Recent Development of Polyolefin‐Based Microporous Separators for Li−Ion Batteries: A Review

Secondary Li−ion batteries have been paid attention to wide‐range applications of power source for the portable electronics, electric vehicle, and electric storage reservoir. Generally, lithium‐ion batteries are comprised of four components including anode, cathode, electrolyte and separator. Althou...

Full description

Saved in:
Bibliographic Details
Published inChemical record Vol. 20; no. 6; pp. 570 - 595
Main Authors Heidari, Ali Akbar, Mahdavi, Hossein
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.06.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Secondary Li−ion batteries have been paid attention to wide‐range applications of power source for the portable electronics, electric vehicle, and electric storage reservoir. Generally, lithium‐ion batteries are comprised of four components including anode, cathode, electrolyte and separator. Although separators do not take part in the electrochemical reactions in a lithium‐ion (Li−ion) battery, they conduct the critical functions of physically separating the positive and negative electrodes to prevent electrical short circuit while permitting the free flow of lithium ions through the liquid electrolyte that fill in their open porous structure. Hence, the separator is directly related to the safety and the power performance of the battery. Among a number of separators developed thus far, polyethylene (PE) and polypropylene (PP) porous membrane separators have been the most dominant ones for commercial Li−ion batteries over the decades because of their superior properties such as cost‐efficiency, good mechanical strength and pore structure, electrochemical stability, and thermal shutdown properties. However, there are main issues for vehicular storage, such as nonpolarity, low surface energy and poor thermal stability, although the polyolefin separators have proven dependable in portable applications. Hence, in this review, we decide to provide an overview of the types of polyolefin microporous separators utilized in Li−ion batteries and the methods employed to modify their surface in detail. The remarkable results demonstrate that extraordinary properties can be exhibited by mono‐ and multilayer polyolefin separators if they are modified using suitable methods and materials. Separators physically separate the positive and negative electrodes to prevent electrical short circuit. Separators permit the free flow of lithium ions through the liquid electrolyte that fill in their open porous structure. Polyolefin porous membranes have been extensively utilized as separators because of their appreciable mechanical strength, high chemical and electrochemical stability, cost‐efficiency, high porosity and suitable thermal shutdown property
AbstractList Secondary Li-ion batteries have been paid attention to wide-range applications of power source for the portable electronics, electric vehicle, and electric storage reservoir. Generally, lithium-ion batteries are comprised of four components including anode, cathode, electrolyte and separator. Although separators do not take part in the electrochemical reactions in a lithium-ion (Li-ion) battery, they conduct the critical functions of physically separating the positive and negative electrodes to prevent electrical short circuit while permitting the free flow of lithium ions through the liquid electrolyte that fill in their open porous structure. Hence, the separator is directly related to the safety and the power performance of the battery. Among a number of separators developed thus far, polyethylene (PE) and polypropylene (PP) porous membrane separators have been the most dominant ones for commercial Li-ion batteries over the decades because of their superior properties such as cost-efficiency, good mechanical strength and pore structure, electrochemical stability, and thermal shutdown properties. However, there are main issues for vehicular storage, such as nonpolarity, low surface energy and poor thermal stability, although the polyolefin separators have proven dependable in portable applications. Hence, in this review, we decide to provide an overview of the types of polyolefin microporous separators utilized in Li-ion batteries and the methods employed to modify their surface in detail. The remarkable results demonstrate that extraordinary properties can be exhibited by mono- and multilayer polyolefin separators if they are modified using suitable methods and materials.Secondary Li-ion batteries have been paid attention to wide-range applications of power source for the portable electronics, electric vehicle, and electric storage reservoir. Generally, lithium-ion batteries are comprised of four components including anode, cathode, electrolyte and separator. Although separators do not take part in the electrochemical reactions in a lithium-ion (Li-ion) battery, they conduct the critical functions of physically separating the positive and negative electrodes to prevent electrical short circuit while permitting the free flow of lithium ions through the liquid electrolyte that fill in their open porous structure. Hence, the separator is directly related to the safety and the power performance of the battery. Among a number of separators developed thus far, polyethylene (PE) and polypropylene (PP) porous membrane separators have been the most dominant ones for commercial Li-ion batteries over the decades because of their superior properties such as cost-efficiency, good mechanical strength and pore structure, electrochemical stability, and thermal shutdown properties. However, there are main issues for vehicular storage, such as nonpolarity, low surface energy and poor thermal stability, although the polyolefin separators have proven dependable in portable applications. Hence, in this review, we decide to provide an overview of the types of polyolefin microporous separators utilized in Li-ion batteries and the methods employed to modify their surface in detail. The remarkable results demonstrate that extraordinary properties can be exhibited by mono- and multilayer polyolefin separators if they are modified using suitable methods and materials.
Secondary Li−ion batteries have been paid attention to wide‐range applications of power source for the portable electronics, electric vehicle, and electric storage reservoir. Generally, lithium‐ion batteries are comprised of four components including anode, cathode, electrolyte and separator. Although separators do not take part in the electrochemical reactions in a lithium‐ion (Li−ion) battery, they conduct the critical functions of physically separating the positive and negative electrodes to prevent electrical short circuit while permitting the free flow of lithium ions through the liquid electrolyte that fill in their open porous structure. Hence, the separator is directly related to the safety and the power performance of the battery. Among a number of separators developed thus far, polyethylene (PE) and polypropylene (PP) porous membrane separators have been the most dominant ones for commercial Li−ion batteries over the decades because of their superior properties such as cost‐efficiency, good mechanical strength and pore structure, electrochemical stability, and thermal shutdown properties. However, there are main issues for vehicular storage, such as nonpolarity, low surface energy and poor thermal stability, although the polyolefin separators have proven dependable in portable applications. Hence, in this review, we decide to provide an overview of the types of polyolefin microporous separators utilized in Li−ion batteries and the methods employed to modify their surface in detail. The remarkable results demonstrate that extraordinary properties can be exhibited by mono‐ and multilayer polyolefin separators if they are modified using suitable methods and materials.
Secondary Li−ion batteries have been paid attention to wide‐range applications of power source for the portable electronics, electric vehicle, and electric storage reservoir. Generally, lithium‐ion batteries are comprised of four components including anode, cathode, electrolyte and separator. Although separators do not take part in the electrochemical reactions in a lithium‐ion (Li−ion) battery, they conduct the critical functions of physically separating the positive and negative electrodes to prevent electrical short circuit while permitting the free flow of lithium ions through the liquid electrolyte that fill in their open porous structure. Hence, the separator is directly related to the safety and the power performance of the battery. Among a number of separators developed thus far, polyethylene (PE) and polypropylene (PP) porous membrane separators have been the most dominant ones for commercial Li−ion batteries over the decades because of their superior properties such as cost‐efficiency, good mechanical strength and pore structure, electrochemical stability, and thermal shutdown properties. However, there are main issues for vehicular storage, such as nonpolarity, low surface energy and poor thermal stability, although the polyolefin separators have proven dependable in portable applications. Hence, in this review, we decide to provide an overview of the types of polyolefin microporous separators utilized in Li−ion batteries and the methods employed to modify their surface in detail. The remarkable results demonstrate that extraordinary properties can be exhibited by mono‐ and multilayer polyolefin separators if they are modified using suitable methods and materials. Separators physically separate the positive and negative electrodes to prevent electrical short circuit. Separators permit the free flow of lithium ions through the liquid electrolyte that fill in their open porous structure. Polyolefin porous membranes have been extensively utilized as separators because of their appreciable mechanical strength, high chemical and electrochemical stability, cost‐efficiency, high porosity and suitable thermal shutdown property
Secondary Li-ion batteries have been paid attention to wide-range applications of power source for the portable electronics, electric vehicle, and electric storage reservoir. Generally, lithium-ion batteries are comprised of four components including anode, cathode, electrolyte and separator. Although separators do not take part in the electrochemical reactions in a lithium-ion (Li-ion) battery, they conduct the critical functions of physically separating the positive and negative electrodes to prevent electrical short circuit while permitting the free flow of lithium ions through the liquid electrolyte that fill in their open porous structure. Hence, the separator is directly related to the safety and the power performance of the battery. Among a number of separators developed thus far, polyethylene (PE) and polypropylene (PP) porous membrane separators have been the most dominant ones for commercial Li-ion batteries over the decades because of their superior properties such as cost-efficiency, good mechanical strength and pore structure, electrochemical stability, and thermal shutdown properties. However, there are main issues for vehicular storage, such as nonpolarity, low surface energy and poor thermal stability, although the polyolefin separators have proven dependable in portable applications. Hence, in this review, we decide to provide an overview of the types of polyolefin microporous separators utilized in Li-ion batteries and the methods employed to modify their surface in detail. The remarkable results demonstrate that extraordinary properties can be exhibited by mono- and multilayer polyolefin separators if they are modified using suitable methods and materials.
Author Mahdavi, Hossein
Heidari, Ali Akbar
Author_xml – sequence: 1
  givenname: Ali Akbar
  surname: Heidari
  fullname: Heidari, Ali Akbar
  organization: University of Tehran
– sequence: 2
  givenname: Hossein
  orcidid: 0000-0002-8251-6697
  surname: Mahdavi
  fullname: Mahdavi, Hossein
  email: hmahdavi@khayam.ut.ac.ir
  organization: University of Tehran
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31833648$$D View this record in MEDLINE/PubMed
BookMark eNp9kTtvFDEUhS0URB5Q0iJLNGkm8bVn7TFdsrwiLQItoTYez7XkaHY82N5E21FSIn5ifgmTbAJSJKjuKb5zdHTPPtkZ4oCEPAd2BIzx4-LSEWegGWOz-hHZgxlvKiY17NxqVTVa612yn_MFYwC1Uk_IroBGCFk3e-TrEh0Ohb7GS-zjuLrR0dNPsd_EHn0Yrr__PLUZO_ohuBTHmOI608842mRLTJn6mOgiXP_4dRYHempLwRQwv6IndImXAa-eksfe9hmf3d0D8uXtm_P5-2rx8d3Z_GRROSF1XbVOqBoZ65oGGt4CdM4r6ZS0DEQNijkttXRta6Wz3PNOaw8KOLNd22rw4oAcbnPHFL-tMRezCtlh39sBp8qGC1FL3czEbEJfPkAv4joNUzvDawCmOUiYqBd31LpdYWfGFFY2bcz97yZAbIHpLzkn9MaFYkuIQ0k29AaYuVnITAuZPwtNruqB6z74X7za8lehx83_YXM-X_51_gbBJaMl
CitedBy_id crossref_primary_10_1007_s10853_021_06536_3
crossref_primary_10_1016_j_ensm_2022_07_011
crossref_primary_10_1016_j_jiec_2023_05_001
crossref_primary_10_1021_acs_energyfuels_2c04065
crossref_primary_10_1016_j_inoche_2025_114113
crossref_primary_10_3390_batteries10010039
crossref_primary_10_1021_acs_iecr_0c02182
crossref_primary_10_1002_tcr_202400176
crossref_primary_10_1002_app_55829
crossref_primary_10_1016_j_jpowsour_2024_235862
crossref_primary_10_1016_j_ces_2023_118970
crossref_primary_10_3390_en16020627
crossref_primary_10_1016_j_jiec_2024_10_023
crossref_primary_10_1002_anie_202424529
crossref_primary_10_1016_j_eurpolymj_2023_112184
crossref_primary_10_1016_j_memsci_2021_119406
crossref_primary_10_1007_s10118_022_2678_4
crossref_primary_10_1149_1945_7111_abdfa7
crossref_primary_10_1039_D3TA06261A
crossref_primary_10_1007_s11581_024_05595_1
crossref_primary_10_1016_j_est_2023_109819
crossref_primary_10_1002_app_53893
crossref_primary_10_1134_S1560090425600135
crossref_primary_10_3390_batteries10080279
crossref_primary_10_1016_j_jpowsour_2024_234891
crossref_primary_10_1016_j_ssi_2021_115589
crossref_primary_10_1016_j_jpowsour_2023_233853
crossref_primary_10_20517_energymater_2023_20
crossref_primary_10_1002_ange_202218005
crossref_primary_10_1007_s11664_024_11623_7
crossref_primary_10_1021_acsami_2c13325
crossref_primary_10_1002_app_54587
crossref_primary_10_1016_j_mtener_2024_101679
crossref_primary_10_1002_adfm_202411963
crossref_primary_10_1007_s10118_023_3002_7
crossref_primary_10_20964_2022_01_47
crossref_primary_10_3390_ma15144875
crossref_primary_10_1016_j_sajce_2024_09_008
crossref_primary_10_3390_membranes11030219
crossref_primary_10_1016_j_mtener_2024_101684
crossref_primary_10_1016_j_est_2021_103668
crossref_primary_10_1016_j_jpowsour_2021_229973
crossref_primary_10_1021_acsaem_2c00188
crossref_primary_10_1177_0954008320964557
crossref_primary_10_1002_tcr_202000058
crossref_primary_10_1002_app_50713
crossref_primary_10_1016_j_jelechem_2021_115614
crossref_primary_10_1016_j_jelechem_2023_117932
crossref_primary_10_1007_s41918_022_00131_z
crossref_primary_10_1002_ange_202424529
crossref_primary_10_1021_acsanm_0c03409
crossref_primary_10_1002_adma_202412908
crossref_primary_10_1021_acsapm_4c00506
crossref_primary_10_1016_j_memsci_2024_123505
crossref_primary_10_1016_j_polymer_2024_127226
crossref_primary_10_1016_j_polymer_2023_126111
crossref_primary_10_1016_j_jpowsour_2024_235836
crossref_primary_10_3390_coatings15030351
crossref_primary_10_1016_j_jiec_2022_10_055
crossref_primary_10_1021_acsami_4c09342
crossref_primary_10_1002_slct_202203407
crossref_primary_10_1016_j_elecom_2021_106948
crossref_primary_10_1016_j_nexres_2025_100228
crossref_primary_10_1002_ente_202100996
crossref_primary_10_1002_tcr_202300189
crossref_primary_10_1016_j_jechem_2023_07_037
crossref_primary_10_3390_min14111155
crossref_primary_10_1002_tcr_202200131
crossref_primary_10_1016_j_jcis_2024_05_095
crossref_primary_10_1016_j_jpowsour_2023_233515
crossref_primary_10_1007_s10118_022_2856_4
crossref_primary_10_1016_j_jechem_2022_09_002
crossref_primary_10_1007_s11814_024_00037_0
crossref_primary_10_1115_1_4066138
crossref_primary_10_1002_tcr_202200122
crossref_primary_10_1016_j_memsci_2023_121359
crossref_primary_10_1016_j_ensm_2023_103135
crossref_primary_10_1016_j_compositesa_2022_107132
crossref_primary_10_1155_2023_4624762
crossref_primary_10_1007_s11814_025_00439_8
crossref_primary_10_1016_j_est_2023_109344
crossref_primary_10_1002_adfm_202106176
crossref_primary_10_1016_j_jpowsour_2025_236237
crossref_primary_10_1016_j_jiec_2024_01_029
crossref_primary_10_1016_j_cej_2023_145582
crossref_primary_10_1016_j_jpowsour_2025_236770
crossref_primary_10_1016_j_cej_2022_139112
crossref_primary_10_2139_ssrn_4195931
crossref_primary_10_1007_s10570_024_05924_7
crossref_primary_10_1088_1755_1315_1011_1_012009
crossref_primary_10_1016_j_porgcoat_2024_108904
crossref_primary_10_1002_pen_26660
crossref_primary_10_1007_s10904_024_03290_2
crossref_primary_10_1016_j_jpowsour_2025_236765
crossref_primary_10_1016_j_surfin_2024_105110
crossref_primary_10_1021_acsapm_2c01842
crossref_primary_10_1016_j_nanoen_2024_109265
crossref_primary_10_1016_j_memsci_2022_120807
crossref_primary_10_1002_bte2_20240015
crossref_primary_10_1016_j_mseb_2020_115024
crossref_primary_10_1002_mame_202300389
crossref_primary_10_1007_s10853_024_09895_9
crossref_primary_10_1016_j_polymer_2024_127798
crossref_primary_10_1039_D4NJ02397H
crossref_primary_10_1016_j_apmt_2021_101136
crossref_primary_10_1016_j_jpowsour_2023_232853
crossref_primary_10_1021_acsaem_0c03162
crossref_primary_10_1002_adfm_202409368
crossref_primary_10_1016_j_electacta_2022_141209
crossref_primary_10_1002_anie_202218005
crossref_primary_10_1016_j_ensm_2021_08_046
crossref_primary_10_1016_j_cej_2023_144593
crossref_primary_10_3390_polym15183690
crossref_primary_10_1021_acs_chemrev_4c00805
crossref_primary_10_1016_j_electacta_2022_141794
crossref_primary_10_1016_j_jcis_2024_08_087
crossref_primary_10_1021_acs_iecr_4c04157
crossref_primary_10_1016_j_elecom_2023_107644
crossref_primary_10_1007_s10854_024_12003_x
crossref_primary_10_1021_acs_chemrev_1c00565
crossref_primary_10_1002_aenm_202300403
crossref_primary_10_1016_j_mtener_2025_101798
Cites_doi 10.1016/j.jpowsour.2004.05.064
10.1016/j.polymer.2011.03.027
10.1016/j.jpowsour.2010.10.083
10.1016/j.memsci.2015.02.027
10.1016/j.electacta.2016.06.172
10.1021/acsami.6b08781
10.1016/j.memsci.2015.09.064
10.1016/j.jtice.2014.08.023
10.1021/am508149n
10.1016/j.surfcoat.2010.02.056
10.1021/acs.cgd.6b01652
10.1016/j.jpowsour.2011.01.068
10.1016/S0378-7753(98)00168-2
10.1002/adfm.200902347
10.1002/app.30578
10.1021/ja0532638
10.1016/S0014-3057(99)00240-2
10.1039/c3ra45879b
10.1038/nm1314
10.1016/j.surfcoat.2006.08.146
10.1016/j.jpowsour.2014.07.142
10.1002/pat.1156
10.1080/00218469508014379
10.1016/j.ssi.2017.12.023
10.1039/c1ee01388b
10.1016/j.ssi.2004.05.004
10.1038/nature15746
10.1002/mame.200600131
10.1016/j.jiec.2009.09.057
10.1016/j.memsci.2005.03.023
10.1016/S0378-7753(02)00097-6
10.1016/j.nimb.2008.05.017
10.1007/s11581-017-2187-6
10.1021/ja0379870
10.1007/s11581-018-2459-9
10.1016/j.matchemphys.2014.04.014
10.1002/slct.201702529
10.1016/j.memsci.2017.09.022
10.1016/j.memsci.2009.05.041
10.1016/j.electacta.2004.01.127
10.1002/app.35637
10.1002/cssc.201600943
10.1021/am406052u
10.1016/j.memsci.2013.07.065
10.1016/j.electacta.2009.01.055
10.1021/acsami.5b05718
10.1002/adma.200801222
10.1002/pola.26802
10.1038/s41598-017-01191-8
10.1002/polb.23098
10.1007/s10008-010-1264-9
10.1021/ma101526k
10.1016/j.jiec.2016.08.021
10.1021/ie901141u
10.1039/C6EE01219A
10.1021/la991537x
10.1002/adfm.201200177
10.1016/j.colsurfb.2013.04.008
10.1002/pat.4211
10.1002/tcr.201800112
10.1021/acsami.5b04245
10.1126/science.1147241
10.1038/natrevmats.2016.13
10.1081/DIS-120021793
10.1016/j.memsci.2006.08.023
10.1016/j.electacta.2009.02.088
10.1007/s10562-016-1720-y
10.1021/la204831b
10.1021/cm301967f
10.1002/app.28398
10.1021/cr030203g
10.1002/app.31596
10.1016/j.nimb.2005.03.253
10.1016/j.memsci.2015.12.059
10.3390/en3040866
10.1016/j.progpolymsci.2004.01.003
10.1039/c3ra44277b
10.1021/acsami.5b07230
10.1016/j.phpro.2012.03.076
10.1016/j.electacta.2003.12.012
10.1002/adfm.201202127
10.1016/j.jpowsour.2015.08.008
10.1016/B978-0-444-59513-3.00019-4
10.1016/j.jpowsour.2007.07.018
10.1039/c1cs15026j
10.1246/bcsj.20170391
10.1039/C4PY00025K
10.1039/C4EE01432D
10.1039/c2nr31547e
10.1016/j.jpowsour.2006.10.065
10.1016/j.nimb.2009.06.117
10.1016/j.jiec.2007.08.005
10.1021/ma990821s
10.1021/cr020738u
10.1016/S0014-3057(02)00093-9
10.1016/j.jpowsour.2011.10.130
10.1002/pi.2907
10.1016/S0376-7388(02)00352-6
10.1021/ie900096z
10.1016/j.electacta.2006.05.049
10.1021/la4020288
10.1002/ente.201402215
10.1002/adfm.201001692
ContentType Journal Article
Copyright 2019 The Chemical Society of Japan & Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
2020 The Chemical Society of Japan & Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 The Chemical Society of Japan & Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2020 The Chemical Society of Japan & Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
NPM
7QO
7T7
8FD
C1K
FR3
P64
7X8
DOI 10.1002/tcr.201900054
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Engineering Research Database
CrossRef

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1528-0691
EndPage 595
ExternalDocumentID 31833648
10_1002_tcr_201900054
TCR201900054
Genre reviewArticle
Journal Article
Review
GroupedDBID ---
.3N
.Y3
05W
0R~
10A
123
1OC
29B
31~
33P
3WU
4.4
50Y
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
53G
5VS
66C
702
7PT
8-1
8UM
A00
AAESR
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BMXJE
BROTX
BRXPI
BY8
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
F5P
FEDTE
G-S
G.N
GODZA
HF~
HGLYW
HVGLF
HZ~
IX1
J0M
LATKE
LAW
LC2
LC3
LEEKS
LH-
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MSFUL
MSSTM
MXFUL
MXSTM
MY~
N9A
O9-
OIG
P2W
P4D
Q11
QB0
QRW
R.K
ROL
RX1
SUPJJ
V2E
W99
WBKPD
WOHZO
WQJ
WXSBR
WYJ
WYUIH
XG1
XV2
ZZTAW
~IA
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
NPM
7QO
7T7
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
P64
7X8
ID FETCH-LOGICAL-c3694-bc374e00d88182b11dcf76c76a0134170c9696cbba6ca2f2d99f17120adbb91f3
IEDL.DBID DR2
ISSN 1527-8999
1528-0691
IngestDate Fri Jul 11 16:38:13 EDT 2025
Fri Jul 25 12:08:04 EDT 2025
Thu Apr 03 06:52:35 EDT 2025
Thu Apr 24 23:10:56 EDT 2025
Tue Jul 01 00:57:27 EDT 2025
Wed Jan 22 16:35:17 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords plasma grafting
Polyolefin separator
UV-initiated grafting polymerization
mussel-inspired method
surface modification methods
Li−ion battery
high energy radiation-induced grafting
Language English
License 2019 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3694-bc374e00d88182b11dcf76c76a0134170c9696cbba6ca2f2d99f17120adbb91f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-8251-6697
PMID 31833648
PQID 2411092161
PQPubID 1006501
PageCount 26
ParticipantIDs proquest_miscellaneous_2334698535
proquest_journals_2411092161
pubmed_primary_31833648
crossref_citationtrail_10_1002_tcr_201900054
crossref_primary_10_1002_tcr_201900054
wiley_primary_10_1002_tcr_201900054_TCR201900054
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2020
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: June 2020
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Chemical record
PublicationTitleAlternate Chem Rec
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2013; 29
2017; 7
2013; 3
2010; 59
2004; 126
2004; 29
2016; 504
2013; 23
2013; 448
2017; 45
2016; 146
2008; 109
2011; 52
2019; 19
2006; 291
2011; 15
2011; 196
2012; 125
2008; 266
2009; 114
2012; 206
2009; 48
2010; 20
2005; 260
2014; 5
2018; 3
2005; 140
2014; 4
2009; 54
2000; 16
2007; 172
2010; 116
2013; 51
2015; 298
2004; 171
1987
2006; 285
2011; 21
2012; 28
2013; 110
2002; 109
2010; 3
2012; 25
2012; 24
2014; 7
2012; 22
2014; 6
2009; 15
2006; 201
2002; 38
2018; 29
2006; 52
2004; 104
2009; 21
2015; 3
2004; 49
2010; 204
2008; 19
2005; 236
2011; 40
2007; 164
1995; 54
2015; 483
2008; 14
2015; 527
2003
2014; 270
2011; 4
2015; 7
2014; 45
2018; 24
1999
2012; 50
2010; 43
2004; 50
2016; 1
2000; 36
2017; 17
2000; 33
2005; 127
2016; 498
2016; 212
2003; 24
2018; 91
2009; 342
1999; 77
2009; 267
2002; 209
2018; 318
2007; 318
2012; 4
2016; 8
2017; 544
2005; 11
2016; 9
2014; 146
e_1_2_6_72_2
e_1_2_6_114_2
e_1_2_6_53_2
e_1_2_6_95_2
e_1_2_6_118_2
e_1_2_6_30_1
e_1_2_6_91_1
e_1_2_6_110_1
e_1_2_6_19_2
e_1_2_6_34_2
e_1_2_6_11_1
e_1_2_6_76_2
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_99_1
e_1_2_6_57_2
e_1_2_6_125_1
e_1_2_6_64_1
e_1_2_6_87_1
e_1_2_6_106_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_83_1
e_1_2_6_121_2
e_1_2_6_102_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_1_1
e_1_2_6_22_2
e_1_2_6_49_2
e_1_2_6_45_1
e_1_2_6_26_2
e_1_2_6_68_2
e_1_2_6_50_2
e_1_2_6_73_2
e_1_2_6_96_1
e_1_2_6_117_2
e_1_2_6_31_1
e_1_2_6_92_1
e_1_2_6_113_1
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_58_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_54_2
e_1_2_6_77_2
e_1_2_6_61_2
e_1_2_6_84_2
e_1_2_6_42_1
e_1_2_6_105_1
e_1_2_6_128_1
e_1_2_6_65_1
e_1_2_6_80_2
e_1_2_6_109_1
e_1_2_6_120_2
e_1_2_6_101_1
e_1_2_6_124_1
e_1_2_6_6_1
e_1_2_6_23_2
e_1_2_6_69_2
e_1_2_6_2_2
e_1_2_6_88_2
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_74_1
e_1_2_6_97_1
e_1_2_6_51_2
e_1_2_6_116_2
e_1_2_6_70_1
e_1_2_6_93_2
e_1_2_6_112_2
e_1_2_6_13_2
e_1_2_6_59_2
e_1_2_6_32_2
e_1_2_6_17_2
e_1_2_6_55_2
e_1_2_6_36_2
e_1_2_6_78_2
e_1_2_6_62_2
e_1_2_6_104_1
e_1_2_6_43_1
e_1_2_6_85_2
e_1_2_6_127_1
e_1_2_6_20_2
e_1_2_6_81_1
e_1_2_6_108_2
e_1_2_6_100_1
e_1_2_6_123_1
e_1_2_6_3_2
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_28_2
e_1_2_6_66_1
e_1_2_6_47_1
e_1_2_6_89_2
e_1_2_6_52_1
e_1_2_6_98_1
e_1_2_6_94_2
e_1_2_6_115_2
e_1_2_6_75_1
e_1_2_6_10_1
e_1_2_6_119_1
e_1_2_6_90_2
e_1_2_6_71_1
e_1_2_6_111_2
e_1_2_6_33_2
e_1_2_6_18_1
e_1_2_6_56_1
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_79_2
e_1_2_6_103_1
e_1_2_6_126_1
e_1_2_6_63_2
e_1_2_6_86_2
e_1_2_6_107_2
e_1_2_6_40_2
e_1_2_6_82_1
e_1_2_6_122_1
e_1_2_6_8_1
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_48_1
e_1_2_6_21_2
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_25_2
References_xml – volume: 51
  start-page: 3941
  year: 2013
  end-page: 3949
  publication-title: J. Polym. Sci. Polym. Chem. Ed.
– volume: 4
  start-page: 5864
  year: 2012
  end-page: 5867
  publication-title: Nanoscale
– volume: 109
  start-page: 3492
  year: 2008
  end-page: 3501
  publication-title: J. Appl. Polym. Sci.
– volume: 172
  start-page: 416
  year: 2007
  end-page: 421
  publication-title: J. Power Sources
– volume: 125
  start-page: 1606
  year: 2012
  end-page: 1615
  publication-title: J. Appl. Polym. Sci.
– volume: 209
  start-page: 255
  year: 2002
  end-page: 269
  publication-title: J. Membr. Sci.
– volume: 49
  start-page: 1803
  year: 2004
  end-page: 1812
  publication-title: Electrochim. Acta
– volume: 7
  start-page: 16003
  year: 2015
  end-page: 16010
  publication-title: ACS Appl. Mater. Interfaces
– volume: 116
  start-page: 868
  year: 2010
  end-page: 875
  publication-title: J. Appl. Polym. Sci.
– volume: 544
  start-page: 213
  year: 2017
  end-page: 220
  publication-title: J. Membr. Sci.
– volume: 206
  start-page: 325
  year: 2012
  end-page: 333
  publication-title: J. Power Sources
– volume: 48
  start-page: 9936
  year: 2009
  end-page: 9941
  publication-title: Ind. Eng. Chem. Res.
– volume: 7
  start-page: 3857
  year: 2014
  end-page: 3886
  publication-title: Energy Environ. Sci.
– volume: 54
  start-page: 3714
  year: 2009
  end-page: 3719
  publication-title: Electrochim. Acta
– volume: 126
  start-page: 1004
  year: 2004
  end-page: 1005
  publication-title: J. Am. Chem. Soc.
– volume: 212
  start-page: 649
  year: 2016
  end-page: 656
  publication-title: Electrochim. Acta
– volume: 50
  start-page: 1165
  year: 2012
  end-page: 1172
  publication-title: J. Polym. Sci. Polym. Phys. Ed.
– volume: 298
  start-page: 158
  year: 2015
  end-page: 165
  publication-title: J. Power Sources
– volume: 43
  start-page: 8336
  year: 2010
  end-page: 8339
  publication-title: Macromolecules
– volume: 48
  start-page: 4346
  year: 2009
  end-page: 4351
  publication-title: Ind. Eng. Chem. Res.
– volume: 17
  start-page: 1258
  year: 2017
  end-page: 1263
  publication-title: Cryst. Growth Des.
– volume: 196
  start-page: 4801
  year: 2011
  end-page: 4805
  publication-title: J. Power Sources
– volume: 164
  start-page: 351
  year: 2007
  end-page: 364
  publication-title: J. Power Sources
– volume: 104
  start-page: 4303
  year: 2004
  end-page: 4418
  publication-title: Chem. Rev.
– volume: 45
  start-page: 15
  year: 2017
  end-page: 21
  publication-title: J. Ind. Eng. Chem.
– volume: 36
  start-page: 1563
  year: 2000
  end-page: 1569
  publication-title: Eur. Polym. J.
– volume: 23
  start-page: 1331
  year: 2013
  end-page: 1340
  publication-title: Adv. Funct. Mater.
– volume: 291
  start-page: 972
  year: 2006
  end-page: 983
  publication-title: Macromol. Mater. Eng.
– volume: 504
  start-page: 97
  year: 2016
  end-page: 103
  publication-title: J. Membr. Sci.
– volume: 5
  start-page: 2816
  year: 2014
  end-page: 2823
  publication-title: Polym. Chem.
– volume: 24
  start-page: 43
  year: 2018
  end-page: 50
  publication-title: Ionics
– volume: 3
  start-page: 453
  year: 2015
  end-page: 468
  publication-title: Energy Technol.
– volume: 171
  start-page: 243
  year: 2004
  end-page: 249
  publication-title: Solid State Ionics
– volume: 40
  start-page: 4244
  year: 2011
  end-page: 4258
  publication-title: Chem. Soc. Rev.
– year: 1987
– volume: 4
  start-page: 3287
  year: 2011
  end-page: 3295
  publication-title: Energy Environ. Sci.
– volume: 114
  start-page: 630
  year: 2009
  end-page: 642
  publication-title: J. Appl. Polym. Sci.
– volume: 33
  start-page: 331
  year: 2000
  end-page: 335
  publication-title: Macromolecules
– volume: 29
  start-page: 499
  year: 2004
  end-page: 561
  publication-title: Prog. Polym. Sci.
– volume: 127
  start-page: 15843
  year: 2005
  end-page: 15847
  publication-title: J. Am. Chem. Soc.
– volume: 146
  start-page: 545
  year: 2014
  end-page: 550
  publication-title: Mater. Chem. Phys.
– volume: 9
  start-page: 3252
  year: 2016
  end-page: 3261
  publication-title: Energy Environ. Sci.
– volume: 19
  start-page: 908
  year: 2019
  end-page: 926
  publication-title: Chem. Rec.
– volume: 104
  start-page: 4419
  year: 2004
  end-page: 4462
  publication-title: Chem. Rev.
– volume: 483
  start-page: 42
  year: 2015
  end-page: 59
  publication-title: J. Membr. Sci.
– volume: 7
  start-page: 24119
  year: 2015
  end-page: 24126
  publication-title: ACS Appl. Mater. Interfaces
– volume: 146
  start-page: 977
  year: 2016
  end-page: 990
  publication-title: Catal. Lett.
– volume: 267
  start-page: 3309
  year: 2009
  end-page: 3313
  publication-title: Nucl. Instrum. Methods
– volume: 8
  start-page: 26073
  year: 2016
  end-page: 26081
  publication-title: ACS Appl. Mater. Interfaces
– volume: 498
  start-page: 147
  year: 2016
  end-page: 157
  publication-title: J. Membr. Sci.
– volume: 7
  start-page: 20184
  year: 2015
  end-page: 20189
  publication-title: ACS Appl. Mater. Interfaces
– volume: 448
  start-page: 143
  year: 2013
  end-page: 150
  publication-title: J. Membr. Sci.
– volume: 196
  start-page: 2905
  year: 2011
  end-page: 2912
  publication-title: J. Power Sources
– volume: 77
  start-page: 34
  year: 1999
  end-page: 41
  publication-title: J. Power Sources
– volume: 4
  start-page: 7845
  year: 2014
  end-page: 7850
  publication-title: RSC Adv.
– volume: 54
  start-page: 4312
  year: 2009
  end-page: 4315
  publication-title: Electrochim. Acta
– volume: 109
  start-page: 388
  year: 2002
  end-page: 393
  publication-title: J. Power Sources
– volume: 7
  start-page: 1124
  year: 2017
  publication-title: Sci. Rep.
– volume: 201
  start-page: 3676
  year: 2006
  end-page: 3684
  publication-title: Surf. Coat. Technol.
– volume: 236
  start-page: 272
  year: 2005
  end-page: 276
  publication-title: Nucl. Instrum. Methods
– volume: 16
  start-page: 5654
  year: 2000
  end-page: 5660
  publication-title: Langmuir
– volume: 91
  start-page: 617
  year: 2018
  end-page: 622
  publication-title: Bull. Chem. Soc. Jpn.
– volume: 28
  start-page: 6428
  year: 2012
  end-page: 6435
  publication-title: Langmuir
– volume: 266
  start-page: 3387
  year: 2008
  end-page: 3391
  publication-title: Nucl. Instrum. Methods
– volume: 45
  start-page: 3046
  year: 2014
  end-page: 3051
  publication-title: J. Taiwan Inst. Chem. E.
– volume: 3
  start-page: 21817
  year: 2013
  end-page: 21823
  publication-title: RSC Adv.
– volume: 15
  start-page: 748
  year: 2009
  end-page: 751
  publication-title: J. Ind. Eng. Chem.
– volume: 7
  start-page: 3314
  year: 2015
  end-page: 3322
  publication-title: ACS Appl. Mater. Interfaces
– volume: 318
  start-page: 2
  year: 2018
  end-page: 18
  publication-title: Solid State Ionics
– volume: 54
  start-page: 33
  year: 1995
  end-page: 45
  publication-title: J. Adhes.
– volume: 11
  start-page: 1214
  year: 2005
  publication-title: Nat. Med.
– volume: 38
  start-page: 1937
  year: 2002
  end-page: 1946
  publication-title: Eur. Polym. J.
– volume: 24
  start-page: 305
  year: 2003
  end-page: 341
  publication-title: J. Dispersion Sci. Technol.
– volume: 14
  start-page: 116
  year: 2008
  end-page: 119
  publication-title: J. Ind. Eng. Chem.
– volume: 25
  start-page: 227
  year: 2012
  end-page: 232
  publication-title: Phys. Procedia
– volume: 20
  start-page: 2132
  year: 2010
  end-page: 2139
  publication-title: Adv. Funct. Mater.
– volume: 342
  start-page: 6
  year: 2009
  end-page: 13
  publication-title: J. Membr. Sci.
– volume: 22
  start-page: 2949
  year: 2012
  end-page: 2955
  publication-title: Adv. Funct. Mater.
– volume: 21
  start-page: 431
  year: 2009
  end-page: 434
  publication-title: Adv. Mater.
– volume: 6
  start-page: 5602
  year: 2014
  end-page: 5608
  publication-title: ACS Appl. Mater. Interfaces
– year: 2003
– volume: 52
  start-page: 2141
  year: 2011
  end-page: 2149
  publication-title: Polymer
– volume: 1
  start-page: 16013
  year: 2016
  publication-title: Nat. Rev. Mater.
– volume: 24
  start-page: 3481
  year: 2012
  end-page: 3485
  publication-title: Chem. Mater.
– volume: 3
  start-page: 911
  year: 2018
  end-page: 916
  publication-title: ChemistrySelect
– volume: 3
  start-page: 866
  year: 2010
  end-page: 885
  publication-title: Energies
– volume: 29
  start-page: 989
  year: 2018
  end-page: 1001
  publication-title: Polym. Adv. Technol.
– volume: 140
  start-page: 111
  year: 2005
  end-page: 124
  publication-title: J. Power Sources
– volume: 50
  start-page: 367
  year: 2004
  end-page: 370
  publication-title: Electrochim. Acta
– volume: 527
  start-page: 78
  year: 2015
  publication-title: Nature
– volume: 59
  start-page: 1701
  year: 2010
  end-page: 1708
  publication-title: Polym. Int.
– volume: 19
  start-page: 1513
  year: 2008
  end-page: 1521
  publication-title: Polym. Adv. Technol.
– volume: 29
  start-page: 10539
  year: 2013
  end-page: 10548
  publication-title: Langmuir
– volume: 15
  start-page: 649
  year: 2011
  end-page: 662
  publication-title: J. Solid State Electrochem.
– volume: 204
  start-page: 2822
  year: 2010
  end-page: 2828
  publication-title: Surf. Coat. Technol.
– volume: 270
  start-page: 547
  year: 2014
  end-page: 553
  publication-title: J. Power Sources
– volume: 52
  start-page: 443
  year: 2006
  end-page: 449
  publication-title: Electrochim. Acta
– volume: 24
  start-page: 2083
  year: 2018
  end-page: 2092
  publication-title: Ionics
– volume: 110
  start-page: 22
  year: 2013
  end-page: 28
  publication-title: Colloids Surf. B
– volume: 9
  start-page: 3023
  year: 2016
  end-page: 3039
  publication-title: ChemSusChem
– volume: 260
  start-page: 66
  year: 2005
  end-page: 74
  publication-title: J. Membr. Sci.
– volume: 318
  start-page: 426
  year: 2007
  end-page: 430
  publication-title: Science
– volume: 285
  start-page: 196
  year: 2006
  end-page: 205
  publication-title: J. Membr. Sci.
– volume: 21
  start-page: 108
  year: 2011
  end-page: 112
  publication-title: Adv. Funct. Mater.
– year: 1999
– ident: e_1_2_6_17_2
  doi: 10.1016/j.jpowsour.2004.05.064
– ident: e_1_2_6_115_2
  doi: 10.1016/j.polymer.2011.03.027
– ident: e_1_2_6_44_1
  doi: 10.1016/j.jpowsour.2010.10.083
– ident: e_1_2_6_31_1
– ident: e_1_2_6_101_1
  doi: 10.1016/j.memsci.2015.02.027
– ident: e_1_2_6_26_2
  doi: 10.1016/j.electacta.2016.06.172
– ident: e_1_2_6_68_2
  doi: 10.1021/acsami.6b08781
– ident: e_1_2_6_19_2
  doi: 10.1016/j.memsci.2015.09.064
– ident: e_1_2_6_49_2
– ident: e_1_2_6_74_1
  doi: 10.1016/j.jtice.2014.08.023
– ident: e_1_2_6_126_1
  doi: 10.1021/am508149n
– ident: e_1_2_6_57_2
  doi: 10.1016/j.surfcoat.2010.02.056
– ident: e_1_2_6_75_1
– ident: e_1_2_6_6_1
  doi: 10.1021/acs.cgd.6b01652
– ident: e_1_2_6_16_2
  doi: 10.1016/j.jpowsour.2011.01.068
– ident: e_1_2_6_42_1
  doi: 10.1016/S0378-7753(98)00168-2
– ident: e_1_2_6_47_1
– ident: e_1_2_6_120_2
  doi: 10.1002/adfm.200902347
– ident: e_1_2_6_76_2
  doi: 10.1002/app.30578
– ident: e_1_2_6_114_2
  doi: 10.1021/ja0532638
– ident: e_1_2_6_79_2
  doi: 10.1016/S0014-3057(99)00240-2
– ident: e_1_2_6_99_1
  doi: 10.1039/c3ra45879b
– ident: e_1_2_6_107_2
  doi: 10.1038/nm1314
– ident: e_1_2_6_72_2
  doi: 10.1016/j.surfcoat.2006.08.146
– ident: e_1_2_6_124_1
  doi: 10.1016/j.jpowsour.2014.07.142
– ident: e_1_2_6_78_2
  doi: 10.1002/pat.1156
– ident: e_1_2_6_15_1
– ident: e_1_2_6_97_1
  doi: 10.1080/00218469508014379
– ident: e_1_2_6_30_1
  doi: 10.1016/j.ssi.2017.12.023
– ident: e_1_2_6_54_2
  doi: 10.1039/c1ee01388b
– ident: e_1_2_6_84_2
  doi: 10.1016/j.ssi.2004.05.004
– ident: e_1_2_6_8_1
  doi: 10.1038/nature15746
– ident: e_1_2_6_87_1
– ident: e_1_2_6_18_1
– ident: e_1_2_6_85_2
  doi: 10.1002/mame.200600131
– ident: e_1_2_6_91_1
  doi: 10.1016/j.jiec.2009.09.057
– ident: e_1_2_6_62_2
  doi: 10.1016/j.memsci.2005.03.023
– ident: e_1_2_6_11_1
– ident: e_1_2_6_41_1
  doi: 10.1016/S0378-7753(02)00097-6
– ident: e_1_2_6_56_1
– ident: e_1_2_6_113_1
– ident: e_1_2_6_59_2
  doi: 10.1016/j.nimb.2008.05.017
– ident: e_1_2_6_9_1
  doi: 10.1007/s11581-017-2187-6
– ident: e_1_2_6_52_1
– ident: e_1_2_6_89_2
  doi: 10.1021/ja0379870
– ident: e_1_2_6_119_1
– ident: e_1_2_6_4_2
  doi: 10.1007/s11581-018-2459-9
– ident: e_1_2_6_28_2
  doi: 10.1016/j.matchemphys.2014.04.014
– ident: e_1_2_6_125_1
  doi: 10.1002/slct.201702529
– ident: e_1_2_6_69_2
  doi: 10.1016/j.memsci.2017.09.022
– ident: e_1_2_6_95_2
  doi: 10.1016/j.memsci.2009.05.041
– ident: e_1_2_6_27_1
– ident: e_1_2_6_64_1
  doi: 10.1016/j.electacta.2004.01.127
– ident: e_1_2_6_24_1
– ident: e_1_2_6_34_2
  doi: 10.1002/app.35637
– ident: e_1_2_6_29_2
  doi: 10.1002/cssc.201600943
– ident: e_1_2_6_122_1
  doi: 10.1021/am406052u
– ident: e_1_2_6_13_2
  doi: 10.1016/j.memsci.2013.07.065
– ident: e_1_2_6_53_2
  doi: 10.1016/j.electacta.2009.01.055
– ident: e_1_2_6_61_2
  doi: 10.1021/acsami.5b05718
– ident: e_1_2_6_108_2
  doi: 10.1002/adma.200801222
– ident: e_1_2_6_117_2
  doi: 10.1002/pola.26802
– ident: e_1_2_6_5_1
  doi: 10.1038/s41598-017-01191-8
– ident: e_1_2_6_82_1
  doi: 10.1002/polb.23098
– ident: e_1_2_6_23_2
  doi: 10.1007/s10008-010-1264-9
– ident: e_1_2_6_111_2
  doi: 10.1021/ma101526k
– ident: e_1_2_6_10_1
  doi: 10.1016/j.jiec.2016.08.021
– ident: e_1_2_6_37_2
  doi: 10.1021/ie901141u
– ident: e_1_2_6_110_1
– ident: e_1_2_6_71_1
– ident: e_1_2_6_123_1
  doi: 10.1039/C6EE01219A
– ident: e_1_2_6_67_1
– ident: e_1_2_6_81_1
  doi: 10.1021/la991537x
– ident: e_1_2_6_105_1
  doi: 10.1002/adfm.201200177
– ident: e_1_2_6_100_1
  doi: 10.1016/j.colsurfb.2013.04.008
– ident: e_1_2_6_70_1
  doi: 10.1002/pat.4211
– ident: e_1_2_6_83_1
– ident: e_1_2_6_2_2
  doi: 10.1002/tcr.201800112
– ident: e_1_2_6_25_2
  doi: 10.1021/acsami.5b04245
– ident: e_1_2_6_98_1
  doi: 10.1126/science.1147241
– ident: e_1_2_6_7_1
  doi: 10.1038/natrevmats.2016.13
– ident: e_1_2_6_73_2
  doi: 10.1081/DIS-120021793
– ident: e_1_2_6_93_2
  doi: 10.1016/j.memsci.2006.08.023
– ident: e_1_2_6_36_2
  doi: 10.1016/j.electacta.2009.02.088
– ident: e_1_2_6_32_2
  doi: 10.1007/s10562-016-1720-y
– ident: e_1_2_6_102_1
  doi: 10.1021/la204831b
– ident: e_1_2_6_14_2
  doi: 10.1021/cm301967f
– ident: e_1_2_6_35_2
  doi: 10.1002/app.28398
– ident: e_1_2_6_55_2
  doi: 10.1021/cr030203g
– ident: e_1_2_6_63_2
  doi: 10.1002/app.31596
– ident: e_1_2_6_90_2
  doi: 10.1016/j.nimb.2005.03.253
– ident: e_1_2_6_127_1
  doi: 10.1016/j.memsci.2015.12.059
– ident: e_1_2_6_106_1
– ident: e_1_2_6_21_2
  doi: 10.3390/en3040866
– ident: e_1_2_6_86_2
  doi: 10.1016/j.progpolymsci.2004.01.003
– ident: e_1_2_6_116_2
  doi: 10.1039/c3ra44277b
– ident: e_1_2_6_12_2
  doi: 10.1021/acsami.5b07230
– ident: e_1_2_6_96_1
  doi: 10.1016/j.phpro.2012.03.076
– ident: e_1_2_6_45_1
  doi: 10.1016/j.electacta.2003.12.012
– ident: e_1_2_6_109_1
  doi: 10.1002/adfm.201202127
– ident: e_1_2_6_46_1
  doi: 10.1016/j.jpowsour.2015.08.008
– ident: e_1_2_6_1_1
– ident: e_1_2_6_51_2
  doi: 10.1016/B978-0-444-59513-3.00019-4
– ident: e_1_2_6_43_1
  doi: 10.1016/j.jpowsour.2007.07.018
– ident: e_1_2_6_104_1
  doi: 10.1039/c1cs15026j
– ident: e_1_2_6_48_1
– ident: e_1_2_6_3_2
  doi: 10.1246/bcsj.20170391
– ident: e_1_2_6_50_2
– ident: e_1_2_6_118_2
  doi: 10.1039/C4PY00025K
– ident: e_1_2_6_39_2
  doi: 10.1039/C4EE01432D
– ident: e_1_2_6_60_1
– ident: e_1_2_6_121_2
  doi: 10.1039/c2nr31547e
– ident: e_1_2_6_20_2
  doi: 10.1016/j.jpowsour.2006.10.065
– ident: e_1_2_6_58_2
  doi: 10.1016/j.nimb.2009.06.117
– ident: e_1_2_6_88_2
  doi: 10.1016/j.jiec.2007.08.005
– ident: e_1_2_6_94_2
  doi: 10.1021/ma990821s
– ident: e_1_2_6_22_2
  doi: 10.1021/cr020738u
– ident: e_1_2_6_80_2
  doi: 10.1016/S0014-3057(02)00093-9
– ident: e_1_2_6_92_1
– ident: e_1_2_6_128_1
  doi: 10.1016/j.jpowsour.2011.10.130
– ident: e_1_2_6_38_1
– ident: e_1_2_6_33_2
  doi: 10.1002/pi.2907
– ident: e_1_2_6_77_2
  doi: 10.1016/S0376-7388(02)00352-6
– ident: e_1_2_6_65_1
  doi: 10.1021/ie900096z
– ident: e_1_2_6_66_1
  doi: 10.1016/j.electacta.2006.05.049
– ident: e_1_2_6_103_1
  doi: 10.1021/la4020288
– ident: e_1_2_6_40_2
  doi: 10.1002/ente.201402215
– ident: e_1_2_6_112_2
  doi: 10.1002/adfm.201001692
SSID ssj0011477
Score 2.5775354
SecondaryResourceType review_article
Snippet Secondary Li−ion batteries have been paid attention to wide‐range applications of power source for the portable electronics, electric vehicle, and electric...
Secondary Li-ion batteries have been paid attention to wide-range applications of power source for the portable electronics, electric vehicle, and electric...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 570
SubjectTerms Chemical reactions
Electric vehicles
Electrochemistry
Electrolytes
Energy storage
Free flow
high energy radiation-induced grafting
Lithium
Lithium-ion batteries
Li−ion battery
Mechanical properties
Multilayers
mussel-inspired method
plasma grafting
Polyethylene
Polyethylenes
Polyolefin separator
Polyolefins
Polypropylene
Porosity
Product safety
Properties (attributes)
Reservoir storage
Separators
Short circuits
Shutdowns
Storage batteries
Storage reservoirs
Surface energy
surface modification methods
Surface properties
Surface stability
Thermal stability
UV-initiated grafting polymerization
Title Recent Development of Polyolefin‐Based Microporous Separators for Li−Ion Batteries: A Review
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ftcr.201900054
https://www.ncbi.nlm.nih.gov/pubmed/31833648
https://www.proquest.com/docview/2411092161
https://www.proquest.com/docview/2334698535
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB0hLnBpC5SSFpCRqp4a8EfiYG7LCkQRVBUFiVuInVhCrJKK3T20J44cq_7E_SXMJNnQLWol1GMUO3ZmPJ5ne_wG4H3MrUu00aH1loeRlWhSkROhdaaQ1ubKe7o7fPpZH11Ex5fxZZvnlO7CNPwQ3YYbWUY9X5OBZ3a480gaihMVRWbVSS-JD5TitQgUnXX0UQj168yLlLk1xHWFaTk2sf7OTO1Zn_QEaM7i1trxHL6Eq2mXm3iTm-3xyG67H3-wOf7HP72CFy0oZb1mFC3BXFEuw0J_mgtuBa4QXaJ3Yr-FGLHKsy_V4Hs1KPx1Obn7uY_-MGenFOCHmL4aD9nXoiYWr26HDKExO7me3P_6VJWs4fTEJfoe67HmcOI1XBwenPePwjY3Q-iUNhHqUiVRwXm-ix5fWiFy5xONas84UcQl3BHtjrM20y6TXubGeJEIybPcWiO8WoX5siqLNWBGSMRQPotd7CKtY2uwsBLYgPb4ZRXAx6l2UtcSl1P-jEHaUC7LFMWWdmIL4ENX_FvD2PG3gutTVaet4Q5TBDSCG4k4OICt7jVKm85RsrJA6aVSKcq7Gas4gDfNEOlaoilS6Wg3AF4r-t9dSM_7Z93D2-dXeQeLktb_9a7QOsyPbsfFBoKkkd2sLeEBg8sJvg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcigX_imBAkYCTqR17MSpkTiULdUu3a1Q2Uq9pbFjS6uukqrZFSonjhwRT8Kr8Ap9Esb5gwWBxKEHjlEce2LPeD7b428AnkRU6VhI4SurqB8qhiYV6sBXWhqmVMatdXeHR3uifxC-OYwOl-Brexem5ofoNtycZVTztTNwtyG98YM1FGcqF5pVZb0Mm7DKXXP2Hhdt5cvBNo7wU8Z2Xo97fb_JK-BrLmSIcvA4NJRmm-itmAqCTNtYoMgpdfRmMdWOMkYrlQqdMssyKW0QB4ymmVIysBzrvQSXXRZxx9a_vd8RVuHiosr16HLF-riSkQ2rJwq8sSDuohf8DdouIuXK1e1cg29tJ9URLsfr85la1x9-4Y_8n3rxOlxtcDfZqg3lBiyZ_Cas9Np0d7fgCAE0OmDyUxQVKSx5W0zPiqmxk_z84-dX6PIzMnIxjLhsKeYleWcq7vTitCSI_slwcv7py6DISU1bOjHlC7JF6vOX23BwIT94B5bzIjd3gciAIUy0aaQjHQoRKYmFeYANCIs1cw-et-qQ6Iab3aUImSY1qzRLcJiSbpg8eNYVP6lJSf5UcK3VraSZm8oEMVtAJUOo78Hj7jX2tjsqSnODvZcwzl1q0YhHHqzWOtm15LwAF-GmB7TSrL-LkIx7-93DvX__5BGs9MejYTIc7O3ehyvMbXdUm2BrsDw7nZsHiAln6mFlhgSOLlpjvwNS5Wdn
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIgEXyl8htICRgBNpHTtxaiQOZZdVl_6oKq3UWxo7trRilVTNrlA59dgj4kV4FZ6hT8I4f7AgkDj0wDGKY0_sGc9ne_wNwLOIKh0LKXxlFfVDxdCkQh34SkvDlMq4te7u8PaO2DgI3x1Gh3Pwtb0LU_NDdBtuzjKq-doZ-HFmV3-QhuJE5SKzqqSXYRNVuWlOP-KarXw97OMAP2ds8Ha_t-E3aQV8zYUMUQweh4bSbA2dFVNBkGkbC5Q4pY7dLKbaMcZopVKhU2ZZJqUN4oDRNFNKBpZjvVfgaiiodLki-nsdXxWuLapUjy5VrI8LGdmQeqLAqzPizjrB35DtLFCuPN1gAb61fVQHuHxYmU7Uiv70C33kf9SJt-Bmg7rJem0mt2HO5Hfgeq9NdncXjhA-o_slP8VQkcKS3WJ8WoyNHeUXZ5_foMPPyLaLYMRFSzEtyXtTMacXJyVB7E-2RhfnX4ZFTmrS0pEpX5F1Up--3IODS_nBRZjPi9w8ACIDhiDRppGOdChEpCQW5gE2ICzWzD142WpDohtmdpcgZJzUnNIswWFKumHy4EVX_LimJPlTweVWtZJmZioTRGwBlQyBvgdPu9fY2-6gKM0N9l7COHeJRSMeeXC_VsmuJecDuAjXPKCVYv1dhGS_t9c9PPz3T57Atd3-INka7mwuwQ3m9jqqHbBlmJ-cTM0jBIQT9bgyQgJHl62w3wGWOWYW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Development+of+Polyolefin%E2%80%90Based+Microporous+Separators+for+Li%E2%88%92Ion+Batteries%3A+A+Review&rft.jtitle=Chemical+record&rft.au=Ali+Akbar+Heidari&rft.au=Mahdavi%2C+Hossein&rft.date=2020-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1527-8999&rft.eissn=1528-0691&rft.volume=20&rft.issue=6&rft.spage=570&rft.epage=595&rft_id=info:doi/10.1002%2Ftcr.201900054&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1527-8999&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1527-8999&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1527-8999&client=summon