47xEnptpM__-6ctzxACaTFXV8DFBC4Bs1dGU5HWFzPXWkJGpZfE6mRXkcGZOXc8oSEvkcDdgVWK37fUEJcBNODiThbgFq0VZmDtAhEY8pill2AFVQiTMahoa54hoWaKFB-sd1aR5m8HdFRI5Tpvc01GK25n22-nB0775SZO65E8N1zoSTFsJNk8jGcaRoDwKPXjUv8ZdcT-UVGHKBbZxcdkoxWXiwe2GdPuRYhGzJKaxB0FNgH-fQro_3Otv7v77Jw_hwqvROH052d25B5fwMW2OydZgtXq_MPcROFbZg5pZCbw5a8L-AfWJdGw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances+of+Transition+Metal+Dichalcogenides%E2%80%90Based+Materials+for+Energy+Storage+Devices%2C+in+View+of+Monovalent+to+Divalent+Ions&rft.jtitle=Chemical+record&rft.au=Ali%2C+Salamat&rft.au=Ahmad+Shah%2C+Syed+Shoaib&rft.au=Sufyan+Javed%2C+Muhammad&rft.au=Najam%2C+Tayyaba&rft.date=2024-01-01&rft.issn=1527-8999&rft.eissn=1528-0691&rft.volume=24&rft.issue=1&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Ftcr.202300145&rft.externalDBID=10.1002%252Ftcr.202300145&rft.externalDocID=TCR202300145 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1527-8999&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1527-8999&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1527-8999&client=summon |