The Status of Representative Anode Materials for Lithium‐Ion Batteries
Since the invention of lithium‐ion batteries as a rechargeable energy storage system, it has uncommonly promoted the development of society. It has a wide variety of applications in electronic equipment, electric automobiles, hybrid vehicles, and aerospace. As an indispensable component of lithium‐i...
Saved in:
Published in | Chemical record Vol. 23; no. 5; pp. e202300004 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.05.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Since the invention of lithium‐ion batteries as a rechargeable energy storage system, it has uncommonly promoted the development of society. It has a wide variety of applications in electronic equipment, electric automobiles, hybrid vehicles, and aerospace. As an indispensable component of lithium‐ion batteries, anode materials play an essential role in the electrochemical characteristics of lithium‐ion batteries. In this review, we described the development from lithium‐metal batteries to lithium‐ion batteries in detail on the time axis as the first step; This was followed by an introduction to several commonly used anode materials, including graphite, silicon, and transition metal oxide with discussions the charge‐discharge mechanism, challenges and corresponding strategies, and a collation of recent interesting work; Finally, three anode materials are summarized and prospected. Hopefully, this review can serve both the newcomers and the predecessors in the field.
The current status of the development of graphite, silicon, and transition metal oxide anodes based on lithium‐ion batteries is discussed. |
---|---|
AbstractList | Since the invention of lithium‐ion batteries as a rechargeable energy storage system, it has uncommonly promoted the development of society. It has a wide variety of applications in electronic equipment, electric automobiles, hybrid vehicles, and aerospace. As an indispensable component of lithium‐ion batteries, anode materials play an essential role in the electrochemical characteristics of lithium‐ion batteries. In this review, we described the development from lithium‐metal batteries to lithium‐ion batteries in detail on the time axis as the first step; This was followed by an introduction to several commonly used anode materials, including graphite, silicon, and transition metal oxide with discussions the charge‐discharge mechanism, challenges and corresponding strategies, and a collation of recent interesting work; Finally, three anode materials are summarized and prospected. Hopefully, this review can serve both the newcomers and the predecessors in the field. Since the invention of lithium‐ion batteries as a rechargeable energy storage system, it has uncommonly promoted the development of society. It has a wide variety of applications in electronic equipment, electric automobiles, hybrid vehicles, and aerospace. As an indispensable component of lithium‐ion batteries, anode materials play an essential role in the electrochemical characteristics of lithium‐ion batteries. In this review, we described the development from lithium‐metal batteries to lithium‐ion batteries in detail on the time axis as the first step; This was followed by an introduction to several commonly used anode materials, including graphite, silicon, and transition metal oxide with discussions the charge‐discharge mechanism, challenges and corresponding strategies, and a collation of recent interesting work; Finally, three anode materials are summarized and prospected. Hopefully, this review can serve both the newcomers and the predecessors in the field. The current status of the development of graphite, silicon, and transition metal oxide anodes based on lithium‐ion batteries is discussed. Since the invention of lithium-ion batteries as a rechargeable energy storage system, it has uncommonly promoted the development of society. It has a wide variety of applications in electronic equipment, electric automobiles, hybrid vehicles, and aerospace. As an indispensable component of lithium-ion batteries, anode materials play an essential role in the electrochemical characteristics of lithium-ion batteries. In this review, we described the development from lithium-metal batteries to lithium-ion batteries in detail on the time axis as the first step; This was followed by an introduction to several commonly used anode materials, including graphite, silicon, and transition metal oxide with discussions the charge-discharge mechanism, challenges and corresponding strategies, and a collation of recent interesting work; Finally, three anode materials are summarized and prospected. Hopefully, this review can serve both the newcomers and the predecessors in the field.Since the invention of lithium-ion batteries as a rechargeable energy storage system, it has uncommonly promoted the development of society. It has a wide variety of applications in electronic equipment, electric automobiles, hybrid vehicles, and aerospace. As an indispensable component of lithium-ion batteries, anode materials play an essential role in the electrochemical characteristics of lithium-ion batteries. In this review, we described the development from lithium-metal batteries to lithium-ion batteries in detail on the time axis as the first step; This was followed by an introduction to several commonly used anode materials, including graphite, silicon, and transition metal oxide with discussions the charge-discharge mechanism, challenges and corresponding strategies, and a collation of recent interesting work; Finally, three anode materials are summarized and prospected. Hopefully, this review can serve both the newcomers and the predecessors in the field. |
Author | Liu, Hao Cheng, Yan Chen, Leilei Song, Fangyu Guo, Zhanhu Du, Chenyu Zhao, Zengying |
Author_xml | – sequence: 1 givenname: Chenyu surname: Du fullname: Du, Chenyu organization: China University of Geosciences – sequence: 2 givenname: Zengying surname: Zhao fullname: Zhao, Zengying email: zhaozy@cugb.edu.cn organization: China University of Geosciences – sequence: 3 givenname: Hao surname: Liu fullname: Liu, Hao organization: China University of Geosciences – sequence: 4 givenname: Fangyu surname: Song fullname: Song, Fangyu organization: China University of Geosciences – sequence: 5 givenname: Leilei surname: Chen fullname: Chen, Leilei organization: China University of Geosciences – sequence: 6 givenname: Yan surname: Cheng fullname: Cheng, Yan organization: China University of Geosciences – sequence: 7 givenname: Zhanhu surname: Guo fullname: Guo, Zhanhu organization: University of Tennessee |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36988011$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc9OAjEQxhuDkT969Go28eJlsdst2-0RiQoJxgTx3JTubChZttjuarj5CD6jT2IRxIREe5l25vfNNPO1UaM0JSB0HuFuhDG5rpTtEkxi7A89Qq2oR9IQJzxqfN9ZmHLOm6jt3ALjKKKMnaBmnPA09a8WGk7nEDxVsqpdYPJgAisLDkqf0K8Q9EuTQfAgK7BaFi7IjQ3Guprrevn5_jEyZXAjq00R3Ck6zj0CZ7vYQc93t9PBMBw_3o8G_XGo_FAaJjklinHJcpnLRGEfIYMMqySecdqjWcypkhlQiSMm44RJznGcZYzwWcJziDvoatt3Zc1LDa4SS-0UFIUswdROEMZJDxOWUI9eHqALU9vS_06QFHNKKEmJpy52VD1bQiZWVi-lXYufHXkg3ALKGucs5HskwmLjgfAeiL0Hno8PeKU3-zRlZaUu_lSxrepNF7D-f4SYDia_yi-DBJoY |
CitedBy_id | crossref_primary_10_1016_j_ceramint_2023_11_096 crossref_primary_10_1016_j_elecom_2024_107791 crossref_primary_10_1016_j_est_2024_111904 crossref_primary_10_1016_j_jpowsour_2024_235630 crossref_primary_10_1021_acs_langmuir_4c03029 crossref_primary_10_1016_j_est_2024_111308 crossref_primary_10_1007_s42823_024_00816_z crossref_primary_10_1016_j_jelechem_2024_118085 crossref_primary_10_1039_D4RA05354K crossref_primary_10_1016_j_jechem_2024_05_056 crossref_primary_10_1016_j_susmat_2024_e01021 crossref_primary_10_1039_D4CP04214J crossref_primary_10_1016_j_carbon_2024_119175 crossref_primary_10_1016_j_jallcom_2024_176990 crossref_primary_10_1021_acsanm_4c03659 crossref_primary_10_1002_anie_202309934 crossref_primary_10_1149_1945_7111_ad4b5f crossref_primary_10_1021_acs_iecr_3c04223 crossref_primary_10_1002_smll_202406579 crossref_primary_10_1002_ente_202301537 crossref_primary_10_1016_j_cej_2024_157564 crossref_primary_10_1680_jsuin_24_00090 crossref_primary_10_1088_1742_6596_2578_1_012016 crossref_primary_10_1002_slct_202304054 crossref_primary_10_1038_s41598_024_62029_8 crossref_primary_10_1016_j_cclet_2024_109618 crossref_primary_10_1021_acssuschemeng_4c06966 crossref_primary_10_1039_D4DT00153B crossref_primary_10_1016_j_jpowsour_2024_234804 crossref_primary_10_1016_j_mseb_2024_117947 crossref_primary_10_1080_26941112_2024_2435966 crossref_primary_10_1039_D4CC00110A crossref_primary_10_1016_j_jpowsour_2024_235651 crossref_primary_10_1016_j_mtsust_2024_100825 crossref_primary_10_1007_s11581_024_05473_w crossref_primary_10_1021_acsanm_3c04919 crossref_primary_10_1016_j_jallcom_2024_173869 crossref_primary_10_1002_asia_202401071 crossref_primary_10_1007_s10854_024_12494_8 crossref_primary_10_1016_j_jallcom_2023_171008 crossref_primary_10_1016_j_cej_2025_160004 crossref_primary_10_1002_adfm_202313168 crossref_primary_10_1149_1945_7111_ad9d7e crossref_primary_10_1039_D4CC02324B crossref_primary_10_3390_batteries10050149 crossref_primary_10_1002_ente_202300585 crossref_primary_10_1016_j_est_2024_111699 crossref_primary_10_1016_j_est_2025_115426 crossref_primary_10_1016_j_est_2025_115943 crossref_primary_10_1021_acs_langmuir_4c01037 crossref_primary_10_1016_j_ceja_2023_100569 crossref_primary_10_1016_j_jallcom_2024_176844 crossref_primary_10_1016_j_jechem_2024_05_029 crossref_primary_10_1016_j_vacuum_2024_113738 crossref_primary_10_3390_nano14110932 crossref_primary_10_1016_j_jnoncrysol_2024_123257 crossref_primary_10_1016_j_inoche_2024_113577 crossref_primary_10_1002_ange_202309934 crossref_primary_10_1039_D3TC04108E crossref_primary_10_6023_A23080370 crossref_primary_10_1007_s11664_023_10828_6 crossref_primary_10_1016_j_cjsc_2024_100504 |
Cites_doi | 10.1021/acsami.6b05559 10.1016/j.jallcom.2018.07.320 10.1002/adma.200800627 10.1016/j.carbon.2022.02.063 10.1016/0378-7753(83)87040-2 10.1016/j.apsusc.2018.07.127 10.1039/c0ee00699h 10.1016/j.ceramint.2019.04.059 10.1016/j.est.2019.101141 10.1016/j.jpowsour.2013.12.128 10.1038/s41467-019-13993-7 10.1038/nnano.2014.311 10.1039/C8TA02342E 10.1038/s41467-019-09510-5 10.1021/jp512585z 10.1002/aenm.201600256 10.1039/D1TA09654K 10.1039/C7NR01545C 10.1021/acsami.7b11309 10.1002/smll.201702737 10.1021/acsami.0c14920 10.1007/s12274-021-3506-9 10.1016/j.ceramint.2018.03.091 10.1016/j.jpowsour.2007.09.102 10.1021/acs.nanolett.7b04505 10.1021/acsami.8b00953 10.1007/s12274-020-2770-4 10.1016/j.apsusc.2018.06.224 10.1007/s11434-015-0771-6 10.1002/aenm.201502302 10.1016/j.ensm.2018.09.019 10.1016/j.mattod.2014.02.014 10.1002/adfm.201806061 10.1039/C7QM00175D 10.1016/j.rser.2020.109884 10.1016/j.joule.2018.08.004 10.1021/jp030663d 10.1039/C5NR06278K 10.1016/j.jpcs.2021.109965 10.1039/C8TA01683F 10.1016/j.matdes.2019.108298 10.1016/j.surfin.2022.101977 10.1016/j.nanoen.2011.11.006 10.1002/aenm.201100765 10.1002/aenm.201300882 10.1002/qua.25028 10.1002/adma.200890098 10.1021/acsaem.0c02932 10.1016/S0378-7753(99)00194-9 10.1063/5.0048337 10.1007/s12613-021-2335-x 10.1063/1.2953702 10.3390/app9153088 10.1016/j.jpowsour.2017.11.015 10.1002/adma.201501130 10.1002/advs.201400020 10.1016/j.ijmst.2019.04.003 10.1016/j.jpowsour.2021.230419 10.3390/molecules26020478 10.1016/j.apsusc.2019.01.215 10.1039/c2jm31286g 10.1021/cr3001884 10.1007/s00339-012-7005-4 10.1021/jz100520c 10.1016/j.matchar.2016.12.013 10.1007/s40820-020-00525-y 10.1039/b502142c 10.1016/j.apsusc.2021.150724 10.1016/j.carbon.2019.03.038 10.1016/j.jpowsour.2015.03.026 10.1016/j.jechem.2021.08.001 10.1016/j.carbon.2016.10.008 10.1021/acsami.7b04099 10.1002/asia.201600249 10.1149/1.1391688 10.1021/acsami.1c04607 10.1007/s10008-017-3580-9 10.1016/j.cej.2018.02.111 10.1002/advs.201700592 10.1002/smll.201900015 10.1039/C6CS00823B 10.1016/j.matlet.2018.06.104 10.1002/adem.201700591 10.1002/adma.201305600 10.1016/j.mtener.2022.101030 10.1021/nl3014814 10.1002/aenm.202000982 10.1016/j.jpowsour.2013.03.073 10.1016/j.jpowsour.2013.03.141 10.1002/cey2.2 10.1002/celc.202001060 10.1002/anie.201303971 10.3390/ma13081884 10.1039/C5TA00689A 10.1016/j.jmst.2020.01.017 10.1002/aenm.201300958 10.1039/C5NR05116A 10.1016/j.ecoenv.2018.06.024 10.1016/0025-5408(75)90006-9 10.1016/j.electacta.2019.134791 10.1016/j.carbon.2016.10.060 10.1039/c3cp53124d 10.1142/S1793292019300019 10.1021/acsnano.9b07241 10.1016/j.jallcom.2019.02.004 10.1016/j.electacta.2018.03.099 10.1016/j.nantod.2012.08.004 10.1016/j.ensm.2018.04.023 10.1016/j.electacta.2010.07.078 10.1038/35035045 10.1149/1945-7111/abaf9f 10.1021/acsami.7b09853 10.1016/j.matlet.2022.131859 10.1039/b919877f 10.1039/D1RA02845F 10.1002/aenm.201501010 10.1016/j.carbon.2019.12.054 10.1126/science.192.4244.1126 10.1134/S1023193517070035 10.1016/j.jallcom.2017.12.020 10.1039/C7TA05283A 10.1016/j.jpowsour.2013.11.103 10.1002/adma.202107899 10.1016/j.esd.2017.02.003 10.1002/adma.201000717 10.1016/j.jpowsour.2014.06.056 10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z 10.1002/aenm.202003905 10.1021/nn204476h 10.1039/C9SE01165J 10.1002/aenm.202001310 10.1021/acsomega.7b00143 10.1016/j.electacta.2008.02.114 10.1080/15435075.2022.2119856 10.3390/challe8010008 10.1002/aenm.201701083 10.1016/j.jpowsour.2020.228241 10.1002/tcr.201800137 10.1016/j.mtener.2017.12.007 10.1002/advs.201700986 10.1039/c3cp54507e 10.1016/j.jpowsour.2016.12.089 10.1039/C3RA45013A 10.1039/C7TA02706K 10.1177/1350650112468071 10.1016/j.elecom.2009.04.036 10.1016/j.physe.2018.04.009 10.1002/anie.201105006 10.1002/aenm.202102693 10.1016/j.jallcom.2019.01.061 10.1016/j.jpowsour.2016.09.046 10.1021/jacs.6b10841 10.1002/cssc.201000123 10.1016/S0378-7753(02)00349-X 10.1038/nmat4834 10.1039/C3TA14377E 10.1098/rsos.172370 10.1016/j.ensm.2020.11.017 10.1016/j.jallcom.2017.02.230 10.1016/0025-5408(80)90012-4 10.1002/ange.201913923 10.1021/acsomega.8b01539 10.1016/j.electacta.2019.135318 10.1016/0167-2738(94)90408-1 10.1002/adma.201600164 10.1016/j.jpowsour.2018.12.068 10.1016/j.ensm.2020.12.027 10.1149/1.3327913 |
ContentType | Journal Article |
Copyright | 2023 The Chemical Society of Japan & Wiley‐VCH GmbH 2023 The Chemical Society of Japan & Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 The Chemical Society of Japan & Wiley‐VCH GmbH – notice: 2023 The Chemical Society of Japan & Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7QO 7T7 8FD C1K FR3 P64 7X8 |
DOI | 10.1002/tcr.202300004 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Engineering Research Database Biotechnology Research Abstracts Technology Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Engineering Research Database PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1528-0691 |
EndPage | n/a |
ExternalDocumentID | 36988011 10_1002_tcr_202300004 TCR202300004 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21875223 – fundername: National Natural Science Foundation of China grantid: 21875223 |
GroupedDBID | --- .3N .Y3 05W 0R~ 10A 123 1OC 29B 31~ 33P 3WU 4.4 50Y 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 53G 5VS 66C 702 7PT 8-1 8UM A00 AAESR AAHHS AAHQN AAMNL AANHP AANLZ AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ASPBG AVWKF AZFZN AZVAB BDRZF BFHJK BMXJE BROTX BRXPI BY8 CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD F5P FEDTE G-S G.N GODZA HF~ HGLYW HVGLF HZ~ IX1 J0M LATKE LAW LC2 LC3 LEEKS LH- LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MSFUL MSSTM MXFUL MXSTM MY~ N9A O9- OIG P2W P4D Q11 QB0 QRW R.K ROL RX1 SUPJJ V2E W99 WBKPD WOHZO WQJ WXSBR WYJ WYUIH XG1 XV2 ZZTAW ~IA AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION NPM 7QO 7T7 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 P64 7X8 |
ID | FETCH-LOGICAL-c3694-6f42c79a7fafa6c07faeded0c63b9454d394cade4a017a367a9903dd729b69fe3 |
IEDL.DBID | DR2 |
ISSN | 1527-8999 1528-0691 |
IngestDate | Fri Jul 11 11:55:17 EDT 2025 Fri Jul 25 10:38:06 EDT 2025 Thu Apr 03 07:10:38 EDT 2025 Tue Jul 01 02:40:11 EDT 2025 Thu Apr 24 22:51:15 EDT 2025 Wed Jan 22 16:23:11 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Lithium-ion batteries Transition metal oxide Silicon Anode Graphite |
Language | English |
License | 2023 The Chemical Society of Japan & Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3694-6f42c79a7fafa6c07faeded0c63b9454d394cade4a017a367a9903dd729b69fe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
PMID | 36988011 |
PQID | 2809424282 |
PQPubID | 1006501 |
PageCount | 23 |
ParticipantIDs | proquest_miscellaneous_2792502764 proquest_journals_2809424282 pubmed_primary_36988011 crossref_primary_10_1002_tcr_202300004 crossref_citationtrail_10_1002_tcr_202300004 wiley_primary_10_1002_tcr_202300004_TCR202300004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2023 2023-05-00 2023-May 20230501 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: May 2023 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Chemical record |
PublicationTitleAlternate | Chem Rec |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 161 2006; 35 2019; 10 2019; 13 2021; 567 2019; 15 2019; 14 2019; 16 2014; 26 1994; 69 2019; 19 1983; 9 2019; 323 2019; 18 2020; 13 2016; 2016 2020; 167 2020; 12 2020; 11 1975; 10 2020; 10 2018; 44 2012; 12 2014; 257 2014; 256 2000; 407 2018; 7 2009; 11 2010; 22 2018; 6 2018; 3 2018; 2 2018; 5 2010; 1 2018; 458 2018; 457 2020; 330 2013; 239 2022; 34 2014; 16 2019; 29 2013; 113 2021; 152 2008; 20 2014; 17 2010; 3 1998; 10 2012; 22 2019; 9 2022; 192 2018; 229 2010; 39 2019; 1 2018; 740 2018; 343 2018; 101 2013; 227 2008; 53 2011; 4 2018; 20 2012; 108 2017; 139 2016; 11 2018; 18 2017; 53 2016; 6 2017; 706 2015; 60 2019; 45 2020; 159 2020; 27 2016; 331 2015; 119 2022; 10 2016; 28 2018; 10 2016; 8 2014; 268 2018; 14 2017; 5 2010; 55 2017; 7 2021; 26 2017; 8 2017; 1 2017; 2 2021; 28 2017; 46 2002; 111 2020; 127 2018; 769 2022; 66 2017; 111 1999; 81 2017; 9 1970; 3 2012; 51 2021; 36 2018; 373 2021; 35 2020; 7 2013; 15 2020; 4 2014; 4 2014; 2 2021; 511 2017; 38 2020; 132 2010; 157 2019; 479 2016; 116 2020; 44 2017; 124 2014; 53 2015; 2 2015; 284 2021; 8 2021; 4 2015; 3 2020; 186 2017; 21 2015; 10 2019; 148 2019; 786 2019; 784 2020; 464 1999; 146 1976; 192 2004; 108 2008; 92 2022; 314 2021; 14 2021; 13 1980; 15 2018; 275 2012; 2 2015; 27 2021; 11 2012; 1 2022 2017; 16 2019; 414 2012; 6 2017; 342 2012; 7 2008; 175 e_1_2_5_27_1 e_1_2_5_166_1 e_1_2_5_120_1 e_1_2_5_147_1 e_1_2_5_23_1 e_1_2_5_162_1 e_1_2_5_124_1 e_1_2_5_101_1 e_1_2_5_143_1 e_1_2_5_65_1 e_1_2_5_88_1 e_1_2_5_128_1 e_1_2_5_105_1 e_1_2_5_69_1 e_1_2_5_109_1 e_1_2_5_80_1 e_1_2_5_61_1 e_1_2_5_84_1 e_1_2_5_42_1 e_1_2_5_150_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_132_1 e_1_2_5_155_1 e_1_2_5_34_1 e_1_2_5_57_1 e_1_2_5_113_1 e_1_2_5_136_1 e_1_2_5_151_1 e_1_2_5_174_1 e_1_2_5_7_1 e_1_2_5_76_1 e_1_2_5_99_1 e_1_2_5_117_1 e_1_2_5_3_1 e_1_2_5_19_1 e_1_2_5_159_1 e_1_2_5_91_1 e_1_2_5_72_1 e_1_2_5_95_1 e_1_2_5_30_1 e_1_2_5_53_1 e_1_2_5_49_1 e_1_2_5_146_1 e_1_2_5_169_1 e_1_2_5_26_1 e_1_2_5_45_1 e_1_2_5_100_1 e_1_2_5_123_1 e_1_2_5_142_1 e_1_2_5_22_1 e_1_2_5_165_1 e_1_2_5_87_1 e_1_2_5_104_1 e_1_2_5_127_1 e_1_2_5_68_1 e_1_2_5_108_1 e_1_2_5_60_1 e_1_2_5_83_1 e_1_2_5_64_1 e_1_2_5_41_1 e_1_2_5_172_1 e_1_2_5_14_1 e_1_2_5_131_1 e_1_2_5_37_1 e_1_2_5_158_1 e_1_2_5_8_1 e_1_2_5_10_1 e_1_2_5_56_1 e_1_2_5_135_1 e_1_2_5_173_1 e_1_2_5_33_1 e_1_2_5_112_1 e_1_2_5_154_1 e_1_2_5_4_1 e_1_2_5_98_1 e_1_2_5_79_1 e_1_2_5_116_1 e_1_2_5_18_1 Khan M. (e_1_2_5_46_1) 2022 e_1_2_5_90_1 e_1_2_5_71_1 e_1_2_5_94_1 e_1_2_5_75_1 e_1_2_5_52_1 e_1_2_5_161_1 e_1_2_5_145_1 e_1_2_5_25_1 e_1_2_5_48_1 e_1_2_5_168_1 e_1_2_5_103_1 e_1_2_5_141_1 e_1_2_5_21_1 e_1_2_5_44_1 e_1_2_5_164_1 e_1_2_5_122_1 e_1_2_5_107_1 e_1_2_5_67_1 e_1_2_5_126_1 e_1_2_5_149_1 e_1_2_5_29_1 e_1_2_5_82_1 e_1_2_5_63_1 e_1_2_5_86_1 e_1_2_5_40_1 Bitew Z. (e_1_2_5_93_1) 2022 e_1_2_5_171_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_59_1 e_1_2_5_130_1 e_1_2_5_157_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_55_1 e_1_2_5_111_1 e_1_2_5_134_1 e_1_2_5_153_1 e_1_2_5_176_1 e_1_2_5_5_1 e_1_2_5_78_1 e_1_2_5_115_1 e_1_2_5_138_1 Liu Y. (e_1_2_5_139_1) 2016; 2016 e_1_2_5_1_1 e_1_2_5_119_1 e_1_2_5_70_1 e_1_2_5_74_1 e_1_2_5_97_1 e_1_2_5_51_1 e_1_2_5_160_1 e_1_2_5_121_1 e_1_2_5_144_1 e_1_2_5_167_1 e_1_2_5_28_1 e_1_2_5_47_1 e_1_2_5_140_1 e_1_2_5_102_1 e_1_2_5_125_1 e_1_2_5_24_1 e_1_2_5_163_1 e_1_2_5_43_1 e_1_2_5_106_1 e_1_2_5_129_1 e_1_2_5_66_1 e_1_2_5_89_1 e_1_2_5_148_1 e_1_2_5_81_1 Xu J. J. (e_1_2_5_9_1) e_1_2_5_62_1 e_1_2_5_85_1 e_1_2_5_170_1 e_1_2_5_20_1 e_1_2_5_110_1 e_1_2_5_156_1 e_1_2_5_16_1 e_1_2_5_58_1 e_1_2_5_35_1 e_1_2_5_114_1 e_1_2_5_152_1 e_1_2_5_6_1 e_1_2_5_12_1 e_1_2_5_54_1 e_1_2_5_133_1 e_1_2_5_175_1 Zhang J.-C. (e_1_2_5_39_1) 2022 e_1_2_5_77_1 e_1_2_5_118_1 e_1_2_5_2_1 e_1_2_5_137_1 e_1_2_5_92_1 e_1_2_5_73_1 e_1_2_5_96_1 e_1_2_5_31_1 e_1_2_5_50_1 Watanabe N. (e_1_2_5_11_1) 1970; 3 |
References_xml | – volume: 1 start-page: 57 year: 2019 end-page: 76 publication-title: Carbon Energy – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 2 start-page: 878 year: 2012 end-page: 883 publication-title: Adv. Energy Mater. – volume: 20 start-page: 4384 year: 2008 end-page: 4384 publication-title: Adv. Mater. – volume: 2 start-page: 1956 year: 2017 end-page: 1967 publication-title: ACS Omega – volume: 119 start-page: 5341 year: 2015 end-page: 5349 publication-title: J. Phys. Chem. C – volume: 268 start-page: 372 year: 2014 end-page: 378 publication-title: J. Power Sources – volume: 14 year: 2018 publication-title: Small – volume: 19 start-page: 799 year: 2019 end-page: 810 publication-title: Chem. Rec. – volume: 414 start-page: 48 year: 2019 end-page: 67 publication-title: J. Power Sources – volume: 108 start-page: 846 year: 2004 end-page: 852 publication-title: J. Phys. Chem. B – volume: 9 start-page: 18826 year: 2017 end-page: 18835 publication-title: ACS Appl. Mater. Interfaces – volume: 373 start-page: 110 year: 2018 end-page: 118 publication-title: J. Power Sources – volume: 4 start-page: 3823 year: 2014 end-page: 3851 publication-title: RSC Adv. – volume: 17 start-page: 110 year: 2014 end-page: 121 publication-title: Mater. Today – volume: 239 start-page: 466 year: 2013 end-page: 474 publication-title: J. Power Sources – volume: 229 start-page: 134 year: 2018 end-page: 137 publication-title: Mater. Lett. – volume: 161 start-page: 706 year: 2018 end-page: 714 publication-title: E. Safety – start-page: 1 year: 2022 end-page: 7 publication-title: Int. J. Green Energy – volume: 53 start-page: 5528 year: 2008 end-page: 5532 publication-title: Electrochim. Acta – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 116 start-page: 97 year: 2016 end-page: 102 publication-title: Int. J. Quantum Chem. – year: 2022 publication-title: Mater Today Energy – volume: 148 start-page: 105 year: 2019 end-page: 114 publication-title: Carbon – volume: 12 start-page: 3315 year: 2012 end-page: 3321 publication-title: Nano Lett. – volume: 175 start-page: 881 year: 2008 end-page: 885 publication-title: J. Power Sources – year: 2022 publication-title: Sustain Enery Fuels – volume: 257 start-page: 421 year: 2014 end-page: 443 publication-title: J. Power Sources – volume: 706 start-page: 24 year: 2017 end-page: 40 publication-title: J. Alloys Compd. – volume: 740 start-page: 446 year: 2018 end-page: 451 publication-title: J. Alloys Compd. – volume: 46 start-page: 2199 year: 2017 end-page: 2236 publication-title: Chem. Soc. Rev. – volume: 8 start-page: 74 year: 2016 end-page: 103 publication-title: Nanoscale – volume: 111 start-page: 329 year: 2002 end-page: 334 publication-title: J. Power Sources – volume: 9 start-page: 8871 year: 2017 end-page: 8878 publication-title: Nanoscale – volume: 5 start-page: 19521 year: 2017 end-page: 19540 publication-title: J. Mater. Chem. A – volume: 22 start-page: 11014 year: 2012 end-page: 11017 publication-title: J. Mater. Chem. – volume: 1 start-page: 2213 year: 2017 end-page: 2242 publication-title: Mater. Chem. Front. – volume: 92 year: 2008 publication-title: Appl. Phys. Lett. – volume: 1 start-page: 195 year: 2012 end-page: 220 publication-title: Nano Energy – volume: 7 year: 2017 publication-title: Adv. Eng. Mater. – volume: 16 start-page: 16 year: 2017 end-page: 22 publication-title: Nat. Mater. – volume: 4 start-page: 2682 year: 2011 end-page: 2699 publication-title: Energy Environ. Sci. – volume: 343 start-page: 78 year: 2018 end-page: 85 publication-title: Chem. Eng. J. – volume: 44 start-page: 10635 year: 2018 end-page: 10645 publication-title: Ceram. Inter. – start-page: 1 year: 2022 end-page: 12 publication-title: J. Electron. Mater. – volume: 18 start-page: 1035 year: 2018 end-page: 1043 publication-title: Nano Lett. – volume: 111 start-page: 291 year: 2017 end-page: 298 publication-title: Carbon – volume: 3 start-page: 7207 year: 2015 end-page: 7209 publication-title: J. Mater. Chem. A – volume: 39 start-page: 3115 year: 2010 end-page: 3141 publication-title: Chem. Soc. Rev. – volume: 5 year: 2018 publication-title: Adv. Sci. – volume: 146 start-page: 824 year: 1999 publication-title: J. Electrochem. Soc. – volume: 10 start-page: 4489 year: 2022 end-page: 4516 publication-title: J. Mater. Chem. A – volume: 28 start-page: 7580 year: 2016 end-page: 7602 publication-title: Adv. Mater. – volume: 11 start-page: 1 year: 2020 end-page: 10 publication-title: Nat. Commun. – volume: 14 start-page: 2053 year: 2021 end-page: 2066 publication-title: Nano Res. – volume: 6 start-page: 1522 year: 2012 end-page: 1531 publication-title: ACS Nano – volume: 3 start-page: 1009 year: 2010 end-page: 1019 publication-title: ChemSusChem – volume: 2016 year: 2016 publication-title: J. Nanomater. – volume: 7 start-page: 80 year: 2018 end-page: 86 publication-title: Mater Today Energy – volume: 275 start-page: 25 year: 2018 end-page: 31 publication-title: Electrochim. Acta – volume: 53 start-page: 677 year: 2017 end-page: 699 publication-title: Russ. J. Electrochem. – volume: 159 start-page: 390 year: 2020 end-page: 400 publication-title: Carbon – volume: 457 start-page: 427 year: 2018 end-page: 438 publication-title: Appl. Surf. Sci. – volume: 6 start-page: 8462 year: 2018 end-page: 8469 publication-title: J. Mater. Chem. A – volume: 10 start-page: 725 year: 1998 end-page: 763 publication-title: Adv. Mater. – volume: 38 start-page: 34 year: 2017 end-page: 47 publication-title: Energy Sustain Dev – volume: 3 start-page: 532 year: 1970 end-page: 536 publication-title: US Patent – volume: 5 year: 2018 publication-title: Roy Soc Open Sci – volume: 11 start-page: 1711 year: 2016 end-page: 1717 publication-title: Chem-Asian – volume: 567 year: 2021 publication-title: Appl. Surf. Sci. – volume: 11 start-page: 1320 year: 2009 end-page: 1324 publication-title: Electrohem Commun – volume: 13 start-page: 12219 year: 2019 end-page: 12229 publication-title: ACS Nano – volume: 9 start-page: 33896 year: 2017 end-page: 33905 publication-title: ACS Appl. Mater. Interfaces – volume: 35 start-page: 583 year: 2006 end-page: 592 publication-title: Chem. Soc. Rev. – volume: 1 start-page: 1967 year: 2010 end-page: 1972 publication-title: J. Phys. Chem. Lett. – volume: 330 year: 2020 publication-title: Electrochim. Acta – volume: 132 start-page: 542 year: 2020 end-page: 546 publication-title: Angew. Chem. Int. Ed. – volume: 13 start-page: 1 year: 2021 end-page: 12 publication-title: Nano-Micro Lett. – volume: 35 start-page: 70 year: 2021 end-page: 87 publication-title: Energy Storage Mater. – volume: 12 start-page: 53760 year: 2020 end-page: 53773 publication-title: ACS Appl. Mater. Interfaceser – volume: 407 start-page: 496 year: 2000 end-page: 499 publication-title: Nature – volume: 786 start-page: 428 year: 2019 end-page: 433 publication-title: J. Alloys Compd. – publication-title: E. Materials – volume: 4 start-page: 1577 year: 2020 end-page: 1594 publication-title: Sustain Enery Fuels – volume: 2 start-page: 2167 year: 2018 end-page: 2177 publication-title: Joule – volume: 101 start-page: 212 year: 2018 end-page: 219 publication-title: Physica E – volume: 7 start-page: 414 year: 2012 end-page: 429 publication-title: Nano Today – volume: 8 start-page: 701 year: 2016 end-page: 722 publication-title: Nanoscale – volume: 4 start-page: 3160 year: 2021 end-page: 3168 publication-title: ACS Appl. Energ. Mater. – volume: 81 start-page: 233 year: 1999 end-page: 236 publication-title: J. Power Sources – volume: 3 start-page: 10564 year: 2018 end-page: 10571 publication-title: ACS Omega – volume: 479 start-page: 287 year: 2019 end-page: 295 publication-title: Appl. Surf. Sci. – volume: 21 start-page: 1907 year: 2017 end-page: 1923 publication-title: J. Solid State Electrochem. – volume: 27 start-page: 4097 year: 2015 end-page: 4101 publication-title: Adv. Mater. – volume: 284 start-page: 481 year: 2015 end-page: 488 publication-title: J. Power Sources – volume: 9 start-page: 3088 year: 2019 publication-title: Appl. Sci. – volume: 20 start-page: 2878 year: 2008 end-page: 2887 publication-title: Adv. Mater. – volume: 8 start-page: 20040 year: 2016 end-page: 20047 publication-title: ACS Appl. Mater. Interfaces – volume: 157 start-page: A558 year: 2010 publication-title: J. Electrochem. Soc. – volume: 13 start-page: 1558 year: 2020 end-page: 1563 publication-title: Nano Res. – volume: 6 start-page: 9332 year: 2018 end-page: 9367 publication-title: J. Mater. Chem. A – volume: 18 start-page: 165 year: 2019 end-page: 173 publication-title: Energy Storage Mater. – volume: 26 start-page: 478 year: 2021 publication-title: Molecules – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 7 start-page: 4289 year: 2020 end-page: 4302 publication-title: ChemElectroChem – volume: 227 start-page: 761 year: 2013 end-page: 776 publication-title: P I Mech Eng D-J Aut – volume: 45 start-page: 13530 year: 2019 end-page: 13535 publication-title: Ceram. Int. – year: 2022 publication-title: Surf Interfaces – volume: 15 start-page: 783 year: 1980 end-page: 789 publication-title: Mater. Res. Bull. – volume: 167 year: 2020 publication-title: J. Electrochem. Soc. – volume: 13 start-page: 1884 year: 2020 publication-title: Materials – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 314 year: 2022 publication-title: Mater. Lett. – volume: 51 start-page: 5798 year: 2012 end-page: 5800 publication-title: Angew. Chem. Int. Ed. – volume: 331 start-page: 76 year: 2016 end-page: 81 publication-title: J. Power Sources – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 55 start-page: 8521 year: 2010 end-page: 8526 publication-title: Electrochim. Acta – volume: 5 start-page: 10885 year: 2017 end-page: 10894 publication-title: J. Mater. Chem. A – volume: 464 year: 2020 publication-title: J. Power Sources – volume: 66 start-page: 260 year: 2022 end-page: 294 publication-title: J. Energy Chem. – volume: 16 start-page: 4135 year: 2014 end-page: 4142 publication-title: Phys. Chem. Chem. Phys. – volume: 4 year: 2014 publication-title: Adv. Energy Mater. – volume: 2 year: 2015 publication-title: Adv. Sci. – volume: 124 start-page: 165 year: 2017 end-page: 170 publication-title: Mater. Charact. – volume: 10 start-page: 14684 year: 2018 end-page: 14697 publication-title: ACS Appl. Mater. Interfaces – volume: 44 start-page: 237 year: 2020 end-page: 257 publication-title: J. Mater. Sci. Technol. – volume: 769 start-page: 167 year: 2018 end-page: 185 publication-title: J. Alloys Compd. – volume: 139 start-page: 2657 year: 2017 end-page: 2663 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 25 year: 2015 end-page: 34 publication-title: Nat. Nanotechnol – volume: 192 start-page: 277 year: 2022 end-page: 284 publication-title: Carbon – volume: 53 start-page: 1488 year: 2014 end-page: 1504 publication-title: Angew. Chem. Int. Ed. – volume: 113 start-page: 5364 year: 2013 end-page: 5457 publication-title: Chem. Rev. – volume: 22 start-page: E170 year: 2010 end-page: E192 publication-title: Adv. Mater. – volume: 10 start-page: 363 year: 1975 end-page: 371 publication-title: Mater. Res. Bull. – volume: 8 year: 2021 publication-title: Appl Phys Rev – volume: 28 start-page: 1549 year: 2021 end-page: 1564 publication-title: Int J Min Met Mater – volume: 239 start-page: 269 year: 2013 end-page: 276 publication-title: J. Power Sources – volume: 323 year: 2019 publication-title: Electrochim. Acta – volume: 784 start-page: 165 year: 2019 end-page: 172 publication-title: J. Alloy. Compd. – volume: 256 start-page: 190 year: 2014 end-page: 199 publication-title: J. Power Sources – volume: 69 start-page: 173 year: 1994 end-page: 183 publication-title: Solid State Ionics – volume: 14 year: 2019 publication-title: Nano – volume: 36 start-page: 147 year: 2021 end-page: 170 publication-title: Energy Storage Mater. – volume: 342 start-page: 467 year: 2017 end-page: 475 publication-title: J. Power Sources – volume: 127 year: 2020 publication-title: Renewable Sustainable Energy Rev. – volume: 15 year: 2019 publication-title: Small – volume: 2 start-page: 1627 year: 2014 end-page: 1630 publication-title: J. Mater. Chem. A – volume: 15 start-page: 18318 year: 2013 end-page: 18335 publication-title: Phys. Chem. Chem. Phys. – volume: 111 start-page: 764 year: 2017 end-page: 773 publication-title: Carbon – volume: 27 year: 2020 publication-title: J. Energy Storage – volume: 511 year: 2021 publication-title: J. Power Sources – volume: 10 start-page: 1447 year: 2019 publication-title: Nat. Commun. – volume: 20 year: 2018 publication-title: Adv. Eng. Mater. – volume: 458 start-page: 1035 year: 2018 end-page: 1042 publication-title: Appl. Surf. Sci. – volume: 26 start-page: 2977 year: 2014 end-page: 2982 publication-title: Adv. Mater. – start-page: 1 year: 2022 end-page: 11 publication-title: Rare Met. – volume: 60 start-page: 823 year: 2015 end-page: 838 publication-title: Sci. Bull. – volume: 108 start-page: 961 year: 2012 end-page: 965 publication-title: Appl. Phys. A – volume: 13 start-page: 26023 year: 2021 end-page: 26033 publication-title: ACS Appl. Mater. Interfaces – volume: 16 start-page: 65 year: 2019 end-page: 84 publication-title: Energy Storage Mater. – volume: 8 start-page: 8 year: 2017 publication-title: Challenges – volume: 152 year: 2021 publication-title: J. Phys. Chem. Solids – volume: 29 start-page: 671 year: 2019 end-page: 689 publication-title: Int J Min Sci Techno – volume: 11 start-page: 16633 year: 2021 end-page: 16644 publication-title: RSC Adv. – volume: 186 year: 2020 publication-title: Mater Design – volume: 9 start-page: 365 year: 1983 end-page: 371 publication-title: J. Power Sources – volume: 192 start-page: 1126 year: 1976 end-page: 1127 publication-title: Science – volume: 9 start-page: 32851 year: 2017 end-page: 32858 publication-title: ACS Appl. Mater. Interfaces – ident: e_1_2_5_142_1 doi: 10.1021/acsami.6b05559 – ident: e_1_2_5_48_1 doi: 10.1016/j.jallcom.2018.07.320 – ident: e_1_2_5_89_1 doi: 10.1002/adma.200800627 – year: 2022 ident: e_1_2_5_93_1 publication-title: Sustain Enery Fuels – ident: e_1_2_5_122_1 doi: 10.1016/j.carbon.2022.02.063 – ident: e_1_2_5_16_1 doi: 10.1016/0378-7753(83)87040-2 – ident: e_1_2_5_165_1 doi: 10.1016/j.apsusc.2018.07.127 – ident: e_1_2_5_40_1 doi: 10.1039/c0ee00699h – ident: e_1_2_5_140_1 doi: 10.1016/j.ceramint.2019.04.059 – ident: e_1_2_5_94_1 doi: 10.1016/j.est.2019.101141 – ident: e_1_2_5_114_1 doi: 10.1016/j.jpowsour.2013.12.128 – ident: e_1_2_5_80_1 doi: 10.1038/s41467-019-13993-7 – ident: e_1_2_5_95_1 doi: 10.1038/nnano.2014.311 – ident: e_1_2_5_164_1 doi: 10.1039/C8TA02342E – ident: e_1_2_5_108_1 doi: 10.1038/s41467-019-09510-5 – ident: e_1_2_5_84_1 doi: 10.1021/jp512585z – ident: e_1_2_5_166_1 doi: 10.1002/aenm.201600256 – ident: e_1_2_5_52_1 doi: 10.1039/D1TA09654K – ident: e_1_2_5_121_1 doi: 10.1039/C7NR01545C – ident: e_1_2_5_75_1 doi: 10.1021/acsami.7b11309 – ident: e_1_2_5_78_1 doi: 10.1002/smll.201702737 – ident: e_1_2_5_170_1 doi: 10.1021/acsami.0c14920 – ident: e_1_2_5_44_1 doi: 10.1007/s12274-021-3506-9 – ident: e_1_2_5_157_1 doi: 10.1016/j.ceramint.2018.03.091 – ident: e_1_2_5_38_1 doi: 10.1016/j.jpowsour.2007.09.102 – ident: e_1_2_5_21_1 doi: 10.1021/acs.nanolett.7b04505 – ident: e_1_2_5_147_1 doi: 10.1021/acsami.8b00953 – ident: e_1_2_5_109_1 doi: 10.1007/s12274-020-2770-4 – ident: e_1_2_5_150_1 doi: 10.1016/j.apsusc.2018.06.224 – ident: e_1_2_5_144_1 doi: 10.1007/s11434-015-0771-6 – ident: e_1_2_5_86_1 doi: 10.1002/aenm.201502302 – ident: e_1_2_5_123_1 doi: 10.1016/j.ensm.2018.09.019 – ident: e_1_2_5_135_1 doi: 10.1016/j.mattod.2014.02.014 – ident: e_1_2_5_116_1 doi: 10.1002/adfm.201806061 – ident: e_1_2_5_172_1 doi: 10.1039/C7QM00175D – ident: e_1_2_5_163_1 doi: 10.1016/j.rser.2020.109884 – ident: e_1_2_5_66_1 doi: 10.1016/j.joule.2018.08.004 – ident: e_1_2_5_99_1 doi: 10.1021/jp030663d – ident: e_1_2_5_112_1 doi: 10.1039/C5NR06278K – ident: e_1_2_5_125_1 doi: 10.1016/j.jpcs.2021.109965 – ident: e_1_2_5_149_1 doi: 10.1039/C8TA01683F – ident: e_1_2_5_154_1 doi: 10.1016/j.matdes.2019.108298 – ident: e_1_2_5_34_1 doi: 10.1016/j.surfin.2022.101977 – ident: e_1_2_5_62_1 doi: 10.1016/j.nanoen.2011.11.006 – ident: e_1_2_5_105_1 doi: 10.1002/aenm.201100765 – ident: e_1_2_5_113_1 doi: 10.1002/aenm.201300882 – ident: e_1_2_5_115_1 doi: 10.1002/qua.25028 – ident: e_1_2_5_57_1 doi: 10.1002/adma.200890098 – ident: e_1_2_5_100_1 doi: 10.1021/acsaem.0c02932 – ident: e_1_2_5_103_1 doi: 10.1016/S0378-7753(99)00194-9 – ident: e_1_2_5_23_1 doi: 10.1063/5.0048337 – ident: e_1_2_5_79_1 doi: 10.1007/s12613-021-2335-x – ident: e_1_2_5_98_1 doi: 10.1063/1.2953702 – ident: e_1_2_5_4_1 doi: 10.3390/app9153088 – ident: e_1_2_5_74_1 doi: 10.1016/j.jpowsour.2017.11.015 – ident: e_1_2_5_160_1 doi: 10.1002/adma.201501130 – ident: e_1_2_5_53_1 doi: 10.1002/advs.201400020 – ident: e_1_2_5_54_1 doi: 10.1016/j.ijmst.2019.04.003 – ident: e_1_2_5_8_1 doi: 10.1016/j.jpowsour.2021.230419 – ident: e_1_2_5_35_1 doi: 10.3390/molecules26020478 – ident: e_1_2_5_129_1 doi: 10.1016/j.apsusc.2019.01.215 – ident: e_1_2_5_126_1 doi: 10.1039/c2jm31286g – ident: e_1_2_5_133_1 doi: 10.1021/cr3001884 – ident: e_1_2_5_155_1 doi: 10.1007/s00339-012-7005-4 – ident: e_1_2_5_138_1 doi: 10.1021/jz100520c – ident: e_1_2_5_106_1 doi: 10.1016/j.matchar.2016.12.013 – ident: e_1_2_5_29_1 doi: 10.1007/s40820-020-00525-y – ident: e_1_2_5_92_1 doi: 10.1039/b502142c – ident: e_1_2_5_156_1 doi: 10.1016/j.apsusc.2021.150724 – ident: e_1_2_5_68_1 doi: 10.1016/j.carbon.2019.03.038 – ident: e_1_2_5_168_1 doi: 10.1016/j.jpowsour.2015.03.026 – ident: e_1_2_5_1_1 doi: 10.1016/j.jechem.2021.08.001 – ident: e_1_2_5_70_1 doi: 10.1016/j.carbon.2016.10.008 – ident: e_1_2_5_26_1 doi: 10.1021/acsami.7b04099 – ident: e_1_2_5_71_1 doi: 10.1002/asia.201600249 – ident: e_1_2_5_59_1 doi: 10.1149/1.1391688 – ident: e_1_2_5_76_1 doi: 10.1021/acsami.1c04607 – ident: e_1_2_5_143_1 doi: 10.1007/s10008-017-3580-9 – ident: e_1_2_5_124_1 doi: 10.1016/j.cej.2018.02.111 – ident: e_1_2_5_134_1 doi: 10.1002/advs.201700592 – ident: e_1_2_5_148_1 doi: 10.1002/smll.201900015 – ident: e_1_2_5_6_1 doi: 10.1039/C6CS00823B – ident: e_1_2_5_50_1 doi: 10.1016/j.matlet.2018.06.104 – ident: e_1_2_5_82_1 doi: 10.1002/adem.201700591 – ident: e_1_2_5_117_1 doi: 10.1002/adma.201305600 – ident: e_1_2_5_101_1 doi: 10.1016/j.mtener.2022.101030 – ident: e_1_2_5_127_1 doi: 10.1021/nl3014814 – ident: e_1_2_5_37_1 doi: 10.1002/aenm.202000982 – ident: e_1_2_5_159_1 doi: 10.1016/j.jpowsour.2013.03.073 – ident: e_1_2_5_67_1 doi: 10.1016/j.jpowsour.2013.03.141 – ident: e_1_2_5_119_1 doi: 10.1002/cey2.2 – ident: e_1_2_5_120_1 doi: 10.1002/celc.202001060 – ident: e_1_2_5_171_1 doi: 10.1002/anie.201303971 – ident: e_1_2_5_10_1 doi: 10.3390/ma13081884 – ident: e_1_2_5_73_1 doi: 10.1021/acsami.7b04099 – ident: e_1_2_5_175_1 doi: 10.1039/C5TA00689A – ident: e_1_2_5_22_1 doi: 10.1016/j.jmst.2020.01.017 – ident: e_1_2_5_9_1 publication-title: E. Materials – ident: e_1_2_5_158_1 doi: 10.1002/aenm.201300958 – ident: e_1_2_5_111_1 doi: 10.1039/C5NR05116A – ident: e_1_2_5_3_1 doi: 10.1016/j.ecoenv.2018.06.024 – ident: e_1_2_5_12_1 doi: 10.1016/0025-5408(75)90006-9 – ident: e_1_2_5_27_1 doi: 10.1016/j.electacta.2019.134791 – ident: e_1_2_5_63_1 doi: 10.1016/j.carbon.2016.10.060 – ident: e_1_2_5_30_1 doi: 10.1039/c3cp53124d – ident: e_1_2_5_161_1 doi: 10.1142/S1793292019300019 – start-page: 1 year: 2022 ident: e_1_2_5_46_1 publication-title: J. Electron. Mater. – ident: e_1_2_5_130_1 doi: 10.1021/acsnano.9b07241 – ident: e_1_2_5_173_1 doi: 10.1016/j.jallcom.2019.02.004 – ident: e_1_2_5_33_1 doi: 10.1016/j.electacta.2018.03.099 – ident: e_1_2_5_176_1 doi: 10.1016/j.nantod.2012.08.004 – ident: e_1_2_5_51_1 doi: 10.1016/j.ensm.2018.04.023 – ident: e_1_2_5_131_1 doi: 10.1016/j.electacta.2010.07.078 – ident: e_1_2_5_132_1 doi: 10.1038/35035045 – ident: e_1_2_5_60_1 doi: 10.1149/1945-7111/abaf9f – ident: e_1_2_5_146_1 doi: 10.1021/acsami.7b09853 – ident: e_1_2_5_42_1 doi: 10.1016/j.matlet.2022.131859 – ident: e_1_2_5_85_1 doi: 10.1039/b919877f – ident: e_1_2_5_36_1 doi: 10.1039/D1RA02845F – ident: e_1_2_5_169_1 doi: 10.1002/aenm.201501010 – ident: e_1_2_5_69_1 doi: 10.1016/j.carbon.2019.12.054 – ident: e_1_2_5_13_1 doi: 10.1126/science.192.4244.1126 – ident: e_1_2_5_25_1 doi: 10.1134/S1023193517070035 – ident: e_1_2_5_167_1 doi: 10.1016/j.jallcom.2017.12.020 – volume: 2016 year: 2016 ident: e_1_2_5_139_1 publication-title: J. Nanomater. – ident: e_1_2_5_56_1 doi: 10.1039/C7TA05283A – volume: 3 start-page: 532 year: 1970 ident: e_1_2_5_11_1 publication-title: US Patent – ident: e_1_2_5_41_1 doi: 10.1016/j.jpowsour.2013.11.103 – ident: e_1_2_5_72_1 doi: 10.1002/adma.202107899 – ident: e_1_2_5_2_1 doi: 10.1016/j.esd.2017.02.003 – ident: e_1_2_5_145_1 doi: 10.1002/adma.201000717 – ident: e_1_2_5_137_1 doi: 10.1016/j.jpowsour.2014.06.056 – ident: e_1_2_5_110_1 doi: 10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z – ident: e_1_2_5_77_1 doi: 10.1002/aenm.202003905 – ident: e_1_2_5_91_1 doi: 10.1021/nn204476h – ident: e_1_2_5_96_1 doi: 10.1039/C9SE01165J – ident: e_1_2_5_20_1 doi: 10.1002/aenm.202001310 – ident: e_1_2_5_47_1 doi: 10.1021/acsomega.7b00143 – ident: e_1_2_5_97_1 doi: 10.1016/j.electacta.2008.02.114 – ident: e_1_2_5_83_1 doi: 10.1080/15435075.2022.2119856 – ident: e_1_2_5_45_1 doi: 10.3390/challe8010008 – ident: e_1_2_5_81_1 doi: 10.1002/aenm.201701083 – ident: e_1_2_5_24_1 doi: 10.1016/j.jpowsour.2020.228241 – start-page: 1 year: 2022 ident: e_1_2_5_39_1 publication-title: Rare Met. – ident: e_1_2_5_65_1 doi: 10.1002/tcr.201800137 – ident: e_1_2_5_152_1 doi: 10.1016/j.mtener.2017.12.007 – ident: e_1_2_5_151_1 doi: 10.1002/advs.201700986 – ident: e_1_2_5_118_1 doi: 10.1039/c3cp54507e – ident: e_1_2_5_128_1 doi: 10.1016/j.jpowsour.2016.12.089 – ident: e_1_2_5_162_1 doi: 10.1039/C3RA45013A – ident: e_1_2_5_174_1 doi: 10.1039/C7TA02706K – ident: e_1_2_5_7_1 doi: 10.1177/1350650112468071 – ident: e_1_2_5_136_1 doi: 10.1016/j.elecom.2009.04.036 – ident: e_1_2_5_153_1 doi: 10.1016/j.physe.2018.04.009 – ident: e_1_2_5_18_1 doi: 10.1002/anie.201105006 – ident: e_1_2_5_64_1 doi: 10.1002/aenm.202102693 – ident: e_1_2_5_141_1 doi: 10.1016/j.jallcom.2019.01.061 – ident: e_1_2_5_107_1 doi: 10.1016/j.jpowsour.2016.09.046 – ident: e_1_2_5_19_1 doi: 10.1021/jacs.6b10841 – ident: e_1_2_5_31_1 doi: 10.1002/cssc.201000123 – ident: e_1_2_5_58_1 doi: 10.1016/S0378-7753(02)00349-X – ident: e_1_2_5_5_1 doi: 10.1038/nmat4834 – ident: e_1_2_5_43_1 doi: 10.1039/C3TA14377E – ident: e_1_2_5_87_1 doi: 10.1098/rsos.172370 – ident: e_1_2_5_32_1 doi: 10.1016/j.ensm.2020.11.017 – ident: e_1_2_5_49_1 doi: 10.1016/j.jallcom.2017.02.230 – ident: e_1_2_5_15_1 doi: 10.1016/0025-5408(80)90012-4 – ident: e_1_2_5_14_1 doi: 10.1002/ange.201913923 – ident: e_1_2_5_28_1 doi: 10.1021/acsomega.8b01539 – ident: e_1_2_5_104_1 doi: 10.1016/j.electacta.2019.135318 – ident: e_1_2_5_17_1 doi: 10.1016/0167-2738(94)90408-1 – ident: e_1_2_5_88_1 doi: 10.1002/adma.201600164 – ident: e_1_2_5_90_1 doi: 10.1039/C7QM00175D – ident: e_1_2_5_102_1 doi: 10.1016/j.jpowsour.2018.12.068 – ident: e_1_2_5_55_1 doi: 10.1016/j.ensm.2020.12.027 – ident: e_1_2_5_61_1 doi: 10.1149/1.3327913 |
SSID | ssj0011477 |
Score | 2.5942535 |
SecondaryResourceType | review_article |
Snippet | Since the invention of lithium‐ion batteries as a rechargeable energy storage system, it has uncommonly promoted the development of society. It has a wide... Since the invention of lithium-ion batteries as a rechargeable energy storage system, it has uncommonly promoted the development of society. It has a wide... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202300004 |
SubjectTerms | Anode Anodes Automobiles Electric vehicles Electrochemistry Electrode materials Electronic equipment Energy storage Graphite Hybrid vehicles Lithium Lithium-ion batteries Rechargeable batteries Silicon Transition metal oxide Transition metal oxides |
Title | The Status of Representative Anode Materials for Lithium‐Ion Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ftcr.202300004 https://www.ncbi.nlm.nih.gov/pubmed/36988011 https://www.proquest.com/docview/2809424282 https://www.proquest.com/docview/2792502764 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT4MwGG7MLnrx-2M6TU2MJ5kMSqHHZXGZxnlYZuINSz-iUcE48ODJn-Bv9Jf4ljLMNJoYT0Boobx92_cpvDwPQgdEMyFYEjgB18ohvlRO0nG5A8El1EzLwC21CIYXdHBJzq6Cq0rn1PwLY_kh6hduZmSU87UZ4DyZHH-ShsJE1Tba3yXKhTnY5GsZUDSq6aMA6pfKi0a51YF1Bas4NqH-8Uzt2Zj0DWjO4tYy8PSX0PW0yTbf5K5d5ElbvHxhc_zHMy2jxQqU4q71ohU0p9JVNN-basGtoQF4Eza4tJjgTONRmT5r_1p6VribZlLhIc-tN2PAwfj8Nr-5LR7eX99OsxRbFk9YlK-jy_7JuDdwKg0GR_iUEYdq4omQ8VBzzalwYaukkq6gfsJIQKTPiEnkJxyGNvdpyCG8-VICZk8o08rfQI00S9UWwpHrqQCWY4HvEsKkiADaQadFwlUh5Yw30dG0F2JREZQbnYz72FIrezGYJ67N00SHdfFHy8zxU8HWtEvjaoBOYi-CdS3Ak8hrov36NFjVfC_hqcoKKBMyAIheSOESm9YV6juBcWDm63SayC079PcmxOPeqD7Y_nuVHbRg9m2iZQs18qdC7QIYypO90uM_APtI_7g |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB619EAvhdLX8miNVPXULNnYceIjWkBL2eWwWiRukeOHQG0TBAkHTvwEfiO_hHGcTbugVqp6ipLYiTMee75xxt8AfGZWKCXyOIilNQGj2gT5IJQBGpfECqvjsMlFMDnmoxP27TQ-_W0Xv-eH6Bbc3Mho5ms3wN2C9M4v1lCcqfou-XcDc5_DC5fV27Hn7007AikE-03uRZe7NUDPQrQsm_iAnYXqi1bpCdRcRK6N6TlYATlvtI84-d6vq7yvbh7xOf7PV63CqxaXkl2vSK_hmSnWYHk4Twf3BkaoUMRB0_qKlJZMmwhav3Hp2pDdotSGTGTlFZogFCbj8-rsvP55f3t3WBbEE3miX_4WTg72Z8NR0KZhCBTlggXcskglQiZWWslViEejjQ4Vp7lgMdNUMBfLzySObkl5ItHCUa0RtudcWEPfwVJRFuYDkDSMTIweWUxDxoRWKaK7AeWpCk3CpZA9-Drvhky1HOUuVcaPzLMrRxmKJ-vE04MvXfELT87xp4Kb8z7N2jF6lUUpuraIUNKoB9vdbZSq-2UiC1PWWCYRiBGjhOMj3ntd6N6EwsHJbzDoQdj06N-bkM2G0-5k_d-rfILl0WwyzsaHx0cb8NJd93GXm7BUXdZmC7FRlX9s1P8BAZwD4w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL0qrQTdFMqjHShgJMSKTD2x48TLaspoSh9Co1bqLjh-iKptUrVJF13xCXwjX8J1nAkaEEiIVZTEdpzra_s4uT4H4C13UmtZJFGinI04MzYqRlRFOLmkTjqT0FaL4PBITE_4x9PktNM59XthAj9E_8HN94x2vPYd_Mq47Z-koThQDb32d4ty78EKF1R67YbdWc8fhVi_lV700q0RLixkR7KJBWwvZF-clH5DmovAtZ15Jg_h87zOIeDkfNjUxVDf_ULn-B8v9QjWOlRKdoIbrcOSLR_Dg_FcDO4JTNGdiAemzQ2pHJm18bNh29KtJTtlZSw5VHVwZ4JAmByc1V_OmsvvX7_tVSUJNJ64Kn8KJ5MPx-Np1IkwRJoJySPheKxTqVKnnBKa4tEaa6gWrJA84YZJ7iP5ucK-rZhIFc5vzBgE7YWQzrJnsFxWpd0EktHYJrgeSxjlXBqdIbYbMZFpalOhpBrA-3kr5LpjKPdCGRd54FaOczRP3ptnAO_65FeBmuNPCbfmTZp3PfQmjzNc2CI-yeIBvOlvo1X9DxNV2qrBNKlEhBinAovYCK7QPwmNg0PfaDQA2jbo36uQH49n_cnzf8_yGu5_2p3kB3tH-y9g1V8OQZdbsFxfN_YlAqO6eNU6_w_qUgKS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Status+of+Representative+Anode+Materials+for+Lithium%E2%80%90Ion+Batteries&rft.jtitle=Chemical+record&rft.au=Du%2C+Chenyu&rft.au=Zhao%2C+Zengying&rft.au=Liu%2C+Hao&rft.au=Song%2C+Fangyu&rft.date=2023-05-01&rft.issn=1527-8999&rft.eissn=1528-0691&rft.volume=23&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Ftcr.202300004&rft.externalDBID=10.1002%252Ftcr.202300004&rft.externalDocID=TCR202300004 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1527-8999&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1527-8999&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1527-8999&client=summon |