Asymmetric Fluorofunctionalizations with Carboxylate‐Based Phase‐Transfer Catalysts
Fluorine is an attractive element in the field of pharmaceutical and agrochemical chemistry due to its unique properties. Considering the chiral environment in nature, where enantiomers often show different biological activities, the introduction of fluorine atom(s) into organic molecules to make ch...
Saved in:
Published in | Chemical record Vol. 23; no. 7; pp. e202200285 - n/a |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fluorine is an attractive element in the field of pharmaceutical and agrochemical chemistry due to its unique properties. Considering the chiral environment in nature, where enantiomers often show different biological activities, the introduction of fluorine atom(s) into organic molecules to make chiral fluorinated compounds is an important subject. Herein, we describe the story of the development of our chiral carboxylate‐based phase‐transfer catalysts and their applications for asymmetric fluorocyclizations of alkenes bearing a carboxylic acid, an amide, and an oxime as an internal nucleophile with a dicationic fluorinating reagent, Selectfluor. We also describe dearomative fluorinations of indole derivatives, 2‐naphthols, and resorcinols.
This personal account describes the design and synthesis of novel carboxylate‐based phase‐transfer catalysts for fluorination with Selectfluor. The catalysts enable various enantioselective fluorofunctionalizations of alkene derivatives and (hetero)aromatic compounds. The advantages of our catalytic system, its synthetic utility, and detailed mechanistic studies uncovering a unique catalytic cycle are also discussed briefly. |
---|---|
AbstractList | Fluorine is an attractive element in the field of pharmaceutical and agrochemical chemistry due to its unique properties. Considering the chiral environment in nature, where enantiomers often show different biological activities, the introduction of fluorine atom(s) into organic molecules to make chiral fluorinated compounds is an important subject. Herein, we describe the story of the development of our chiral carboxylate‐based phase‐transfer catalysts and their applications for asymmetric fluorocyclizations of alkenes bearing a carboxylic acid, an amide, and an oxime as an internal nucleophile with a dicationic fluorinating reagent, Selectfluor. We also describe dearomative fluorinations of indole derivatives, 2‐naphthols, and resorcinols. Fluorine is an attractive element in the field of pharmaceutical and agrochemical chemistry due to its unique properties. Considering the chiral environment in nature, where enantiomers often show different biological activities, the introduction of fluorine atom(s) into organic molecules to make chiral fluorinated compounds is an important subject. Herein, we describe the story of the development of our chiral carboxylate-based phase-transfer catalysts and their applications for asymmetric fluorocyclizations of alkenes bearing a carboxylic acid, an amide, and an oxime as an internal nucleophile with a dicationic fluorinating reagent, Selectfluor. We also describe dearomative fluorinations of indole derivatives, 2-naphthols, and resorcinols.Fluorine is an attractive element in the field of pharmaceutical and agrochemical chemistry due to its unique properties. Considering the chiral environment in nature, where enantiomers often show different biological activities, the introduction of fluorine atom(s) into organic molecules to make chiral fluorinated compounds is an important subject. Herein, we describe the story of the development of our chiral carboxylate-based phase-transfer catalysts and their applications for asymmetric fluorocyclizations of alkenes bearing a carboxylic acid, an amide, and an oxime as an internal nucleophile with a dicationic fluorinating reagent, Selectfluor. We also describe dearomative fluorinations of indole derivatives, 2-naphthols, and resorcinols. Fluorine is an attractive element in the field of pharmaceutical and agrochemical chemistry due to its unique properties. Considering the chiral environment in nature, where enantiomers often show different biological activities, the introduction of fluorine atom(s) into organic molecules to make chiral fluorinated compounds is an important subject. Herein, we describe the story of the development of our chiral carboxylate‐based phase‐transfer catalysts and their applications for asymmetric fluorocyclizations of alkenes bearing a carboxylic acid, an amide, and an oxime as an internal nucleophile with a dicationic fluorinating reagent, Selectfluor. We also describe dearomative fluorinations of indole derivatives, 2‐naphthols, and resorcinols. This personal account describes the design and synthesis of novel carboxylate‐based phase‐transfer catalysts for fluorination with Selectfluor. The catalysts enable various enantioselective fluorofunctionalizations of alkene derivatives and (hetero)aromatic compounds. The advantages of our catalytic system, its synthetic utility, and detailed mechanistic studies uncovering a unique catalytic cycle are also discussed briefly. |
Author | Egami, Hiromichi Hamashima, Yoshitaka |
Author_xml | – sequence: 1 givenname: Hiromichi surname: Egami fullname: Egami, Hiromichi organization: University of Shizuoka 52-1 Yada, Suruga-ku – sequence: 2 givenname: Yoshitaka surname: Hamashima fullname: Hamashima, Yoshitaka email: hamashima@u-shizuoka-ken.ac.jp organization: University of Shizuoka 52-1 Yada, Suruga-ku |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36734199$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kV1LHDEUhkNR_Fi97G1Z6E1vRvMxmUwut0u3LQiKrHgZspkzGMlMtkmGdXrVn-Bv9Jc0umpBqJyL8x543hNy3kO00_seEPpI8AnBmJ4mE04opjTrmn9AB4TTusCVJDtPWhS1lHIfHcZ4izEhpRB7aJ9VgpVEygN0PYtj10EK1kwXbvDBt0NvkvW9dva3fhRxurHpZjrXYeXvRqcTPPy5_6ojNNOLm9zytAy6jy2EDCXtxpjiEdpttYtw_Nwn6GrxbTn_UZydf_85n50VhlWSF0SvBONYUMY5M5jqVpAKtBGtrHXdctkYAElwWwErG6MbkMbwynDcYJOLTdCX7d518L8GiEl1NhpwTvfgh6ioEIwQzvILE_T5DXrrh5D_mamalSUVNSkz9emZGlYdNGodbKfDqF5OlgG2BUzwMQZolbHp6VApaOsUweoxGJWDUa_BZFfxxvWy-H-82PIb62B8H1bL-eU_51965KIr |
CitedBy_id | crossref_primary_10_1002_ejoc_202300985 crossref_primary_10_1016_j_cclet_2024_110239 crossref_primary_10_1021_acs_joc_3c00730 crossref_primary_10_1055_a_2161_9513 crossref_primary_10_1016_j_jfluchem_2024_110355 crossref_primary_10_3762_bjoc_20_158 crossref_primary_10_1002_slct_202405859 crossref_primary_10_1002_adsc_202301460 |
Cites_doi | 10.1016/j.vetpar.2014.02.020 10.1002/anie.201208471 10.1021/acs.orglett.0c02026 10.1021/jacs.6b01183 10.1039/C7CC02419C 10.1002/ange.201913100 10.1021/acscatal.8b00103 10.1039/B610213C 10.1002/chem.201202444 10.1021/jacs.5b07795 10.1021/acs.orglett.9b01398 10.1038/nchem.2879 10.1039/C8NP00080H 10.1021/ja010789t 10.1002/anie.200901795 10.1021/jo00175a007 10.1002/ange.201603046 10.1246/bcsj.69.169 10.1002/ange.200705241 10.1016/j.ejmech.2014.11.067 10.1016/j.chembiol.2012.07.004 10.1002/9781444312096 10.1142/p746 10.1002/anie.202012882 10.1002/anie.201206566 10.1021/acs.orglett.6b00380 10.1002/ange.201302002 10.1016/S0040-4020(00)00109-5 10.3390/molecules24193464 10.1038/s41467-021-24278-3 10.1021/acscatal.0c03493 10.1002/anie.201103151 10.1126/science.1131943 10.1016/j.jfluchem.2018.11.002 10.1021/ja303959p 10.1002/anie.201310056 10.1016/j.phytochem.2015.02.016 10.1002/ange.201205383 10.1021/ja3116795 10.1002/anie.200800717 10.1021/np400922x 10.1021/ar500282z 10.1089/dna.2012.1726 10.1002/9783527651351 10.1002/anie.201302002 10.1021/cr500277b 10.1002/anie.201303527 10.1021/np3002833 10.1021/acscatal.5b02182 10.1021/acs.jnatprod.6b00011 10.1002/ange.201208471 10.1021/tx400055p 10.1002/anie.202005367 10.1021/jo2005999 10.1038/aps.2013.155 10.1039/C3SC53107D 10.1016/j.tet.2021.132355 10.1021/jacs.1c06783 10.1016/0031-9422(90)80166-E 10.1021/ja062987w 10.1021/acs.chemrev.7b00480 10.1021/ja00100a004 10.1021/jacs.8b02143 10.1142/q0217 10.1126/science.1213918 10.1055/s-0032-1318506 10.1021/ol006610l 10.1039/C3SC52911H 10.1002/ange.202005367 10.1021/acs.jafc.7b02384 10.1021/jacs.5b06546 10.1002/ange.200901795 10.1021/cr800221v 10.1002/anie.201810328 10.1016/j.ejmech.2010.05.047 10.1002/anie.200705241 10.1021/np0701778 10.1021/jacs.1c03178 10.1021/jo00363a018 10.1021/np4000747 10.1002/ange.202012882 10.1021/ja052049g 10.1021/ja412881j 10.1073/pnas.1304346110 10.1021/ja507468u 10.1002/anie.202005181 10.1002/chem.201303385 10.1248/cpb.c18-00551 10.1002/ange.200800717 10.1002/anie.201913100 10.1002/ange.202005181 10.1002/chem.201001451 10.1021/ja311798q 10.1002/ange.201303527 10.1016/j.bmcl.2015.10.044 10.1002/ange.201103151 10.1016/j.jfluchem.2006.01.004 10.1016/j.bbrc.2009.11.131 10.1021/jo9801566 10.1039/b510004f 10.1002/anie.201603046 10.1021/jacs.5b05841 10.1039/b603163c 10.1021/jm980406a 10.1002/ange.201810328 10.1002/ange.201206566 10.1021/cr068410e 10.1021/jacs.6b02391 10.1039/C5OB02526E 10.1016/j.bmc.2012.06.048 10.1039/C5CS00356C 10.1021/jo00908a024 10.1039/C8OB01378K 10.1021/jacs.6b09499 10.1002/anie.201205383 10.1021/acs.chemrev.7b00778 10.1016/j.tetlet.2016.05.012 10.1039/B711844A 10.1021/jacs.7b13690 10.1016/S0040-4020(01)01031-6 10.1039/C6SC05102B 10.1016/j.ejmech.2010.12.004 10.1002/ange.201310056 10.1021/ol5022355 10.1021/cr4002879 10.1073/pnas.1306252110 10.1002/adsc.201900814 |
ContentType | Journal Article |
Copyright | 2023 The Chemical Society of Japan & Wiley‐VCH GmbH 2023 The Chemical Society of Japan & Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 The Chemical Society of Japan & Wiley‐VCH GmbH – notice: 2023 The Chemical Society of Japan & Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7QO 7T7 8FD C1K FR3 P64 7X8 |
DOI | 10.1002/tcr.202200285 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Engineering Research Database Biotechnology Research Abstracts Technology Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Engineering Research Database PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1528-0691 |
EndPage | n/a |
ExternalDocumentID | 36734199 10_1002_tcr_202200285 TCR202200285 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: Scientific Research funderid: 16H05077; 19H03353; 18K06585; 21K06479 – fundername: Scientific Research grantid: 21K06479 – fundername: Scientific Research grantid: 18K06585 – fundername: Scientific Research grantid: 16H05077 – fundername: Scientific Research grantid: 19H03353 |
GroupedDBID | --- .3N .Y3 05W 0R~ 10A 123 1OC 29B 31~ 33P 3WU 4.4 50Y 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 53G 5VS 66C 702 7PT 8-1 8UM A00 AAESR AAHHS AAHQN AAMNL AANHP AANLZ AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ASPBG AVWKF AZFZN AZVAB BDRZF BFHJK BMXJE BROTX BRXPI BY8 CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD F5P FEDTE G-S G.N GODZA HF~ HGLYW HVGLF HZ~ IX1 J0M LATKE LAW LC2 LC3 LEEKS LH- LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MSFUL MSSTM MXFUL MXSTM MY~ N9A O9- OIG P2W P4D Q11 QB0 QRW R.K ROL RX1 SUPJJ V2E W99 WBKPD WOHZO WQJ WXSBR WYJ WYUIH XG1 XV2 ZZTAW ~IA AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION NPM 7QO 7T7 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 P64 7X8 |
ID | FETCH-LOGICAL-c3695-1ab7350723553c02af716eac7f98a8f59dcee910f6e34dcade9cc56c50d0c0c03 |
IEDL.DBID | DR2 |
ISSN | 1527-8999 1528-0691 |
IngestDate | Fri Jul 11 05:21:24 EDT 2025 Fri Jul 25 12:12:34 EDT 2025 Thu Apr 03 06:55:20 EDT 2025 Tue Jul 01 02:40:10 EDT 2025 Thu Apr 24 23:10:56 EDT 2025 Wed Jan 22 16:21:45 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | fluorination difunctionalization asymmetric reaction phase-transfer catalyst dearomatization |
Language | English |
License | 2023 The Chemical Society of Japan & Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3695-1ab7350723553c02af716eac7f98a8f59dcee910f6e34dcade9cc56c50d0c0c03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
PMID | 36734199 |
PQID | 2834427814 |
PQPubID | 1006501 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2773115372 proquest_journals_2834427814 pubmed_primary_36734199 crossref_citationtrail_10_1002_tcr_202200285 crossref_primary_10_1002_tcr_202200285 wiley_primary_10_1002_tcr_202200285_TCR202200285 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2023 2023-07-00 2023-Jul 20230701 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: July 2023 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Chemical record |
PublicationTitleAlternate | Chem Rec |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014 2014; 53 126 2017; 8 2013; 26 2009 2009; 48 121 2020 2020; 59 132 2008; 37 2008; 108 2007; 70 2012; 19 2000; 2 2012; 18 1999; 42 2008 2008; 47 120 2020; 10 2011; 17 2019; 361 2014; 136 2016; 79 2013 2013; 52 125 2017; 117 2014; 20 2018; 8 2014; 5 2012; 134 2015; 137 2000; 56 2019; 21 2012 2012; 51 124 2018 2018; 57 130 2019; 24 2014; 16 2000; 122 2013; 110 2010; 391 2006; 127 1996; 69 2001; 57 1975; 40 2006; 128 2012; 20 2016; 45 2014; 201 2011; 334 2001; 123 1994; 116 2018; 140 1986; 51 1984; 49 2013; 45 2015; 97 2017; 65 2019; 36 2005; 41 2014; 47 2011; 76 2006; 4 2021; 143 1998; 63 2016; 18 2018; 66 2021; 96 2014; 114 2016; 14 2016; 57 2012; 75 2012; 31 2010; 45 2016; 6 2017; 53 2015; 25 2007; 317 2016 2016; 55 128 2021; 12 2015; 115 2013; 76 2018; 118 1990; 29 2005; 127 2021 2021; 60 133 2013; 135 2014; 35 2011; 46 2016; 138 2011 2011; 50 123 2020; 22 2019; 217 2018; 10 2018; 16 2014; 77 e_1_2_7_108_1 e_1_2_7_108_2 e_1_2_7_3_2 Sorochinsky A. E. (e_1_2_7_107_1) 2013; 45 e_1_2_7_127_2 e_1_2_7_104_1 e_1_2_7_7_2 e_1_2_7_123_2 e_1_2_7_60_1 e_1_2_7_83_2 e_1_2_7_100_2 e_1_2_7_15_2 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_41_2 e_1_2_7_11_2 e_1_2_7_45_2 e_1_2_7_68_2 e_1_2_7_26_2 e_1_2_7_49_1 e_1_2_7_26_3 e_1_2_7_116_2 e_1_2_7_90_1 e_1_2_7_112_2 e_1_2_7_71_2 e_1_2_7_94_2 e_1_2_7_52_2 e_1_2_7_98_2 e_1_2_7_23_2 e_1_2_7_75_1 e_1_2_7_33_2 e_1_2_7_56_2 e_1_2_7_79_2 e_1_2_7_33_3 e_1_2_7_56_3 e_1_2_7_37_2 e_1_2_7_131_2 e_1_2_7_4_2 e_1_2_7_109_1 e_1_2_7_105_2 e_1_2_7_128_2 e_1_2_7_105_3 e_1_2_7_8_2 e_1_2_7_101_2 e_1_2_7_124_2 e_1_2_7_82_2 e_1_2_7_16_2 e_1_2_7_40_2 e_1_2_7_86_2 e_1_2_7_40_3 e_1_2_7_63_1 e_1_2_7_86_3 e_1_2_7_12_2 e_1_2_7_44_2 e_1_2_7_67_2 e_1_2_7_48_2 e_1_2_7_29_1 Shibata N. (e_1_2_7_19_2) 2000; 122 e_1_2_7_117_2 e_1_2_7_113_2 e_1_2_7_93_2 e_1_2_7_70_1 e_1_2_7_51_3 e_1_2_7_24_2 e_1_2_7_51_2 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_32_2 e_1_2_7_32_3 e_1_2_7_20_2 e_1_2_7_55_2 e_1_2_7_59_1 e_1_2_7_36_2 e_1_2_7_78_2 e_1_2_7_132_2 e_1_2_7_5_2 e_1_2_7_129_1 e_1_2_7_106_2 e_1_2_7_9_2 e_1_2_7_125_2 e_1_2_7_102_2 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_121_1 e_1_2_7_81_2 e_1_2_7_13_3 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_43_2 e_1_2_7_85_2 e_1_2_7_66_2 e_1_2_7_47_2 e_1_2_7_89_2 e_1_2_7_47_3 e_1_2_7_28_2 e_1_2_7_28_3 e_1_2_7_118_2 e_1_2_7_114_2 e_1_2_7_73_1 e_1_2_7_110_2 e_1_2_7_50_2 e_1_2_7_92_2 e_1_2_7_25_3 e_1_2_7_25_2 e_1_2_7_31_2 e_1_2_7_54_2 e_1_2_7_96_2 e_1_2_7_21_1 e_1_2_7_54_3 e_1_2_7_35_2 e_1_2_7_58_2 e_1_2_7_77_2 e_1_2_7_35_3 e_1_2_7_39_1 e_1_2_7_133_2 e_1_2_7_103_2 e_1_2_7_126_2 e_1_2_7_6_2 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_122_1 e_1_2_7_80_2 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_2 e_1_2_7_42_2 e_1_2_7_65_2 e_1_2_7_10_1 e_1_2_7_46_2 e_1_2_7_88_2 e_1_2_7_46_3 e_1_2_7_69_1 e_1_2_7_27_2 Thiele M. (e_1_2_7_120_1) e_1_2_7_119_1 e_1_2_7_91_1 e_1_2_7_115_2 e_1_2_7_111_2 e_1_2_7_72_2 e_1_2_7_76_1 e_1_2_7_30_2 e_1_2_7_22_2 e_1_2_7_53_2 e_1_2_7_95_2 e_1_2_7_34_2 e_1_2_7_57_3 e_1_2_7_57_2 e_1_2_7_99_2 e_1_2_7_130_2 e_1_2_7_38_2 |
References_xml | – volume: 137 start-page: 10852 year: 2015 end-page: 10866 publication-title: J. Am. Chem. Soc. – volume: 56 start-page: 1929 year: 2000 end-page: 1936 publication-title: Tetrahedron – volume: 57 start-page: 10027 year: 2001 end-page: 10031 publication-title: Tetrahedron – volume: 16 start-page: 4988 year: 2014 end-page: 4991 publication-title: Org. Lett. – volume: 70 start-page: 1380 year: 2007 end-page: 1383 publication-title: J. Nat. Prod. – volume: 48 121 start-page: 7083 7217 year: 2009 2009 end-page: 7086 7220 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 42 start-page: 2760 year: 1999 end-page: 2773 publication-title: J. Med. Chem. – volume: 118 start-page: 3887 year: 2018 end-page: 3964 publication-title: Chem. Rev. – volume: 122 start-page: 19728 year: 2000 end-page: 10729 publication-title: J. Am. Chem. Soc. – volume: 96 year: 2021 publication-title: Tetrahedron – volume: 51 124 start-page: 9684 9822 year: 2012 2012 end-page: 9688 9826 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 45 start-page: 1570 year: 2016 end-page: 11580 publication-title: Chem. Soc. Rev. – volume: 10 start-page: 11980 year: 2020 end-page: 12010 publication-title: ACS Catal. – volume: 143 start-page: 16599 year: 2021 end-page: 16609 publication-title: J. Am. Chem. Soc. – volume: 37 start-page: 320 year: 2008 end-page: 330 publication-title: Chem. Soc. Rev. – volume: 77 start-page: 327 year: 2014 end-page: 338 publication-title: J. Nat. Prod. – volume: 20 start-page: 4901 year: 2012 end-page: 4914 publication-title: Bioorg. Med. Chem. – volume: 140 start-page: 2785 year: 2018 end-page: 2788 publication-title: J. Am. Chem. Soc. – volume: 201 start-page: 179 year: 2014 end-page: 189 publication-title: Vet. Parasitol. – volume: 10 start-page: 119 year: 2018 end-page: 125 publication-title: Nat. Chem. – volume: 5 start-page: 2754 year: 2014 end-page: 2760 publication-title: Chem. Sci. – volume: 4 start-page: 2065 year: 2006 end-page: 2075 publication-title: Org. Biomol. Chem. – volume: 59 132 start-page: 2735 2757 year: 2020 2020 end-page: 2739 2761 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 76 start-page: 1058 year: 2013 end-page: 1063 publication-title: J. Nat. Prod. – volume: 114 start-page: 2432 year: 2014 end-page: 2506 publication-title: Chem. Rev. – volume: 45 start-page: 1312 year: 2013 end-page: 1318 publication-title: Synthesis – volume: 137 start-page: 12207 year: 2015 end-page: 12210 publication-title: J. Am. Chem. Soc. – volume: 57 130 start-page: 16431 16669 year: 2018 2018 end-page: 16435 16673 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 108 start-page: PR1 year: 2008 end-page: PR43 publication-title: Chem. Rev. – volume: 26 start-page: 514 year: 2013 end-page: 516 publication-title: Chem. Res. Toxicol. – volume: 135 start-page: 628 year: 2013 end-page: 631 publication-title: J. Am. Chem. Soc. – volume: 22 start-page: 5656 year: 2020 end-page: 5660 publication-title: Org. Lett. – volume: 59 132 start-page: 14101 14205 year: 2020 2020 end-page: 14105 14209 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 36 start-page: 1437 year: 2019 end-page: 1461 publication-title: Nat. Prod. Rep. – volume: 53 126 start-page: 4181 4265 year: 2014 2014 end-page: 4185 4269 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 60 133 start-page: 2699 2731 year: 2021 2021 end-page: 2703 2735 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 21 start-page: 4520 year: 2019 end-page: 4524 publication-title: Org. Lett. – volume: 138 start-page: 5000 year: 2016 end-page: 5003 publication-title: J. Am. Chem. Soc. – volume: 79 start-page: 2158 year: 2016 end-page: 2166 publication-title: J. Nat. Prod. – volume: 57 start-page: 2567 year: 2016 end-page: 2574 publication-title: Tetrahedron Lett. – volume: 17 start-page: 1388 year: 2011 end-page: 1408 publication-title: Chem. Eur. J. – volume: 115 start-page: 59 year: 2015 end-page: 69 publication-title: Phytochemistry – volume: 18 start-page: 12950 year: 2012 end-page: 12954 publication-title: Chem. Eur. J. – volume: 128 start-page: 15625 year: 2006 end-page: 15631 publication-title: J. Am. Chem. Soc. – volume: 110 start-page: 13729 year: 2013 end-page: 13733 publication-title: Proc. Nat. Acad. Sci. – volume: 46 start-page: 691 year: 2011 end-page: 703 publication-title: Eur. J. Med. Chem. – volume: 140 start-page: 4797 year: 2018 end-page: 4802 publication-title: J. Am. Chem. Soc. – volume: 49 start-page: 34 year: 1984 end-page: 40 publication-title: J. Org. Chem. – volume: 12 start-page: 3957 year: 2021 publication-title: Nat. Commun. – volume: 137 start-page: 10132 year: 2015 end-page: 10135 publication-title: J. Am. Chem. Soc. – volume: 19 start-page: 1049 year: 2012 end-page: 1059 publication-title: Chem. Biol. – volume: 75 start-page: 1167 year: 2012 end-page: 1176 publication-title: J. Nat. Prod. – volume: 47 120 start-page: 4157 4225 year: 2008 2008 end-page: 4161 4229 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 69 start-page: 169 year: 1996 end-page: 175 publication-title: Bull. Chem. Soc. Jpn. – volume: 116 start-page: 9430 year: 1994 end-page: 9439 publication-title: J. Am. Chem. Soc. – volume: 16 start-page: 5386 year: 2018 end-page: 5402 publication-title: Org. Biomol. Chem. – volume: 76 start-page: 6030 year: 2011 end-page: 6037 publication-title: J. Org. Chem. – volume: 25 start-page: 5589 year: 2015 end-page: 5593 publication-title: Bioorg. Med. Chem. Lett. – volume: 8 start-page: 2890 year: 2017 end-page: 2897 publication-title: Chem. Sci. – volume: 143 start-page: 8962 year: 2021 end-page: 8969 publication-title: J. Am. Chem. Soc. – volume: 66 start-page: 920 year: 2018 end-page: 922 publication-title: Chem. Pharm. Bull. – volume: 8 start-page: 1528 year: 2018 end-page: 1531 publication-title: ACS Catal. – volume: 134 start-page: 8376 year: 2012 end-page: 8379 publication-title: J. Am. Chem. Soc. – volume: 138 start-page: 13858 year: 2016 end-page: 13861 publication-title: J. Am. Chem. Soc. – volume: 115 start-page: 826 year: 2015 end-page: 870 publication-title: Chem. Rev. – volume: 391 start-page: 744 year: 2010 end-page: 749 publication-title: Biochem. Biophys. Res. Commun. – volume: 20 start-page: 83 year: 2014 end-page: 86 publication-title: Chem. Eur. J. – volume: 6 start-page: 151 year: 2016 end-page: 154 publication-title: ACS Catal. – volume: 24 start-page: 3464 year: 2019 publication-title: Molecules – volume: 48 121 start-page: 456 464 year: 2009 2009 end-page: 494 503 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 63 start-page: 4140 year: 1998 end-page: 4142 publication-title: J. Org. Chem. – volume: 31 start-page: 1468 year: 2012 end-page: 1474 publication-title: DNA Cell Biol. – volume: 2 start-page: 3699 year: 2000 end-page: 3701 publication-title: Org. Lett. – volume: 65 start-page: 5985 year: 2017 end-page: 5993 publication-title: J. Agric. Food Chem. – volume: 136 start-page: 4101 year: 2014 end-page: 4104 publication-title: J. Am. Chem. Soc. – volume: 317 start-page: 1881 year: 2007 end-page: 1886 publication-title: Science – volume: 136 start-page: 12864 year: 2014 end-page: 12867 publication-title: J. Am. Chem. Soc. – volume: 52 125 start-page: 7724 7878 year: 2013 2013 end-page: 7727 7881 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 108 start-page: 1943 year: 2008 end-page: 1981 publication-title: Chem. Rev. – volume: 55 128 start-page: 9045 9191 year: 2016 2016 end-page: 9049 9195 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 53 start-page: 5531 year: 2017 end-page: 5534 publication-title: Chem. Commun. – volume: 29 start-page: 3107 year: 1990 end-page: 3113 publication-title: Phytochemistry – volume: 51 start-page: 2500 year: 1986 end-page: 2504 publication-title: J. Org. Chem. – volume: 45 start-page: 3924 year: 2010 end-page: 3937 publication-title: Eur. J. Med. Chem. – volume: 50 123 start-page: 8105 8255 year: 2011 2011 end-page: 8109 8259 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 45 start-page: 141 year: 2013 end-page: 152 publication-title: Synthesis – volume: 97 start-page: 747 year: 2015 end-page: 777 publication-title: Eur. J. Med. Chem. – volume: 59 132 start-page: 15069 15181 year: 2020 2020 end-page: 15075 15187 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 5 start-page: 523 year: 2014 end-page: 527 publication-title: Chem. Sci. – volume: 135 start-page: 1268 year: 2013 end-page: 1271 publication-title: J. Am. Chem. Soc. – volume: 18 start-page: 1446 year: 2016 end-page: 1449 publication-title: Org. Lett. – volume: 41 start-page: 5580 year: 2005 end-page: 5582 publication-title: Chem. Commun. – volume: 47 start-page: 3560 year: 2014 end-page: 3570 publication-title: Acc. Chem. Res. – volume: 37 start-page: 308 year: 2008 end-page: 319 publication-title: Chem. Soc. Rev. – volume: 217 start-page: 29 year: 2019 end-page: 40 publication-title: J. Fluorine Chem. – volume: 110 start-page: 8427 year: 2013 end-page: 8430 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 138 start-page: 5004 year: 2016 end-page: 5007 publication-title: J. Am. Chem. Soc. – volume: 52 125 start-page: 2469 2529 year: 2013 2013 end-page: 2473 2533 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 334 start-page: 1681 year: 2011 end-page: 1684 publication-title: Science – volume: 35 start-page: 316 year: 2014 end-page: 330 publication-title: Acta Pharmacologica Sinica – volume: 123 start-page: 7001 year: 2001 end-page: 7009 publication-title: J. Am. Chem. Soc. – volume: 117 start-page: 13721 year: 2017 end-page: 13755 publication-title: Chem. Rev. – volume: 40 start-page: 2958 year: 1975 end-page: 2960 publication-title: J. Org. Chem. – volume: 52 125 start-page: 8214 8372 year: 2013 2013 end-page: 8264 8423 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – publication-title: Chem. Eur. J. – volume: 14 start-page: 2164 year: 2016 end-page: 2176 publication-title: Org. Biomol. Chem. – volume: 127 start-page: 9342 year: 2005 end-page: 9343 publication-title: J. Am. Chem. Soc. – volume: 52 125 start-page: 9266 9436 year: 2013 2013 end-page: 9270 9440 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 127 start-page: 548 year: 2006 end-page: 551 publication-title: J. Fluorine Chem. – volume: 361 start-page: 5334 year: 2019 end-page: 5339 publication-title: Adv. Synth. Catal. Chem. Commun. – ident: e_1_2_7_82_2 doi: 10.1016/j.vetpar.2014.02.020 – ident: e_1_2_7_40_2 doi: 10.1002/anie.201208471 – ident: e_1_2_7_87_1 – ident: e_1_2_7_90_1 doi: 10.1021/acs.orglett.0c02026 – ident: e_1_2_7_43_2 doi: 10.1021/jacs.6b01183 – ident: e_1_2_7_106_2 doi: 10.1039/C7CC02419C – ident: e_1_2_7_56_3 doi: 10.1002/ange.201913100 – ident: e_1_2_7_89_2 doi: 10.1021/acscatal.8b00103 – ident: e_1_2_7_74_1 – ident: e_1_2_7_7_2 doi: 10.1039/B610213C – ident: e_1_2_7_27_2 doi: 10.1002/chem.201202444 – ident: e_1_2_7_53_2 doi: 10.1021/jacs.5b07795 – ident: e_1_2_7_133_2 doi: 10.1021/acs.orglett.9b01398 – ident: e_1_2_7_132_2 doi: 10.1038/nchem.2879 – ident: e_1_2_7_39_1 – ident: e_1_2_7_10_1 – ident: e_1_2_7_125_2 doi: 10.1039/C8NP00080H – ident: e_1_2_7_22_2 doi: 10.1021/ja010789t – ident: e_1_2_7_26_2 doi: 10.1002/anie.200901795 – ident: e_1_2_7_111_2 doi: 10.1021/jo00175a007 – ident: e_1_2_7_54_3 doi: 10.1002/ange.201603046 – ident: e_1_2_7_65_2 doi: 10.1246/bcsj.69.169 – ident: e_1_2_7_86_3 doi: 10.1002/ange.200705241 – ident: e_1_2_7_124_2 doi: 10.1016/j.ejmech.2014.11.067 – ident: e_1_2_7_126_2 doi: 10.1016/j.chembiol.2012.07.004 – ident: e_1_2_7_3_2 doi: 10.1002/9781444312096 – ident: e_1_2_7_4_2 doi: 10.1142/p746 – ident: e_1_2_7_57_2 doi: 10.1002/anie.202012882 – ident: e_1_2_7_13_2 doi: 10.1002/anie.201206566 – ident: e_1_2_7_128_2 doi: 10.1021/acs.orglett.6b00380 – ident: e_1_2_7_33_3 doi: 10.1002/ange.201302002 – ident: e_1_2_7_66_2 doi: 10.1016/S0040-4020(00)00109-5 – ident: e_1_2_7_75_1 doi: 10.3390/molecules24193464 – ident: e_1_2_7_48_2 doi: 10.1038/s41467-021-24278-3 – ident: e_1_2_7_72_2 doi: 10.1021/acscatal.0c03493 – ident: e_1_2_7_105_2 doi: 10.1002/anie.201103151 – ident: e_1_2_7_6_2 doi: 10.1126/science.1131943 – ident: e_1_2_7_9_2 doi: 10.1016/j.jfluchem.2018.11.002 – ident: e_1_2_7_70_1 – ident: e_1_2_7_31_2 doi: 10.1021/ja303959p – ident: e_1_2_7_51_2 doi: 10.1002/anie.201310056 – ident: e_1_2_7_117_2 doi: 10.1016/j.phytochem.2015.02.016 – ident: e_1_2_7_29_1 – ident: e_1_2_7_32_3 doi: 10.1002/ange.201205383 – ident: e_1_2_7_50_2 doi: 10.1021/ja3116795 – ident: e_1_2_7_25_2 doi: 10.1002/anie.200800717 – ident: e_1_2_7_102_2 doi: 10.1021/np400922x – ident: e_1_2_7_17_1 doi: 10.1021/ar500282z – ident: e_1_2_7_115_2 doi: 10.1089/dna.2012.1726 – ident: e_1_2_7_5_2 doi: 10.1002/9783527651351 – ident: e_1_2_7_33_2 doi: 10.1002/anie.201302002 – ident: e_1_2_7_14_2 doi: 10.1021/cr500277b – ident: e_1_2_7_109_1 – ident: e_1_2_7_35_2 doi: 10.1002/anie.201303527 – ident: e_1_2_7_101_2 doi: 10.1021/np3002833 – ident: e_1_2_7_38_2 doi: 10.1021/acscatal.5b02182 – ident: e_1_2_7_103_2 doi: 10.1021/acs.jnatprod.6b00011 – ident: e_1_2_7_40_3 doi: 10.1002/ange.201208471 – ident: e_1_2_7_81_2 doi: 10.1021/tx400055p – ident: e_1_2_7_108_1 doi: 10.1002/anie.202005367 – ident: e_1_2_7_61_1 doi: 10.1021/jo2005999 – ident: e_1_2_7_123_2 doi: 10.1038/aps.2013.155 – ident: e_1_2_7_41_2 doi: 10.1039/C3SC53107D – ident: e_1_2_7_121_1 doi: 10.1016/j.tet.2021.132355 – ident: e_1_2_7_64_1 – ident: e_1_2_7_69_1 doi: 10.1021/jacs.1c06783 – ident: e_1_2_7_113_2 doi: 10.1016/0031-9422(90)80166-E – ident: e_1_2_7_131_2 doi: 10.1021/ja062987w – ident: e_1_2_7_95_2 doi: 10.1021/acs.chemrev.7b00480 – ident: e_1_2_7_85_2 doi: 10.1021/ja00100a004 – ident: e_1_2_7_120_1 publication-title: Chem. Eur. J. – ident: e_1_2_7_45_2 doi: 10.1021/jacs.8b02143 – ident: e_1_2_7_16_2 doi: 10.1142/q0217 – ident: e_1_2_7_30_2 doi: 10.1126/science.1213918 – ident: e_1_2_7_62_1 doi: 10.1055/s-0032-1318506 – ident: e_1_2_7_20_2 doi: 10.1021/ol006610l – ident: e_1_2_7_127_2 doi: 10.1039/C3SC52911H – ident: e_1_2_7_108_2 doi: 10.1002/ange.202005367 – ident: e_1_2_7_118_2 doi: 10.1021/acs.jafc.7b02384 – ident: e_1_2_7_59_1 doi: 10.1021/jacs.5b06546 – ident: e_1_2_7_26_3 doi: 10.1002/ange.200901795 – ident: e_1_2_7_12_2 doi: 10.1021/cr800221v – ident: e_1_2_7_46_2 doi: 10.1002/anie.201810328 – ident: e_1_2_7_77_2 doi: 10.1016/j.ejmech.2010.05.047 – ident: e_1_2_7_86_2 doi: 10.1002/anie.200705241 – ident: e_1_2_7_100_2 doi: 10.1021/np0701778 – ident: e_1_2_7_58_2 doi: 10.1021/jacs.1c03178 – ident: e_1_2_7_112_2 doi: 10.1021/jo00363a018 – ident: e_1_2_7_116_2 doi: 10.1021/np4000747 – ident: e_1_2_7_57_3 doi: 10.1002/ange.202012882 – ident: e_1_2_7_130_2 doi: 10.1021/ja052049g – ident: e_1_2_7_122_1 – ident: e_1_2_7_28_3 – ident: e_1_2_7_52_2 doi: 10.1021/ja412881j – ident: e_1_2_7_34_2 doi: 10.1073/pnas.1304346110 – ident: e_1_2_7_36_2 doi: 10.1021/ja507468u – ident: e_1_2_7_47_2 doi: 10.1002/anie.202005181 – ident: e_1_2_7_2_1 – ident: e_1_2_7_21_1 – ident: e_1_2_7_60_1 doi: 10.1002/chem.201303385 – volume: 122 start-page: 19728 year: 2000 ident: e_1_2_7_19_2 publication-title: J. Am. Chem. Soc. – ident: e_1_2_7_73_1 doi: 10.1248/cpb.c18-00551 – ident: e_1_2_7_25_3 doi: 10.1002/ange.200800717 – ident: e_1_2_7_49_1 – ident: e_1_2_7_56_2 doi: 10.1002/anie.201913100 – ident: e_1_2_7_47_3 doi: 10.1002/ange.202005181 – ident: e_1_2_7_98_2 doi: 10.1002/chem.201001451 – ident: e_1_2_7_119_1 doi: 10.1021/ja311798q – ident: e_1_2_7_35_3 doi: 10.1002/ange.201303527 – ident: e_1_2_7_83_2 doi: 10.1016/j.bmcl.2015.10.044 – ident: e_1_2_7_105_3 doi: 10.1002/ange.201103151 – ident: e_1_2_7_84_1 – ident: e_1_2_7_76_1 – ident: e_1_2_7_24_2 doi: 10.1016/j.jfluchem.2006.01.004 – ident: e_1_2_7_80_2 doi: 10.1016/j.bbrc.2009.11.131 – ident: e_1_2_7_114_2 doi: 10.1021/jo9801566 – ident: e_1_2_7_23_2 doi: 10.1039/b510004f – ident: e_1_2_7_54_2 doi: 10.1002/anie.201603046 – ident: e_1_2_7_88_2 doi: 10.1021/jacs.5b05841 – ident: e_1_2_7_11_2 doi: 10.1039/b603163c – ident: e_1_2_7_79_2 doi: 10.1021/jm980406a – ident: e_1_2_7_46_3 doi: 10.1002/ange.201810328 – ident: e_1_2_7_13_3 doi: 10.1002/ange.201206566 – ident: e_1_2_7_71_2 doi: 10.1021/cr068410e – ident: e_1_2_7_42_2 doi: 10.1021/jacs.6b02391 – ident: e_1_2_7_92_2 doi: 10.1039/C5OB02526E – ident: e_1_2_7_99_2 doi: 10.1016/j.bmc.2012.06.048 – ident: e_1_2_7_93_2 doi: 10.1039/C5CS00356C – ident: e_1_2_7_110_2 doi: 10.1021/jo00908a024 – ident: e_1_2_7_96_2 doi: 10.1039/C8OB01378K – ident: e_1_2_7_97_1 – ident: e_1_2_7_44_2 doi: 10.1021/jacs.6b09499 – ident: e_1_2_7_91_1 – ident: e_1_2_7_32_2 doi: 10.1002/anie.201205383 – ident: e_1_2_7_15_2 doi: 10.1021/acs.chemrev.7b00778 – ident: e_1_2_7_94_2 doi: 10.1016/j.tetlet.2016.05.012 – ident: e_1_2_7_1_1 doi: 10.1039/B711844A – ident: e_1_2_7_63_1 doi: 10.1021/jacs.7b13690 – ident: e_1_2_7_67_2 doi: 10.1016/S0040-4020(01)01031-6 – ident: e_1_2_7_129_1 – ident: e_1_2_7_55_2 doi: 10.1039/C6SC05102B – ident: e_1_2_7_78_2 doi: 10.1016/j.ejmech.2010.12.004 – ident: e_1_2_7_18_1 – ident: e_1_2_7_51_3 doi: 10.1002/ange.201310056 – ident: e_1_2_7_37_2 doi: 10.1021/ol5022355 – ident: e_1_2_7_104_1 – ident: e_1_2_7_8_2 doi: 10.1021/cr4002879 – ident: e_1_2_7_68_2 doi: 10.1073/pnas.1306252110 – volume: 45 start-page: 141 year: 2013 ident: e_1_2_7_107_1 publication-title: Synthesis – ident: e_1_2_7_28_2 doi: 10.1002/adsc.201900814 |
SSID | ssj0011477 |
Score | 2.3901088 |
SecondaryResourceType | review_article |
Snippet | Fluorine is an attractive element in the field of pharmaceutical and agrochemical chemistry due to its unique properties. Considering the chiral environment in... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202200285 |
SubjectTerms | Agrochemicals Alkenes asymmetric reaction Asymmetry Carboxylic acids Catalysts dearomatization difunctionalization Enantiomers Fluorination Fluorine Indoles Nucleophiles Organic chemistry Phase transfer catalysts phase-transfer catalyst Reagents |
Title | Asymmetric Fluorofunctionalizations with Carboxylate‐Based Phase‐Transfer Catalysts |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ftcr.202200285 https://www.ncbi.nlm.nih.gov/pubmed/36734199 https://www.proquest.com/docview/2834427814 https://www.proquest.com/docview/2773115372 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB7Ei158P-qLCuLJ7nabtmmOWlxEUER20VtN0xTBdVd224Oe_An-Rn-JM33JKgoiPZTShGaTzMyX7OT7AA6E5jax3qGlxQ4uUDSaFAtsC71kR4kkDTSnw8kXl_5Z3z2_9W4rnVM6C1PyQzQbbmQZhb8mA5fxpP1JGoqOCpd3DiUZBHTInPK1CBRdN_RRCPUL5UVSbrVwXSEqjk2s0Z6qPR2TvgHNadxaBJ7uItzVTS7zTR5aeRa31MsXNsd__KYlWKhAqXlczqJlmNHDFZgLay24Vbg5njw_PpL4ljK7g3yEzhvjYbmNWB_kNGlL1wzlOMaGDhDCvr--nWCMTMyre7zhUxEXUz3GQhlRoWSTNeh3T3vhmVVJMliK-cKzOjLmDCGkgzCFKduRKa630HfzVAQySD2RYNBFBJL6mrkJZfgLpTxfeXZiK7zYOswOR0O9CaZHaAXRD0s96UrdEW7MEtfH6aK5RKBpwFE9KJGq-MpJNmMQlUzLToS9FTW9ZcBhU_ypJOr4qeBOPcJRZa-TyCG5EYfovwzYb15jJ9PfJ3KoRzmW4ZyoiRh3DNgoZ0bzJeZzIsYTBtjF-P7ehKgXXjcPW3-vsg3zpHpfZg3vwGw2zvUuYqMs3isM4AP2dAdH |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xHODCvoQ1SIgTgTRO4vgIFVVZhVAR3CLHcYREaVGbHuDEJ_CNfAkz2aAgkBDKIUpiK47tmXkzsd8AbAvNbWK9Q0mLHHRQNIoUC2wLtWRNiTgJNKfNyecXfvPaPbn1bj_t4s_5IaqAG0lGpq9JwCkgvf_BGoqaCv07h1YZBN4ojFNW78ypuqoIpBDsZ7kXKXerhZ6FKFg2scr-UPVhq_QNag4j18z0NKZBlo3OV5zc7w3SaE89f-Fz_M9XzcBUgUvNg3wizcKI7szBRL1MBzcPNwf9p4cHyr-lzEZ70EX9jSYxjySWezlNiuqaddmLsKVtRLFvL6-HaCZj8_IOT3iVmcZE97BQSmwoaX8BrhtHrXrTKrIyWIr5wrNqMuIMUaSDSIUp25EJulyovnkiAhkknojR7iIISXzN3JgW-QulPF95dmwrPNgijHW6Hb0MpkeABQEQSzzpSl0TbsRi18cZo7lErGnAbjkqoSooyylzRjvMyZadEHsrrHrLgJ2q-GPO1fFTwbVyiMNCZPuhQxlHHGIAM2CreoydTH9QZEd3B1iGc2InYtwxYCmfGtWbmM-JG08YYGcD_HsTwlb9qrpY-XuVTZhots7PwrPji9NVmMT7LF9EvAZjaW-g1xEqpdFGJg3vYoYLYg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xSMCFfQlrkBAnAmmcxPGxFCp2IURFbyFxHCFR2qpND3DiE_hGvoSZbKggkBDKIUoyVhx7lmfHfgOwIxQ3ifUOLS20cICi0KSYZxroJStSRLGnOG1OvrxyTxr2WdNp5nlOaS9Mxg9RTriRZaT-mgy8G8UHn6Sh6KhweGfRIgPPGYVx2zU9Uuujm5I_CrF-mnqRUrcaOLAQOckmFjkYKj4clL4hzWHgmkae-gzcF3XOFpw87g-ScF--fKFz_MdHzcJ0jkr1aqZGczCi2vMwWSuSwS3AXbX__PRE2bekXm8NOui9MSBm84jFTk6d5nT1WtALsaItxLDvr2-HGCQj_foBT3iVBsZY9VAoIS6UpL8Ijfrxbe3EyHMyGJK5wjEqQcgZYkgLcQqTphXEOOBC581j4QVe7IgIoy5CkNhVzI5oib-Q0nGlY0amxIMtwVi701YroDsEVxD-sNgJ7EBVhB2yyHZRXxQPEGlqsFd0ii9zwnLKm9HyM6ply8fW8svW0mC3FO9mTB0_Ca4XPeznBtv3Lco3YhH_lwbb5WNsZPp_ErRVZ4AynBM3EeOWBsuZZpRvYi4nZjyhgZn27-9V8G9rN-XF6t-LbMHE9VHdvzi9Ol-DKbzNshXE6zCW9AZqA3FSEm6mtvABUyAKGg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Asymmetric+Fluorofunctionalizations+with+Carboxylate-Based+Phase-Transfer+Catalysts&rft.jtitle=Chemical+record&rft.au=Egami%2C+Hiromichi&rft.au=Hamashima%2C+Yoshitaka&rft.date=2023-07-01&rft.issn=1528-0691&rft.eissn=1528-0691&rft.volume=23&rft.issue=7&rft.spage=e202200285&rft_id=info:doi/10.1002%2Ftcr.202200285&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1527-8999&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1527-8999&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1527-8999&client=summon |