Intensifying Hydrogen Spillover for Boosting Electrocatalytic Hydrogen Evolution Reaction

Hydrogen spillover has attracted increasing interests in the field of electrocatalytic hydrogen evolution reaction (HER) in recent years because of their distinct reaction mechanism and beneficial terms for simultaneously weakening the strong hydrogen adsorption on metal and strengthening the weak h...

Full description

Saved in:
Bibliographic Details
Published inChemical record Vol. 23; no. 3; pp. e202200244 - n/a
Main Authors Xu, Hui, Li, Junru, Chu, Xianxu
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hydrogen spillover has attracted increasing interests in the field of electrocatalytic hydrogen evolution reaction (HER) in recent years because of their distinct reaction mechanism and beneficial terms for simultaneously weakening the strong hydrogen adsorption on metal and strengthening the weak hydrogen adsorption on support. By taking advantageous merits of efficient hydrogen transfer, hydrogen spillover‐based binary catalysts have been widely investigated, which paves a new way for boosting the development of hydrogen production by water electrolysis. In this paper, we summarize the recent progress of this interesting field by focusing on the advanced strategies for intensifying the hydrogen spillover towards HER. In addition, the challenging issues and some perspective insights in the future development of hydrogen spillover‐based electrocatalysts are also systematically discussed. This review has summarized the recent findings achieved in hydrogen spillover‐based electrocatalysts for boosting HER by highlighting the definition of hydrogen spillover and manifesting the modification strategies for designing them to better suit the application demand in the near future.
AbstractList Hydrogen spillover has attracted increasing interests in the field of electrocatalytic hydrogen evolution reaction (HER) in recent years because of their distinct reaction mechanism and beneficial terms for simultaneously weakening the strong hydrogen adsorption on metal and strengthening the weak hydrogen adsorption on support. By taking advantageous merits of efficient hydrogen transfer, hydrogen spillover‐based binary catalysts have been widely investigated, which paves a new way for boosting the development of hydrogen production by water electrolysis. In this paper, we summarize the recent progress of this interesting field by focusing on the advanced strategies for intensifying the hydrogen spillover towards HER. In addition, the challenging issues and some perspective insights in the future development of hydrogen spillover‐based electrocatalysts are also systematically discussed.
Hydrogen spillover has attracted increasing interests in the field of electrocatalytic hydrogen evolution reaction (HER) in recent years because of their distinct reaction mechanism and beneficial terms for simultaneously weakening the strong hydrogen adsorption on metal and strengthening the weak hydrogen adsorption on support. By taking advantageous merits of efficient hydrogen transfer, hydrogen spillover-based binary catalysts have been widely investigated, which paves a new way for boosting the development of hydrogen production by water electrolysis. In this paper, we summarize the recent progress of this interesting field by focusing on the advanced strategies for intensifying the hydrogen spillover towards HER. In addition, the challenging issues and some perspective insights in the future development of hydrogen spillover-based electrocatalysts are also systematically discussed.Hydrogen spillover has attracted increasing interests in the field of electrocatalytic hydrogen evolution reaction (HER) in recent years because of their distinct reaction mechanism and beneficial terms for simultaneously weakening the strong hydrogen adsorption on metal and strengthening the weak hydrogen adsorption on support. By taking advantageous merits of efficient hydrogen transfer, hydrogen spillover-based binary catalysts have been widely investigated, which paves a new way for boosting the development of hydrogen production by water electrolysis. In this paper, we summarize the recent progress of this interesting field by focusing on the advanced strategies for intensifying the hydrogen spillover towards HER. In addition, the challenging issues and some perspective insights in the future development of hydrogen spillover-based electrocatalysts are also systematically discussed.
Hydrogen spillover has attracted increasing interests in the field of electrocatalytic hydrogen evolution reaction (HER) in recent years because of their distinct reaction mechanism and beneficial terms for simultaneously weakening the strong hydrogen adsorption on metal and strengthening the weak hydrogen adsorption on support. By taking advantageous merits of efficient hydrogen transfer, hydrogen spillover‐based binary catalysts have been widely investigated, which paves a new way for boosting the development of hydrogen production by water electrolysis. In this paper, we summarize the recent progress of this interesting field by focusing on the advanced strategies for intensifying the hydrogen spillover towards HER. In addition, the challenging issues and some perspective insights in the future development of hydrogen spillover‐based electrocatalysts are also systematically discussed. This review has summarized the recent findings achieved in hydrogen spillover‐based electrocatalysts for boosting HER by highlighting the definition of hydrogen spillover and manifesting the modification strategies for designing them to better suit the application demand in the near future.
Author Xu, Hui
Chu, Xianxu
Li, Junru
Author_xml – sequence: 1
  givenname: Hui
  orcidid: 0000-0002-1744-4180
  surname: Xu
  fullname: Xu, Hui
  email: xuhui006@cczu.edu.cn
  organization: Soochow University
– sequence: 2
  givenname: Junru
  surname: Li
  fullname: Li, Junru
  organization: Shangqiu Normal University
– sequence: 3
  givenname: Xianxu
  surname: Chu
  fullname: Chu, Xianxu
  email: xxchu13633@163.com
  organization: Soochow University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36482015$$D View this record in MEDLINE/PubMed
BookMark eNp9kctrGzEQxkVJaB7tsdeykEsv6-i1q91jY9wkYCjkcehJyNpZIyNLrqR12P--ch3HEGhP88H8vmFmvgt04rwDhL4QPCEY0-ukw4RiSrPm_AM6JxVtSly35OSvFmXTtu0ZuohxhTEhXIiP6IzVvKGYVOfo171L4KLpR-OWxd3YBb8EVzxujLV-C6HofShuvI9p159Z0Cl4rZKyYzL6aJhtvR2S8a54AKV34hM67ZWN8Pm1XqLnH7On6V05_3l7P_0-LzWrW17qTmghGi60okJXpKmpyIItxIIoxgAqpbWmC1C8Yx0Fkkst8n0cAPesY5fo237uJvjfA8Qk1yZqsFY58EOUVFSMEdxWPKNX79CVH4LL22WqqSjBTdNm6usrNSzW0MlNMGsVRnl4WgbYHtDBxxigl9oktbs5BWWsJFjuopE5GvkWTXaV71yHwf_ixZ5_MRbG_8PyafpwdP4BDgigWg
CitedBy_id crossref_primary_10_1021_acsenergylett_3c01426
crossref_primary_10_1002_smsc_202400343
crossref_primary_10_1039_D3QI00138E
crossref_primary_10_1002_aenm_202405546
crossref_primary_10_1002_tcr_202300097
crossref_primary_10_1039_D3DT01562A
crossref_primary_10_1002_ange_202501964
crossref_primary_10_1016_j_jallcom_2024_174896
crossref_primary_10_1016_j_apcatb_2023_123275
crossref_primary_10_1016_j_cej_2023_144691
crossref_primary_10_1039_D4CC04767B
crossref_primary_10_1002_anie_202501964
crossref_primary_10_1007_s11581_023_05213_6
crossref_primary_10_1039_D3DT01228J
crossref_primary_10_1016_j_electacta_2024_143792
crossref_primary_10_1021_acsenergylett_3c01459
crossref_primary_10_3762_bjnano_14_79
crossref_primary_10_1039_D3NR02548A
crossref_primary_10_1007_s12598_023_02446_2
crossref_primary_10_1002_tcr_202400106
crossref_primary_10_1002_tcr_202300088
crossref_primary_10_1002_adfm_202423537
crossref_primary_10_1039_D3CP05904A
crossref_primary_10_1039_D2DT03253H
crossref_primary_10_1021_acs_inorgchem_3c04240
crossref_primary_10_1016_j_jcis_2025_01_077
crossref_primary_10_1021_acs_inorgchem_2c04092
crossref_primary_10_1016_j_mtchem_2024_101962
crossref_primary_10_1016_j_ijhydene_2023_05_254
crossref_primary_10_1002_cssc_202400977
crossref_primary_10_1039_D3DT00649B
crossref_primary_10_1021_acs_inorgchem_3c01701
crossref_primary_10_1016_j_ijhydene_2023_07_267
crossref_primary_10_1016_j_ijhydene_2024_05_372
crossref_primary_10_26599_POM_2023_9140031
crossref_primary_10_1016_j_ijhydene_2023_04_257
crossref_primary_10_1002_adma_202401568
crossref_primary_10_1007_s11581_023_05090_z
crossref_primary_10_1021_acsnano_4c07738
crossref_primary_10_1007_s11581_023_05283_6
crossref_primary_10_1039_D2NH00549B
crossref_primary_10_1002_adfm_202412685
crossref_primary_10_1016_j_jallcom_2024_175883
crossref_primary_10_1016_j_colsurfa_2023_131720
crossref_primary_10_1016_j_esci_2024_100334
crossref_primary_10_1016_j_ijhydene_2023_09_023
crossref_primary_10_1016_j_ccr_2024_216321
crossref_primary_10_1039_D3DT02201C
crossref_primary_10_1016_j_jcis_2023_07_109
crossref_primary_10_1016_j_ijhydene_2024_08_364
crossref_primary_10_1039_D3TA01766D
crossref_primary_10_1016_j_diamond_2023_110208
Cites_doi 10.1002/anie.202101019
10.1002/anie.202104856
10.1002/smll.202100203
10.1016/S1872-2067(21)63794-4
10.1021/acsami.2c05444
10.1002/adfm.202109439
10.1016/j.electacta.2018.07.013
10.1021/acs.inorgchem.2c00296
10.1021/acs.inorgchem.2c03060
10.1021/acs.inorgchem.2c02666
10.1002/smll.202107739
10.1002/anie.202116867
10.1002/adma.202105276
10.1021/jacs.5b06405
10.1039/D2NR04294K
10.1038/s41467-020-18567-6
10.1002/adfm.202112207
10.1021/jacs.1c04626
10.1039/D1EE03687D
10.1021/acsnano.0c01478
10.1038/s41467-021-26336-2
10.1021/acs.nanolett.1c04425
10.1002/ange.202009612
10.1039/D0NR07120J
10.1021/acsenergylett.7b00270
10.1038/s41467-018-06269-z
10.1039/C9TA00649D
10.1002/cssc.202102495
10.1002/smll.201700936
10.1002/anie.202109785
10.1002/adfm.201700359
10.1038/s41467-021-21595-5
10.1002/adma.202105049
10.1016/j.jcis.2021.07.101
10.1002/anie.202107731
10.1016/j.cej.2020.127180
10.1002/smll.201900014
10.1002/anie.201601016
10.1039/D2TA06791A
10.1021/acsenergylett.1c02769
10.1002/smll.202003630
10.1002/anie.202116057
10.1016/j.ijhydene.2021.12.258
10.1016/j.apcatb.2019.04.022
10.1002/advs.201900090
10.1016/j.gee.2022.01.013
10.1038/s41467-022-28413-6
10.1016/j.cej.2022.135720
10.1021/jacs.0c00218
10.1002/smm2.1083
10.1038/s41467-022-33007-3
10.1016/j.jallcom.2022.166415
10.1016/j.cej.2021.129805
10.1039/D1TA01089A
10.1038/ncomms12272
10.1021/acs.inorgchem.1c00295
10.1002/adma.201908232
10.1021/acsnano.9b01583
10.1016/j.jcis.2022.07.125
10.1021/acsami.1c20459
10.1002/adma.201906477
10.1002/chem.201904473
10.1007/s11426-021-1112-2
10.1021/jacs.2c01589
10.1016/j.apcatb.2022.121989
10.1002/anie.202009612
10.1038/s41467-022-28843-2
10.1039/D2QI00715K
10.1038/s41598-018-21396-9
10.1016/j.ijhydene.2019.12.146
10.1038/s41467-021-23750-4
10.1016/j.jcis.2021.11.018
10.1002/adma.202203615
10.1039/C9EE00752K
10.1016/j.cej.2020.126297
10.1039/D1TA01108A
10.1039/D2SC00871H
10.1016/j.ccr.2021.214261
10.1016/j.ijhydene.2021.12.033
10.1039/D2TA05156G
10.1002/smll.202102159
10.1002/ange.201601016
10.1039/C9TA12230C
10.1016/j.ccr.2022.214869
10.1021/acsami.2c03584
10.1021/acscatal.0c01541
10.1039/D1NR02870G
10.1039/D2CE00710J
10.1016/j.jechem.2021.06.018
10.1016/j.nanoen.2021.106307
10.1016/j.apcatb.2022.121338
10.1002/anie.202104055
10.1016/j.ijhydene.2022.02.152
10.1038/s41467-021-24228-z
10.1039/D2NJ01385A
10.1002/adma.202101425
10.1038/ncomms14580
10.1021/jacs.2c01094
ContentType Journal Article
Copyright 2022 The Chemical Society of Japan & Wiley‐VCH GmbH
2022 The Chemical Society of Japan & Wiley-VCH GmbH.
2023 The Chemical Society of Japan & Wiley‐VCH GmbH
Copyright_xml – notice: 2022 The Chemical Society of Japan & Wiley‐VCH GmbH
– notice: 2022 The Chemical Society of Japan & Wiley-VCH GmbH.
– notice: 2023 The Chemical Society of Japan & Wiley‐VCH GmbH
DBID AAYXX
CITATION
NPM
7QO
7T7
8FD
C1K
FR3
P64
7X8
DOI 10.1002/tcr.202200244
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList CrossRef
Engineering Research Database
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1528-0691
EndPage n/a
ExternalDocumentID 36482015
10_1002_tcr_202200244
TCR202200244
Genre reviewArticle
Journal Article
Review
GroupedDBID ---
.3N
.Y3
05W
0R~
10A
123
1OC
29B
31~
33P
3WU
4.4
50Y
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
53G
5VS
66C
702
7PT
8-1
8UM
A00
AAESR
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BMXJE
BROTX
BRXPI
BY8
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
F5P
FEDTE
G-S
G.N
GODZA
HF~
HGLYW
HVGLF
HZ~
IX1
J0M
LATKE
LAW
LC2
LC3
LEEKS
LH-
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MSFUL
MSSTM
MXFUL
MXSTM
MY~
N9A
O9-
OIG
P2W
P4D
Q11
QB0
QRW
R.K
ROL
RX1
SUPJJ
V2E
W99
WBKPD
WOHZO
WQJ
WXSBR
WYJ
WYUIH
XG1
XV2
ZZTAW
~IA
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
NPM
7QO
7T7
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
P64
7X8
ID FETCH-LOGICAL-c3694-cd7c77847ca27c51862727c3b7b1a33ee5accc2bea4d3d2e14d3676914ee0f3d3
IEDL.DBID DR2
ISSN 1527-8999
1528-0691
IngestDate Fri Jul 11 10:49:44 EDT 2025
Sat Jul 19 20:11:20 EDT 2025
Thu Apr 03 07:02:39 EDT 2025
Thu Apr 24 22:58:48 EDT 2025
Tue Jul 01 02:40:10 EDT 2025
Wed Jan 22 16:23:09 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Electrocatalysis
Hydrogen evolution reaction
Metal-support
Energy barrier
Hydrogen spillover
Language English
License 2022 The Chemical Society of Japan & Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3694-cd7c77847ca27c51862727c3b7b1a33ee5accc2bea4d3d2e14d3676914ee0f3d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-1744-4180
PMID 36482015
PQID 2785210889
PQPubID 1006501
PageCount 14
ParticipantIDs proquest_miscellaneous_2753310954
proquest_journals_2785210889
pubmed_primary_36482015
crossref_citationtrail_10_1002_tcr_202200244
crossref_primary_10_1002_tcr_202200244
wiley_primary_10_1002_tcr_202200244_TCR202200244
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2023
2023-03-00
2023-Mar
20230301
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: March 2023
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Chemical record
PublicationTitleAlternate Chem Rec
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 407
2022; 451
2017; 8
2021; 65
2017; 2
2018; 283
2021; 403
2019; 13
2019; 12
2019; 15
2020 2020; 59 132
2022; 24
2020; 16
2020; 14
2020; 11
2020; 10
2022; 66
2022; 22
2020; 8
2018; 9
2018; 8
2021; 33
2015; 137
2022; 34
2020; 45
2022; 608
2022; 605
2022; 924
2022; 32
2021; 9
2022; 310
2019; 7
2019; 6
2021; 88
2021; 420
2020; 142
2017; 27
2023; 320
2022; 46
2022; 47
2022; 43
2020; 32
2021; 143
2022; 439
2022; 144
2021; 13
2016; 7
2016 2016; 55 128
2021; 12
2022; 3
2022
2022; 61
2022; 7
2023; 475
2021; 17
2017; 13
2022; 9
2022; 13
2022; 14
2020; 26
2022; 15
2022; 10
2022; 628
2021; 60
2022; 18
2019; 253
e_1_2_7_3_1
e_1_2_7_7_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_100_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_26_1
e_1_2_7_90_1
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_23_1
e_1_2_7_75_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_79_1
Zhu J. (e_1_2_7_32_1) 2022
e_1_2_7_4_1
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_86_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_29_1
Zhou S. (e_1_2_7_80_1) 2022
Tian L. (e_1_2_7_82_1) 2022
e_1_2_7_93_2
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_24_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_5_1
e_1_2_7_9_1
e_1_2_7_102_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
Tian L. (e_1_2_7_19_1) 2022
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
Hulsey M. J. (e_1_2_7_49_1) 2022; 61
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_28_1
Chen D. (e_1_2_7_33_1) 2022; 61
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_103_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
Yang X. (e_1_2_7_8_1) 2022
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_91_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_38_1
e_1_2_7_38_2
References_xml – volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 407
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 144
  start-page: 9033
  year: 2022
  end-page: 9043
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 3884
  year: 2021
  publication-title: Nat. Commun.
– year: 2022
  publication-title: Energy Environ. Mater.
– volume: 14
  start-page: 10246
  year: 2022
  end-page: 10256
  publication-title: ACS Appl. Mater. Interfaces
– volume: 18
  year: 2022
  publication-title: Small
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 60
  start-page: 16622
  year: 2021
  end-page: 16627
  publication-title: Angew. Chem. Int. Ed.
– volume: 2
  start-page: 1022
  year: 2017
  end-page: 1028
  publication-title: ACS Energy Lett.
– volume: 439
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 12
  start-page: 3502
  year: 2021
  publication-title: Nat. Commun.
– volume: 14
  start-page: 30746
  year: 2022
  end-page: 30759
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 4320
  year: 2022
  end-page: 4328
  publication-title: Inorg. Chem. Front.
– volume: 60
  start-page: 22933
  year: 2021
  end-page: 22939
  publication-title: Angew. Chem. Int. Ed.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 10
  start-page: 16834
  year: 2022
  end-page: 16841
  publication-title: J. Mater. Chem. A
– year: 2022
  publication-title: Angew. Chem. Int. Ed.
– volume: 253
  start-page: 11
  year: 2019
  end-page: 20
  publication-title: Appl. Catal. B
– volume: 46
  start-page: 9650
  year: 2022
  end-page: 9657
  publication-title: New J. Chem.
– volume: 24
  start-page: 5580
  year: 2022
  end-page: 5587
  publication-title: CrystEngComm
– volume: 16
  year: 2020
  publication-title: Small
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 451
  year: 2022
  publication-title: Coord. Chem. Rev.
– volume: 8
  start-page: 2986
  year: 2018
  publication-title: Sci. Rep.
– volume: 13
  start-page: 8137
  year: 2022
  end-page: 8147
  publication-title: Chem. Sci.
– volume: 47
  start-page: 14257
  year: 2022
  end-page: 14279
  publication-title: Int. J. Hydrogen Energy
– volume: 10
  start-page: 7734
  year: 2020
  end-page: 7746
  publication-title: ACS Catal.
– volume: 55 128
  start-page: 5501 5591
  year: 2016 2016
  end-page: 5505 5595
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 310
  year: 2022
  publication-title: Appl. Catal. B
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 60
  start-page: 12027
  year: 2021
  end-page: 12031
  publication-title: Angew. Chem. Int. Ed.
– volume: 137
  start-page: 10910
  year: 2015
  end-page: 10913
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 10405
  year: 2019
  end-page: 10411
  publication-title: J. Mater. Chem. A
– volume: 47
  start-page: 9230
  year: 2022
  end-page: 9238
  publication-title: Int. J. Hydrogen Energy
– volume: 924
  year: 2022
  publication-title: J. Alloys Compd.
– volume: 13
  start-page: 6824
  year: 2019
  end-page: 6834
  publication-title: ACS Nano
– volume: 13
  start-page: 810
  year: 2021
  end-page: 818
  publication-title: Nanoscale
– volume: 14
  start-page: 15340
  year: 2022
  end-page: 15347
  publication-title: Nanoscale
– volume: 8
  start-page: 14580
  year: 2017
  publication-title: Nat. Commun.
– volume: 12
  start-page: 2298
  year: 2019
  end-page: 2304
  publication-title: Energy Environ. Sci.
– volume: 60
  start-page: 19435
  year: 2021
  end-page: 19441
  publication-title: Angew. Chem. Int. Ed.
– volume: 61
  year: 2022
  publication-title: Angew. Chem. Int. Ed.
– volume: 10
  start-page: 23294
  year: 2022
  end-page: 23303
  publication-title: J. Mater. Chem. A
– volume: 12
  start-page: 6007
  year: 2021
  publication-title: Nat. Commun.
– volume: 22
  start-page: 3503
  year: 2022
  end-page: 3511
  publication-title: Nano Lett.
– volume: 143
  start-page: 10822
  year: 2021
  end-page: 10827
  publication-title: J. Am. Chem. Soc.
– volume: 45
  start-page: 25900
  year: 2020
  end-page: 25911
  publication-title: Int. J. Hydrogen Energy
– volume: 47
  start-page: 6691
  year: 2022
  end-page: 6699
  publication-title: Int. J. Hydrogen Energy
– volume: 9
  start-page: 3778
  year: 2018
  publication-title: Nat. Commun.
– volume: 142
  start-page: 3645
  year: 2020
  end-page: 3651
  publication-title: J. Am. Chem. Soc.
– volume: 403
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 60
  start-page: 14117
  year: 2021
  end-page: 14123
  publication-title: Angew. Chem. Int. Ed.
– volume: 12
  start-page: 1369
  year: 2021
  publication-title: Nat. Commun.
– volume: 7
  start-page: 1161
  year: 2022
  end-page: 1198
  publication-title: Green Energy & Environ.
– volume: 11
  start-page: 4773
  year: 2020
  publication-title: Nat. Commun.
– volume: 17
  year: 2021
  publication-title: Small
– volume: 628
  start-page: 663
  year: 2022
  end-page: 672
  publication-title: J. Colloid Interface Sci.
– volume: 26
  start-page: 4032
  year: 2020
  end-page: 4038
  publication-title: Chemistry
– volume: 3
  start-page: 130
  year: 2022
  end-page: 141
  publication-title: SmartMat
– volume: 15
  year: 2019
  publication-title: Small
– volume: 13
  start-page: 12669
  year: 2021
  end-page: 12675
  publication-title: Nanoscale
– volume: 13
  start-page: 5382
  year: 2022
  publication-title: Nat. Commun.
– volume: 61
  start-page: 4533
  year: 2022
  end-page: 4540
  publication-title: Inorg. Chem.
– volume: 283
  start-page: 664
  year: 2018
  end-page: 675
  publication-title: Electrochim. Acta
– volume: 61
  start-page: 14224
  year: 2022
  end-page: 14232
  publication-title: Inorg. Chem.
– volume: 605
  start-page: 888
  year: 2022
  end-page: 896
  publication-title: J. Colloid Interface Sci.
– volume: 15
  year: 2022
  publication-title: ChemSusChem.
– year: 2022
  publication-title: Chem. Rec.
– volume: 9
  start-page: 9735
  year: 2021
  end-page: 9744
  publication-title: J. Mater. Chem. A
– volume: 43
  start-page: 122
  year: 2022
  end-page: 129
  publication-title: Chin. J. Catal.
– volume: 13
  start-page: 1189
  year: 2022
  publication-title: Nat. Commun.
– volume: 15
  start-page: 1672
  year: 2022
  end-page: 1681
  publication-title: Energy Environ. Sci.
– volume: 60
  start-page: 5882
  year: 2021
  end-page: 5889
  publication-title: Inorg. Chem.
– volume: 7
  start-page: 1330
  year: 2022
  end-page: 1337
  publication-title: ACS Energy Lett.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 61
  start-page: 16944
  year: 2022
  end-page: 16951
  publication-title: Inorg. Chem.
– volume: 88
  year: 2021
  publication-title: Nano Energy
– volume: 13
  start-page: 763
  year: 2022
  publication-title: Nat. Commun.
– volume: 144
  start-page: 6028
  year: 2022
  end-page: 6039
  publication-title: J. Am. Chem. Soc.
– volume: 608
  start-page: 2973
  year: 2022
  end-page: 2984
  publication-title: J. Colloid Interface Sci.
– volume: 7
  start-page: 12272
  year: 2016
  publication-title: Nat. Commun.
– volume: 420
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 320
  year: 2023
  publication-title: Appl. Catal. B
– volume: 9
  start-page: 13459
  year: 2021
  end-page: 13470
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 4464
  year: 2020
  end-page: 4472
  publication-title: J. Mater. Chem. A
– volume: 475
  year: 2023
  publication-title: Coord. Chem. Rev.
– volume: 14
  start-page: 5036
  year: 2020
  end-page: 5045
  publication-title: ACS Nano
– volume: 59 132
  start-page: 20423 20603
  year: 2020 2020
  end-page: 20427 20607
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 13
  year: 2017
  publication-title: Small
– volume: 65
  start-page: 87
  year: 2021
  end-page: 95
  publication-title: Sci. China Chem.
– volume: 66
  start-page: 16
  year: 2022
  end-page: 23
  publication-title: J. Energy Chem.
– year: 2022
  publication-title: Nanoscale.
– volume: 14
  start-page: 24008
  year: 2022
  end-page: 24019
  publication-title: ACS Appl. Mater. Interfaces
– ident: e_1_2_7_86_1
  doi: 10.1002/anie.202101019
– ident: e_1_2_7_30_1
  doi: 10.1002/anie.202104856
– ident: e_1_2_7_76_1
  doi: 10.1002/smll.202100203
– ident: e_1_2_7_83_1
  doi: 10.1016/S1872-2067(21)63794-4
– ident: e_1_2_7_23_1
  doi: 10.1021/acsami.2c05444
– ident: e_1_2_7_54_1
  doi: 10.1002/adfm.202109439
– ident: e_1_2_7_66_1
  doi: 10.1016/j.electacta.2018.07.013
– ident: e_1_2_7_3_1
  doi: 10.1021/acs.inorgchem.2c00296
– ident: e_1_2_7_16_1
  doi: 10.1021/acs.inorgchem.2c03060
– ident: e_1_2_7_10_1
  doi: 10.1021/acs.inorgchem.2c02666
– ident: e_1_2_7_59_1
  doi: 10.1002/smll.202107739
– ident: e_1_2_7_24_1
  doi: 10.1002/anie.202116867
– ident: e_1_2_7_68_1
  doi: 10.1002/adma.202105276
– year: 2022
  ident: e_1_2_7_32_1
  publication-title: Energy Environ. Mater.
– ident: e_1_2_7_37_1
  doi: 10.1021/jacs.5b06405
– ident: e_1_2_7_14_1
  doi: 10.1039/D2NR04294K
– ident: e_1_2_7_31_1
  doi: 10.1038/s41467-020-18567-6
– ident: e_1_2_7_97_1
  doi: 10.1002/adfm.202112207
– ident: e_1_2_7_21_1
  doi: 10.1021/jacs.1c04626
– ident: e_1_2_7_2_1
  doi: 10.1039/D1EE03687D
– ident: e_1_2_7_52_1
  doi: 10.1021/acsnano.0c01478
– ident: e_1_2_7_26_1
  doi: 10.1038/s41467-021-26336-2
– ident: e_1_2_7_84_1
  doi: 10.1021/acs.nanolett.1c04425
– year: 2022
  ident: e_1_2_7_8_1
  publication-title: Chem. Rec.
– ident: e_1_2_7_93_2
  doi: 10.1002/ange.202009612
– ident: e_1_2_7_73_1
  doi: 10.1039/D0NR07120J
– year: 2022
  ident: e_1_2_7_80_1
  publication-title: Angew. Chem. Int. Ed.
– ident: e_1_2_7_92_1
  doi: 10.1021/acsenergylett.7b00270
– ident: e_1_2_7_36_1
  doi: 10.1038/s41467-018-06269-z
– ident: e_1_2_7_51_1
  doi: 10.1039/C9TA00649D
– ident: e_1_2_7_34_1
  doi: 10.1002/cssc.202102495
– ident: e_1_2_7_39_1
  doi: 10.1002/smll.201700936
– ident: e_1_2_7_42_1
  doi: 10.1002/anie.202109785
– volume: 61
  year: 2022
  ident: e_1_2_7_49_1
  publication-title: Angew. Chem. Int. Ed.
– ident: e_1_2_7_96_1
  doi: 10.1002/adfm.201700359
– ident: e_1_2_7_18_1
  doi: 10.1038/s41467-021-21595-5
– ident: e_1_2_7_20_1
  doi: 10.1002/adma.202105049
– ident: e_1_2_7_11_1
  doi: 10.1016/j.jcis.2021.07.101
– ident: e_1_2_7_87_1
  doi: 10.1002/anie.202107731
– ident: e_1_2_7_79_1
  doi: 10.1016/j.cej.2020.127180
– ident: e_1_2_7_98_1
  doi: 10.1002/smll.201900014
– year: 2022
  ident: e_1_2_7_19_1
  publication-title: Chem. Rec.
– ident: e_1_2_7_38_1
  doi: 10.1002/anie.201601016
– ident: e_1_2_7_45_1
  doi: 10.1039/D2TA06791A
– ident: e_1_2_7_67_1
  doi: 10.1021/acsenergylett.1c02769
– ident: e_1_2_7_89_1
  doi: 10.1002/smll.202003630
– ident: e_1_2_7_22_1
  doi: 10.1002/anie.202116057
– ident: e_1_2_7_56_1
  doi: 10.1016/j.ijhydene.2021.12.258
– ident: e_1_2_7_64_1
  doi: 10.1016/j.apcatb.2019.04.022
– ident: e_1_2_7_53_1
  doi: 10.1002/advs.201900090
– ident: e_1_2_7_28_1
  doi: 10.1016/j.gee.2022.01.013
– ident: e_1_2_7_55_1
  doi: 10.1038/s41467-022-28413-6
– ident: e_1_2_7_69_1
  doi: 10.1016/j.cej.2022.135720
– ident: e_1_2_7_62_1
  doi: 10.1021/jacs.0c00218
– ident: e_1_2_7_25_1
  doi: 10.1002/smm2.1083
– ident: e_1_2_7_99_1
  doi: 10.1038/s41467-022-33007-3
– ident: e_1_2_7_15_1
  doi: 10.1016/j.jallcom.2022.166415
– ident: e_1_2_7_72_1
  doi: 10.1016/j.cej.2021.129805
– ident: e_1_2_7_50_1
  doi: 10.1039/D1TA01089A
– ident: e_1_2_7_95_1
  doi: 10.1038/ncomms12272
– ident: e_1_2_7_78_1
  doi: 10.1021/acs.inorgchem.1c00295
– volume: 61
  year: 2022
  ident: e_1_2_7_33_1
  publication-title: Angew. Chem. Int. Ed.
– ident: e_1_2_7_9_1
  doi: 10.1002/adma.201908232
– ident: e_1_2_7_88_1
  doi: 10.1021/acsnano.9b01583
– ident: e_1_2_7_13_1
  doi: 10.1016/j.jcis.2022.07.125
– ident: e_1_2_7_58_1
  doi: 10.1021/acsami.1c20459
– ident: e_1_2_7_12_1
  doi: 10.1002/adma.201906477
– ident: e_1_2_7_63_1
  doi: 10.1002/chem.201904473
– ident: e_1_2_7_27_1
  doi: 10.1007/s11426-021-1112-2
– ident: e_1_2_7_7_1
  doi: 10.1021/jacs.2c01589
– ident: e_1_2_7_81_1
  doi: 10.1016/j.apcatb.2022.121989
– ident: e_1_2_7_93_1
  doi: 10.1002/anie.202009612
– ident: e_1_2_7_94_1
  doi: 10.1038/s41467-022-28843-2
– ident: e_1_2_7_43_1
  doi: 10.1039/D2QI00715K
– ident: e_1_2_7_29_1
  doi: 10.1038/s41598-018-21396-9
– ident: e_1_2_7_46_1
  doi: 10.1016/j.ijhydene.2019.12.146
– ident: e_1_2_7_65_1
  doi: 10.1038/s41467-021-23750-4
– ident: e_1_2_7_47_1
  doi: 10.1016/j.jcis.2021.11.018
– ident: e_1_2_7_103_1
  doi: 10.1002/adma.202203615
– ident: e_1_2_7_61_1
  doi: 10.1039/C9EE00752K
– ident: e_1_2_7_75_1
  doi: 10.1016/j.cej.2020.126297
– ident: e_1_2_7_71_1
  doi: 10.1039/D1TA01108A
– ident: e_1_2_7_35_1
  doi: 10.1039/D2SC00871H
– ident: e_1_2_7_5_1
  doi: 10.1016/j.ccr.2021.214261
– ident: e_1_2_7_57_1
  doi: 10.1016/j.ijhydene.2021.12.033
– ident: e_1_2_7_60_1
  doi: 10.1039/D2TA05156G
– ident: e_1_2_7_101_1
  doi: 10.1002/smll.202102159
– ident: e_1_2_7_38_2
  doi: 10.1002/ange.201601016
– ident: e_1_2_7_90_1
  doi: 10.1039/C9TA12230C
– ident: e_1_2_7_1_1
  doi: 10.1016/j.ccr.2022.214869
– ident: e_1_2_7_100_1
  doi: 10.1021/acsami.2c03584
– ident: e_1_2_7_44_1
  doi: 10.1021/acscatal.0c01541
– ident: e_1_2_7_48_1
  doi: 10.1039/D1NR02870G
– ident: e_1_2_7_17_1
  doi: 10.1039/D2CE00710J
– ident: e_1_2_7_70_1
  doi: 10.1016/j.jechem.2021.06.018
– ident: e_1_2_7_91_1
  doi: 10.1016/j.nanoen.2021.106307
– ident: e_1_2_7_4_1
  doi: 10.1016/j.apcatb.2022.121338
– ident: e_1_2_7_74_1
  doi: 10.1002/anie.202104055
– year: 2022
  ident: e_1_2_7_82_1
  publication-title: Nanoscale.
– ident: e_1_2_7_6_1
  doi: 10.1016/j.ijhydene.2022.02.152
– ident: e_1_2_7_41_1
  doi: 10.1038/s41467-021-24228-z
– ident: e_1_2_7_85_1
  doi: 10.1039/D2NJ01385A
– ident: e_1_2_7_77_1
  doi: 10.1002/adma.202101425
– ident: e_1_2_7_40_1
  doi: 10.1038/ncomms14580
– ident: e_1_2_7_102_1
  doi: 10.1021/jacs.2c01094
SSID ssj0011477
Score 2.569746
SecondaryResourceType review_article
Snippet Hydrogen spillover has attracted increasing interests in the field of electrocatalytic hydrogen evolution reaction (HER) in recent years because of their...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202200244
SubjectTerms Adsorption
Catalysis
Catalysts
Electrocatalysis
Electrocatalysts
Electrolysis
Energy barrier
Hydrogen
Hydrogen evolution reaction
Hydrogen evolution reactions
Hydrogen production
Hydrogen spillover
Metal-support
Reaction mechanisms
Title Intensifying Hydrogen Spillover for Boosting Electrocatalytic Hydrogen Evolution Reaction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ftcr.202200244
https://www.ncbi.nlm.nih.gov/pubmed/36482015
https://www.proquest.com/docview/2785210889
https://www.proquest.com/docview/2753310954
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA7iRS_uy7hRQTzZcdKk21GHGQZBD6OCnmr6koI4TIdZBP31vte0lVEUxFMpzUvTrN9Lv3yPsRMThVJLkK4xSrhS6cBNFbRc4CIAySESmvYhr2-C3r28evAfyjindBbG6kPUG240Mor5mga4Sifnn6KhOFGhe-cRyUCSHijxtQgU9Wv5KIT6ReRFitzqol8RlxqbaHE-Zz2_Jn0DmvO4tVh4uqvsqSqy5Zu8NGfTtAnvX9Qc__FNa2ylBKXOhe1F62zBDDfYUruKBbfJHkume3Eoyum96XGOHc-5HT0PCg6og9DXuczzCZGonY4NrVPsDL1hlp8Gndeypzt9Y09UbLH7bueu3XPLoAwuiCCWLugQwhDXNFBeCD5HjwghEIg0TLkSwhhfAYCXGiW10J7heCEaLZfGtDKhxTZbHOZDs8ucLMpSzIyLyI8lOmqxVFz4GXiQISrVXoOdVc2SQKlYToEzBonVWvYSrK-krq8GO62Tj6xUx08JD6o2TsoRO0m8MEIkQ6SvBjuuH2M10w8UNTT5jNIgOOYISjGLHds36jeJQBKY8husVbTw70VI7tr9-mbv7yb7bJni3lsy3AFbnI5n5hDR0TQ9KobAB1HtBvI
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxsxEB5RONBLS98p0LpS21MX4sc-cuihhKDwPKRBoqetd-yVqqIsIkmr8Kv4K_wjxuvdRSlqpR44cIo28Xq99oz9jfP5G4D3NomVUagCa7UMlDZRkGlsB8hlhIpjIo3bhzw8ivrHau8kPFmAy_osjNeHaDbcnGeU87VzcLchvXmjGkozFcV3wrEMlKpolft29puCtvHn3W0a4Q9C7PSG3X5Q5RUIUEYdFaCJMY5pWkYtYgw5gXpaxVFmcca1lNaGGhFFZrUy0gjL6cMxQbmytp1LI6neB7Dksog7tf7tQSNYRcFFmevR5YoNKJLpVKqe1MTNuebOr4K3oO08Ui6Xup3HcFV3kme4_NyYTrINvPhDP_I-9eIKPKpwN_viHeUJLNjRU1ju1ununsG3isxfnvti_Zk5L8i32NezH6clzZURumdbRTF2PHHW89mDys2vGVV5c0PvV-XMbGD9oZHncHwnb_YCFkfFyL4Clid5RpVxmYQdRbFoR2kuwxwF5gS8jWjBp9oOUqxE2V1ukNPUy0mLlMYnbcanBR-b4mdejeRvBddqo0qrSWmcijghsOZ4bS141_xM3ez-I9IjW0xdGcL_nHA3VfHSG2PzJBkphxfDFrRLk_p3E9Jhd9BcvP7_W97Ccn94eJAe7B7tr8JD-l567t8aLE7Op3adwOAke1P6H4Pvd22q1-qRZdw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIgEXypulBYwEnEi7fuR14AD70JZChZZWak_BGTsSotqsurug5U_1r_QnMY6TVAsCiUMPnKIkjuPYM-NvnM8zAM9tEiujUAXWahkobaIg19gNkMsIFcdEGrcO-WE_Gh2qd0fh0RqcNXthfHyIdsHNaUZlr52CT02xcxE0lAwVuXfCkQyUqlmVe3b5nXy22evdPg3wCyGGg4PeKKjTCgQoo1QFaGKMY7LKqEWMISdMT5M4yjzOuZbS2lAjositVkYaYTkdHBGUK2u7hTSS6r0CV1XUTV2uiP64jVdFvkWV6tGlig3IkUnroJ7UxJ2V5q5Ogr8h21WgXM10ww04b_rIE1y-bi_m-Tb--CV85H_UibfgZo262RuvJrdhzU7uwPVek-zuLhzXVP5q1xcbLc1pSZrFPk2_nFQkV0bYnr0ty5ljibOBzx1ULX0tqcqLBwbfalVmY-u3jNyDw0v5svuwPikn9iGwIilyqozLJEwVeaKp0lyGBQosCHYb0YFXjRhkWIdkd5lBTjIfTFpkND5ZOz4deNkWn_pYJH8quNXIVFabpFkm4oSgmmO1deBZe5u62f0h0hNbLlwZQv-cUDdV8cDLYvsmGSmHFsMOdCuJ-nsTsoPeuD159O-PPIVrH_vD7P3u_t4m3KDL0hP_tmB9frqwjwkJzvMnlfYx-HzZkvoTNq5kiw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intensifying+Hydrogen+Spillover+for+Boosting+Electrocatalytic+Hydrogen+Evolution+Reaction&rft.jtitle=Chemical+record&rft.au=Xu%2C+Hui&rft.au=Li%2C+Junru&rft.au=Chu%2C+Xianxu&rft.date=2023-03-01&rft.eissn=1528-0691&rft.volume=23&rft.issue=3&rft.spage=e202200244&rft_id=info:doi/10.1002%2Ftcr.202200244&rft_id=info%3Apmid%2F36482015&rft.externalDocID=36482015
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1527-8999&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1527-8999&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1527-8999&client=summon