Recent Advances in Carbon Anodes for Sodium‐Ion Batteries

Sodium‐ion batteries (SIBs) have gained tremendous attention for large‐scale energy storage applications due to the natural abundance, low cost, and even geographic distribution of sodium resources as well as a similar working mechanism to lithium‐ion batteries (LIBs). One of the critical bottleneck...

Full description

Saved in:
Bibliographic Details
Published inChemical record Vol. 22; no. 10; pp. e202200083 - n/a
Main Authors Zhang, Tengfei, Li, Chen, Wang, Fan, Noori, Abolhassan, Mousavi, Mir F., Xia, Xinhui, Zhang, Yongqi
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Sodium‐ion batteries (SIBs) have gained tremendous attention for large‐scale energy storage applications due to the natural abundance, low cost, and even geographic distribution of sodium resources as well as a similar working mechanism to lithium‐ion batteries (LIBs). One of the critical bottlenecks, however, is the design of high‐performance and low‐cost anode materials. Graphite anode that has dominated the market share of LIBs does not properly intercalate sodium ions. However, other carbonaceous materials are still considered as one of the most promising anode materials for SIBs in virtue of their high electronic conductivity, abundant active sites, hierarchical porosity, and excellent mechanical stability. In this review, we have tried to summarize the latest progresses made on the development of carbon‐based negative electrodes (including hard carbons, soft carbons, and synthetic carbon allotropes) for SIBs. We also have provided a comprehensive understanding of their physical properties, the sodium ions storage mechanisms, and the improvement measures to cope with the current challenges. In addition, we have proposed future research directions for SIBs that will provide important insights into further development of carbon‐based materials for SIBs. Recent progresses on the development of carbon‐based negative electrodes including graphic, amorphous carbon and nanocarbon were summarized for sodium ion batteries. A comprehensive understanding of their physical properties, the sodium ions storage mechanisms, and the improvement measures to cope with the current challenges were provided.
AbstractList Sodium-ion batteries (SIBs) have gained tremendous attention for large-scale energy storage applications due to the natural abundance, low cost, and even geographic distribution of sodium resources as well as a similar working mechanism to lithium-ion batteries (LIBs). One of the critical bottlenecks, however, is the design of high-performance and low-cost anode materials. Graphite anode that has dominated the market share of LIBs does not properly intercalate sodium ions. However, other carbonaceous materials are still considered as one of the most promising anode materials for SIBs in virtue of their high electronic conductivity, abundant active sites, hierarchical porosity, and excellent mechanical stability. In this review, we have tried to summarize the latest progresses made on the development of carbon-based negative electrodes (including hard carbons, soft carbons, and synthetic carbon allotropes) for SIBs. We also have provided a comprehensive understanding of their physical properties, the sodium ions storage mechanisms, and the improvement measures to cope with the current challenges. In addition, we have proposed future research directions for SIBs that will provide important insights into further development of carbon-based materials for SIBs.
Sodium‐ion batteries (SIBs) have gained tremendous attention for large‐scale energy storage applications due to the natural abundance, low cost, and even geographic distribution of sodium resources as well as a similar working mechanism to lithium‐ion batteries (LIBs). One of the critical bottlenecks, however, is the design of high‐performance and low‐cost anode materials. Graphite anode that has dominated the market share of LIBs does not properly intercalate sodium ions. However, other carbonaceous materials are still considered as one of the most promising anode materials for SIBs in virtue of their high electronic conductivity, abundant active sites, hierarchical porosity, and excellent mechanical stability. In this review, we have tried to summarize the latest progresses made on the development of carbon‐based negative electrodes (including hard carbons, soft carbons, and synthetic carbon allotropes) for SIBs. We also have provided a comprehensive understanding of their physical properties, the sodium ions storage mechanisms, and the improvement measures to cope with the current challenges. In addition, we have proposed future research directions for SIBs that will provide important insights into further development of carbon‐based materials for SIBs. Recent progresses on the development of carbon‐based negative electrodes including graphic, amorphous carbon and nanocarbon were summarized for sodium ion batteries. A comprehensive understanding of their physical properties, the sodium ions storage mechanisms, and the improvement measures to cope with the current challenges were provided.
Sodium-ion batteries (SIBs) have gained tremendous attention for large-scale energy storage applications due to the natural abundance, low cost, and even geographic distribution of sodium resources as well as a similar working mechanism to lithium-ion batteries (LIBs). One of the critical bottlenecks, however, is the design of high-performance and low-cost anode materials. Graphite anode that has dominated the market share of LIBs does not properly intercalate sodium ions. However, other carbonaceous materials are still considered as one of the most promising anode materials for SIBs in virtue of their high electronic conductivity, abundant active sites, hierarchical porosity, and excellent mechanical stability. In this review, we have tried to summarize the latest progresses made on the development of carbon-based negative electrodes (including hard carbons, soft carbons, and synthetic carbon allotropes) for SIBs. We also have provided a comprehensive understanding of their physical properties, the sodium ions storage mechanisms, and the improvement measures to cope with the current challenges. In addition, we have proposed future research directions for SIBs that will provide important insights into further development of carbon-based materials for SIBs.Sodium-ion batteries (SIBs) have gained tremendous attention for large-scale energy storage applications due to the natural abundance, low cost, and even geographic distribution of sodium resources as well as a similar working mechanism to lithium-ion batteries (LIBs). One of the critical bottlenecks, however, is the design of high-performance and low-cost anode materials. Graphite anode that has dominated the market share of LIBs does not properly intercalate sodium ions. However, other carbonaceous materials are still considered as one of the most promising anode materials for SIBs in virtue of their high electronic conductivity, abundant active sites, hierarchical porosity, and excellent mechanical stability. In this review, we have tried to summarize the latest progresses made on the development of carbon-based negative electrodes (including hard carbons, soft carbons, and synthetic carbon allotropes) for SIBs. We also have provided a comprehensive understanding of their physical properties, the sodium ions storage mechanisms, and the improvement measures to cope with the current challenges. In addition, we have proposed future research directions for SIBs that will provide important insights into further development of carbon-based materials for SIBs.
Author Zhang, Tengfei
Li, Chen
Mousavi, Mir F.
Zhang, Yongqi
Xia, Xinhui
Noori, Abolhassan
Wang, Fan
Author_xml – sequence: 1
  givenname: Tengfei
  surname: Zhang
  fullname: Zhang, Tengfei
  organization: University of Electronic Science and Technology of China
– sequence: 2
  givenname: Chen
  surname: Li
  fullname: Li, Chen
  organization: University of Electronic Science and Technology of China
– sequence: 3
  givenname: Fan
  surname: Wang
  fullname: Wang, Fan
  organization: Harbin University of Science and Technology
– sequence: 4
  givenname: Abolhassan
  surname: Noori
  fullname: Noori, Abolhassan
  organization: Tarbiat Modares University
– sequence: 5
  givenname: Mir F.
  surname: Mousavi
  fullname: Mousavi, Mir F.
  email: mfmousavi@yahoo.com
  organization: Tarbiat Modares University
– sequence: 6
  givenname: Xinhui
  orcidid: 0000-0002-5976-5337
  surname: Xia
  fullname: Xia, Xinhui
  email: hellocmxwy@126.com
  organization: Fuzhou University
– sequence: 7
  givenname: Yongqi
  surname: Zhang
  fullname: Zhang, Yongqi
  email: yqzhang@uestc.edu.cn
  organization: University of Electronic Science and Technology of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35670500$$D View this record in MEDLINE/PubMed
BookMark eNp9kEFLHTEUhYMoPrUuuy0D3XQzz5tkkszQ1fNRW0EQrK5DJnMH8piX2GSmxZ0_ob-xv8ToeyoIdXUvh-8cDueQ7PrgkZCPFOYUgJ2MNs4ZMAYANd8hB1SwugTZ0N2nX5V10zQzcpjSCoDSSql9MuNCKhAAB-TrFVr0Y7HofhtvMRXOF0sT2-CLhQ9dFvoQi5-hc9P63_3f86yfmnHE6DB9IHu9GRIeb-8RuTn7dr38UV5cfj9fLi5Ky2XDy070UigpObZKGZCtZdJYrKzs-tpKIWyuhV0jsakZq1ouW1HZvjJNZZAzyo_Il03ubQy_JkyjXrtkcRiMxzAlzaSqACRQyOjnN-gqTNHndpopJnKduuaZ-rSlpnaNnb6Nbm3inX6eJQN8A9gYUorYa-tGM7rgx2jcoCnox_F1Hl-_jJ9d5RvXc_D_eLXh_7gB796H9fXy6tX5AJxlk_g
CitedBy_id crossref_primary_10_1002_adma_202212186
crossref_primary_10_1007_s10008_023_05448_3
crossref_primary_10_1002_adfm_202314160
crossref_primary_10_1002_smll_202311197
crossref_primary_10_1002_slct_202404647
crossref_primary_10_3390_molecules28186464
crossref_primary_10_1016_j_apsusc_2023_156673
crossref_primary_10_20517_energymater_2024_217
crossref_primary_10_1016_j_cej_2023_143209
crossref_primary_10_1007_s11664_023_10503_w
crossref_primary_10_1002_cey2_470
crossref_primary_10_1016_j_jelechem_2023_117596
crossref_primary_10_3390_nano13050846
crossref_primary_10_1039_D4CP04214J
crossref_primary_10_1002_smll_202307579
crossref_primary_10_1016_j_cej_2024_153418
crossref_primary_10_1002_chem_202402794
crossref_primary_10_1007_s11694_024_02604_9
crossref_primary_10_1002_aenm_202302830
crossref_primary_10_1021_acsanm_4c01637
crossref_primary_10_1002_aenm_202405294
crossref_primary_10_1021_acs_energyfuels_3c02609
crossref_primary_10_1016_j_cej_2024_151114
crossref_primary_10_1007_s11664_023_10793_0
crossref_primary_10_1039_D3DT02449K
crossref_primary_10_1002_smll_202406497
crossref_primary_10_1002_smll_202412449
crossref_primary_10_1002_tcr_202300206
crossref_primary_10_1021_acssuschemeng_3c06652
crossref_primary_10_1002_cey2_560
crossref_primary_10_1002_smtd_202301277
crossref_primary_10_3866_PKU_WHXB202307006
crossref_primary_10_1021_acsanm_2c03179
crossref_primary_10_1021_acsomega_4c09865
crossref_primary_10_1016_j_cej_2024_149432
crossref_primary_10_1002_eem2_12645
crossref_primary_10_1007_s10008_023_05615_6
crossref_primary_10_1002_smll_202208164
crossref_primary_10_3390_batteries11040123
crossref_primary_10_1002_aenm_202304229
crossref_primary_10_1002_smll_202306381
crossref_primary_10_1016_j_cej_2024_150316
crossref_primary_10_3390_batteries10050157
crossref_primary_10_3390_molecules28124753
crossref_primary_10_1016_j_apsusc_2023_159121
crossref_primary_10_1002_inf2_12636
crossref_primary_10_1007_s00339_023_07074_2
crossref_primary_10_1002_smll_202408212
crossref_primary_10_3390_inorganics10110198
crossref_primary_10_1002_ange_202300599
crossref_primary_10_1039_D3CP04892F
crossref_primary_10_1002_adfm_202302277
crossref_primary_10_20517_energymater_2024_63
crossref_primary_10_1007_s11664_024_11485_z
crossref_primary_10_1007_s11664_022_09908_w
crossref_primary_10_1088_1361_6528_accea8
crossref_primary_10_1002_chem_202401321
crossref_primary_10_1002_smll_202305019
crossref_primary_10_1007_s12274_023_5707_x
crossref_primary_10_1021_acs_langmuir_2c02575
crossref_primary_10_1021_acsanm_4c01276
crossref_primary_10_1021_acs_energyfuels_3c00884
crossref_primary_10_1002_chem_202304168
crossref_primary_10_1002_adfm_202214987
crossref_primary_10_1016_j_jechem_2023_01_025
crossref_primary_10_1039_D3DT02407E
crossref_primary_10_1021_acsaem_3c02219
crossref_primary_10_3390_polym16111452
crossref_primary_10_1007_s11664_024_11652_2
crossref_primary_10_1021_acs_nanolett_4c00842
crossref_primary_10_1021_acs_nanolett_4c04569
crossref_primary_10_1039_D3CS00601H
crossref_primary_10_1016_j_mattod_2024_01_002
crossref_primary_10_3390_c9040092
crossref_primary_10_3390_molecules30051003
crossref_primary_10_3390_encyclopedia2030110
crossref_primary_10_1002_adma_202400245
crossref_primary_10_1021_acsenergylett_4c01982
crossref_primary_10_1007_s11664_024_11495_x
crossref_primary_10_1039_D4TA08291E
crossref_primary_10_1002_aenm_202303871
crossref_primary_10_1002_anie_202300599
crossref_primary_10_1002_smll_202307026
crossref_primary_10_3390_batteries8090114
crossref_primary_10_1007_s11664_022_10026_w
crossref_primary_10_1007_s11664_023_10446_2
Cites_doi 10.1039/C9CS00162J
10.1002/aenm.201601519
10.1021/acsami.1c24755
10.1039/C8NR04631J
10.1149/1.2221153
10.1016/j.pmatsci.2018.04.006
10.1021/acs.chemmater.5b03216
10.1002/aenm.201602898
10.1039/D0EE03916K
10.1021/acsami.1c05928
10.1016/j.carbon.2021.06.066
10.1126/science.1212741
10.1039/D1MA00731A
10.1016/j.jpowsour.2016.03.014
10.1016/j.carbon.2017.08.030
10.1039/C6CS00776G
10.1039/c3ee41444b
10.1039/C9TA09984K
10.1002/cey2.29
10.1002/aenm.201703268
10.1002/aenm.201903176
10.1002/adfm.201100854
10.1002/eem2.12062
10.1039/C6TA04273B
10.1039/C5TA00727E
10.1021/acs.nanolett.5b01969
10.1093/nsr/nwz140
10.1016/j.mattod.2017.11.001
10.1039/C6TA09822C
10.1002/aenm.202003911
10.1016/j.nanoen.2015.05.038
10.1016/j.chempr.2017.05.021
10.1021/acs.chemmater.6b05474
10.1016/j.jpowsour.2013.09.040
10.1021/jo010183n
10.1002/anie.201800453
10.1016/j.enchem.2020.100041
10.1021/acs.jpcc.1c06277
10.1016/j.carbon.2013.01.064
10.1039/b922733d
10.1021/acsenergylett.8b01761
10.1016/j.ensm.2016.07.006
10.1016/j.matlet.2015.07.033
10.1016/j.carbon.2021.01.006
10.1002/aenm.201600659
10.1002/adma.201405370
10.1039/C9TA08792C
10.1149/1.1393348
10.1002/er.6500
10.1002/slct.201900501
10.1039/C6TA04877C
10.1002/aenm.201901351
10.1002/smll.202106328
10.1016/j.mattod.2018.12.040
10.1039/C6TA00901H
10.1016/j.carbon.2015.09.032
10.1002/aenm.201703217
10.1002/adma.202003657
10.1039/c3ee40847g
10.1002/eem2.12146
10.1002/eem2.12126
10.1002/cey2.67
10.1016/j.jpowsour.2016.03.050
10.1016/j.electacta.2021.139730
10.1016/j.nanoen.2019.104038
10.1002/aenm.201702469
10.1039/c0ee00777c
10.1039/D1TA05755C
10.1002/cey2.39
10.1002/eem2.12070
10.1002/aenm.202002704
10.1021/acsomega.0c00422
10.1021/acs.chemmater.8b01390
10.1073/pnas.1602473113
10.1002/aenm.201501588
10.1002/eem2.12059
10.1002/aenm.202002981
10.1039/C7TA07860A
10.1021/nl3016957
10.1039/C8CS00581H
10.1002/smll.201701835
10.1039/C5TA08601A
10.1002/adfm.201901072
10.1002/aenm.201502217
10.1021/cr500192f
10.1149/2.0091514jes
10.1002/aenm.201602894
10.1002/aenm.201803342
10.1002/aenm.201802869
10.1002/eem2.12121
10.1016/j.ensm.2017.05.010
10.1038/181409a0
10.1002/cey2.35
10.1149/1.1379565
10.1016/j.carbon.2019.05.030
10.1016/j.ensm.2017.01.002
10.1002/adma.202107415
10.1016/j.nanoen.2015.10.034
10.1002/smtd.201800227
10.1016/j.nanoen.2020.105165
10.1016/j.nanoen.2019.103903
10.1002/smll.201907365
10.1038/451652a
10.1002/eem2.12091
10.1002/celc.201500412
10.1002/aenm.201800108
10.1039/C7RA06777A
10.1021/acsami.7b11420
10.1021/nn404640c
10.1016/0008-6223(64)90286-6
10.1149/1.1394081
10.1039/D1MA00315A
10.1039/C5EE01985K
10.1016/j.jcis.2019.11.085
10.1039/C6RA01870J
10.1002/ente.201900779
10.1016/j.progsolidstchem.2012.12.001
10.1021/am507679x
10.1039/c4cp00826j
10.1021/acsanm.0c00842
10.1002/aenm.201702724
10.1002/cey2.69
10.1016/S0378-7753(01)00887-4
10.1021/acs.chemmater.7b00376
10.1002/aenm.201602778
ContentType Journal Article
Copyright 2022 The Chemical Society of Japan & Wiley‐VCH GmbH
2022 The Chemical Society of Japan & Wiley-VCH GmbH.
Copyright_xml – notice: 2022 The Chemical Society of Japan & Wiley‐VCH GmbH
– notice: 2022 The Chemical Society of Japan & Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7QO
7T7
8FD
C1K
FR3
P64
7X8
DOI 10.1002/tcr.202200083
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList PubMed
Engineering Research Database

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1528-0691
EndPage n/a
ExternalDocumentID 35670500
10_1002_tcr_202200083
TCR202200083
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Fuzhou University
– fundername: Open Project Program of the State Key Laboratory of Photocatalysis on Energy and Environment
  funderid: SKLPEE-KF202206
– fundername: National Natural Science Foundation of China
  funderid: 52073252; 52002052
– fundername: Key Laboratory of Silicon Materials
  funderid: SKL2021-12
– fundername: Key Research and Development Project of Science and Technology Department of Sichuan Province
  funderid: 2022YFSY0004
– fundername: Zhejiang Provincial Natural Science Foundation of China
  funderid: LY22E020007
– fundername: Research Core of Tarbiat Modares University
  funderid: IG-39802
– fundername: National Natural Science Foundation of China
  grantid: 52073252
– fundername: National Natural Science Foundation of China
  grantid: 52002052
– fundername: Key Laboratory of Silicon Materials
  grantid: SKL2021-12
– fundername: Zhejiang Provincial Natural Science Foundation of China
  grantid: LY22E020007
– fundername: Open Project Program of the State Key Laboratory of Photocatalysis on Energy and Environment
  grantid: SKLPEE-KF202206
– fundername: Research Core of Tarbiat Modares University
  grantid: IG-39802
– fundername: Key Research and Development Project of Science and Technology Department of Sichuan Province
  grantid: 2022YFSY0004
GroupedDBID ---
.3N
.Y3
05W
0R~
10A
123
1OC
29B
31~
33P
3WU
4.4
50Y
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
53G
5VS
66C
702
7PT
8-1
8UM
A00
AAESR
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BMXJE
BROTX
BRXPI
BY8
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
F5P
FEDTE
G-S
G.N
GODZA
HF~
HGLYW
HVGLF
HZ~
IX1
J0M
LATKE
LAW
LC2
LC3
LEEKS
LH-
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MSFUL
MSSTM
MXFUL
MXSTM
MY~
N9A
O9-
OIG
P2W
P4D
Q11
QB0
QRW
R.K
ROL
RX1
SUPJJ
V2E
W99
WBKPD
WOHZO
WQJ
WXSBR
WYJ
WYUIH
XG1
XV2
ZZTAW
~IA
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
NPM
7QO
7T7
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
P64
7X8
ID FETCH-LOGICAL-c3693-d5f657663eb77a06bc26ace4c6df8c655c114ed96e98224b36b54cf4a94ae3213
IEDL.DBID DR2
ISSN 1527-8999
1528-0691
IngestDate Fri Jul 11 04:24:19 EDT 2025
Fri Jul 25 12:15:45 EDT 2025
Thu Apr 03 07:08:27 EDT 2025
Tue Jul 01 02:40:10 EDT 2025
Thu Apr 24 23:05:50 EDT 2025
Wed Jan 22 16:22:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords material design
synthetic carbon allotropes
sodium-ion batteries
carbon anodes
precursors
storage mechanism
Language English
License 2022 The Chemical Society of Japan & Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3693-d5f657663eb77a06bc26ace4c6df8c655c114ed96e98224b36b54cf4a94ae3213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-5976-5337
PMID 35670500
PQID 2725693883
PQPubID 1006501
PageCount 24
ParticipantIDs proquest_miscellaneous_2674006010
proquest_journals_2725693883
pubmed_primary_35670500
crossref_citationtrail_10_1002_tcr_202200083
crossref_primary_10_1002_tcr_202200083
wiley_primary_10_1002_tcr_202200083_TCR202200083
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2022
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: October 2022
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Chemical record
PublicationTitleAlternate Chem Rec
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2001; 100
1964; 1
2017; 7
2017; 8
2017; 3
2021; 125
2019; 10
2017; 46
2020; 16
2020; 562
2020; 11
2013; 7
2012; 12
2013; 6
2001; 148
2017; 9
2020; 8
2018; 6
2014; 248
2018; 8
2020; 5
2020; 4
2018; 3
2014; 5
2020; 3
2020; 2
2021; 34
2019; 64
2013; 57
2019; 65
2016; 316
2019; 23
2014; 16
2016; 113
2011; 21
2019; 29
2016; 314
2019; 151
2017; 123
2022; 404
2018; 31
2021; 9
2015; 162
2015; 2
2019; 7
2011; 334
2015; 15
2019; 9
2015; 6
2019; 4
2021; 45
2021; 2
2015; 3
2016; 19
2015; 95
2013; 41
2021; 182
1993; 140
2017; 29
2020; 77
2020; 32
2011; 4
2001; 66
2018; 21
2015; 8
2015; 7
2014; 114
1958; 181
2016; 4
2021; 14
2016; 5
2021; 13
2016; 6
2016; 7
2015; 27
2021; 11
2010; 46
2015; 159
2022; 3
2000; 147
2020
2021; 18
2019; 48
2017; 13
2022; 14
2021; 175
2008; 451
2018; 10
2018; 97
2018; 57
e_1_2_7_108_1
e_1_2_7_3_1
Lu Y. (e_1_2_7_123_1) 2020
e_1_2_7_104_1
e_1_2_7_127_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_100_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_26_1
e_1_2_7_49_1
Wen Y. (e_1_2_7_81_1) 2014; 5
e_1_2_7_116_1
e_1_2_7_90_1
e_1_2_7_112_1
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_75_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_79_1
e_1_2_7_109_1
e_1_2_7_4_1
e_1_2_7_128_1
e_1_2_7_105_1
e_1_2_7_8_1
e_1_2_7_124_1
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_82_1
e_1_2_7_120_1
e_1_2_7_63_1
He J. (e_1_2_7_91_1) 2017; 8
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_86_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_29_1
e_1_2_7_117_1
e_1_2_7_113_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_5_1
e_1_2_7_106_1
e_1_2_7_9_1
e_1_2_7_102_1
e_1_2_7_125_1
Huang M. (e_1_2_7_129_1) 2018; 6
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_121_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_28_1
e_1_2_7_118_1
e_1_2_7_114_1
e_1_2_7_73_1
e_1_2_7_110_1
e_1_2_7_50_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_107_1
e_1_2_7_80_1
e_1_2_7_126_1
e_1_2_7_103_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_122_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_119_1
e_1_2_7_115_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_111_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_130_1
e_1_2_7_38_1
References_xml – volume: 3
  start-page: 810
  year: 2022
  publication-title: Mater. Adv.
– volume: 314
  start-page: 102
  year: 2016
  publication-title: J. Power Sources
– volume: 97
  start-page: 170
  year: 2018
  publication-title: Prog. Mater. Sci.
– volume: 46
  start-page: 3256
  year: 2010
  publication-title: Chem. Commun.
– volume: 14
  start-page: 2244
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 140
  start-page: L169
  year: 1993
  publication-title: J. Electrochem. Soc.
– volume: 64
  year: 2019
  publication-title: Nano Energy
– volume: 175
  start-page: 585
  year: 2021
  publication-title: Carbon
– volume: 3
  start-page: 5625
  year: 2020
  publication-title: ACS Appl. Nano Mater.
– volume: 113
  start-page: 3735
  year: 2016
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 4
  start-page: 96
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 21
  start-page: 3859
  year: 2011
  publication-title: Adv. Funct. Mater.
– volume: 100
  start-page: 101
  year: 2001
  publication-title: J. Power Sources
– volume: 6
  start-page: 2338
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 10034
  year: 2020
  publication-title: ACS Omega
– volume: 123
  start-page: 727
  year: 2017
  publication-title: Carbon
– volume: 5
  start-page: 24353
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 1
  start-page: 321
  year: 1964
  publication-title: Carbon
– volume: 7
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 16465
  year: 2018
  publication-title: ivycite
– volume: 248
  start-page: 115
  year: 2014
  publication-title: J. Power Sources
– volume: 2
  start-page: 5881
  year: 2021
  publication-title: Mater. Adv.
– volume: 6
  start-page: 2839
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 3
  start-page: 2851
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 4
  start-page: 6610
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 29
  start-page: 3211
  year: 2017
  publication-title: Chem. Mater.
– volume: 4
  start-page: 13046
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 27
  start-page: 6848
  year: 2015
  publication-title: Chem. Mater.
– volume: 7
  start-page: 2626
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 45
  start-page: 9753
  year: 2021
  publication-title: Int. J. Energy Res.
– volume: 10
  start-page: 17942
  year: 2018
  publication-title: Nanoscale
– volume: 182
  start-page: 758
  year: 2021
  publication-title: Carbon
– volume: 151
  start-page: 1
  year: 2019
  publication-title: Carbon
– volume: 5
  start-page: 191
  year: 2016
  publication-title: Energy Storage Mater.
– volume: 181
  start-page: 409
  year: 1958
  publication-title: Nature
– volume: 2
  year: 2020
  publication-title: EnergyChem
– volume: 159
  start-page: 341
  year: 2015
  publication-title: Mater. Lett.
– volume: 77
  year: 2020
  publication-title: Nano Energy
– volume: 7
  start-page: 25609
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 148
  start-page: A803
  year: 2001
  publication-title: J. Electrochem. Soc.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 2
  start-page: 1917
  year: 2015
  publication-title: ChemElectroChem
– volume: 8
  start-page: 1604
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 3
  year: 2018
  publication-title: Small Methods
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 3
  start-page: 152
  year: 2017
  publication-title: Chem
– volume: 29
  start-page: 2314
  year: 2017
  publication-title: Chem. Mater.
– volume: 65
  year: 2019
  publication-title: Nano Energy
– volume: 451
  start-page: 652
  year: 2008
  publication-title: Nature
– volume: 13
  year: 2017
  publication-title: Small
– volume: 15
  start-page: 746
  year: 2015
  publication-title: Nano Energy
– volume: 4
  start-page: 2614
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 34
  year: 2021
  publication-title: Adv. Mater.
– volume: 3
  start-page: 166
  year: 2020
  publication-title: Energy Environ. Mater.
– volume: 125
  start-page: 19060
  year: 2021
  publication-title: J. Phys. Chem. C
– volume: 11
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 19
  start-page: 279
  year: 2016
  publication-title: Nano Energy
– volume: 15
  start-page: 5888
  year: 2015
  publication-title: Nano Lett.
– volume: 4
  start-page: 451
  year: 2020
  publication-title: Energy Environ. Mater.
– volume: 147
  start-page: 4428
  year: 2000
  publication-title: J. Electrochem. Soc.
– volume: 7
  start-page: 11004
  year: 2013
  publication-title: ACS Nano
– volume: 27
  start-page: 2042
  year: 2015
  publication-title: Adv. Mater.
– volume: 21
  start-page: 231
  year: 2018
  publication-title: Mater. Today
– volume: 2
  start-page: 540
  year: 2020
  publication-title: Carbon Energy
– volume: 8
  start-page: 2916
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 4
  start-page: 13183
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: 186
  year: 2020
  publication-title: Energy Environ. Mater.
– volume: 114
  start-page: 11636
  year: 2014
  publication-title: Chem. Rev.
– volume: 16
  year: 2020
  publication-title: Small
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 12
  start-page: 3783
  year: 2012
  publication-title: Nano Lett.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 40604
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  start-page: 294
  year: 2020
  publication-title: Carbon Energy
– volume: 162
  start-page: A2476
  year: 2015
  publication-title: J. Electrochem. Soc.
– volume: 5
  year: 2014
  publication-title: Nat. Commun.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 3
  start-page: 105
  year: 2020
  publication-title: Energy Environ. Mater.
– volume: 4
  start-page: 3551
  year: 2019
  publication-title: ChemistrySelect
– volume: 95
  start-page: 972
  year: 2015
  publication-title: Carbon
– volume: 16
  start-page: 15007
  year: 2014
  publication-title: Phys. Chem. Chem. Phys.
– volume: 3
  start-page: 10320
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 46
  start-page: 3529
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 4
  start-page: 502
  year: 2020
  publication-title: Energy Environ. Mater.
– volume: 3
  start-page: 529
  year: 2020
  publication-title: Energy Environ. Mater.
– volume: 48
  start-page: 1272
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 2
  start-page: 283
  year: 2020
  publication-title: Carbon Energy
– volume: 10
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 191
  year: 2019
  publication-title: Natl. Sci. Rev.
– volume: 2
  start-page: 6
  year: 2020
  publication-title: Carbon Energy
– volume: 7
  start-page: 130
  year: 2017
  publication-title: Energy Storage Mater.
– year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 25594
  year: 2016
  publication-title: RSC Adv.
– volume: 562
  start-page: 511
  year: 2020
  publication-title: J. Colloid Interface Sci.
– volume: 147
  start-page: 1271
  year: 2000
  publication-title: J. Electrochem. Soc.
– volume: 41
  start-page: 1
  year: 2013
  publication-title: Prog. Solid State Chem.
– volume: 18
  year: 2021
  publication-title: Small
– volume: 13
  start-page: 24070
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  start-page: 521
  year: 2020
  publication-title: Carbon Energy
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 161
  year: 2017
  publication-title: Energy Storage Mater.
– volume: 57
  start-page: 3968
  year: 2018
  publication-title: Angew. Chem. Int. Ed.
– volume: 404
  year: 2022
  publication-title: Electrochim. Acta
– volume: 5
  start-page: 2045
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 48
  start-page: 4655
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 7
  start-page: 36550
  year: 2017
  publication-title: RSC Adv.
– volume: 334
  start-page: 928
  year: 2011
  publication-title: Science
– volume: 31
  start-page: 658
  year: 2018
  publication-title: Chem. Mater.
– volume: 66
  start-page: 3893
  year: 2001
  publication-title: J. Org. Chem.
– volume: 6
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 23
  start-page: 87
  year: 2019
  publication-title: Mater. Today
– volume: 14
  start-page: 10457
  year: 2022
  publication-title: ACS Appl. Mater. Interfaces
– volume: 57
  start-page: 202
  year: 2013
  publication-title: Carbon
– volume: 316
  start-page: 132
  year: 2016
  publication-title: J. Power Sources
– volume: 7
  year: 2019
  publication-title: Energy Technol.
– volume: 9
  start-page: 20483
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 229
  year: 2020
  publication-title: Energy Environ. Mater.
– ident: e_1_2_7_34_1
  doi: 10.1039/C9CS00162J
– ident: e_1_2_7_107_1
  doi: 10.1002/aenm.201601519
– ident: e_1_2_7_27_1
  doi: 10.1021/acsami.1c24755
– ident: e_1_2_7_106_1
  doi: 10.1039/C8NR04631J
– ident: e_1_2_7_72_1
  doi: 10.1149/1.2221153
– ident: e_1_2_7_114_1
  doi: 10.1016/j.pmatsci.2018.04.006
– ident: e_1_2_7_113_1
  doi: 10.1021/acs.chemmater.5b03216
– ident: e_1_2_7_30_1
  doi: 10.1002/aenm.201602898
– ident: e_1_2_7_90_1
  doi: 10.1039/D0EE03916K
– ident: e_1_2_7_83_1
  doi: 10.1021/acsami.1c05928
– ident: e_1_2_7_46_1
  doi: 10.1016/j.carbon.2021.06.066
– ident: e_1_2_7_7_1
  doi: 10.1126/science.1212741
– ident: e_1_2_7_102_1
  doi: 10.1039/D1MA00731A
– ident: e_1_2_7_89_1
  doi: 10.1016/j.jpowsour.2016.03.014
– ident: e_1_2_7_68_1
  doi: 10.1016/j.carbon.2017.08.030
– ident: e_1_2_7_16_1
  doi: 10.1039/C6CS00776G
– ident: e_1_2_7_53_1
  doi: 10.1039/c3ee41444b
– start-page: 2007247
  year: 2020
  ident: e_1_2_7_123_1
  publication-title: Adv. Funct. Mater.
– ident: e_1_2_7_76_1
  doi: 10.1039/C9TA09984K
– ident: e_1_2_7_21_1
  doi: 10.1002/cey2.29
– ident: e_1_2_7_88_1
  doi: 10.1002/aenm.201703268
– ident: e_1_2_7_118_1
  doi: 10.1002/aenm.201903176
– ident: e_1_2_7_38_1
  doi: 10.1002/adfm.201100854
– ident: e_1_2_7_6_1
  doi: 10.1002/eem2.12062
– ident: e_1_2_7_112_1
  doi: 10.1039/C6TA04273B
– ident: e_1_2_7_78_1
  doi: 10.1039/C5TA00727E
– ident: e_1_2_7_45_1
  doi: 10.1021/acs.nanolett.5b01969
– ident: e_1_2_7_92_1
  doi: 10.1093/nsr/nwz140
– ident: e_1_2_7_31_1
  doi: 10.1016/j.mattod.2017.11.001
– ident: e_1_2_7_100_1
  doi: 10.1039/C6TA09822C
– ident: e_1_2_7_56_1
  doi: 10.1002/aenm.202003911
– ident: e_1_2_7_40_1
  doi: 10.1016/j.nanoen.2015.05.038
– ident: e_1_2_7_58_1
  doi: 10.1016/j.chempr.2017.05.021
– ident: e_1_2_7_109_1
  doi: 10.1021/acs.chemmater.6b05474
– ident: e_1_2_7_22_1
  doi: 10.1016/j.jpowsour.2013.09.040
– ident: e_1_2_7_96_1
  doi: 10.1021/jo010183n
– ident: e_1_2_7_104_1
  doi: 10.1002/anie.201800453
– ident: e_1_2_7_95_1
  doi: 10.1016/j.enchem.2020.100041
– ident: e_1_2_7_15_1
  doi: 10.1021/acs.jpcc.1c06277
– ident: e_1_2_7_66_1
  doi: 10.1016/j.carbon.2013.01.064
– ident: e_1_2_7_97_1
  doi: 10.1039/b922733d
– ident: e_1_2_7_116_1
  doi: 10.1021/acsenergylett.8b01761
– ident: e_1_2_7_67_1
  doi: 10.1016/j.ensm.2016.07.006
– ident: e_1_2_7_74_1
  doi: 10.1016/j.matlet.2015.07.033
– ident: e_1_2_7_82_1
  doi: 10.1016/j.carbon.2021.01.006
– ident: e_1_2_7_44_1
  doi: 10.1002/aenm.201600659
– ident: e_1_2_7_54_1
  doi: 10.1002/adma.201405370
– volume: 6
  start-page: 16465
  year: 2018
  ident: e_1_2_7_129_1
  publication-title: ivycite
– ident: e_1_2_7_99_1
  doi: 10.1039/C9TA08792C
– ident: e_1_2_7_110_1
  doi: 10.1149/1.1393348
– ident: e_1_2_7_19_1
  doi: 10.1002/er.6500
– ident: e_1_2_7_130_1
  doi: 10.1002/slct.201900501
– ident: e_1_2_7_69_1
  doi: 10.1039/C6TA04877C
– ident: e_1_2_7_117_1
  doi: 10.1002/aenm.201901351
– ident: e_1_2_7_105_1
  doi: 10.1002/smll.202106328
– ident: e_1_2_7_48_1
  doi: 10.1016/j.mattod.2018.12.040
– ident: e_1_2_7_51_1
  doi: 10.1039/C6TA00901H
– ident: e_1_2_7_75_1
  doi: 10.1016/j.carbon.2015.09.032
– ident: e_1_2_7_120_1
  doi: 10.1002/aenm.201703217
– ident: e_1_2_7_26_1
  doi: 10.1002/adma.202003657
– ident: e_1_2_7_17_1
  doi: 10.1039/c3ee40847g
– volume: 5
  year: 2014
  ident: e_1_2_7_81_1
  publication-title: Nat. Commun.
– ident: e_1_2_7_28_1
  doi: 10.1002/eem2.12146
– ident: e_1_2_7_13_1
  doi: 10.1002/eem2.12126
– ident: e_1_2_7_3_1
  doi: 10.1002/cey2.67
– ident: e_1_2_7_65_1
  doi: 10.1016/j.jpowsour.2016.03.050
– ident: e_1_2_7_10_1
  doi: 10.1016/j.electacta.2021.139730
– ident: e_1_2_7_64_1
  doi: 10.1016/j.nanoen.2019.104038
– ident: e_1_2_7_36_1
  doi: 10.1002/aenm.201702469
– ident: e_1_2_7_8_1
  doi: 10.1039/c0ee00777c
– ident: e_1_2_7_57_1
  doi: 10.1039/D1TA05755C
– ident: e_1_2_7_1_1
  doi: 10.1002/cey2.39
– ident: e_1_2_7_5_1
  doi: 10.1002/eem2.12070
– ident: e_1_2_7_47_1
  doi: 10.1002/aenm.202002704
– ident: e_1_2_7_98_1
  doi: 10.1021/acsomega.0c00422
– ident: e_1_2_7_115_1
  doi: 10.1021/acs.chemmater.8b01390
– ident: e_1_2_7_79_1
  doi: 10.1073/pnas.1602473113
– ident: e_1_2_7_43_1
  doi: 10.1002/aenm.201501588
– ident: e_1_2_7_14_1
  doi: 10.1002/eem2.12059
– ident: e_1_2_7_49_1
  doi: 10.1002/aenm.202002981
– ident: e_1_2_7_59_1
  doi: 10.1039/C7TA07860A
– ident: e_1_2_7_41_1
  doi: 10.1021/nl3016957
– ident: e_1_2_7_121_1
  doi: 10.1039/C8CS00581H
– ident: e_1_2_7_86_1
  doi: 10.1002/smll.201701835
– ident: e_1_2_7_37_1
  doi: 10.1039/C5TA08601A
– ident: e_1_2_7_126_1
  doi: 10.1002/adfm.201901072
– ident: e_1_2_7_55_1
  doi: 10.1002/aenm.201502217
– ident: e_1_2_7_18_1
  doi: 10.1021/cr500192f
– ident: e_1_2_7_23_1
  doi: 10.1021/acs.jpcc.1c06277
– ident: e_1_2_7_70_1
  doi: 10.1149/2.0091514jes
– ident: e_1_2_7_85_1
  doi: 10.1002/aenm.201602894
– ident: e_1_2_7_35_1
  doi: 10.1002/aenm.201803342
– ident: e_1_2_7_122_1
  doi: 10.1002/aenm.201802869
– ident: e_1_2_7_20_1
  doi: 10.1002/eem2.12121
– ident: e_1_2_7_61_1
  doi: 10.1016/j.ensm.2017.05.010
– volume: 8
  year: 2017
  ident: e_1_2_7_91_1
  publication-title: Nat. Commun.
– ident: e_1_2_7_80_1
  doi: 10.1038/181409a0
– ident: e_1_2_7_4_1
  doi: 10.1002/cey2.35
– ident: e_1_2_7_39_1
  doi: 10.1149/1.1379565
– ident: e_1_2_7_125_1
  doi: 10.1016/j.carbon.2019.05.030
– ident: e_1_2_7_87_1
  doi: 10.1016/j.ensm.2017.01.002
– ident: e_1_2_7_25_1
  doi: 10.1002/adma.202107415
– ident: e_1_2_7_111_1
  doi: 10.1016/j.nanoen.2015.10.034
– ident: e_1_2_7_32_1
  doi: 10.1002/smtd.201800227
– ident: e_1_2_7_11_1
  doi: 10.1016/j.nanoen.2020.105165
– ident: e_1_2_7_63_1
  doi: 10.1016/j.nanoen.2019.103903
– ident: e_1_2_7_101_1
  doi: 10.1002/smll.201907365
– ident: e_1_2_7_9_1
  doi: 10.1038/451652a
– ident: e_1_2_7_12_1
  doi: 10.1002/eem2.12091
– ident: e_1_2_7_71_1
  doi: 10.1002/celc.201500412
– ident: e_1_2_7_124_1
  doi: 10.1002/aenm.201800108
– ident: e_1_2_7_108_1
  doi: 10.1039/C7RA06777A
– ident: e_1_2_7_103_1
  doi: 10.1021/acsami.7b11420
– ident: e_1_2_7_42_1
  doi: 10.1021/nn404640c
– ident: e_1_2_7_84_1
  doi: 10.1016/0008-6223(64)90286-6
– ident: e_1_2_7_119_1
  doi: 10.1149/1.1394081
– ident: e_1_2_7_29_1
  doi: 10.1039/D1MA00315A
– ident: e_1_2_7_60_1
  doi: 10.1039/C5EE01985K
– ident: e_1_2_7_24_1
  doi: 10.1016/j.jcis.2019.11.085
– ident: e_1_2_7_93_1
  doi: 10.1039/C6RA01870J
– ident: e_1_2_7_62_1
  doi: 10.1002/ente.201900779
– ident: e_1_2_7_94_1
  doi: 10.1016/j.progsolidstchem.2012.12.001
– ident: e_1_2_7_127_1
  doi: 10.1021/am507679x
– ident: e_1_2_7_33_1
  doi: 10.1039/c4cp00826j
– ident: e_1_2_7_128_1
  doi: 10.1021/acsanm.0c00842
– ident: e_1_2_7_50_1
  doi: 10.1002/aenm.201702724
– ident: e_1_2_7_2_1
  doi: 10.1002/cey2.69
– ident: e_1_2_7_77_1
  doi: 10.1016/S0378-7753(01)00887-4
– ident: e_1_2_7_52_1
  doi: 10.1021/acs.chemmater.7b00376
– ident: e_1_2_7_73_1
  doi: 10.1002/aenm.201602778
SSID ssj0011477
Score 2.638216
SecondaryResourceType review_article
Snippet Sodium‐ion batteries (SIBs) have gained tremendous attention for large‐scale energy storage applications due to the natural abundance, low cost, and even...
Sodium-ion batteries (SIBs) have gained tremendous attention for large-scale energy storage applications due to the natural abundance, low cost, and even...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202200083
SubjectTerms Allotropy
Anodes
Carbon
carbon anodes
Carbonaceous materials
Electrode materials
Energy storage
Geographical distribution
Ions
Lithium
Lithium-ion batteries
material design
Physical properties
Porosity
precursors
Sodium
Sodium-ion batteries
Storage batteries
storage mechanism
synthetic carbon allotropes
Title Recent Advances in Carbon Anodes for Sodium‐Ion Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ftcr.202200083
https://www.ncbi.nlm.nih.gov/pubmed/35670500
https://www.proquest.com/docview/2725693883
https://www.proquest.com/docview/2674006010
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7Ei158P-qLCOLJtNvsIwmeSlFU0EOt0FvcV6CoibTNxZM_wd_oL3E2m0aqKIi3ZGeXbGYf800y-w1CRzjFRistfYKN8qmKqC9iHftKtYNUtali2B5wvr7hF3f0asAGVZ5TexbG8UPUH9zsyij3a7vAhRy3PklDYaMC9y4IShQBe7CN17KgqFfTRwHULzMv2sytPvgVccWxCe1bM61nbdI3oDmLW0vDc76M7qdddvEmD81iIpvq5Qub4z_eaQUtVaDU67hZtIrmTLaGFrrTXHDr6BTQJVgnr-MiBsbeMPO6YiTzzOtkuYYCwL7eba6HxdP769sllDviTvDDN9Dd-Vm_e-FXaRd8RXhMfM1SDl4IJ0aGocBcqoALZajiOo0UZ0yBYo2OubHcf1QSLhlVKRUxFYYEbbKJ5rM8M9vIA8MH7o3QACMFTYWOMKESfKyURTLAhjXQyVTxiao4yW1qjMfEsSkHCWgkqTXSQMd19WdHxvFTxb3pKCbVmhwnQQjwLiaRFR_WYlCk_UUiMpMXUIeHtKSowQ205Ua_fhJhPMQMgwSXY_h7F5J-t1ff7Py9yS5atNcubnAPzU9GhdkH_DORB-Uk_wCwIPrK
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTtxAEC0ROJALYQ2TsBgJccLQ415sK6fRABrWAwwSN6s3SyhgRzBzyYlP4BvzJal2ewwDAglxdHW33a5e6lUvrwA2SU6s0UaFlFgdMp2wUKYmDbVuR7luM82Ju-B8eiZ6l-zoil89u8Xv-SGaBTc3Mqr52g1wtyC9-8QaijMV-ndRVMGILzDlono79vy984ZACsF-FXvRxW4N0bNIa5ZNfMHuWPFxq_QKao4j18r0HHwDOaq0P3Hye2c4UDv67ws-x8_81SzM1Lg06PiONAcTtpiH6e4oHNwC_EKAiQYq6PhDA_fBdRF05Z0qi6BTlAYFCH-Di9JcD2__PTweotxzd6IrvgiXB_v9bi-sIy-EmoqUhobnAh0RQa2KY0mE0pGQ2jItTJ5owblGzVqTCuvo_5iiQnGmcyZTJi2N2nQJJouysMsQoO1DD0caRJKS5dIkhDKFblbOExURy1uwPdJ8pmtachcd4ybzhMpRhhrJGo20YKvJ_sfzcbyVcWXUjFk9LO-zKEaEl9LEJW80yahIt0siC1sOMY-IWcVSQ1rw3Td_8yXKRUw4wRRSNeL7Vcj63fPm4cfHi6zDdK9_epKdHJ4d_4SvTu6PEa7A5OBuaFcRDg3UWtXj_wNtk_7m
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT9tAFH6iQWq5tHQPDa0rVT3VZOJZbItTFIhIF1RRkLiZ2SxFgB1luXDiJ_Ab-SW88ThGaVWkqkfPYo_fLO979sz3AXwiObFGGxVSYnXIdMJCmZo01LoX5brHNCfugPOPQ3Fwwr6e8tNa59SdhfH8EM0HNzczqvXaTfCJybv3pKG4UGF4F0UVingE60yQ1Gk37B01_FGI9SvpRSfdGmJgkdYkm3iD7kr1Vaf0B9JcBa6V5xk-g7Nlm_2Gk_OdxVzt6Kvf6Bz_46U24WmNSoO-H0bPYc0WL-DJYCkG9xJ2EV6iewr6fsvALBgXwUBOVVkE_aI0mIDgN_hVmvHi8vb6ZoTpnrkTA_FXcDLcPx4chLXuQqipSGloeC4wDBHUqjiWRCgdCakt08LkiRacazSsNamwjvyPKSoUZzpnMmXS0qhHX0OrKAv7FgL0fBjfSIM4UrJcmoRQpjDIynmiImJ5G74sDZ_pmpTcaWNcZJ5OOcrQIlljkTZ8bopPPBvH3wp2lr2Y1ZNylkUx4ruUJi77Y5ONhnT_SGRhywWWETGrOGpIG9743m-eRLmICSeYQ6o-fLgJ2fHgqLnY-vcqH-Dxz71h9n10-O0dbLhkv4ewA635dGG3EQvN1ftqvN8BZpr9lQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances+in+Carbon+Anodes+for+Sodium%E2%80%90Ion+Batteries&rft.jtitle=Chemical+record&rft.au=Zhang%2C+Tengfei&rft.au=Li%2C+Chen&rft.au=Wang%2C+Fan&rft.au=Noori%2C+Abolhassan&rft.date=2022-10-01&rft.issn=1527-8999&rft.eissn=1528-0691&rft.volume=22&rft.issue=10&rft_id=info:doi/10.1002%2Ftcr.202200083&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_tcr_202200083
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1527-8999&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1527-8999&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1527-8999&client=summon