Intensifying Hydrogen Spillover for Boosting Electrocatalytic Hydrogen Evolution Reaction
Hydrogen spillover has attracted increasing interests in the field of electrocatalytic hydrogen evolution reaction (HER) in recent years because of their distinct reaction mechanism and beneficial terms for simultaneously weakening the strong hydrogen adsorption on metal and strengthening the weak h...
Saved in:
Published in | Chemical record Vol. 23; no. 3; pp. e202200244 - n/a |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.03.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hydrogen spillover has attracted increasing interests in the field of electrocatalytic hydrogen evolution reaction (HER) in recent years because of their distinct reaction mechanism and beneficial terms for simultaneously weakening the strong hydrogen adsorption on metal and strengthening the weak hydrogen adsorption on support. By taking advantageous merits of efficient hydrogen transfer, hydrogen spillover‐based binary catalysts have been widely investigated, which paves a new way for boosting the development of hydrogen production by water electrolysis. In this paper, we summarize the recent progress of this interesting field by focusing on the advanced strategies for intensifying the hydrogen spillover towards HER. In addition, the challenging issues and some perspective insights in the future development of hydrogen spillover‐based electrocatalysts are also systematically discussed.
This review has summarized the recent findings achieved in hydrogen spillover‐based electrocatalysts for boosting HER by highlighting the definition of hydrogen spillover and manifesting the modification strategies for designing them to better suit the application demand in the near future. |
---|---|
AbstractList | Hydrogen spillover has attracted increasing interests in the field of electrocatalytic hydrogen evolution reaction (HER) in recent years because of their distinct reaction mechanism and beneficial terms for simultaneously weakening the strong hydrogen adsorption on metal and strengthening the weak hydrogen adsorption on support. By taking advantageous merits of efficient hydrogen transfer, hydrogen spillover‐based binary catalysts have been widely investigated, which paves a new way for boosting the development of hydrogen production by water electrolysis. In this paper, we summarize the recent progress of this interesting field by focusing on the advanced strategies for intensifying the hydrogen spillover towards HER. In addition, the challenging issues and some perspective insights in the future development of hydrogen spillover‐based electrocatalysts are also systematically discussed. Hydrogen spillover has attracted increasing interests in the field of electrocatalytic hydrogen evolution reaction (HER) in recent years because of their distinct reaction mechanism and beneficial terms for simultaneously weakening the strong hydrogen adsorption on metal and strengthening the weak hydrogen adsorption on support. By taking advantageous merits of efficient hydrogen transfer, hydrogen spillover-based binary catalysts have been widely investigated, which paves a new way for boosting the development of hydrogen production by water electrolysis. In this paper, we summarize the recent progress of this interesting field by focusing on the advanced strategies for intensifying the hydrogen spillover towards HER. In addition, the challenging issues and some perspective insights in the future development of hydrogen spillover-based electrocatalysts are also systematically discussed.Hydrogen spillover has attracted increasing interests in the field of electrocatalytic hydrogen evolution reaction (HER) in recent years because of their distinct reaction mechanism and beneficial terms for simultaneously weakening the strong hydrogen adsorption on metal and strengthening the weak hydrogen adsorption on support. By taking advantageous merits of efficient hydrogen transfer, hydrogen spillover-based binary catalysts have been widely investigated, which paves a new way for boosting the development of hydrogen production by water electrolysis. In this paper, we summarize the recent progress of this interesting field by focusing on the advanced strategies for intensifying the hydrogen spillover towards HER. In addition, the challenging issues and some perspective insights in the future development of hydrogen spillover-based electrocatalysts are also systematically discussed. Hydrogen spillover has attracted increasing interests in the field of electrocatalytic hydrogen evolution reaction (HER) in recent years because of their distinct reaction mechanism and beneficial terms for simultaneously weakening the strong hydrogen adsorption on metal and strengthening the weak hydrogen adsorption on support. By taking advantageous merits of efficient hydrogen transfer, hydrogen spillover‐based binary catalysts have been widely investigated, which paves a new way for boosting the development of hydrogen production by water electrolysis. In this paper, we summarize the recent progress of this interesting field by focusing on the advanced strategies for intensifying the hydrogen spillover towards HER. In addition, the challenging issues and some perspective insights in the future development of hydrogen spillover‐based electrocatalysts are also systematically discussed. This review has summarized the recent findings achieved in hydrogen spillover‐based electrocatalysts for boosting HER by highlighting the definition of hydrogen spillover and manifesting the modification strategies for designing them to better suit the application demand in the near future. |
Author | Xu, Hui Chu, Xianxu Li, Junru |
Author_xml | – sequence: 1 givenname: Hui orcidid: 0000-0002-1744-4180 surname: Xu fullname: Xu, Hui email: xuhui006@cczu.edu.cn organization: Soochow University – sequence: 2 givenname: Junru surname: Li fullname: Li, Junru organization: Shangqiu Normal University – sequence: 3 givenname: Xianxu surname: Chu fullname: Chu, Xianxu email: xxchu13633@163.com organization: Soochow University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36482015$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctrGzEQxkVJaB7tsdeykEsv6-i1q91jY9wkYCjkcehJyNpZIyNLrqR12P--ch3HEGhP88H8vmFmvgt04rwDhL4QPCEY0-ukw4RiSrPm_AM6JxVtSly35OSvFmXTtu0ZuohxhTEhXIiP6IzVvKGYVOfo171L4KLpR-OWxd3YBb8EVzxujLV-C6HofShuvI9p159Z0Cl4rZKyYzL6aJhtvR2S8a54AKV34hM67ZWN8Pm1XqLnH7On6V05_3l7P_0-LzWrW17qTmghGi60okJXpKmpyIItxIIoxgAqpbWmC1C8Yx0Fkkst8n0cAPesY5fo237uJvjfA8Qk1yZqsFY58EOUVFSMEdxWPKNX79CVH4LL22WqqSjBTdNm6usrNSzW0MlNMGsVRnl4WgbYHtDBxxigl9oktbs5BWWsJFjuopE5GvkWTXaV71yHwf_ixZ5_MRbG_8PyafpwdP4BDgigWg |
CitedBy_id | crossref_primary_10_1021_acsenergylett_3c01426 crossref_primary_10_1002_smsc_202400343 crossref_primary_10_1039_D3QI00138E crossref_primary_10_1002_aenm_202405546 crossref_primary_10_1002_tcr_202300097 crossref_primary_10_1039_D3DT01562A crossref_primary_10_1002_ange_202501964 crossref_primary_10_1016_j_jallcom_2024_174896 crossref_primary_10_1016_j_apcatb_2023_123275 crossref_primary_10_1016_j_cej_2023_144691 crossref_primary_10_1039_D4CC04767B crossref_primary_10_1002_anie_202501964 crossref_primary_10_1007_s11581_023_05213_6 crossref_primary_10_1039_D3DT01228J crossref_primary_10_1016_j_electacta_2024_143792 crossref_primary_10_1021_acsenergylett_3c01459 crossref_primary_10_3762_bjnano_14_79 crossref_primary_10_1039_D3NR02548A crossref_primary_10_1007_s12598_023_02446_2 crossref_primary_10_1002_tcr_202400106 crossref_primary_10_1002_tcr_202300088 crossref_primary_10_1002_adfm_202423537 crossref_primary_10_1039_D3CP05904A crossref_primary_10_1039_D2DT03253H crossref_primary_10_1021_acs_inorgchem_3c04240 crossref_primary_10_1016_j_jcis_2025_01_077 crossref_primary_10_1021_acs_inorgchem_2c04092 crossref_primary_10_1016_j_mtchem_2024_101962 crossref_primary_10_1016_j_ijhydene_2023_05_254 crossref_primary_10_1002_cssc_202400977 crossref_primary_10_1039_D3DT00649B crossref_primary_10_1021_acs_inorgchem_3c01701 crossref_primary_10_1016_j_ijhydene_2023_07_267 crossref_primary_10_1016_j_ijhydene_2024_05_372 crossref_primary_10_26599_POM_2023_9140031 crossref_primary_10_1016_j_ijhydene_2023_04_257 crossref_primary_10_1002_adma_202401568 crossref_primary_10_1007_s11581_023_05090_z crossref_primary_10_1021_acsnano_4c07738 crossref_primary_10_1007_s11581_023_05283_6 crossref_primary_10_1039_D2NH00549B crossref_primary_10_1002_adfm_202412685 crossref_primary_10_1016_j_jallcom_2024_175883 crossref_primary_10_1016_j_colsurfa_2023_131720 crossref_primary_10_1016_j_esci_2024_100334 crossref_primary_10_1016_j_ijhydene_2023_09_023 crossref_primary_10_1016_j_ccr_2024_216321 crossref_primary_10_1039_D3DT02201C crossref_primary_10_1016_j_jcis_2023_07_109 crossref_primary_10_1016_j_ijhydene_2024_08_364 crossref_primary_10_1039_D3TA01766D crossref_primary_10_1016_j_diamond_2023_110208 |
Cites_doi | 10.1002/anie.202101019 10.1002/anie.202104856 10.1002/smll.202100203 10.1016/S1872-2067(21)63794-4 10.1021/acsami.2c05444 10.1002/adfm.202109439 10.1016/j.electacta.2018.07.013 10.1021/acs.inorgchem.2c00296 10.1021/acs.inorgchem.2c03060 10.1021/acs.inorgchem.2c02666 10.1002/smll.202107739 10.1002/anie.202116867 10.1002/adma.202105276 10.1021/jacs.5b06405 10.1039/D2NR04294K 10.1038/s41467-020-18567-6 10.1002/adfm.202112207 10.1021/jacs.1c04626 10.1039/D1EE03687D 10.1021/acsnano.0c01478 10.1038/s41467-021-26336-2 10.1021/acs.nanolett.1c04425 10.1002/ange.202009612 10.1039/D0NR07120J 10.1021/acsenergylett.7b00270 10.1038/s41467-018-06269-z 10.1039/C9TA00649D 10.1002/cssc.202102495 10.1002/smll.201700936 10.1002/anie.202109785 10.1002/adfm.201700359 10.1038/s41467-021-21595-5 10.1002/adma.202105049 10.1016/j.jcis.2021.07.101 10.1002/anie.202107731 10.1016/j.cej.2020.127180 10.1002/smll.201900014 10.1002/anie.201601016 10.1039/D2TA06791A 10.1021/acsenergylett.1c02769 10.1002/smll.202003630 10.1002/anie.202116057 10.1016/j.ijhydene.2021.12.258 10.1016/j.apcatb.2019.04.022 10.1002/advs.201900090 10.1016/j.gee.2022.01.013 10.1038/s41467-022-28413-6 10.1016/j.cej.2022.135720 10.1021/jacs.0c00218 10.1002/smm2.1083 10.1038/s41467-022-33007-3 10.1016/j.jallcom.2022.166415 10.1016/j.cej.2021.129805 10.1039/D1TA01089A 10.1038/ncomms12272 10.1021/acs.inorgchem.1c00295 10.1002/adma.201908232 10.1021/acsnano.9b01583 10.1016/j.jcis.2022.07.125 10.1021/acsami.1c20459 10.1002/adma.201906477 10.1002/chem.201904473 10.1007/s11426-021-1112-2 10.1021/jacs.2c01589 10.1016/j.apcatb.2022.121989 10.1002/anie.202009612 10.1038/s41467-022-28843-2 10.1039/D2QI00715K 10.1038/s41598-018-21396-9 10.1016/j.ijhydene.2019.12.146 10.1038/s41467-021-23750-4 10.1016/j.jcis.2021.11.018 10.1002/adma.202203615 10.1039/C9EE00752K 10.1016/j.cej.2020.126297 10.1039/D1TA01108A 10.1039/D2SC00871H 10.1016/j.ccr.2021.214261 10.1016/j.ijhydene.2021.12.033 10.1039/D2TA05156G 10.1002/smll.202102159 10.1002/ange.201601016 10.1039/C9TA12230C 10.1016/j.ccr.2022.214869 10.1021/acsami.2c03584 10.1021/acscatal.0c01541 10.1039/D1NR02870G 10.1039/D2CE00710J 10.1016/j.jechem.2021.06.018 10.1016/j.nanoen.2021.106307 10.1016/j.apcatb.2022.121338 10.1002/anie.202104055 10.1016/j.ijhydene.2022.02.152 10.1038/s41467-021-24228-z 10.1039/D2NJ01385A 10.1002/adma.202101425 10.1038/ncomms14580 10.1021/jacs.2c01094 |
ContentType | Journal Article |
Copyright | 2022 The Chemical Society of Japan & Wiley‐VCH GmbH 2022 The Chemical Society of Japan & Wiley-VCH GmbH. 2023 The Chemical Society of Japan & Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 The Chemical Society of Japan & Wiley‐VCH GmbH – notice: 2022 The Chemical Society of Japan & Wiley-VCH GmbH. – notice: 2023 The Chemical Society of Japan & Wiley‐VCH GmbH |
DBID | AAYXX CITATION NPM 7QO 7T7 8FD C1K FR3 P64 7X8 |
DOI | 10.1002/tcr.202200244 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Engineering Research Database Biotechnology Research Abstracts Technology Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | CrossRef Engineering Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1528-0691 |
EndPage | n/a |
ExternalDocumentID | 36482015 10_1002_tcr_202200244 TCR202200244 |
Genre | reviewArticle Journal Article Review |
GroupedDBID | --- .3N .Y3 05W 0R~ 10A 123 1OC 29B 31~ 33P 3WU 4.4 50Y 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 53G 5VS 66C 702 7PT 8-1 8UM A00 AAESR AAHHS AAHQN AAMNL AANHP AANLZ AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ASPBG AVWKF AZFZN AZVAB BDRZF BFHJK BMXJE BROTX BRXPI BY8 CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD F5P FEDTE G-S G.N GODZA HF~ HGLYW HVGLF HZ~ IX1 J0M LATKE LAW LC2 LC3 LEEKS LH- LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MSFUL MSSTM MXFUL MXSTM MY~ N9A O9- OIG P2W P4D Q11 QB0 QRW R.K ROL RX1 SUPJJ V2E W99 WBKPD WOHZO WQJ WXSBR WYJ WYUIH XG1 XV2 ZZTAW ~IA AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION NPM 7QO 7T7 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 P64 7X8 |
ID | FETCH-LOGICAL-c3694-cd7c77847ca27c51862727c3b7b1a33ee5accc2bea4d3d2e14d3676914ee0f3d3 |
IEDL.DBID | DR2 |
ISSN | 1527-8999 1528-0691 |
IngestDate | Fri Jul 11 10:49:44 EDT 2025 Sat Jul 19 20:11:20 EDT 2025 Thu Apr 03 07:02:39 EDT 2025 Thu Apr 24 22:58:48 EDT 2025 Tue Jul 01 02:40:10 EDT 2025 Wed Jan 22 16:23:09 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Electrocatalysis Hydrogen evolution reaction Metal-support Energy barrier Hydrogen spillover |
Language | English |
License | 2022 The Chemical Society of Japan & Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3694-cd7c77847ca27c51862727c3b7b1a33ee5accc2bea4d3d2e14d3676914ee0f3d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-1744-4180 |
PMID | 36482015 |
PQID | 2785210889 |
PQPubID | 1006501 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2753310954 proquest_journals_2785210889 pubmed_primary_36482015 crossref_citationtrail_10_1002_tcr_202200244 crossref_primary_10_1002_tcr_202200244 wiley_primary_10_1002_tcr_202200244_TCR202200244 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2023 2023-03-00 2023-Mar 20230301 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: March 2023 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Chemical record |
PublicationTitleAlternate | Chem Rec |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 407 2022; 451 2017; 8 2021; 65 2017; 2 2018; 283 2021; 403 2019; 13 2019; 12 2019; 15 2020 2020; 59 132 2022; 24 2020; 16 2020; 14 2020; 11 2020; 10 2022; 66 2022; 22 2020; 8 2018; 9 2018; 8 2021; 33 2015; 137 2022; 34 2020; 45 2022; 608 2022; 605 2022; 924 2022; 32 2021; 9 2022; 310 2019; 7 2019; 6 2021; 88 2021; 420 2020; 142 2017; 27 2023; 320 2022; 46 2022; 47 2022; 43 2020; 32 2021; 143 2022; 439 2022; 144 2021; 13 2016; 7 2016 2016; 55 128 2021; 12 2022; 3 2022 2022; 61 2022; 7 2023; 475 2021; 17 2017; 13 2022; 9 2022; 13 2022; 14 2020; 26 2022; 15 2022; 10 2022; 628 2021; 60 2022; 18 2019; 253 e_1_2_7_3_1 e_1_2_7_7_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_100_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_26_1 e_1_2_7_90_1 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_23_1 e_1_2_7_75_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_79_1 Zhu J. (e_1_2_7_32_1) 2022 e_1_2_7_4_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_86_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_29_1 Zhou S. (e_1_2_7_80_1) 2022 Tian L. (e_1_2_7_82_1) 2022 e_1_2_7_93_2 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_24_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_5_1 e_1_2_7_9_1 e_1_2_7_102_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 Tian L. (e_1_2_7_19_1) 2022 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 Hulsey M. J. (e_1_2_7_49_1) 2022; 61 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_28_1 Chen D. (e_1_2_7_33_1) 2022; 61 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 Yang X. (e_1_2_7_8_1) 2022 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_91_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_38_1 e_1_2_7_38_2 |
References_xml | – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 407 year: 2021 publication-title: Chem. Eng. J. – volume: 144 start-page: 9033 year: 2022 end-page: 9043 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 3884 year: 2021 publication-title: Nat. Commun. – year: 2022 publication-title: Energy Environ. Mater. – volume: 14 start-page: 10246 year: 2022 end-page: 10256 publication-title: ACS Appl. Mater. Interfaces – volume: 18 year: 2022 publication-title: Small – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 60 start-page: 16622 year: 2021 end-page: 16627 publication-title: Angew. Chem. Int. Ed. – volume: 2 start-page: 1022 year: 2017 end-page: 1028 publication-title: ACS Energy Lett. – volume: 439 year: 2022 publication-title: Chem. Eng. J. – volume: 12 start-page: 3502 year: 2021 publication-title: Nat. Commun. – volume: 14 start-page: 30746 year: 2022 end-page: 30759 publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 4320 year: 2022 end-page: 4328 publication-title: Inorg. Chem. Front. – volume: 60 start-page: 22933 year: 2021 end-page: 22939 publication-title: Angew. Chem. Int. Ed. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 10 start-page: 16834 year: 2022 end-page: 16841 publication-title: J. Mater. Chem. A – year: 2022 publication-title: Angew. Chem. Int. Ed. – volume: 253 start-page: 11 year: 2019 end-page: 20 publication-title: Appl. Catal. B – volume: 46 start-page: 9650 year: 2022 end-page: 9657 publication-title: New J. Chem. – volume: 24 start-page: 5580 year: 2022 end-page: 5587 publication-title: CrystEngComm – volume: 16 year: 2020 publication-title: Small – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 451 year: 2022 publication-title: Coord. Chem. Rev. – volume: 8 start-page: 2986 year: 2018 publication-title: Sci. Rep. – volume: 13 start-page: 8137 year: 2022 end-page: 8147 publication-title: Chem. Sci. – volume: 47 start-page: 14257 year: 2022 end-page: 14279 publication-title: Int. J. Hydrogen Energy – volume: 10 start-page: 7734 year: 2020 end-page: 7746 publication-title: ACS Catal. – volume: 55 128 start-page: 5501 5591 year: 2016 2016 end-page: 5505 5595 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 310 year: 2022 publication-title: Appl. Catal. B – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 60 start-page: 12027 year: 2021 end-page: 12031 publication-title: Angew. Chem. Int. Ed. – volume: 137 start-page: 10910 year: 2015 end-page: 10913 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 10405 year: 2019 end-page: 10411 publication-title: J. Mater. Chem. A – volume: 47 start-page: 9230 year: 2022 end-page: 9238 publication-title: Int. J. Hydrogen Energy – volume: 924 year: 2022 publication-title: J. Alloys Compd. – volume: 13 start-page: 6824 year: 2019 end-page: 6834 publication-title: ACS Nano – volume: 13 start-page: 810 year: 2021 end-page: 818 publication-title: Nanoscale – volume: 14 start-page: 15340 year: 2022 end-page: 15347 publication-title: Nanoscale – volume: 8 start-page: 14580 year: 2017 publication-title: Nat. Commun. – volume: 12 start-page: 2298 year: 2019 end-page: 2304 publication-title: Energy Environ. Sci. – volume: 60 start-page: 19435 year: 2021 end-page: 19441 publication-title: Angew. Chem. Int. Ed. – volume: 61 year: 2022 publication-title: Angew. Chem. Int. Ed. – volume: 10 start-page: 23294 year: 2022 end-page: 23303 publication-title: J. Mater. Chem. A – volume: 12 start-page: 6007 year: 2021 publication-title: Nat. Commun. – volume: 22 start-page: 3503 year: 2022 end-page: 3511 publication-title: Nano Lett. – volume: 143 start-page: 10822 year: 2021 end-page: 10827 publication-title: J. Am. Chem. Soc. – volume: 45 start-page: 25900 year: 2020 end-page: 25911 publication-title: Int. J. Hydrogen Energy – volume: 47 start-page: 6691 year: 2022 end-page: 6699 publication-title: Int. J. Hydrogen Energy – volume: 9 start-page: 3778 year: 2018 publication-title: Nat. Commun. – volume: 142 start-page: 3645 year: 2020 end-page: 3651 publication-title: J. Am. Chem. Soc. – volume: 403 year: 2021 publication-title: Chem. Eng. J. – volume: 60 start-page: 14117 year: 2021 end-page: 14123 publication-title: Angew. Chem. Int. Ed. – volume: 12 start-page: 1369 year: 2021 publication-title: Nat. Commun. – volume: 7 start-page: 1161 year: 2022 end-page: 1198 publication-title: Green Energy & Environ. – volume: 11 start-page: 4773 year: 2020 publication-title: Nat. Commun. – volume: 17 year: 2021 publication-title: Small – volume: 628 start-page: 663 year: 2022 end-page: 672 publication-title: J. Colloid Interface Sci. – volume: 26 start-page: 4032 year: 2020 end-page: 4038 publication-title: Chemistry – volume: 3 start-page: 130 year: 2022 end-page: 141 publication-title: SmartMat – volume: 15 year: 2019 publication-title: Small – volume: 13 start-page: 12669 year: 2021 end-page: 12675 publication-title: Nanoscale – volume: 13 start-page: 5382 year: 2022 publication-title: Nat. Commun. – volume: 61 start-page: 4533 year: 2022 end-page: 4540 publication-title: Inorg. Chem. – volume: 283 start-page: 664 year: 2018 end-page: 675 publication-title: Electrochim. Acta – volume: 61 start-page: 14224 year: 2022 end-page: 14232 publication-title: Inorg. Chem. – volume: 605 start-page: 888 year: 2022 end-page: 896 publication-title: J. Colloid Interface Sci. – volume: 15 year: 2022 publication-title: ChemSusChem. – year: 2022 publication-title: Chem. Rec. – volume: 9 start-page: 9735 year: 2021 end-page: 9744 publication-title: J. Mater. Chem. A – volume: 43 start-page: 122 year: 2022 end-page: 129 publication-title: Chin. J. Catal. – volume: 13 start-page: 1189 year: 2022 publication-title: Nat. Commun. – volume: 15 start-page: 1672 year: 2022 end-page: 1681 publication-title: Energy Environ. Sci. – volume: 60 start-page: 5882 year: 2021 end-page: 5889 publication-title: Inorg. Chem. – volume: 7 start-page: 1330 year: 2022 end-page: 1337 publication-title: ACS Energy Lett. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 61 start-page: 16944 year: 2022 end-page: 16951 publication-title: Inorg. Chem. – volume: 88 year: 2021 publication-title: Nano Energy – volume: 13 start-page: 763 year: 2022 publication-title: Nat. Commun. – volume: 144 start-page: 6028 year: 2022 end-page: 6039 publication-title: J. Am. Chem. Soc. – volume: 608 start-page: 2973 year: 2022 end-page: 2984 publication-title: J. Colloid Interface Sci. – volume: 7 start-page: 12272 year: 2016 publication-title: Nat. Commun. – volume: 420 year: 2021 publication-title: Chem. Eng. J. – volume: 320 year: 2023 publication-title: Appl. Catal. B – volume: 9 start-page: 13459 year: 2021 end-page: 13470 publication-title: J. Mater. Chem. A – volume: 8 start-page: 4464 year: 2020 end-page: 4472 publication-title: J. Mater. Chem. A – volume: 475 year: 2023 publication-title: Coord. Chem. Rev. – volume: 14 start-page: 5036 year: 2020 end-page: 5045 publication-title: ACS Nano – volume: 59 132 start-page: 20423 20603 year: 2020 2020 end-page: 20427 20607 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 13 year: 2017 publication-title: Small – volume: 65 start-page: 87 year: 2021 end-page: 95 publication-title: Sci. China Chem. – volume: 66 start-page: 16 year: 2022 end-page: 23 publication-title: J. Energy Chem. – year: 2022 publication-title: Nanoscale. – volume: 14 start-page: 24008 year: 2022 end-page: 24019 publication-title: ACS Appl. Mater. Interfaces – ident: e_1_2_7_86_1 doi: 10.1002/anie.202101019 – ident: e_1_2_7_30_1 doi: 10.1002/anie.202104856 – ident: e_1_2_7_76_1 doi: 10.1002/smll.202100203 – ident: e_1_2_7_83_1 doi: 10.1016/S1872-2067(21)63794-4 – ident: e_1_2_7_23_1 doi: 10.1021/acsami.2c05444 – ident: e_1_2_7_54_1 doi: 10.1002/adfm.202109439 – ident: e_1_2_7_66_1 doi: 10.1016/j.electacta.2018.07.013 – ident: e_1_2_7_3_1 doi: 10.1021/acs.inorgchem.2c00296 – ident: e_1_2_7_16_1 doi: 10.1021/acs.inorgchem.2c03060 – ident: e_1_2_7_10_1 doi: 10.1021/acs.inorgchem.2c02666 – ident: e_1_2_7_59_1 doi: 10.1002/smll.202107739 – ident: e_1_2_7_24_1 doi: 10.1002/anie.202116867 – ident: e_1_2_7_68_1 doi: 10.1002/adma.202105276 – year: 2022 ident: e_1_2_7_32_1 publication-title: Energy Environ. Mater. – ident: e_1_2_7_37_1 doi: 10.1021/jacs.5b06405 – ident: e_1_2_7_14_1 doi: 10.1039/D2NR04294K – ident: e_1_2_7_31_1 doi: 10.1038/s41467-020-18567-6 – ident: e_1_2_7_97_1 doi: 10.1002/adfm.202112207 – ident: e_1_2_7_21_1 doi: 10.1021/jacs.1c04626 – ident: e_1_2_7_2_1 doi: 10.1039/D1EE03687D – ident: e_1_2_7_52_1 doi: 10.1021/acsnano.0c01478 – ident: e_1_2_7_26_1 doi: 10.1038/s41467-021-26336-2 – ident: e_1_2_7_84_1 doi: 10.1021/acs.nanolett.1c04425 – year: 2022 ident: e_1_2_7_8_1 publication-title: Chem. Rec. – ident: e_1_2_7_93_2 doi: 10.1002/ange.202009612 – ident: e_1_2_7_73_1 doi: 10.1039/D0NR07120J – year: 2022 ident: e_1_2_7_80_1 publication-title: Angew. Chem. Int. Ed. – ident: e_1_2_7_92_1 doi: 10.1021/acsenergylett.7b00270 – ident: e_1_2_7_36_1 doi: 10.1038/s41467-018-06269-z – ident: e_1_2_7_51_1 doi: 10.1039/C9TA00649D – ident: e_1_2_7_34_1 doi: 10.1002/cssc.202102495 – ident: e_1_2_7_39_1 doi: 10.1002/smll.201700936 – ident: e_1_2_7_42_1 doi: 10.1002/anie.202109785 – volume: 61 year: 2022 ident: e_1_2_7_49_1 publication-title: Angew. Chem. Int. Ed. – ident: e_1_2_7_96_1 doi: 10.1002/adfm.201700359 – ident: e_1_2_7_18_1 doi: 10.1038/s41467-021-21595-5 – ident: e_1_2_7_20_1 doi: 10.1002/adma.202105049 – ident: e_1_2_7_11_1 doi: 10.1016/j.jcis.2021.07.101 – ident: e_1_2_7_87_1 doi: 10.1002/anie.202107731 – ident: e_1_2_7_79_1 doi: 10.1016/j.cej.2020.127180 – ident: e_1_2_7_98_1 doi: 10.1002/smll.201900014 – year: 2022 ident: e_1_2_7_19_1 publication-title: Chem. Rec. – ident: e_1_2_7_38_1 doi: 10.1002/anie.201601016 – ident: e_1_2_7_45_1 doi: 10.1039/D2TA06791A – ident: e_1_2_7_67_1 doi: 10.1021/acsenergylett.1c02769 – ident: e_1_2_7_89_1 doi: 10.1002/smll.202003630 – ident: e_1_2_7_22_1 doi: 10.1002/anie.202116057 – ident: e_1_2_7_56_1 doi: 10.1016/j.ijhydene.2021.12.258 – ident: e_1_2_7_64_1 doi: 10.1016/j.apcatb.2019.04.022 – ident: e_1_2_7_53_1 doi: 10.1002/advs.201900090 – ident: e_1_2_7_28_1 doi: 10.1016/j.gee.2022.01.013 – ident: e_1_2_7_55_1 doi: 10.1038/s41467-022-28413-6 – ident: e_1_2_7_69_1 doi: 10.1016/j.cej.2022.135720 – ident: e_1_2_7_62_1 doi: 10.1021/jacs.0c00218 – ident: e_1_2_7_25_1 doi: 10.1002/smm2.1083 – ident: e_1_2_7_99_1 doi: 10.1038/s41467-022-33007-3 – ident: e_1_2_7_15_1 doi: 10.1016/j.jallcom.2022.166415 – ident: e_1_2_7_72_1 doi: 10.1016/j.cej.2021.129805 – ident: e_1_2_7_50_1 doi: 10.1039/D1TA01089A – ident: e_1_2_7_95_1 doi: 10.1038/ncomms12272 – ident: e_1_2_7_78_1 doi: 10.1021/acs.inorgchem.1c00295 – volume: 61 year: 2022 ident: e_1_2_7_33_1 publication-title: Angew. Chem. Int. Ed. – ident: e_1_2_7_9_1 doi: 10.1002/adma.201908232 – ident: e_1_2_7_88_1 doi: 10.1021/acsnano.9b01583 – ident: e_1_2_7_13_1 doi: 10.1016/j.jcis.2022.07.125 – ident: e_1_2_7_58_1 doi: 10.1021/acsami.1c20459 – ident: e_1_2_7_12_1 doi: 10.1002/adma.201906477 – ident: e_1_2_7_63_1 doi: 10.1002/chem.201904473 – ident: e_1_2_7_27_1 doi: 10.1007/s11426-021-1112-2 – ident: e_1_2_7_7_1 doi: 10.1021/jacs.2c01589 – ident: e_1_2_7_81_1 doi: 10.1016/j.apcatb.2022.121989 – ident: e_1_2_7_93_1 doi: 10.1002/anie.202009612 – ident: e_1_2_7_94_1 doi: 10.1038/s41467-022-28843-2 – ident: e_1_2_7_43_1 doi: 10.1039/D2QI00715K – ident: e_1_2_7_29_1 doi: 10.1038/s41598-018-21396-9 – ident: e_1_2_7_46_1 doi: 10.1016/j.ijhydene.2019.12.146 – ident: e_1_2_7_65_1 doi: 10.1038/s41467-021-23750-4 – ident: e_1_2_7_47_1 doi: 10.1016/j.jcis.2021.11.018 – ident: e_1_2_7_103_1 doi: 10.1002/adma.202203615 – ident: e_1_2_7_61_1 doi: 10.1039/C9EE00752K – ident: e_1_2_7_75_1 doi: 10.1016/j.cej.2020.126297 – ident: e_1_2_7_71_1 doi: 10.1039/D1TA01108A – ident: e_1_2_7_35_1 doi: 10.1039/D2SC00871H – ident: e_1_2_7_5_1 doi: 10.1016/j.ccr.2021.214261 – ident: e_1_2_7_57_1 doi: 10.1016/j.ijhydene.2021.12.033 – ident: e_1_2_7_60_1 doi: 10.1039/D2TA05156G – ident: e_1_2_7_101_1 doi: 10.1002/smll.202102159 – ident: e_1_2_7_38_2 doi: 10.1002/ange.201601016 – ident: e_1_2_7_90_1 doi: 10.1039/C9TA12230C – ident: e_1_2_7_1_1 doi: 10.1016/j.ccr.2022.214869 – ident: e_1_2_7_100_1 doi: 10.1021/acsami.2c03584 – ident: e_1_2_7_44_1 doi: 10.1021/acscatal.0c01541 – ident: e_1_2_7_48_1 doi: 10.1039/D1NR02870G – ident: e_1_2_7_17_1 doi: 10.1039/D2CE00710J – ident: e_1_2_7_70_1 doi: 10.1016/j.jechem.2021.06.018 – ident: e_1_2_7_91_1 doi: 10.1016/j.nanoen.2021.106307 – ident: e_1_2_7_4_1 doi: 10.1016/j.apcatb.2022.121338 – ident: e_1_2_7_74_1 doi: 10.1002/anie.202104055 – year: 2022 ident: e_1_2_7_82_1 publication-title: Nanoscale. – ident: e_1_2_7_6_1 doi: 10.1016/j.ijhydene.2022.02.152 – ident: e_1_2_7_41_1 doi: 10.1038/s41467-021-24228-z – ident: e_1_2_7_85_1 doi: 10.1039/D2NJ01385A – ident: e_1_2_7_77_1 doi: 10.1002/adma.202101425 – ident: e_1_2_7_40_1 doi: 10.1038/ncomms14580 – ident: e_1_2_7_102_1 doi: 10.1021/jacs.2c01094 |
SSID | ssj0011477 |
Score | 2.569746 |
SecondaryResourceType | review_article |
Snippet | Hydrogen spillover has attracted increasing interests in the field of electrocatalytic hydrogen evolution reaction (HER) in recent years because of their... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202200244 |
SubjectTerms | Adsorption Catalysis Catalysts Electrocatalysis Electrocatalysts Electrolysis Energy barrier Hydrogen Hydrogen evolution reaction Hydrogen evolution reactions Hydrogen production Hydrogen spillover Metal-support Reaction mechanisms |
Title | Intensifying Hydrogen Spillover for Boosting Electrocatalytic Hydrogen Evolution Reaction |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ftcr.202200244 https://www.ncbi.nlm.nih.gov/pubmed/36482015 https://www.proquest.com/docview/2785210889 https://www.proquest.com/docview/2753310954 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA7iRS_uy7hRQTzZcdKk21GHGQZBD6OCnmr6koI4TIdZBP31vte0lVEUxFMpzUvTrN9Lv3yPsRMThVJLkK4xSrhS6cBNFbRc4CIAySESmvYhr2-C3r28evAfyjindBbG6kPUG240Mor5mga4Sifnn6KhOFGhe-cRyUCSHijxtQgU9Wv5KIT6ReRFitzqol8RlxqbaHE-Zz2_Jn0DmvO4tVh4uqvsqSqy5Zu8NGfTtAnvX9Qc__FNa2ylBKXOhe1F62zBDDfYUruKBbfJHkume3Eoyum96XGOHc-5HT0PCg6og9DXuczzCZGonY4NrVPsDL1hlp8Gndeypzt9Y09UbLH7bueu3XPLoAwuiCCWLugQwhDXNFBeCD5HjwghEIg0TLkSwhhfAYCXGiW10J7heCEaLZfGtDKhxTZbHOZDs8ucLMpSzIyLyI8lOmqxVFz4GXiQISrVXoOdVc2SQKlYToEzBonVWvYSrK-krq8GO62Tj6xUx08JD6o2TsoRO0m8MEIkQ6SvBjuuH2M10w8UNTT5jNIgOOYISjGLHds36jeJQBKY8husVbTw70VI7tr9-mbv7yb7bJni3lsy3AFbnI5n5hDR0TQ9KobAB1HtBvI |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxsxEB5RONBLS98p0LpS21MX4sc-cuihhKDwPKRBoqetd-yVqqIsIkmr8Kv4K_wjxuvdRSlqpR44cIo28Xq99oz9jfP5G4D3NomVUagCa7UMlDZRkGlsB8hlhIpjIo3bhzw8ivrHau8kPFmAy_osjNeHaDbcnGeU87VzcLchvXmjGkozFcV3wrEMlKpolft29puCtvHn3W0a4Q9C7PSG3X5Q5RUIUEYdFaCJMY5pWkYtYgw5gXpaxVFmcca1lNaGGhFFZrUy0gjL6cMxQbmytp1LI6neB7Dksog7tf7tQSNYRcFFmevR5YoNKJLpVKqe1MTNuebOr4K3oO08Ui6Xup3HcFV3kme4_NyYTrINvPhDP_I-9eIKPKpwN_viHeUJLNjRU1ju1ununsG3isxfnvti_Zk5L8i32NezH6clzZURumdbRTF2PHHW89mDys2vGVV5c0PvV-XMbGD9oZHncHwnb_YCFkfFyL4Clid5RpVxmYQdRbFoR2kuwxwF5gS8jWjBp9oOUqxE2V1ukNPUy0mLlMYnbcanBR-b4mdejeRvBddqo0qrSWmcijghsOZ4bS141_xM3ez-I9IjW0xdGcL_nHA3VfHSG2PzJBkphxfDFrRLk_p3E9Jhd9BcvP7_W97Ccn94eJAe7B7tr8JD-l567t8aLE7Op3adwOAke1P6H4Pvd22q1-qRZdw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIgEXypulBYwEnEi7fuR14AD70JZChZZWak_BGTsSotqsurug5U_1r_QnMY6TVAsCiUMPnKIkjuPYM-NvnM8zAM9tEiujUAXWahkobaIg19gNkMsIFcdEGrcO-WE_Gh2qd0fh0RqcNXthfHyIdsHNaUZlr52CT02xcxE0lAwVuXfCkQyUqlmVe3b5nXy22evdPg3wCyGGg4PeKKjTCgQoo1QFaGKMY7LKqEWMISdMT5M4yjzOuZbS2lAjositVkYaYTkdHBGUK2u7hTSS6r0CV1XUTV2uiP64jVdFvkWV6tGlig3IkUnroJ7UxJ2V5q5Ogr8h21WgXM10ww04b_rIE1y-bi_m-Tb--CV85H_UibfgZo262RuvJrdhzU7uwPVek-zuLhzXVP5q1xcbLc1pSZrFPk2_nFQkV0bYnr0ty5ljibOBzx1ULX0tqcqLBwbfalVmY-u3jNyDw0v5svuwPikn9iGwIilyqozLJEwVeaKp0lyGBQosCHYb0YFXjRhkWIdkd5lBTjIfTFpkND5ZOz4deNkWn_pYJH8quNXIVFabpFkm4oSgmmO1deBZe5u62f0h0hNbLlwZQv-cUDdV8cDLYvsmGSmHFsMOdCuJ-nsTsoPeuD159O-PPIVrH_vD7P3u_t4m3KDL0hP_tmB9frqwjwkJzvMnlfYx-HzZkvoTNq5kiw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intensifying+Hydrogen+Spillover+for+Boosting+Electrocatalytic+Hydrogen+Evolution+Reaction&rft.jtitle=Chemical+record&rft.au=Xu%2C+Hui&rft.au=Li%2C+Junru&rft.au=Chu%2C+Xianxu&rft.date=2023-03-01&rft.eissn=1528-0691&rft.volume=23&rft.issue=3&rft.spage=e202200244&rft_id=info:doi/10.1002%2Ftcr.202200244&rft_id=info%3Apmid%2F36482015&rft.externalDocID=36482015 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1527-8999&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1527-8999&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1527-8999&client=summon |