Recent Development of Polyolefin‐Based Microporous Separators for Li−Ion Batteries: A Review
Secondary Li−ion batteries have been paid attention to wide‐range applications of power source for the portable electronics, electric vehicle, and electric storage reservoir. Generally, lithium‐ion batteries are comprised of four components including anode, cathode, electrolyte and separator. Althou...
Saved in:
Published in | Chemical record Vol. 20; no. 6; pp. 570 - 595 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.06.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Secondary Li−ion batteries have been paid attention to wide‐range applications of power source for the portable electronics, electric vehicle, and electric storage reservoir. Generally, lithium‐ion batteries are comprised of four components including anode, cathode, electrolyte and separator. Although separators do not take part in the electrochemical reactions in a lithium‐ion (Li−ion) battery, they conduct the critical functions of physically separating the positive and negative electrodes to prevent electrical short circuit while permitting the free flow of lithium ions through the liquid electrolyte that fill in their open porous structure. Hence, the separator is directly related to the safety and the power performance of the battery. Among a number of separators developed thus far, polyethylene (PE) and polypropylene (PP) porous membrane separators have been the most dominant ones for commercial Li−ion batteries over the decades because of their superior properties such as cost‐efficiency, good mechanical strength and pore structure, electrochemical stability, and thermal shutdown properties. However, there are main issues for vehicular storage, such as nonpolarity, low surface energy and poor thermal stability, although the polyolefin separators have proven dependable in portable applications. Hence, in this review, we decide to provide an overview of the types of polyolefin microporous separators utilized in Li−ion batteries and the methods employed to modify their surface in detail. The remarkable results demonstrate that extraordinary properties can be exhibited by mono‐ and multilayer polyolefin separators if they are modified using suitable methods and materials.
Separators physically separate the positive and negative electrodes to prevent electrical short circuit. Separators permit the free flow of lithium ions through the liquid electrolyte that fill in their open porous structure. Polyolefin porous membranes have been extensively utilized as separators because of their appreciable mechanical strength, high chemical and electrochemical stability, cost‐efficiency, high porosity and suitable thermal shutdown property |
---|---|
AbstractList | Secondary Li-ion batteries have been paid attention to wide-range applications of power source for the portable electronics, electric vehicle, and electric storage reservoir. Generally, lithium-ion batteries are comprised of four components including anode, cathode, electrolyte and separator. Although separators do not take part in the electrochemical reactions in a lithium-ion (Li-ion) battery, they conduct the critical functions of physically separating the positive and negative electrodes to prevent electrical short circuit while permitting the free flow of lithium ions through the liquid electrolyte that fill in their open porous structure. Hence, the separator is directly related to the safety and the power performance of the battery. Among a number of separators developed thus far, polyethylene (PE) and polypropylene (PP) porous membrane separators have been the most dominant ones for commercial Li-ion batteries over the decades because of their superior properties such as cost-efficiency, good mechanical strength and pore structure, electrochemical stability, and thermal shutdown properties. However, there are main issues for vehicular storage, such as nonpolarity, low surface energy and poor thermal stability, although the polyolefin separators have proven dependable in portable applications. Hence, in this review, we decide to provide an overview of the types of polyolefin microporous separators utilized in Li-ion batteries and the methods employed to modify their surface in detail. The remarkable results demonstrate that extraordinary properties can be exhibited by mono- and multilayer polyolefin separators if they are modified using suitable methods and materials.Secondary Li-ion batteries have been paid attention to wide-range applications of power source for the portable electronics, electric vehicle, and electric storage reservoir. Generally, lithium-ion batteries are comprised of four components including anode, cathode, electrolyte and separator. Although separators do not take part in the electrochemical reactions in a lithium-ion (Li-ion) battery, they conduct the critical functions of physically separating the positive and negative electrodes to prevent electrical short circuit while permitting the free flow of lithium ions through the liquid electrolyte that fill in their open porous structure. Hence, the separator is directly related to the safety and the power performance of the battery. Among a number of separators developed thus far, polyethylene (PE) and polypropylene (PP) porous membrane separators have been the most dominant ones for commercial Li-ion batteries over the decades because of their superior properties such as cost-efficiency, good mechanical strength and pore structure, electrochemical stability, and thermal shutdown properties. However, there are main issues for vehicular storage, such as nonpolarity, low surface energy and poor thermal stability, although the polyolefin separators have proven dependable in portable applications. Hence, in this review, we decide to provide an overview of the types of polyolefin microporous separators utilized in Li-ion batteries and the methods employed to modify their surface in detail. The remarkable results demonstrate that extraordinary properties can be exhibited by mono- and multilayer polyolefin separators if they are modified using suitable methods and materials. Secondary Li−ion batteries have been paid attention to wide‐range applications of power source for the portable electronics, electric vehicle, and electric storage reservoir. Generally, lithium‐ion batteries are comprised of four components including anode, cathode, electrolyte and separator. Although separators do not take part in the electrochemical reactions in a lithium‐ion (Li−ion) battery, they conduct the critical functions of physically separating the positive and negative electrodes to prevent electrical short circuit while permitting the free flow of lithium ions through the liquid electrolyte that fill in their open porous structure. Hence, the separator is directly related to the safety and the power performance of the battery. Among a number of separators developed thus far, polyethylene (PE) and polypropylene (PP) porous membrane separators have been the most dominant ones for commercial Li−ion batteries over the decades because of their superior properties such as cost‐efficiency, good mechanical strength and pore structure, electrochemical stability, and thermal shutdown properties. However, there are main issues for vehicular storage, such as nonpolarity, low surface energy and poor thermal stability, although the polyolefin separators have proven dependable in portable applications. Hence, in this review, we decide to provide an overview of the types of polyolefin microporous separators utilized in Li−ion batteries and the methods employed to modify their surface in detail. The remarkable results demonstrate that extraordinary properties can be exhibited by mono‐ and multilayer polyolefin separators if they are modified using suitable methods and materials. Secondary Li−ion batteries have been paid attention to wide‐range applications of power source for the portable electronics, electric vehicle, and electric storage reservoir. Generally, lithium‐ion batteries are comprised of four components including anode, cathode, electrolyte and separator. Although separators do not take part in the electrochemical reactions in a lithium‐ion (Li−ion) battery, they conduct the critical functions of physically separating the positive and negative electrodes to prevent electrical short circuit while permitting the free flow of lithium ions through the liquid electrolyte that fill in their open porous structure. Hence, the separator is directly related to the safety and the power performance of the battery. Among a number of separators developed thus far, polyethylene (PE) and polypropylene (PP) porous membrane separators have been the most dominant ones for commercial Li−ion batteries over the decades because of their superior properties such as cost‐efficiency, good mechanical strength and pore structure, electrochemical stability, and thermal shutdown properties. However, there are main issues for vehicular storage, such as nonpolarity, low surface energy and poor thermal stability, although the polyolefin separators have proven dependable in portable applications. Hence, in this review, we decide to provide an overview of the types of polyolefin microporous separators utilized in Li−ion batteries and the methods employed to modify their surface in detail. The remarkable results demonstrate that extraordinary properties can be exhibited by mono‐ and multilayer polyolefin separators if they are modified using suitable methods and materials. Separators physically separate the positive and negative electrodes to prevent electrical short circuit. Separators permit the free flow of lithium ions through the liquid electrolyte that fill in their open porous structure. Polyolefin porous membranes have been extensively utilized as separators because of their appreciable mechanical strength, high chemical and electrochemical stability, cost‐efficiency, high porosity and suitable thermal shutdown property Secondary Li-ion batteries have been paid attention to wide-range applications of power source for the portable electronics, electric vehicle, and electric storage reservoir. Generally, lithium-ion batteries are comprised of four components including anode, cathode, electrolyte and separator. Although separators do not take part in the electrochemical reactions in a lithium-ion (Li-ion) battery, they conduct the critical functions of physically separating the positive and negative electrodes to prevent electrical short circuit while permitting the free flow of lithium ions through the liquid electrolyte that fill in their open porous structure. Hence, the separator is directly related to the safety and the power performance of the battery. Among a number of separators developed thus far, polyethylene (PE) and polypropylene (PP) porous membrane separators have been the most dominant ones for commercial Li-ion batteries over the decades because of their superior properties such as cost-efficiency, good mechanical strength and pore structure, electrochemical stability, and thermal shutdown properties. However, there are main issues for vehicular storage, such as nonpolarity, low surface energy and poor thermal stability, although the polyolefin separators have proven dependable in portable applications. Hence, in this review, we decide to provide an overview of the types of polyolefin microporous separators utilized in Li-ion batteries and the methods employed to modify their surface in detail. The remarkable results demonstrate that extraordinary properties can be exhibited by mono- and multilayer polyolefin separators if they are modified using suitable methods and materials. |
Author | Mahdavi, Hossein Heidari, Ali Akbar |
Author_xml | – sequence: 1 givenname: Ali Akbar surname: Heidari fullname: Heidari, Ali Akbar organization: University of Tehran – sequence: 2 givenname: Hossein orcidid: 0000-0002-8251-6697 surname: Mahdavi fullname: Mahdavi, Hossein email: hmahdavi@khayam.ut.ac.ir organization: University of Tehran |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31833648$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kTtvFDEUhS0URB5Q0iJLNGkm8bVn7TFdsrwiLQItoTYez7XkaHY82N5E21FSIn5ifgmTbAJSJKjuKb5zdHTPPtkZ4oCEPAd2BIzx4-LSEWegGWOz-hHZgxlvKiY17NxqVTVa612yn_MFYwC1Uk_IroBGCFk3e-TrEh0Ohb7GS-zjuLrR0dNPsd_EHn0Yrr__PLUZO_ohuBTHmOI608842mRLTJn6mOgiXP_4dRYHempLwRQwv6IndImXAa-eksfe9hmf3d0D8uXtm_P5-2rx8d3Z_GRROSF1XbVOqBoZ65oGGt4CdM4r6ZS0DEQNijkttXRta6Wz3PNOaw8KOLNd22rw4oAcbnPHFL-tMRezCtlh39sBp8qGC1FL3czEbEJfPkAv4joNUzvDawCmOUiYqBd31LpdYWfGFFY2bcz97yZAbIHpLzkn9MaFYkuIQ0k29AaYuVnITAuZPwtNruqB6z74X7za8lehx83_YXM-X_51_gbBJaMl |
CitedBy_id | crossref_primary_10_1007_s10853_021_06536_3 crossref_primary_10_1016_j_ensm_2022_07_011 crossref_primary_10_1016_j_jiec_2023_05_001 crossref_primary_10_1021_acs_energyfuels_2c04065 crossref_primary_10_1016_j_inoche_2025_114113 crossref_primary_10_3390_batteries10010039 crossref_primary_10_1021_acs_iecr_0c02182 crossref_primary_10_1002_tcr_202400176 crossref_primary_10_1002_app_55829 crossref_primary_10_1016_j_jpowsour_2024_235862 crossref_primary_10_1016_j_ces_2023_118970 crossref_primary_10_3390_en16020627 crossref_primary_10_1016_j_jiec_2024_10_023 crossref_primary_10_1002_anie_202424529 crossref_primary_10_1016_j_eurpolymj_2023_112184 crossref_primary_10_1016_j_memsci_2021_119406 crossref_primary_10_1007_s10118_022_2678_4 crossref_primary_10_1149_1945_7111_abdfa7 crossref_primary_10_1039_D3TA06261A crossref_primary_10_1007_s11581_024_05595_1 crossref_primary_10_1016_j_est_2023_109819 crossref_primary_10_1002_app_53893 crossref_primary_10_1134_S1560090425600135 crossref_primary_10_3390_batteries10080279 crossref_primary_10_1016_j_jpowsour_2024_234891 crossref_primary_10_1016_j_ssi_2021_115589 crossref_primary_10_1016_j_jpowsour_2023_233853 crossref_primary_10_20517_energymater_2023_20 crossref_primary_10_1002_ange_202218005 crossref_primary_10_1007_s11664_024_11623_7 crossref_primary_10_1021_acsami_2c13325 crossref_primary_10_1002_app_54587 crossref_primary_10_1016_j_mtener_2024_101679 crossref_primary_10_1002_adfm_202411963 crossref_primary_10_1007_s10118_023_3002_7 crossref_primary_10_20964_2022_01_47 crossref_primary_10_3390_ma15144875 crossref_primary_10_1016_j_sajce_2024_09_008 crossref_primary_10_3390_membranes11030219 crossref_primary_10_1016_j_mtener_2024_101684 crossref_primary_10_1016_j_est_2021_103668 crossref_primary_10_1016_j_jpowsour_2021_229973 crossref_primary_10_1021_acsaem_2c00188 crossref_primary_10_1177_0954008320964557 crossref_primary_10_1002_tcr_202000058 crossref_primary_10_1002_app_50713 crossref_primary_10_1016_j_jelechem_2021_115614 crossref_primary_10_1016_j_jelechem_2023_117932 crossref_primary_10_1007_s41918_022_00131_z crossref_primary_10_1002_ange_202424529 crossref_primary_10_1021_acsanm_0c03409 crossref_primary_10_1002_adma_202412908 crossref_primary_10_1021_acsapm_4c00506 crossref_primary_10_1016_j_memsci_2024_123505 crossref_primary_10_1016_j_polymer_2024_127226 crossref_primary_10_1016_j_polymer_2023_126111 crossref_primary_10_1016_j_jpowsour_2024_235836 crossref_primary_10_3390_coatings15030351 crossref_primary_10_1016_j_jiec_2022_10_055 crossref_primary_10_1021_acsami_4c09342 crossref_primary_10_1002_slct_202203407 crossref_primary_10_1016_j_elecom_2021_106948 crossref_primary_10_1016_j_nexres_2025_100228 crossref_primary_10_1002_ente_202100996 crossref_primary_10_1002_tcr_202300189 crossref_primary_10_1016_j_jechem_2023_07_037 crossref_primary_10_3390_min14111155 crossref_primary_10_1002_tcr_202200131 crossref_primary_10_1016_j_jcis_2024_05_095 crossref_primary_10_1016_j_jpowsour_2023_233515 crossref_primary_10_1007_s10118_022_2856_4 crossref_primary_10_1016_j_jechem_2022_09_002 crossref_primary_10_1007_s11814_024_00037_0 crossref_primary_10_1115_1_4066138 crossref_primary_10_1002_tcr_202200122 crossref_primary_10_1016_j_memsci_2023_121359 crossref_primary_10_1016_j_ensm_2023_103135 crossref_primary_10_1016_j_compositesa_2022_107132 crossref_primary_10_1155_2023_4624762 crossref_primary_10_1007_s11814_025_00439_8 crossref_primary_10_1016_j_est_2023_109344 crossref_primary_10_1002_adfm_202106176 crossref_primary_10_1016_j_jpowsour_2025_236237 crossref_primary_10_1016_j_jiec_2024_01_029 crossref_primary_10_1016_j_cej_2023_145582 crossref_primary_10_1016_j_jpowsour_2025_236770 crossref_primary_10_1016_j_cej_2022_139112 crossref_primary_10_2139_ssrn_4195931 crossref_primary_10_1007_s10570_024_05924_7 crossref_primary_10_1088_1755_1315_1011_1_012009 crossref_primary_10_1016_j_porgcoat_2024_108904 crossref_primary_10_1002_pen_26660 crossref_primary_10_1007_s10904_024_03290_2 crossref_primary_10_1016_j_jpowsour_2025_236765 crossref_primary_10_1016_j_surfin_2024_105110 crossref_primary_10_1021_acsapm_2c01842 crossref_primary_10_1016_j_nanoen_2024_109265 crossref_primary_10_1016_j_memsci_2022_120807 crossref_primary_10_1002_bte2_20240015 crossref_primary_10_1016_j_mseb_2020_115024 crossref_primary_10_1002_mame_202300389 crossref_primary_10_1007_s10853_024_09895_9 crossref_primary_10_1016_j_polymer_2024_127798 crossref_primary_10_1039_D4NJ02397H crossref_primary_10_1016_j_apmt_2021_101136 crossref_primary_10_1016_j_jpowsour_2023_232853 crossref_primary_10_1021_acsaem_0c03162 crossref_primary_10_1002_adfm_202409368 crossref_primary_10_1016_j_electacta_2022_141209 crossref_primary_10_1002_anie_202218005 crossref_primary_10_1016_j_ensm_2021_08_046 crossref_primary_10_1016_j_cej_2023_144593 crossref_primary_10_3390_polym15183690 crossref_primary_10_1021_acs_chemrev_4c00805 crossref_primary_10_1016_j_electacta_2022_141794 crossref_primary_10_1016_j_jcis_2024_08_087 crossref_primary_10_1021_acs_iecr_4c04157 crossref_primary_10_1016_j_elecom_2023_107644 crossref_primary_10_1007_s10854_024_12003_x crossref_primary_10_1021_acs_chemrev_1c00565 crossref_primary_10_1002_aenm_202300403 crossref_primary_10_1016_j_mtener_2025_101798 |
Cites_doi | 10.1016/j.jpowsour.2004.05.064 10.1016/j.polymer.2011.03.027 10.1016/j.jpowsour.2010.10.083 10.1016/j.memsci.2015.02.027 10.1016/j.electacta.2016.06.172 10.1021/acsami.6b08781 10.1016/j.memsci.2015.09.064 10.1016/j.jtice.2014.08.023 10.1021/am508149n 10.1016/j.surfcoat.2010.02.056 10.1021/acs.cgd.6b01652 10.1016/j.jpowsour.2011.01.068 10.1016/S0378-7753(98)00168-2 10.1002/adfm.200902347 10.1002/app.30578 10.1021/ja0532638 10.1016/S0014-3057(99)00240-2 10.1039/c3ra45879b 10.1038/nm1314 10.1016/j.surfcoat.2006.08.146 10.1016/j.jpowsour.2014.07.142 10.1002/pat.1156 10.1080/00218469508014379 10.1016/j.ssi.2017.12.023 10.1039/c1ee01388b 10.1016/j.ssi.2004.05.004 10.1038/nature15746 10.1002/mame.200600131 10.1016/j.jiec.2009.09.057 10.1016/j.memsci.2005.03.023 10.1016/S0378-7753(02)00097-6 10.1016/j.nimb.2008.05.017 10.1007/s11581-017-2187-6 10.1021/ja0379870 10.1007/s11581-018-2459-9 10.1016/j.matchemphys.2014.04.014 10.1002/slct.201702529 10.1016/j.memsci.2017.09.022 10.1016/j.memsci.2009.05.041 10.1016/j.electacta.2004.01.127 10.1002/app.35637 10.1002/cssc.201600943 10.1021/am406052u 10.1016/j.memsci.2013.07.065 10.1016/j.electacta.2009.01.055 10.1021/acsami.5b05718 10.1002/adma.200801222 10.1002/pola.26802 10.1038/s41598-017-01191-8 10.1002/polb.23098 10.1007/s10008-010-1264-9 10.1021/ma101526k 10.1016/j.jiec.2016.08.021 10.1021/ie901141u 10.1039/C6EE01219A 10.1021/la991537x 10.1002/adfm.201200177 10.1016/j.colsurfb.2013.04.008 10.1002/pat.4211 10.1002/tcr.201800112 10.1021/acsami.5b04245 10.1126/science.1147241 10.1038/natrevmats.2016.13 10.1081/DIS-120021793 10.1016/j.memsci.2006.08.023 10.1016/j.electacta.2009.02.088 10.1007/s10562-016-1720-y 10.1021/la204831b 10.1021/cm301967f 10.1002/app.28398 10.1021/cr030203g 10.1002/app.31596 10.1016/j.nimb.2005.03.253 10.1016/j.memsci.2015.12.059 10.3390/en3040866 10.1016/j.progpolymsci.2004.01.003 10.1039/c3ra44277b 10.1021/acsami.5b07230 10.1016/j.phpro.2012.03.076 10.1016/j.electacta.2003.12.012 10.1002/adfm.201202127 10.1016/j.jpowsour.2015.08.008 10.1016/B978-0-444-59513-3.00019-4 10.1016/j.jpowsour.2007.07.018 10.1039/c1cs15026j 10.1246/bcsj.20170391 10.1039/C4PY00025K 10.1039/C4EE01432D 10.1039/c2nr31547e 10.1016/j.jpowsour.2006.10.065 10.1016/j.nimb.2009.06.117 10.1016/j.jiec.2007.08.005 10.1021/ma990821s 10.1021/cr020738u 10.1016/S0014-3057(02)00093-9 10.1016/j.jpowsour.2011.10.130 10.1002/pi.2907 10.1016/S0376-7388(02)00352-6 10.1021/ie900096z 10.1016/j.electacta.2006.05.049 10.1021/la4020288 10.1002/ente.201402215 10.1002/adfm.201001692 |
ContentType | Journal Article |
Copyright | 2019 The Chemical Society of Japan & Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. 2020 The Chemical Society of Japan & Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2019 The Chemical Society of Japan & Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2020 The Chemical Society of Japan & Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION NPM 7QO 7T7 8FD C1K FR3 P64 7X8 |
DOI | 10.1002/tcr.201900054 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Engineering Research Database Biotechnology Research Abstracts Technology Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Engineering Research Database CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1528-0691 |
EndPage | 595 |
ExternalDocumentID | 31833648 10_1002_tcr_201900054 TCR201900054 |
Genre | reviewArticle Journal Article Review |
GroupedDBID | --- .3N .Y3 05W 0R~ 10A 123 1OC 29B 31~ 33P 3WU 4.4 50Y 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 53G 5VS 66C 702 7PT 8-1 8UM A00 AAESR AAHHS AAHQN AAMNL AANHP AANLZ AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ASPBG AVWKF AZFZN AZVAB BDRZF BFHJK BMXJE BROTX BRXPI BY8 CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD F5P FEDTE G-S G.N GODZA HF~ HGLYW HVGLF HZ~ IX1 J0M LATKE LAW LC2 LC3 LEEKS LH- LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MSFUL MSSTM MXFUL MXSTM MY~ N9A O9- OIG P2W P4D Q11 QB0 QRW R.K ROL RX1 SUPJJ V2E W99 WBKPD WOHZO WQJ WXSBR WYJ WYUIH XG1 XV2 ZZTAW ~IA AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION NPM 7QO 7T7 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 P64 7X8 |
ID | FETCH-LOGICAL-c3694-bc374e00d88182b11dcf76c76a0134170c9696cbba6ca2f2d99f17120adbb91f3 |
IEDL.DBID | DR2 |
ISSN | 1527-8999 1528-0691 |
IngestDate | Fri Jul 11 16:38:13 EDT 2025 Fri Jul 25 12:08:04 EDT 2025 Thu Apr 03 06:52:35 EDT 2025 Thu Apr 24 23:10:56 EDT 2025 Tue Jul 01 00:57:27 EDT 2025 Wed Jan 22 16:35:17 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | plasma grafting Polyolefin separator UV-initiated grafting polymerization mussel-inspired method surface modification methods Li−ion battery high energy radiation-induced grafting |
Language | English |
License | 2019 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3694-bc374e00d88182b11dcf76c76a0134170c9696cbba6ca2f2d99f17120adbb91f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-8251-6697 |
PMID | 31833648 |
PQID | 2411092161 |
PQPubID | 1006501 |
PageCount | 26 |
ParticipantIDs | proquest_miscellaneous_2334698535 proquest_journals_2411092161 pubmed_primary_31833648 crossref_citationtrail_10_1002_tcr_201900054 crossref_primary_10_1002_tcr_201900054 wiley_primary_10_1002_tcr_201900054_TCR201900054 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2020 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: June 2020 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Chemical record |
PublicationTitleAlternate | Chem Rec |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2013; 29 2017; 7 2013; 3 2010; 59 2004; 126 2004; 29 2016; 504 2013; 23 2013; 448 2017; 45 2016; 146 2008; 109 2011; 52 2019; 19 2006; 291 2011; 15 2011; 196 2012; 125 2008; 266 2009; 114 2012; 206 2009; 48 2010; 20 2005; 260 2014; 5 2018; 3 2005; 140 2014; 4 2009; 54 2000; 16 2007; 172 2010; 116 2013; 51 2015; 298 2004; 171 1987 2006; 285 2011; 21 2012; 28 2013; 110 2002; 109 2010; 3 2012; 25 2012; 24 2014; 7 2012; 22 2014; 6 2009; 15 2006; 201 2002; 38 2018; 29 2006; 52 2004; 104 2009; 21 2015; 3 2004; 49 2010; 204 2008; 19 2005; 236 2011; 40 2007; 164 1995; 54 2015; 483 2008; 14 2015; 527 2003 2014; 270 2011; 4 2015; 7 2014; 45 2018; 24 1999 2012; 50 2010; 43 2004; 50 2016; 1 2000; 36 2017; 17 2000; 33 2005; 127 2016; 498 2016; 212 2003; 24 2018; 91 2009; 342 1999; 77 2009; 267 2002; 209 2018; 318 2007; 318 2012; 4 2016; 8 2017; 544 2005; 11 2016; 9 2014; 146 e_1_2_6_72_2 e_1_2_6_114_2 e_1_2_6_53_2 e_1_2_6_95_2 e_1_2_6_118_2 e_1_2_6_30_1 e_1_2_6_91_1 e_1_2_6_110_1 e_1_2_6_19_2 e_1_2_6_34_2 e_1_2_6_11_1 e_1_2_6_76_2 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_99_1 e_1_2_6_57_2 e_1_2_6_125_1 e_1_2_6_64_1 e_1_2_6_87_1 e_1_2_6_106_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_83_1 e_1_2_6_121_2 e_1_2_6_102_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_1_1 e_1_2_6_22_2 e_1_2_6_49_2 e_1_2_6_45_1 e_1_2_6_26_2 e_1_2_6_68_2 e_1_2_6_50_2 e_1_2_6_73_2 e_1_2_6_96_1 e_1_2_6_117_2 e_1_2_6_31_1 e_1_2_6_92_1 e_1_2_6_113_1 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_58_2 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_54_2 e_1_2_6_77_2 e_1_2_6_61_2 e_1_2_6_84_2 e_1_2_6_42_1 e_1_2_6_105_1 e_1_2_6_128_1 e_1_2_6_65_1 e_1_2_6_80_2 e_1_2_6_109_1 e_1_2_6_120_2 e_1_2_6_101_1 e_1_2_6_124_1 e_1_2_6_6_1 e_1_2_6_23_2 e_1_2_6_69_2 e_1_2_6_2_2 e_1_2_6_88_2 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_74_1 e_1_2_6_97_1 e_1_2_6_51_2 e_1_2_6_116_2 e_1_2_6_70_1 e_1_2_6_93_2 e_1_2_6_112_2 e_1_2_6_13_2 e_1_2_6_59_2 e_1_2_6_32_2 e_1_2_6_17_2 e_1_2_6_55_2 e_1_2_6_36_2 e_1_2_6_78_2 e_1_2_6_62_2 e_1_2_6_104_1 e_1_2_6_43_1 e_1_2_6_85_2 e_1_2_6_127_1 e_1_2_6_20_2 e_1_2_6_81_1 e_1_2_6_108_2 e_1_2_6_100_1 e_1_2_6_123_1 e_1_2_6_3_2 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_28_2 e_1_2_6_66_1 e_1_2_6_47_1 e_1_2_6_89_2 e_1_2_6_52_1 e_1_2_6_98_1 e_1_2_6_94_2 e_1_2_6_115_2 e_1_2_6_75_1 e_1_2_6_10_1 e_1_2_6_119_1 e_1_2_6_90_2 e_1_2_6_71_1 e_1_2_6_111_2 e_1_2_6_33_2 e_1_2_6_18_1 e_1_2_6_56_1 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_79_2 e_1_2_6_103_1 e_1_2_6_126_1 e_1_2_6_63_2 e_1_2_6_86_2 e_1_2_6_107_2 e_1_2_6_40_2 e_1_2_6_82_1 e_1_2_6_122_1 e_1_2_6_8_1 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_48_1 e_1_2_6_21_2 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_25_2 |
References_xml | – volume: 51 start-page: 3941 year: 2013 end-page: 3949 publication-title: J. Polym. Sci. Polym. Chem. Ed. – volume: 4 start-page: 5864 year: 2012 end-page: 5867 publication-title: Nanoscale – volume: 109 start-page: 3492 year: 2008 end-page: 3501 publication-title: J. Appl. Polym. Sci. – volume: 172 start-page: 416 year: 2007 end-page: 421 publication-title: J. Power Sources – volume: 125 start-page: 1606 year: 2012 end-page: 1615 publication-title: J. Appl. Polym. Sci. – volume: 209 start-page: 255 year: 2002 end-page: 269 publication-title: J. Membr. Sci. – volume: 49 start-page: 1803 year: 2004 end-page: 1812 publication-title: Electrochim. Acta – volume: 7 start-page: 16003 year: 2015 end-page: 16010 publication-title: ACS Appl. Mater. Interfaces – volume: 116 start-page: 868 year: 2010 end-page: 875 publication-title: J. Appl. Polym. Sci. – volume: 544 start-page: 213 year: 2017 end-page: 220 publication-title: J. Membr. Sci. – volume: 206 start-page: 325 year: 2012 end-page: 333 publication-title: J. Power Sources – volume: 48 start-page: 9936 year: 2009 end-page: 9941 publication-title: Ind. Eng. Chem. Res. – volume: 7 start-page: 3857 year: 2014 end-page: 3886 publication-title: Energy Environ. Sci. – volume: 54 start-page: 3714 year: 2009 end-page: 3719 publication-title: Electrochim. Acta – volume: 126 start-page: 1004 year: 2004 end-page: 1005 publication-title: J. Am. Chem. Soc. – volume: 212 start-page: 649 year: 2016 end-page: 656 publication-title: Electrochim. Acta – volume: 50 start-page: 1165 year: 2012 end-page: 1172 publication-title: J. Polym. Sci. Polym. Phys. Ed. – volume: 298 start-page: 158 year: 2015 end-page: 165 publication-title: J. Power Sources – volume: 43 start-page: 8336 year: 2010 end-page: 8339 publication-title: Macromolecules – volume: 48 start-page: 4346 year: 2009 end-page: 4351 publication-title: Ind. Eng. Chem. Res. – volume: 17 start-page: 1258 year: 2017 end-page: 1263 publication-title: Cryst. Growth Des. – volume: 196 start-page: 4801 year: 2011 end-page: 4805 publication-title: J. Power Sources – volume: 164 start-page: 351 year: 2007 end-page: 364 publication-title: J. Power Sources – volume: 104 start-page: 4303 year: 2004 end-page: 4418 publication-title: Chem. Rev. – volume: 45 start-page: 15 year: 2017 end-page: 21 publication-title: J. Ind. Eng. Chem. – volume: 36 start-page: 1563 year: 2000 end-page: 1569 publication-title: Eur. Polym. J. – volume: 23 start-page: 1331 year: 2013 end-page: 1340 publication-title: Adv. Funct. Mater. – volume: 291 start-page: 972 year: 2006 end-page: 983 publication-title: Macromol. Mater. Eng. – volume: 504 start-page: 97 year: 2016 end-page: 103 publication-title: J. Membr. Sci. – volume: 5 start-page: 2816 year: 2014 end-page: 2823 publication-title: Polym. Chem. – volume: 24 start-page: 43 year: 2018 end-page: 50 publication-title: Ionics – volume: 3 start-page: 453 year: 2015 end-page: 468 publication-title: Energy Technol. – volume: 171 start-page: 243 year: 2004 end-page: 249 publication-title: Solid State Ionics – volume: 40 start-page: 4244 year: 2011 end-page: 4258 publication-title: Chem. Soc. Rev. – year: 1987 – volume: 4 start-page: 3287 year: 2011 end-page: 3295 publication-title: Energy Environ. Sci. – volume: 114 start-page: 630 year: 2009 end-page: 642 publication-title: J. Appl. Polym. Sci. – volume: 33 start-page: 331 year: 2000 end-page: 335 publication-title: Macromolecules – volume: 29 start-page: 499 year: 2004 end-page: 561 publication-title: Prog. Polym. Sci. – volume: 127 start-page: 15843 year: 2005 end-page: 15847 publication-title: J. Am. Chem. Soc. – volume: 146 start-page: 545 year: 2014 end-page: 550 publication-title: Mater. Chem. Phys. – volume: 9 start-page: 3252 year: 2016 end-page: 3261 publication-title: Energy Environ. Sci. – volume: 19 start-page: 908 year: 2019 end-page: 926 publication-title: Chem. Rec. – volume: 104 start-page: 4419 year: 2004 end-page: 4462 publication-title: Chem. Rev. – volume: 483 start-page: 42 year: 2015 end-page: 59 publication-title: J. Membr. Sci. – volume: 7 start-page: 24119 year: 2015 end-page: 24126 publication-title: ACS Appl. Mater. Interfaces – volume: 146 start-page: 977 year: 2016 end-page: 990 publication-title: Catal. Lett. – volume: 267 start-page: 3309 year: 2009 end-page: 3313 publication-title: Nucl. Instrum. Methods – volume: 8 start-page: 26073 year: 2016 end-page: 26081 publication-title: ACS Appl. Mater. Interfaces – volume: 498 start-page: 147 year: 2016 end-page: 157 publication-title: J. Membr. Sci. – volume: 7 start-page: 20184 year: 2015 end-page: 20189 publication-title: ACS Appl. Mater. Interfaces – volume: 448 start-page: 143 year: 2013 end-page: 150 publication-title: J. Membr. Sci. – volume: 196 start-page: 2905 year: 2011 end-page: 2912 publication-title: J. Power Sources – volume: 77 start-page: 34 year: 1999 end-page: 41 publication-title: J. Power Sources – volume: 4 start-page: 7845 year: 2014 end-page: 7850 publication-title: RSC Adv. – volume: 54 start-page: 4312 year: 2009 end-page: 4315 publication-title: Electrochim. Acta – volume: 109 start-page: 388 year: 2002 end-page: 393 publication-title: J. Power Sources – volume: 7 start-page: 1124 year: 2017 publication-title: Sci. Rep. – volume: 201 start-page: 3676 year: 2006 end-page: 3684 publication-title: Surf. Coat. Technol. – volume: 236 start-page: 272 year: 2005 end-page: 276 publication-title: Nucl. Instrum. Methods – volume: 16 start-page: 5654 year: 2000 end-page: 5660 publication-title: Langmuir – volume: 91 start-page: 617 year: 2018 end-page: 622 publication-title: Bull. Chem. Soc. Jpn. – volume: 28 start-page: 6428 year: 2012 end-page: 6435 publication-title: Langmuir – volume: 266 start-page: 3387 year: 2008 end-page: 3391 publication-title: Nucl. Instrum. Methods – volume: 45 start-page: 3046 year: 2014 end-page: 3051 publication-title: J. Taiwan Inst. Chem. E. – volume: 3 start-page: 21817 year: 2013 end-page: 21823 publication-title: RSC Adv. – volume: 15 start-page: 748 year: 2009 end-page: 751 publication-title: J. Ind. Eng. Chem. – volume: 7 start-page: 3314 year: 2015 end-page: 3322 publication-title: ACS Appl. Mater. Interfaces – volume: 318 start-page: 2 year: 2018 end-page: 18 publication-title: Solid State Ionics – volume: 54 start-page: 33 year: 1995 end-page: 45 publication-title: J. Adhes. – volume: 11 start-page: 1214 year: 2005 publication-title: Nat. Med. – volume: 38 start-page: 1937 year: 2002 end-page: 1946 publication-title: Eur. Polym. J. – volume: 24 start-page: 305 year: 2003 end-page: 341 publication-title: J. Dispersion Sci. Technol. – volume: 14 start-page: 116 year: 2008 end-page: 119 publication-title: J. Ind. Eng. Chem. – volume: 25 start-page: 227 year: 2012 end-page: 232 publication-title: Phys. Procedia – volume: 20 start-page: 2132 year: 2010 end-page: 2139 publication-title: Adv. Funct. Mater. – volume: 342 start-page: 6 year: 2009 end-page: 13 publication-title: J. Membr. Sci. – volume: 22 start-page: 2949 year: 2012 end-page: 2955 publication-title: Adv. Funct. Mater. – volume: 21 start-page: 431 year: 2009 end-page: 434 publication-title: Adv. Mater. – volume: 6 start-page: 5602 year: 2014 end-page: 5608 publication-title: ACS Appl. Mater. Interfaces – year: 2003 – volume: 52 start-page: 2141 year: 2011 end-page: 2149 publication-title: Polymer – volume: 1 start-page: 16013 year: 2016 publication-title: Nat. Rev. Mater. – volume: 24 start-page: 3481 year: 2012 end-page: 3485 publication-title: Chem. Mater. – volume: 3 start-page: 911 year: 2018 end-page: 916 publication-title: ChemistrySelect – volume: 3 start-page: 866 year: 2010 end-page: 885 publication-title: Energies – volume: 29 start-page: 989 year: 2018 end-page: 1001 publication-title: Polym. Adv. Technol. – volume: 140 start-page: 111 year: 2005 end-page: 124 publication-title: J. Power Sources – volume: 50 start-page: 367 year: 2004 end-page: 370 publication-title: Electrochim. Acta – volume: 527 start-page: 78 year: 2015 publication-title: Nature – volume: 59 start-page: 1701 year: 2010 end-page: 1708 publication-title: Polym. Int. – volume: 19 start-page: 1513 year: 2008 end-page: 1521 publication-title: Polym. Adv. Technol. – volume: 29 start-page: 10539 year: 2013 end-page: 10548 publication-title: Langmuir – volume: 15 start-page: 649 year: 2011 end-page: 662 publication-title: J. Solid State Electrochem. – volume: 204 start-page: 2822 year: 2010 end-page: 2828 publication-title: Surf. Coat. Technol. – volume: 270 start-page: 547 year: 2014 end-page: 553 publication-title: J. Power Sources – volume: 52 start-page: 443 year: 2006 end-page: 449 publication-title: Electrochim. Acta – volume: 24 start-page: 2083 year: 2018 end-page: 2092 publication-title: Ionics – volume: 110 start-page: 22 year: 2013 end-page: 28 publication-title: Colloids Surf. B – volume: 9 start-page: 3023 year: 2016 end-page: 3039 publication-title: ChemSusChem – volume: 260 start-page: 66 year: 2005 end-page: 74 publication-title: J. Membr. Sci. – volume: 318 start-page: 426 year: 2007 end-page: 430 publication-title: Science – volume: 285 start-page: 196 year: 2006 end-page: 205 publication-title: J. Membr. Sci. – volume: 21 start-page: 108 year: 2011 end-page: 112 publication-title: Adv. Funct. Mater. – year: 1999 – ident: e_1_2_6_17_2 doi: 10.1016/j.jpowsour.2004.05.064 – ident: e_1_2_6_115_2 doi: 10.1016/j.polymer.2011.03.027 – ident: e_1_2_6_44_1 doi: 10.1016/j.jpowsour.2010.10.083 – ident: e_1_2_6_31_1 – ident: e_1_2_6_101_1 doi: 10.1016/j.memsci.2015.02.027 – ident: e_1_2_6_26_2 doi: 10.1016/j.electacta.2016.06.172 – ident: e_1_2_6_68_2 doi: 10.1021/acsami.6b08781 – ident: e_1_2_6_19_2 doi: 10.1016/j.memsci.2015.09.064 – ident: e_1_2_6_49_2 – ident: e_1_2_6_74_1 doi: 10.1016/j.jtice.2014.08.023 – ident: e_1_2_6_126_1 doi: 10.1021/am508149n – ident: e_1_2_6_57_2 doi: 10.1016/j.surfcoat.2010.02.056 – ident: e_1_2_6_75_1 – ident: e_1_2_6_6_1 doi: 10.1021/acs.cgd.6b01652 – ident: e_1_2_6_16_2 doi: 10.1016/j.jpowsour.2011.01.068 – ident: e_1_2_6_42_1 doi: 10.1016/S0378-7753(98)00168-2 – ident: e_1_2_6_47_1 – ident: e_1_2_6_120_2 doi: 10.1002/adfm.200902347 – ident: e_1_2_6_76_2 doi: 10.1002/app.30578 – ident: e_1_2_6_114_2 doi: 10.1021/ja0532638 – ident: e_1_2_6_79_2 doi: 10.1016/S0014-3057(99)00240-2 – ident: e_1_2_6_99_1 doi: 10.1039/c3ra45879b – ident: e_1_2_6_107_2 doi: 10.1038/nm1314 – ident: e_1_2_6_72_2 doi: 10.1016/j.surfcoat.2006.08.146 – ident: e_1_2_6_124_1 doi: 10.1016/j.jpowsour.2014.07.142 – ident: e_1_2_6_78_2 doi: 10.1002/pat.1156 – ident: e_1_2_6_15_1 – ident: e_1_2_6_97_1 doi: 10.1080/00218469508014379 – ident: e_1_2_6_30_1 doi: 10.1016/j.ssi.2017.12.023 – ident: e_1_2_6_54_2 doi: 10.1039/c1ee01388b – ident: e_1_2_6_84_2 doi: 10.1016/j.ssi.2004.05.004 – ident: e_1_2_6_8_1 doi: 10.1038/nature15746 – ident: e_1_2_6_87_1 – ident: e_1_2_6_18_1 – ident: e_1_2_6_85_2 doi: 10.1002/mame.200600131 – ident: e_1_2_6_91_1 doi: 10.1016/j.jiec.2009.09.057 – ident: e_1_2_6_62_2 doi: 10.1016/j.memsci.2005.03.023 – ident: e_1_2_6_11_1 – ident: e_1_2_6_41_1 doi: 10.1016/S0378-7753(02)00097-6 – ident: e_1_2_6_56_1 – ident: e_1_2_6_113_1 – ident: e_1_2_6_59_2 doi: 10.1016/j.nimb.2008.05.017 – ident: e_1_2_6_9_1 doi: 10.1007/s11581-017-2187-6 – ident: e_1_2_6_52_1 – ident: e_1_2_6_89_2 doi: 10.1021/ja0379870 – ident: e_1_2_6_119_1 – ident: e_1_2_6_4_2 doi: 10.1007/s11581-018-2459-9 – ident: e_1_2_6_28_2 doi: 10.1016/j.matchemphys.2014.04.014 – ident: e_1_2_6_125_1 doi: 10.1002/slct.201702529 – ident: e_1_2_6_69_2 doi: 10.1016/j.memsci.2017.09.022 – ident: e_1_2_6_95_2 doi: 10.1016/j.memsci.2009.05.041 – ident: e_1_2_6_27_1 – ident: e_1_2_6_64_1 doi: 10.1016/j.electacta.2004.01.127 – ident: e_1_2_6_24_1 – ident: e_1_2_6_34_2 doi: 10.1002/app.35637 – ident: e_1_2_6_29_2 doi: 10.1002/cssc.201600943 – ident: e_1_2_6_122_1 doi: 10.1021/am406052u – ident: e_1_2_6_13_2 doi: 10.1016/j.memsci.2013.07.065 – ident: e_1_2_6_53_2 doi: 10.1016/j.electacta.2009.01.055 – ident: e_1_2_6_61_2 doi: 10.1021/acsami.5b05718 – ident: e_1_2_6_108_2 doi: 10.1002/adma.200801222 – ident: e_1_2_6_117_2 doi: 10.1002/pola.26802 – ident: e_1_2_6_5_1 doi: 10.1038/s41598-017-01191-8 – ident: e_1_2_6_82_1 doi: 10.1002/polb.23098 – ident: e_1_2_6_23_2 doi: 10.1007/s10008-010-1264-9 – ident: e_1_2_6_111_2 doi: 10.1021/ma101526k – ident: e_1_2_6_10_1 doi: 10.1016/j.jiec.2016.08.021 – ident: e_1_2_6_37_2 doi: 10.1021/ie901141u – ident: e_1_2_6_110_1 – ident: e_1_2_6_71_1 – ident: e_1_2_6_123_1 doi: 10.1039/C6EE01219A – ident: e_1_2_6_67_1 – ident: e_1_2_6_81_1 doi: 10.1021/la991537x – ident: e_1_2_6_105_1 doi: 10.1002/adfm.201200177 – ident: e_1_2_6_100_1 doi: 10.1016/j.colsurfb.2013.04.008 – ident: e_1_2_6_70_1 doi: 10.1002/pat.4211 – ident: e_1_2_6_83_1 – ident: e_1_2_6_2_2 doi: 10.1002/tcr.201800112 – ident: e_1_2_6_25_2 doi: 10.1021/acsami.5b04245 – ident: e_1_2_6_98_1 doi: 10.1126/science.1147241 – ident: e_1_2_6_7_1 doi: 10.1038/natrevmats.2016.13 – ident: e_1_2_6_73_2 doi: 10.1081/DIS-120021793 – ident: e_1_2_6_93_2 doi: 10.1016/j.memsci.2006.08.023 – ident: e_1_2_6_36_2 doi: 10.1016/j.electacta.2009.02.088 – ident: e_1_2_6_32_2 doi: 10.1007/s10562-016-1720-y – ident: e_1_2_6_102_1 doi: 10.1021/la204831b – ident: e_1_2_6_14_2 doi: 10.1021/cm301967f – ident: e_1_2_6_35_2 doi: 10.1002/app.28398 – ident: e_1_2_6_55_2 doi: 10.1021/cr030203g – ident: e_1_2_6_63_2 doi: 10.1002/app.31596 – ident: e_1_2_6_90_2 doi: 10.1016/j.nimb.2005.03.253 – ident: e_1_2_6_127_1 doi: 10.1016/j.memsci.2015.12.059 – ident: e_1_2_6_106_1 – ident: e_1_2_6_21_2 doi: 10.3390/en3040866 – ident: e_1_2_6_86_2 doi: 10.1016/j.progpolymsci.2004.01.003 – ident: e_1_2_6_116_2 doi: 10.1039/c3ra44277b – ident: e_1_2_6_12_2 doi: 10.1021/acsami.5b07230 – ident: e_1_2_6_96_1 doi: 10.1016/j.phpro.2012.03.076 – ident: e_1_2_6_45_1 doi: 10.1016/j.electacta.2003.12.012 – ident: e_1_2_6_109_1 doi: 10.1002/adfm.201202127 – ident: e_1_2_6_46_1 doi: 10.1016/j.jpowsour.2015.08.008 – ident: e_1_2_6_1_1 – ident: e_1_2_6_51_2 doi: 10.1016/B978-0-444-59513-3.00019-4 – ident: e_1_2_6_43_1 doi: 10.1016/j.jpowsour.2007.07.018 – ident: e_1_2_6_104_1 doi: 10.1039/c1cs15026j – ident: e_1_2_6_48_1 – ident: e_1_2_6_3_2 doi: 10.1246/bcsj.20170391 – ident: e_1_2_6_50_2 – ident: e_1_2_6_118_2 doi: 10.1039/C4PY00025K – ident: e_1_2_6_39_2 doi: 10.1039/C4EE01432D – ident: e_1_2_6_60_1 – ident: e_1_2_6_121_2 doi: 10.1039/c2nr31547e – ident: e_1_2_6_20_2 doi: 10.1016/j.jpowsour.2006.10.065 – ident: e_1_2_6_58_2 doi: 10.1016/j.nimb.2009.06.117 – ident: e_1_2_6_88_2 doi: 10.1016/j.jiec.2007.08.005 – ident: e_1_2_6_94_2 doi: 10.1021/ma990821s – ident: e_1_2_6_22_2 doi: 10.1021/cr020738u – ident: e_1_2_6_80_2 doi: 10.1016/S0014-3057(02)00093-9 – ident: e_1_2_6_92_1 – ident: e_1_2_6_128_1 doi: 10.1016/j.jpowsour.2011.10.130 – ident: e_1_2_6_38_1 – ident: e_1_2_6_33_2 doi: 10.1002/pi.2907 – ident: e_1_2_6_77_2 doi: 10.1016/S0376-7388(02)00352-6 – ident: e_1_2_6_65_1 doi: 10.1021/ie900096z – ident: e_1_2_6_66_1 doi: 10.1016/j.electacta.2006.05.049 – ident: e_1_2_6_103_1 doi: 10.1021/la4020288 – ident: e_1_2_6_40_2 doi: 10.1002/ente.201402215 – ident: e_1_2_6_112_2 doi: 10.1002/adfm.201001692 |
SSID | ssj0011477 |
Score | 2.5775354 |
SecondaryResourceType | review_article |
Snippet | Secondary Li−ion batteries have been paid attention to wide‐range applications of power source for the portable electronics, electric vehicle, and electric... Secondary Li-ion batteries have been paid attention to wide-range applications of power source for the portable electronics, electric vehicle, and electric... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 570 |
SubjectTerms | Chemical reactions Electric vehicles Electrochemistry Electrolytes Energy storage Free flow high energy radiation-induced grafting Lithium Lithium-ion batteries Li−ion battery Mechanical properties Multilayers mussel-inspired method plasma grafting Polyethylene Polyethylenes Polyolefin separator Polyolefins Polypropylene Porosity Product safety Properties (attributes) Reservoir storage Separators Short circuits Shutdowns Storage batteries Storage reservoirs Surface energy surface modification methods Surface properties Surface stability Thermal stability UV-initiated grafting polymerization |
Title | Recent Development of Polyolefin‐Based Microporous Separators for Li−Ion Batteries: A Review |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ftcr.201900054 https://www.ncbi.nlm.nih.gov/pubmed/31833648 https://www.proquest.com/docview/2411092161 https://www.proquest.com/docview/2334698535 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB0hLnBpC5SSFpCRqp4a8EfiYG7LCkQRVBUFiVuInVhCrJKK3T20J44cq_7E_SXMJNnQLWol1GMUO3ZmPJ5ne_wG4H3MrUu00aH1loeRlWhSkROhdaaQ1ubKe7o7fPpZH11Ex5fxZZvnlO7CNPwQ3YYbWUY9X5OBZ3a480gaihMVRWbVSS-JD5TitQgUnXX0UQj168yLlLk1xHWFaTk2sf7OTO1Zn_QEaM7i1trxHL6Eq2mXm3iTm-3xyG67H3-wOf7HP72CFy0oZb1mFC3BXFEuw0J_mgtuBa4QXaJ3Yr-FGLHKsy_V4Hs1KPx1Obn7uY_-MGenFOCHmL4aD9nXoiYWr26HDKExO7me3P_6VJWs4fTEJfoe67HmcOI1XBwenPePwjY3Q-iUNhHqUiVRwXm-ix5fWiFy5xONas84UcQl3BHtjrM20y6TXubGeJEIybPcWiO8WoX5siqLNWBGSMRQPotd7CKtY2uwsBLYgPb4ZRXAx6l2UtcSl1P-jEHaUC7LFMWWdmIL4ENX_FvD2PG3gutTVaet4Q5TBDSCG4k4OICt7jVKm85RsrJA6aVSKcq7Gas4gDfNEOlaoilS6Wg3AF4r-t9dSM_7Z93D2-dXeQeLktb_9a7QOsyPbsfFBoKkkd2sLeEBg8sJvg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcigX_imBAkYCTqR17MSpkTiULdUu3a1Q2Uq9pbFjS6uukqrZFSonjhwRT8Kr8Ap9Esb5gwWBxKEHjlEce2LPeD7b428AnkRU6VhI4SurqB8qhiYV6sBXWhqmVMatdXeHR3uifxC-OYwOl-Brexem5ofoNtycZVTztTNwtyG98YM1FGcqF5pVZb0Mm7DKXXP2Hhdt5cvBNo7wU8Z2Xo97fb_JK-BrLmSIcvA4NJRmm-itmAqCTNtYoMgpdfRmMdWOMkYrlQqdMssyKW0QB4ymmVIysBzrvQSXXRZxx9a_vd8RVuHiosr16HLF-riSkQ2rJwq8sSDuohf8DdouIuXK1e1cg29tJ9URLsfr85la1x9-4Y_8n3rxOlxtcDfZqg3lBiyZ_Cas9Np0d7fgCAE0OmDyUxQVKSx5W0zPiqmxk_z84-dX6PIzMnIxjLhsKeYleWcq7vTitCSI_slwcv7py6DISU1bOjHlC7JF6vOX23BwIT94B5bzIjd3gciAIUy0aaQjHQoRKYmFeYANCIs1cw-et-qQ6Iab3aUImSY1qzRLcJiSbpg8eNYVP6lJSf5UcK3VraSZm8oEMVtAJUOo78Hj7jX2tjsqSnODvZcwzl1q0YhHHqzWOtm15LwAF-GmB7TSrL-LkIx7-93DvX__5BGs9MejYTIc7O3ehyvMbXdUm2BrsDw7nZsHiAln6mFlhgSOLlpjvwNS5Wdn |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIgEXyl8htICRgBNpHTtxaiQOZZdVl_6oKq3UWxo7trRilVTNrlA59dgj4kV4FZ6hT8I4f7AgkDj0wDGKY0_sGc9ne_wNwLOIKh0LKXxlFfVDxdCkQh34SkvDlMq4te7u8PaO2DgI3x1Gh3Pwtb0LU_NDdBtuzjKq-doZ-HFmV3-QhuJE5SKzqqSXYRNVuWlOP-KarXw97OMAP2ds8Ha_t-E3aQV8zYUMUQweh4bSbA2dFVNBkGkbC5Q4pY7dLKbaMcZopVKhU2ZZJqUN4oDRNFNKBpZjvVfgaiiodLki-nsdXxWuLapUjy5VrI8LGdmQeqLAqzPizjrB35DtLFCuPN1gAb61fVQHuHxYmU7Uiv70C33kf9SJt-Bmg7rJem0mt2HO5Hfgeq9NdncXjhA-o_slP8VQkcKS3WJ8WoyNHeUXZ5_foMPPyLaLYMRFSzEtyXtTMacXJyVB7E-2RhfnX4ZFTmrS0pEpX5F1Up--3IODS_nBRZjPi9w8ACIDhiDRppGOdChEpCQW5gE2ICzWzD142WpDohtmdpcgZJzUnNIswWFKumHy4EVX_LimJPlTweVWtZJmZioTRGwBlQyBvgdPu9fY2-6gKM0N9l7COHeJRSMeeXC_VsmuJecDuAjXPKCVYv1dhGS_t9c9PPz3T57Atd3-INka7mwuwQ3m9jqqHbBlmJ-cTM0jBIQT9bgyQgJHl62w3wGWOWYW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Development+of+Polyolefin%E2%80%90Based+Microporous+Separators+for+Li%E2%88%92Ion+Batteries%3A+A+Review&rft.jtitle=Chemical+record&rft.au=Ali+Akbar+Heidari&rft.au=Mahdavi%2C+Hossein&rft.date=2020-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1527-8999&rft.eissn=1528-0691&rft.volume=20&rft.issue=6&rft.spage=570&rft.epage=595&rft_id=info:doi/10.1002%2Ftcr.201900054&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1527-8999&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1527-8999&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1527-8999&client=summon |