Recent Advances in Carbon Anodes for Sodium‐Ion Batteries
Sodium‐ion batteries (SIBs) have gained tremendous attention for large‐scale energy storage applications due to the natural abundance, low cost, and even geographic distribution of sodium resources as well as a similar working mechanism to lithium‐ion batteries (LIBs). One of the critical bottleneck...
Saved in:
Published in | Chemical record Vol. 22; no. 10; pp. e202200083 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Sodium‐ion batteries (SIBs) have gained tremendous attention for large‐scale energy storage applications due to the natural abundance, low cost, and even geographic distribution of sodium resources as well as a similar working mechanism to lithium‐ion batteries (LIBs). One of the critical bottlenecks, however, is the design of high‐performance and low‐cost anode materials. Graphite anode that has dominated the market share of LIBs does not properly intercalate sodium ions. However, other carbonaceous materials are still considered as one of the most promising anode materials for SIBs in virtue of their high electronic conductivity, abundant active sites, hierarchical porosity, and excellent mechanical stability. In this review, we have tried to summarize the latest progresses made on the development of carbon‐based negative electrodes (including hard carbons, soft carbons, and synthetic carbon allotropes) for SIBs. We also have provided a comprehensive understanding of their physical properties, the sodium ions storage mechanisms, and the improvement measures to cope with the current challenges. In addition, we have proposed future research directions for SIBs that will provide important insights into further development of carbon‐based materials for SIBs.
Recent progresses on the development of carbon‐based negative electrodes including graphic, amorphous carbon and nanocarbon were summarized for sodium ion batteries. A comprehensive understanding of their physical properties, the sodium ions storage mechanisms, and the improvement measures to cope with the current challenges were provided. |
---|---|
AbstractList | Sodium-ion batteries (SIBs) have gained tremendous attention for large-scale energy storage applications due to the natural abundance, low cost, and even geographic distribution of sodium resources as well as a similar working mechanism to lithium-ion batteries (LIBs). One of the critical bottlenecks, however, is the design of high-performance and low-cost anode materials. Graphite anode that has dominated the market share of LIBs does not properly intercalate sodium ions. However, other carbonaceous materials are still considered as one of the most promising anode materials for SIBs in virtue of their high electronic conductivity, abundant active sites, hierarchical porosity, and excellent mechanical stability. In this review, we have tried to summarize the latest progresses made on the development of carbon-based negative electrodes (including hard carbons, soft carbons, and synthetic carbon allotropes) for SIBs. We also have provided a comprehensive understanding of their physical properties, the sodium ions storage mechanisms, and the improvement measures to cope with the current challenges. In addition, we have proposed future research directions for SIBs that will provide important insights into further development of carbon-based materials for SIBs. Sodium‐ion batteries (SIBs) have gained tremendous attention for large‐scale energy storage applications due to the natural abundance, low cost, and even geographic distribution of sodium resources as well as a similar working mechanism to lithium‐ion batteries (LIBs). One of the critical bottlenecks, however, is the design of high‐performance and low‐cost anode materials. Graphite anode that has dominated the market share of LIBs does not properly intercalate sodium ions. However, other carbonaceous materials are still considered as one of the most promising anode materials for SIBs in virtue of their high electronic conductivity, abundant active sites, hierarchical porosity, and excellent mechanical stability. In this review, we have tried to summarize the latest progresses made on the development of carbon‐based negative electrodes (including hard carbons, soft carbons, and synthetic carbon allotropes) for SIBs. We also have provided a comprehensive understanding of their physical properties, the sodium ions storage mechanisms, and the improvement measures to cope with the current challenges. In addition, we have proposed future research directions for SIBs that will provide important insights into further development of carbon‐based materials for SIBs. Recent progresses on the development of carbon‐based negative electrodes including graphic, amorphous carbon and nanocarbon were summarized for sodium ion batteries. A comprehensive understanding of their physical properties, the sodium ions storage mechanisms, and the improvement measures to cope with the current challenges were provided. Sodium-ion batteries (SIBs) have gained tremendous attention for large-scale energy storage applications due to the natural abundance, low cost, and even geographic distribution of sodium resources as well as a similar working mechanism to lithium-ion batteries (LIBs). One of the critical bottlenecks, however, is the design of high-performance and low-cost anode materials. Graphite anode that has dominated the market share of LIBs does not properly intercalate sodium ions. However, other carbonaceous materials are still considered as one of the most promising anode materials for SIBs in virtue of their high electronic conductivity, abundant active sites, hierarchical porosity, and excellent mechanical stability. In this review, we have tried to summarize the latest progresses made on the development of carbon-based negative electrodes (including hard carbons, soft carbons, and synthetic carbon allotropes) for SIBs. We also have provided a comprehensive understanding of their physical properties, the sodium ions storage mechanisms, and the improvement measures to cope with the current challenges. In addition, we have proposed future research directions for SIBs that will provide important insights into further development of carbon-based materials for SIBs.Sodium-ion batteries (SIBs) have gained tremendous attention for large-scale energy storage applications due to the natural abundance, low cost, and even geographic distribution of sodium resources as well as a similar working mechanism to lithium-ion batteries (LIBs). One of the critical bottlenecks, however, is the design of high-performance and low-cost anode materials. Graphite anode that has dominated the market share of LIBs does not properly intercalate sodium ions. However, other carbonaceous materials are still considered as one of the most promising anode materials for SIBs in virtue of their high electronic conductivity, abundant active sites, hierarchical porosity, and excellent mechanical stability. In this review, we have tried to summarize the latest progresses made on the development of carbon-based negative electrodes (including hard carbons, soft carbons, and synthetic carbon allotropes) for SIBs. We also have provided a comprehensive understanding of their physical properties, the sodium ions storage mechanisms, and the improvement measures to cope with the current challenges. In addition, we have proposed future research directions for SIBs that will provide important insights into further development of carbon-based materials for SIBs. |
Author | Zhang, Tengfei Li, Chen Mousavi, Mir F. Zhang, Yongqi Xia, Xinhui Noori, Abolhassan Wang, Fan |
Author_xml | – sequence: 1 givenname: Tengfei surname: Zhang fullname: Zhang, Tengfei organization: University of Electronic Science and Technology of China – sequence: 2 givenname: Chen surname: Li fullname: Li, Chen organization: University of Electronic Science and Technology of China – sequence: 3 givenname: Fan surname: Wang fullname: Wang, Fan organization: Harbin University of Science and Technology – sequence: 4 givenname: Abolhassan surname: Noori fullname: Noori, Abolhassan organization: Tarbiat Modares University – sequence: 5 givenname: Mir F. surname: Mousavi fullname: Mousavi, Mir F. email: mfmousavi@yahoo.com organization: Tarbiat Modares University – sequence: 6 givenname: Xinhui orcidid: 0000-0002-5976-5337 surname: Xia fullname: Xia, Xinhui email: hellocmxwy@126.com organization: Fuzhou University – sequence: 7 givenname: Yongqi surname: Zhang fullname: Zhang, Yongqi email: yqzhang@uestc.edu.cn organization: University of Electronic Science and Technology of China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35670500$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kEFLHTEUhYMoPrUuuy0D3XQzz5tkkszQ1fNRW0EQrK5DJnMH8piX2GSmxZ0_ob-xv8ToeyoIdXUvh-8cDueQ7PrgkZCPFOYUgJ2MNs4ZMAYANd8hB1SwugTZ0N2nX5V10zQzcpjSCoDSSql9MuNCKhAAB-TrFVr0Y7HofhtvMRXOF0sT2-CLhQ9dFvoQi5-hc9P63_3f86yfmnHE6DB9IHu9GRIeb-8RuTn7dr38UV5cfj9fLi5Ky2XDy070UigpObZKGZCtZdJYrKzs-tpKIWyuhV0jsakZq1ouW1HZvjJNZZAzyo_Il03ubQy_JkyjXrtkcRiMxzAlzaSqACRQyOjnN-gqTNHndpopJnKduuaZ-rSlpnaNnb6Nbm3inX6eJQN8A9gYUorYa-tGM7rgx2jcoCnox_F1Hl-_jJ9d5RvXc_D_eLXh_7gB796H9fXy6tX5AJxlk_g |
CitedBy_id | crossref_primary_10_1002_adma_202212186 crossref_primary_10_1007_s10008_023_05448_3 crossref_primary_10_1002_adfm_202314160 crossref_primary_10_1002_smll_202311197 crossref_primary_10_1002_slct_202404647 crossref_primary_10_3390_molecules28186464 crossref_primary_10_1016_j_apsusc_2023_156673 crossref_primary_10_20517_energymater_2024_217 crossref_primary_10_1016_j_cej_2023_143209 crossref_primary_10_1007_s11664_023_10503_w crossref_primary_10_1002_cey2_470 crossref_primary_10_1016_j_jelechem_2023_117596 crossref_primary_10_3390_nano13050846 crossref_primary_10_1039_D4CP04214J crossref_primary_10_1002_smll_202307579 crossref_primary_10_1016_j_cej_2024_153418 crossref_primary_10_1002_chem_202402794 crossref_primary_10_1007_s11694_024_02604_9 crossref_primary_10_1002_aenm_202302830 crossref_primary_10_1021_acsanm_4c01637 crossref_primary_10_1002_aenm_202405294 crossref_primary_10_1021_acs_energyfuels_3c02609 crossref_primary_10_1016_j_cej_2024_151114 crossref_primary_10_1007_s11664_023_10793_0 crossref_primary_10_1039_D3DT02449K crossref_primary_10_1002_smll_202406497 crossref_primary_10_1002_smll_202412449 crossref_primary_10_1002_tcr_202300206 crossref_primary_10_1021_acssuschemeng_3c06652 crossref_primary_10_1002_cey2_560 crossref_primary_10_1002_smtd_202301277 crossref_primary_10_3866_PKU_WHXB202307006 crossref_primary_10_1021_acsanm_2c03179 crossref_primary_10_1021_acsomega_4c09865 crossref_primary_10_1016_j_cej_2024_149432 crossref_primary_10_1002_eem2_12645 crossref_primary_10_1007_s10008_023_05615_6 crossref_primary_10_1002_smll_202208164 crossref_primary_10_3390_batteries11040123 crossref_primary_10_1002_aenm_202304229 crossref_primary_10_1002_smll_202306381 crossref_primary_10_1016_j_cej_2024_150316 crossref_primary_10_3390_batteries10050157 crossref_primary_10_3390_molecules28124753 crossref_primary_10_1016_j_apsusc_2023_159121 crossref_primary_10_1002_inf2_12636 crossref_primary_10_1007_s00339_023_07074_2 crossref_primary_10_1002_smll_202408212 crossref_primary_10_3390_inorganics10110198 crossref_primary_10_1002_ange_202300599 crossref_primary_10_1039_D3CP04892F crossref_primary_10_1002_adfm_202302277 crossref_primary_10_20517_energymater_2024_63 crossref_primary_10_1007_s11664_024_11485_z crossref_primary_10_1007_s11664_022_09908_w crossref_primary_10_1088_1361_6528_accea8 crossref_primary_10_1002_chem_202401321 crossref_primary_10_1002_smll_202305019 crossref_primary_10_1007_s12274_023_5707_x crossref_primary_10_1021_acs_langmuir_2c02575 crossref_primary_10_1021_acsanm_4c01276 crossref_primary_10_1021_acs_energyfuels_3c00884 crossref_primary_10_1002_chem_202304168 crossref_primary_10_1002_adfm_202214987 crossref_primary_10_1016_j_jechem_2023_01_025 crossref_primary_10_1039_D3DT02407E crossref_primary_10_1021_acsaem_3c02219 crossref_primary_10_3390_polym16111452 crossref_primary_10_1007_s11664_024_11652_2 crossref_primary_10_1021_acs_nanolett_4c00842 crossref_primary_10_1021_acs_nanolett_4c04569 crossref_primary_10_1039_D3CS00601H crossref_primary_10_1016_j_mattod_2024_01_002 crossref_primary_10_3390_c9040092 crossref_primary_10_3390_molecules30051003 crossref_primary_10_3390_encyclopedia2030110 crossref_primary_10_1002_adma_202400245 crossref_primary_10_1021_acsenergylett_4c01982 crossref_primary_10_1007_s11664_024_11495_x crossref_primary_10_1039_D4TA08291E crossref_primary_10_1002_aenm_202303871 crossref_primary_10_1002_anie_202300599 crossref_primary_10_1002_smll_202307026 crossref_primary_10_3390_batteries8090114 crossref_primary_10_1007_s11664_022_10026_w crossref_primary_10_1007_s11664_023_10446_2 |
Cites_doi | 10.1039/C9CS00162J 10.1002/aenm.201601519 10.1021/acsami.1c24755 10.1039/C8NR04631J 10.1149/1.2221153 10.1016/j.pmatsci.2018.04.006 10.1021/acs.chemmater.5b03216 10.1002/aenm.201602898 10.1039/D0EE03916K 10.1021/acsami.1c05928 10.1016/j.carbon.2021.06.066 10.1126/science.1212741 10.1039/D1MA00731A 10.1016/j.jpowsour.2016.03.014 10.1016/j.carbon.2017.08.030 10.1039/C6CS00776G 10.1039/c3ee41444b 10.1039/C9TA09984K 10.1002/cey2.29 10.1002/aenm.201703268 10.1002/aenm.201903176 10.1002/adfm.201100854 10.1002/eem2.12062 10.1039/C6TA04273B 10.1039/C5TA00727E 10.1021/acs.nanolett.5b01969 10.1093/nsr/nwz140 10.1016/j.mattod.2017.11.001 10.1039/C6TA09822C 10.1002/aenm.202003911 10.1016/j.nanoen.2015.05.038 10.1016/j.chempr.2017.05.021 10.1021/acs.chemmater.6b05474 10.1016/j.jpowsour.2013.09.040 10.1021/jo010183n 10.1002/anie.201800453 10.1016/j.enchem.2020.100041 10.1021/acs.jpcc.1c06277 10.1016/j.carbon.2013.01.064 10.1039/b922733d 10.1021/acsenergylett.8b01761 10.1016/j.ensm.2016.07.006 10.1016/j.matlet.2015.07.033 10.1016/j.carbon.2021.01.006 10.1002/aenm.201600659 10.1002/adma.201405370 10.1039/C9TA08792C 10.1149/1.1393348 10.1002/er.6500 10.1002/slct.201900501 10.1039/C6TA04877C 10.1002/aenm.201901351 10.1002/smll.202106328 10.1016/j.mattod.2018.12.040 10.1039/C6TA00901H 10.1016/j.carbon.2015.09.032 10.1002/aenm.201703217 10.1002/adma.202003657 10.1039/c3ee40847g 10.1002/eem2.12146 10.1002/eem2.12126 10.1002/cey2.67 10.1016/j.jpowsour.2016.03.050 10.1016/j.electacta.2021.139730 10.1016/j.nanoen.2019.104038 10.1002/aenm.201702469 10.1039/c0ee00777c 10.1039/D1TA05755C 10.1002/cey2.39 10.1002/eem2.12070 10.1002/aenm.202002704 10.1021/acsomega.0c00422 10.1021/acs.chemmater.8b01390 10.1073/pnas.1602473113 10.1002/aenm.201501588 10.1002/eem2.12059 10.1002/aenm.202002981 10.1039/C7TA07860A 10.1021/nl3016957 10.1039/C8CS00581H 10.1002/smll.201701835 10.1039/C5TA08601A 10.1002/adfm.201901072 10.1002/aenm.201502217 10.1021/cr500192f 10.1149/2.0091514jes 10.1002/aenm.201602894 10.1002/aenm.201803342 10.1002/aenm.201802869 10.1002/eem2.12121 10.1016/j.ensm.2017.05.010 10.1038/181409a0 10.1002/cey2.35 10.1149/1.1379565 10.1016/j.carbon.2019.05.030 10.1016/j.ensm.2017.01.002 10.1002/adma.202107415 10.1016/j.nanoen.2015.10.034 10.1002/smtd.201800227 10.1016/j.nanoen.2020.105165 10.1016/j.nanoen.2019.103903 10.1002/smll.201907365 10.1038/451652a 10.1002/eem2.12091 10.1002/celc.201500412 10.1002/aenm.201800108 10.1039/C7RA06777A 10.1021/acsami.7b11420 10.1021/nn404640c 10.1016/0008-6223(64)90286-6 10.1149/1.1394081 10.1039/D1MA00315A 10.1039/C5EE01985K 10.1016/j.jcis.2019.11.085 10.1039/C6RA01870J 10.1002/ente.201900779 10.1016/j.progsolidstchem.2012.12.001 10.1021/am507679x 10.1039/c4cp00826j 10.1021/acsanm.0c00842 10.1002/aenm.201702724 10.1002/cey2.69 10.1016/S0378-7753(01)00887-4 10.1021/acs.chemmater.7b00376 10.1002/aenm.201602778 |
ContentType | Journal Article |
Copyright | 2022 The Chemical Society of Japan & Wiley‐VCH GmbH 2022 The Chemical Society of Japan & Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 The Chemical Society of Japan & Wiley‐VCH GmbH – notice: 2022 The Chemical Society of Japan & Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7QO 7T7 8FD C1K FR3 P64 7X8 |
DOI | 10.1002/tcr.202200083 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Engineering Research Database Biotechnology Research Abstracts Technology Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | PubMed Engineering Research Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1528-0691 |
EndPage | n/a |
ExternalDocumentID | 35670500 10_1002_tcr_202200083 TCR202200083 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: Fuzhou University – fundername: Open Project Program of the State Key Laboratory of Photocatalysis on Energy and Environment funderid: SKLPEE-KF202206 – fundername: National Natural Science Foundation of China funderid: 52073252; 52002052 – fundername: Key Laboratory of Silicon Materials funderid: SKL2021-12 – fundername: Key Research and Development Project of Science and Technology Department of Sichuan Province funderid: 2022YFSY0004 – fundername: Zhejiang Provincial Natural Science Foundation of China funderid: LY22E020007 – fundername: Research Core of Tarbiat Modares University funderid: IG-39802 – fundername: National Natural Science Foundation of China grantid: 52073252 – fundername: National Natural Science Foundation of China grantid: 52002052 – fundername: Key Laboratory of Silicon Materials grantid: SKL2021-12 – fundername: Zhejiang Provincial Natural Science Foundation of China grantid: LY22E020007 – fundername: Open Project Program of the State Key Laboratory of Photocatalysis on Energy and Environment grantid: SKLPEE-KF202206 – fundername: Research Core of Tarbiat Modares University grantid: IG-39802 – fundername: Key Research and Development Project of Science and Technology Department of Sichuan Province grantid: 2022YFSY0004 |
GroupedDBID | --- .3N .Y3 05W 0R~ 10A 123 1OC 29B 31~ 33P 3WU 4.4 50Y 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 53G 5VS 66C 702 7PT 8-1 8UM A00 AAESR AAHHS AAHQN AAMNL AANHP AANLZ AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ASPBG AVWKF AZFZN AZVAB BDRZF BFHJK BMXJE BROTX BRXPI BY8 CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD F5P FEDTE G-S G.N GODZA HF~ HGLYW HVGLF HZ~ IX1 J0M LATKE LAW LC2 LC3 LEEKS LH- LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MSFUL MSSTM MXFUL MXSTM MY~ N9A O9- OIG P2W P4D Q11 QB0 QRW R.K ROL RX1 SUPJJ V2E W99 WBKPD WOHZO WQJ WXSBR WYJ WYUIH XG1 XV2 ZZTAW ~IA AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION NPM 7QO 7T7 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 P64 7X8 |
ID | FETCH-LOGICAL-c3693-d5f657663eb77a06bc26ace4c6df8c655c114ed96e98224b36b54cf4a94ae3213 |
IEDL.DBID | DR2 |
ISSN | 1527-8999 1528-0691 |
IngestDate | Fri Jul 11 04:24:19 EDT 2025 Fri Jul 25 12:15:45 EDT 2025 Thu Apr 03 07:08:27 EDT 2025 Tue Jul 01 02:40:10 EDT 2025 Thu Apr 24 23:05:50 EDT 2025 Wed Jan 22 16:22:29 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | material design synthetic carbon allotropes sodium-ion batteries carbon anodes precursors storage mechanism |
Language | English |
License | 2022 The Chemical Society of Japan & Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3693-d5f657663eb77a06bc26ace4c6df8c655c114ed96e98224b36b54cf4a94ae3213 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-5976-5337 |
PMID | 35670500 |
PQID | 2725693883 |
PQPubID | 1006501 |
PageCount | 24 |
ParticipantIDs | proquest_miscellaneous_2674006010 proquest_journals_2725693883 pubmed_primary_35670500 crossref_citationtrail_10_1002_tcr_202200083 crossref_primary_10_1002_tcr_202200083 wiley_primary_10_1002_tcr_202200083_TCR202200083 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2022 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: October 2022 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Chemical record |
PublicationTitleAlternate | Chem Rec |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2001; 100 1964; 1 2017; 7 2017; 8 2017; 3 2021; 125 2019; 10 2017; 46 2020; 16 2020; 562 2020; 11 2013; 7 2012; 12 2013; 6 2001; 148 2017; 9 2020; 8 2018; 6 2014; 248 2018; 8 2020; 5 2020; 4 2018; 3 2014; 5 2020; 3 2020; 2 2021; 34 2019; 64 2013; 57 2019; 65 2016; 316 2019; 23 2014; 16 2016; 113 2011; 21 2019; 29 2016; 314 2019; 151 2017; 123 2022; 404 2018; 31 2021; 9 2015; 162 2015; 2 2019; 7 2011; 334 2015; 15 2019; 9 2015; 6 2019; 4 2021; 45 2021; 2 2015; 3 2016; 19 2015; 95 2013; 41 2021; 182 1993; 140 2017; 29 2020; 77 2020; 32 2011; 4 2001; 66 2018; 21 2015; 8 2015; 7 2014; 114 1958; 181 2016; 4 2021; 14 2016; 5 2021; 13 2016; 6 2016; 7 2015; 27 2021; 11 2010; 46 2015; 159 2022; 3 2000; 147 2020 2021; 18 2019; 48 2017; 13 2022; 14 2021; 175 2008; 451 2018; 10 2018; 97 2018; 57 e_1_2_7_108_1 e_1_2_7_3_1 Lu Y. (e_1_2_7_123_1) 2020 e_1_2_7_104_1 e_1_2_7_127_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_100_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_26_1 e_1_2_7_49_1 Wen Y. (e_1_2_7_81_1) 2014; 5 e_1_2_7_116_1 e_1_2_7_90_1 e_1_2_7_112_1 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_75_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_79_1 e_1_2_7_109_1 e_1_2_7_4_1 e_1_2_7_128_1 e_1_2_7_105_1 e_1_2_7_8_1 e_1_2_7_124_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_82_1 e_1_2_7_120_1 e_1_2_7_63_1 He J. (e_1_2_7_91_1) 2017; 8 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_86_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_29_1 e_1_2_7_117_1 e_1_2_7_113_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_5_1 e_1_2_7_106_1 e_1_2_7_9_1 e_1_2_7_102_1 e_1_2_7_125_1 Huang M. (e_1_2_7_129_1) 2018; 6 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_121_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_28_1 e_1_2_7_118_1 e_1_2_7_114_1 e_1_2_7_73_1 e_1_2_7_110_1 e_1_2_7_50_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_126_1 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_122_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_119_1 e_1_2_7_115_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_111_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_130_1 e_1_2_7_38_1 |
References_xml | – volume: 3 start-page: 810 year: 2022 publication-title: Mater. Adv. – volume: 314 start-page: 102 year: 2016 publication-title: J. Power Sources – volume: 97 start-page: 170 year: 2018 publication-title: Prog. Mater. Sci. – volume: 46 start-page: 3256 year: 2010 publication-title: Chem. Commun. – volume: 14 start-page: 2244 year: 2021 publication-title: Energy Environ. Sci. – volume: 140 start-page: L169 year: 1993 publication-title: J. Electrochem. Soc. – volume: 64 year: 2019 publication-title: Nano Energy – volume: 175 start-page: 585 year: 2021 publication-title: Carbon – volume: 3 start-page: 5625 year: 2020 publication-title: ACS Appl. Nano Mater. – volume: 113 start-page: 3735 year: 2016 publication-title: Proc. Natl. Acad. Sci. USA – volume: 4 start-page: 96 year: 2016 publication-title: J. Mater. Chem. A – volume: 21 start-page: 3859 year: 2011 publication-title: Adv. Funct. Mater. – volume: 100 start-page: 101 year: 2001 publication-title: J. Power Sources – volume: 6 start-page: 2338 year: 2013 publication-title: Energy Environ. Sci. – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 10034 year: 2020 publication-title: ACS Omega – volume: 123 start-page: 727 year: 2017 publication-title: Carbon – volume: 5 start-page: 24353 year: 2017 publication-title: J. Mater. Chem. A – volume: 1 start-page: 321 year: 1964 publication-title: Carbon – volume: 7 year: 2016 publication-title: Adv. Energy Mater. – volume: 6 start-page: 16465 year: 2018 publication-title: ivycite – volume: 248 start-page: 115 year: 2014 publication-title: J. Power Sources – volume: 2 start-page: 5881 year: 2021 publication-title: Mater. Adv. – volume: 6 start-page: 2839 year: 2013 publication-title: Energy Environ. Sci. – volume: 3 start-page: 2851 year: 2018 publication-title: ACS Energy Lett. – volume: 4 start-page: 6610 year: 2016 publication-title: J. Mater. Chem. A – volume: 29 start-page: 3211 year: 2017 publication-title: Chem. Mater. – volume: 4 start-page: 13046 year: 2016 publication-title: J. Mater. Chem. A – volume: 27 start-page: 6848 year: 2015 publication-title: Chem. Mater. – volume: 7 start-page: 2626 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 45 start-page: 9753 year: 2021 publication-title: Int. J. Energy Res. – volume: 10 start-page: 17942 year: 2018 publication-title: Nanoscale – volume: 182 start-page: 758 year: 2021 publication-title: Carbon – volume: 151 start-page: 1 year: 2019 publication-title: Carbon – volume: 5 start-page: 191 year: 2016 publication-title: Energy Storage Mater. – volume: 181 start-page: 409 year: 1958 publication-title: Nature – volume: 2 year: 2020 publication-title: EnergyChem – volume: 159 start-page: 341 year: 2015 publication-title: Mater. Lett. – volume: 77 year: 2020 publication-title: Nano Energy – volume: 7 start-page: 25609 year: 2019 publication-title: J. Mater. Chem. A – volume: 148 start-page: A803 year: 2001 publication-title: J. Electrochem. Soc. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 2 start-page: 1917 year: 2015 publication-title: ChemElectroChem – volume: 8 start-page: 1604 year: 2020 publication-title: J. Mater. Chem. A – volume: 3 year: 2018 publication-title: Small Methods – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 3 start-page: 152 year: 2017 publication-title: Chem – volume: 29 start-page: 2314 year: 2017 publication-title: Chem. Mater. – volume: 65 year: 2019 publication-title: Nano Energy – volume: 451 start-page: 652 year: 2008 publication-title: Nature – volume: 13 year: 2017 publication-title: Small – volume: 15 start-page: 746 year: 2015 publication-title: Nano Energy – volume: 4 start-page: 2614 year: 2011 publication-title: Energy Environ. Sci. – volume: 34 year: 2021 publication-title: Adv. Mater. – volume: 3 start-page: 166 year: 2020 publication-title: Energy Environ. Mater. – volume: 125 start-page: 19060 year: 2021 publication-title: J. Phys. Chem. C – volume: 11 year: 2020 publication-title: Adv. Energy Mater. – volume: 19 start-page: 279 year: 2016 publication-title: Nano Energy – volume: 15 start-page: 5888 year: 2015 publication-title: Nano Lett. – volume: 4 start-page: 451 year: 2020 publication-title: Energy Environ. Mater. – volume: 147 start-page: 4428 year: 2000 publication-title: J. Electrochem. Soc. – volume: 7 start-page: 11004 year: 2013 publication-title: ACS Nano – volume: 27 start-page: 2042 year: 2015 publication-title: Adv. Mater. – volume: 21 start-page: 231 year: 2018 publication-title: Mater. Today – volume: 2 start-page: 540 year: 2020 publication-title: Carbon Energy – volume: 8 start-page: 2916 year: 2015 publication-title: Energy Environ. Sci. – volume: 4 start-page: 13183 year: 2016 publication-title: J. Mater. Chem. A – volume: 3 start-page: 186 year: 2020 publication-title: Energy Environ. Mater. – volume: 114 start-page: 11636 year: 2014 publication-title: Chem. Rev. – volume: 16 year: 2020 publication-title: Small – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 12 start-page: 3783 year: 2012 publication-title: Nano Lett. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 9 start-page: 40604 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 2 start-page: 294 year: 2020 publication-title: Carbon Energy – volume: 162 start-page: A2476 year: 2015 publication-title: J. Electrochem. Soc. – volume: 5 year: 2014 publication-title: Nat. Commun. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 3 start-page: 105 year: 2020 publication-title: Energy Environ. Mater. – volume: 4 start-page: 3551 year: 2019 publication-title: ChemistrySelect – volume: 95 start-page: 972 year: 2015 publication-title: Carbon – volume: 16 start-page: 15007 year: 2014 publication-title: Phys. Chem. Chem. Phys. – volume: 3 start-page: 10320 year: 2015 publication-title: J. Mater. Chem. A – volume: 46 start-page: 3529 year: 2017 publication-title: Chem. Soc. Rev. – volume: 4 start-page: 502 year: 2020 publication-title: Energy Environ. Mater. – volume: 3 start-page: 529 year: 2020 publication-title: Energy Environ. Mater. – volume: 48 start-page: 1272 year: 2019 publication-title: Chem. Soc. Rev. – volume: 2 start-page: 283 year: 2020 publication-title: Carbon Energy – volume: 10 year: 2019 publication-title: Adv. Energy Mater. – volume: 7 start-page: 191 year: 2019 publication-title: Natl. Sci. Rev. – volume: 2 start-page: 6 year: 2020 publication-title: Carbon Energy – volume: 7 start-page: 130 year: 2017 publication-title: Energy Storage Mater. – year: 2020 publication-title: Adv. Funct. Mater. – volume: 6 start-page: 25594 year: 2016 publication-title: RSC Adv. – volume: 562 start-page: 511 year: 2020 publication-title: J. Colloid Interface Sci. – volume: 147 start-page: 1271 year: 2000 publication-title: J. Electrochem. Soc. – volume: 41 start-page: 1 year: 2013 publication-title: Prog. Solid State Chem. – volume: 18 year: 2021 publication-title: Small – volume: 13 start-page: 24070 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 2 start-page: 521 year: 2020 publication-title: Carbon Energy – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 8 start-page: 161 year: 2017 publication-title: Energy Storage Mater. – volume: 57 start-page: 3968 year: 2018 publication-title: Angew. Chem. Int. Ed. – volume: 404 year: 2022 publication-title: Electrochim. Acta – volume: 5 start-page: 2045 year: 2017 publication-title: J. Mater. Chem. A – volume: 48 start-page: 4655 year: 2019 publication-title: Chem. Soc. Rev. – volume: 7 start-page: 36550 year: 2017 publication-title: RSC Adv. – volume: 334 start-page: 928 year: 2011 publication-title: Science – volume: 31 start-page: 658 year: 2018 publication-title: Chem. Mater. – volume: 66 start-page: 3893 year: 2001 publication-title: J. Org. Chem. – volume: 6 year: 2015 publication-title: Adv. Energy Mater. – volume: 23 start-page: 87 year: 2019 publication-title: Mater. Today – volume: 14 start-page: 10457 year: 2022 publication-title: ACS Appl. Mater. Interfaces – volume: 57 start-page: 202 year: 2013 publication-title: Carbon – volume: 316 start-page: 132 year: 2016 publication-title: J. Power Sources – volume: 7 year: 2019 publication-title: Energy Technol. – volume: 9 start-page: 20483 year: 2021 publication-title: J. Mater. Chem. A – volume: 4 start-page: 229 year: 2020 publication-title: Energy Environ. Mater. – ident: e_1_2_7_34_1 doi: 10.1039/C9CS00162J – ident: e_1_2_7_107_1 doi: 10.1002/aenm.201601519 – ident: e_1_2_7_27_1 doi: 10.1021/acsami.1c24755 – ident: e_1_2_7_106_1 doi: 10.1039/C8NR04631J – ident: e_1_2_7_72_1 doi: 10.1149/1.2221153 – ident: e_1_2_7_114_1 doi: 10.1016/j.pmatsci.2018.04.006 – ident: e_1_2_7_113_1 doi: 10.1021/acs.chemmater.5b03216 – ident: e_1_2_7_30_1 doi: 10.1002/aenm.201602898 – ident: e_1_2_7_90_1 doi: 10.1039/D0EE03916K – ident: e_1_2_7_83_1 doi: 10.1021/acsami.1c05928 – ident: e_1_2_7_46_1 doi: 10.1016/j.carbon.2021.06.066 – ident: e_1_2_7_7_1 doi: 10.1126/science.1212741 – ident: e_1_2_7_102_1 doi: 10.1039/D1MA00731A – ident: e_1_2_7_89_1 doi: 10.1016/j.jpowsour.2016.03.014 – ident: e_1_2_7_68_1 doi: 10.1016/j.carbon.2017.08.030 – ident: e_1_2_7_16_1 doi: 10.1039/C6CS00776G – ident: e_1_2_7_53_1 doi: 10.1039/c3ee41444b – start-page: 2007247 year: 2020 ident: e_1_2_7_123_1 publication-title: Adv. Funct. Mater. – ident: e_1_2_7_76_1 doi: 10.1039/C9TA09984K – ident: e_1_2_7_21_1 doi: 10.1002/cey2.29 – ident: e_1_2_7_88_1 doi: 10.1002/aenm.201703268 – ident: e_1_2_7_118_1 doi: 10.1002/aenm.201903176 – ident: e_1_2_7_38_1 doi: 10.1002/adfm.201100854 – ident: e_1_2_7_6_1 doi: 10.1002/eem2.12062 – ident: e_1_2_7_112_1 doi: 10.1039/C6TA04273B – ident: e_1_2_7_78_1 doi: 10.1039/C5TA00727E – ident: e_1_2_7_45_1 doi: 10.1021/acs.nanolett.5b01969 – ident: e_1_2_7_92_1 doi: 10.1093/nsr/nwz140 – ident: e_1_2_7_31_1 doi: 10.1016/j.mattod.2017.11.001 – ident: e_1_2_7_100_1 doi: 10.1039/C6TA09822C – ident: e_1_2_7_56_1 doi: 10.1002/aenm.202003911 – ident: e_1_2_7_40_1 doi: 10.1016/j.nanoen.2015.05.038 – ident: e_1_2_7_58_1 doi: 10.1016/j.chempr.2017.05.021 – ident: e_1_2_7_109_1 doi: 10.1021/acs.chemmater.6b05474 – ident: e_1_2_7_22_1 doi: 10.1016/j.jpowsour.2013.09.040 – ident: e_1_2_7_96_1 doi: 10.1021/jo010183n – ident: e_1_2_7_104_1 doi: 10.1002/anie.201800453 – ident: e_1_2_7_95_1 doi: 10.1016/j.enchem.2020.100041 – ident: e_1_2_7_15_1 doi: 10.1021/acs.jpcc.1c06277 – ident: e_1_2_7_66_1 doi: 10.1016/j.carbon.2013.01.064 – ident: e_1_2_7_97_1 doi: 10.1039/b922733d – ident: e_1_2_7_116_1 doi: 10.1021/acsenergylett.8b01761 – ident: e_1_2_7_67_1 doi: 10.1016/j.ensm.2016.07.006 – ident: e_1_2_7_74_1 doi: 10.1016/j.matlet.2015.07.033 – ident: e_1_2_7_82_1 doi: 10.1016/j.carbon.2021.01.006 – ident: e_1_2_7_44_1 doi: 10.1002/aenm.201600659 – ident: e_1_2_7_54_1 doi: 10.1002/adma.201405370 – volume: 6 start-page: 16465 year: 2018 ident: e_1_2_7_129_1 publication-title: ivycite – ident: e_1_2_7_99_1 doi: 10.1039/C9TA08792C – ident: e_1_2_7_110_1 doi: 10.1149/1.1393348 – ident: e_1_2_7_19_1 doi: 10.1002/er.6500 – ident: e_1_2_7_130_1 doi: 10.1002/slct.201900501 – ident: e_1_2_7_69_1 doi: 10.1039/C6TA04877C – ident: e_1_2_7_117_1 doi: 10.1002/aenm.201901351 – ident: e_1_2_7_105_1 doi: 10.1002/smll.202106328 – ident: e_1_2_7_48_1 doi: 10.1016/j.mattod.2018.12.040 – ident: e_1_2_7_51_1 doi: 10.1039/C6TA00901H – ident: e_1_2_7_75_1 doi: 10.1016/j.carbon.2015.09.032 – ident: e_1_2_7_120_1 doi: 10.1002/aenm.201703217 – ident: e_1_2_7_26_1 doi: 10.1002/adma.202003657 – ident: e_1_2_7_17_1 doi: 10.1039/c3ee40847g – volume: 5 year: 2014 ident: e_1_2_7_81_1 publication-title: Nat. Commun. – ident: e_1_2_7_28_1 doi: 10.1002/eem2.12146 – ident: e_1_2_7_13_1 doi: 10.1002/eem2.12126 – ident: e_1_2_7_3_1 doi: 10.1002/cey2.67 – ident: e_1_2_7_65_1 doi: 10.1016/j.jpowsour.2016.03.050 – ident: e_1_2_7_10_1 doi: 10.1016/j.electacta.2021.139730 – ident: e_1_2_7_64_1 doi: 10.1016/j.nanoen.2019.104038 – ident: e_1_2_7_36_1 doi: 10.1002/aenm.201702469 – ident: e_1_2_7_8_1 doi: 10.1039/c0ee00777c – ident: e_1_2_7_57_1 doi: 10.1039/D1TA05755C – ident: e_1_2_7_1_1 doi: 10.1002/cey2.39 – ident: e_1_2_7_5_1 doi: 10.1002/eem2.12070 – ident: e_1_2_7_47_1 doi: 10.1002/aenm.202002704 – ident: e_1_2_7_98_1 doi: 10.1021/acsomega.0c00422 – ident: e_1_2_7_115_1 doi: 10.1021/acs.chemmater.8b01390 – ident: e_1_2_7_79_1 doi: 10.1073/pnas.1602473113 – ident: e_1_2_7_43_1 doi: 10.1002/aenm.201501588 – ident: e_1_2_7_14_1 doi: 10.1002/eem2.12059 – ident: e_1_2_7_49_1 doi: 10.1002/aenm.202002981 – ident: e_1_2_7_59_1 doi: 10.1039/C7TA07860A – ident: e_1_2_7_41_1 doi: 10.1021/nl3016957 – ident: e_1_2_7_121_1 doi: 10.1039/C8CS00581H – ident: e_1_2_7_86_1 doi: 10.1002/smll.201701835 – ident: e_1_2_7_37_1 doi: 10.1039/C5TA08601A – ident: e_1_2_7_126_1 doi: 10.1002/adfm.201901072 – ident: e_1_2_7_55_1 doi: 10.1002/aenm.201502217 – ident: e_1_2_7_18_1 doi: 10.1021/cr500192f – ident: e_1_2_7_23_1 doi: 10.1021/acs.jpcc.1c06277 – ident: e_1_2_7_70_1 doi: 10.1149/2.0091514jes – ident: e_1_2_7_85_1 doi: 10.1002/aenm.201602894 – ident: e_1_2_7_35_1 doi: 10.1002/aenm.201803342 – ident: e_1_2_7_122_1 doi: 10.1002/aenm.201802869 – ident: e_1_2_7_20_1 doi: 10.1002/eem2.12121 – ident: e_1_2_7_61_1 doi: 10.1016/j.ensm.2017.05.010 – volume: 8 year: 2017 ident: e_1_2_7_91_1 publication-title: Nat. Commun. – ident: e_1_2_7_80_1 doi: 10.1038/181409a0 – ident: e_1_2_7_4_1 doi: 10.1002/cey2.35 – ident: e_1_2_7_39_1 doi: 10.1149/1.1379565 – ident: e_1_2_7_125_1 doi: 10.1016/j.carbon.2019.05.030 – ident: e_1_2_7_87_1 doi: 10.1016/j.ensm.2017.01.002 – ident: e_1_2_7_25_1 doi: 10.1002/adma.202107415 – ident: e_1_2_7_111_1 doi: 10.1016/j.nanoen.2015.10.034 – ident: e_1_2_7_32_1 doi: 10.1002/smtd.201800227 – ident: e_1_2_7_11_1 doi: 10.1016/j.nanoen.2020.105165 – ident: e_1_2_7_63_1 doi: 10.1016/j.nanoen.2019.103903 – ident: e_1_2_7_101_1 doi: 10.1002/smll.201907365 – ident: e_1_2_7_9_1 doi: 10.1038/451652a – ident: e_1_2_7_12_1 doi: 10.1002/eem2.12091 – ident: e_1_2_7_71_1 doi: 10.1002/celc.201500412 – ident: e_1_2_7_124_1 doi: 10.1002/aenm.201800108 – ident: e_1_2_7_108_1 doi: 10.1039/C7RA06777A – ident: e_1_2_7_103_1 doi: 10.1021/acsami.7b11420 – ident: e_1_2_7_42_1 doi: 10.1021/nn404640c – ident: e_1_2_7_84_1 doi: 10.1016/0008-6223(64)90286-6 – ident: e_1_2_7_119_1 doi: 10.1149/1.1394081 – ident: e_1_2_7_29_1 doi: 10.1039/D1MA00315A – ident: e_1_2_7_60_1 doi: 10.1039/C5EE01985K – ident: e_1_2_7_24_1 doi: 10.1016/j.jcis.2019.11.085 – ident: e_1_2_7_93_1 doi: 10.1039/C6RA01870J – ident: e_1_2_7_62_1 doi: 10.1002/ente.201900779 – ident: e_1_2_7_94_1 doi: 10.1016/j.progsolidstchem.2012.12.001 – ident: e_1_2_7_127_1 doi: 10.1021/am507679x – ident: e_1_2_7_33_1 doi: 10.1039/c4cp00826j – ident: e_1_2_7_128_1 doi: 10.1021/acsanm.0c00842 – ident: e_1_2_7_50_1 doi: 10.1002/aenm.201702724 – ident: e_1_2_7_2_1 doi: 10.1002/cey2.69 – ident: e_1_2_7_77_1 doi: 10.1016/S0378-7753(01)00887-4 – ident: e_1_2_7_52_1 doi: 10.1021/acs.chemmater.7b00376 – ident: e_1_2_7_73_1 doi: 10.1002/aenm.201602778 |
SSID | ssj0011477 |
Score | 2.638216 |
SecondaryResourceType | review_article |
Snippet | Sodium‐ion batteries (SIBs) have gained tremendous attention for large‐scale energy storage applications due to the natural abundance, low cost, and even... Sodium-ion batteries (SIBs) have gained tremendous attention for large-scale energy storage applications due to the natural abundance, low cost, and even... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202200083 |
SubjectTerms | Allotropy Anodes Carbon carbon anodes Carbonaceous materials Electrode materials Energy storage Geographical distribution Ions Lithium Lithium-ion batteries material design Physical properties Porosity precursors Sodium Sodium-ion batteries Storage batteries storage mechanism synthetic carbon allotropes |
Title | Recent Advances in Carbon Anodes for Sodium‐Ion Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ftcr.202200083 https://www.ncbi.nlm.nih.gov/pubmed/35670500 https://www.proquest.com/docview/2725693883 https://www.proquest.com/docview/2674006010 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7Ei158P-qLCOLJtNvsIwmeSlFU0EOt0FvcV6CoibTNxZM_wd_oL3E2m0aqKIi3ZGeXbGYf800y-w1CRzjFRistfYKN8qmKqC9iHftKtYNUtali2B5wvr7hF3f0asAGVZ5TexbG8UPUH9zsyij3a7vAhRy3PklDYaMC9y4IShQBe7CN17KgqFfTRwHULzMv2sytPvgVccWxCe1bM61nbdI3oDmLW0vDc76M7qdddvEmD81iIpvq5Qub4z_eaQUtVaDU67hZtIrmTLaGFrrTXHDr6BTQJVgnr-MiBsbeMPO6YiTzzOtkuYYCwL7eba6HxdP769sllDviTvDDN9Dd-Vm_e-FXaRd8RXhMfM1SDl4IJ0aGocBcqoALZajiOo0UZ0yBYo2OubHcf1QSLhlVKRUxFYYEbbKJ5rM8M9vIA8MH7o3QACMFTYWOMKESfKyURTLAhjXQyVTxiao4yW1qjMfEsSkHCWgkqTXSQMd19WdHxvFTxb3pKCbVmhwnQQjwLiaRFR_WYlCk_UUiMpMXUIeHtKSowQ205Ua_fhJhPMQMgwSXY_h7F5J-t1ff7Py9yS5atNcubnAPzU9GhdkH_DORB-Uk_wCwIPrK |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTtxAEC0ROJALYQ2TsBgJccLQ415sK6fRABrWAwwSN6s3SyhgRzBzyYlP4BvzJal2ewwDAglxdHW33a5e6lUvrwA2SU6s0UaFlFgdMp2wUKYmDbVuR7luM82Ju-B8eiZ6l-zoil89u8Xv-SGaBTc3Mqr52g1wtyC9-8QaijMV-ndRVMGILzDlono79vy984ZACsF-FXvRxW4N0bNIa5ZNfMHuWPFxq_QKao4j18r0HHwDOaq0P3Hye2c4UDv67ws-x8_81SzM1Lg06PiONAcTtpiH6e4oHNwC_EKAiQYq6PhDA_fBdRF05Z0qi6BTlAYFCH-Di9JcD2__PTweotxzd6IrvgiXB_v9bi-sIy-EmoqUhobnAh0RQa2KY0mE0pGQ2jItTJ5owblGzVqTCuvo_5iiQnGmcyZTJi2N2nQJJouysMsQoO1DD0caRJKS5dIkhDKFblbOExURy1uwPdJ8pmtachcd4ybzhMpRhhrJGo20YKvJ_sfzcbyVcWXUjFk9LO-zKEaEl9LEJW80yahIt0siC1sOMY-IWcVSQ1rw3Td_8yXKRUw4wRRSNeL7Vcj63fPm4cfHi6zDdK9_epKdHJ4d_4SvTu6PEa7A5OBuaFcRDg3UWtXj_wNtk_7m |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT9tAFH6iQWq5tHQPDa0rVT3VZOJZbItTFIhIF1RRkLiZ2SxFgB1luXDiJ_Ab-SW88ThGaVWkqkfPYo_fLO979sz3AXwiObFGGxVSYnXIdMJCmZo01LoX5brHNCfugPOPQ3Fwwr6e8tNa59SdhfH8EM0HNzczqvXaTfCJybv3pKG4UGF4F0UVingE60yQ1Gk37B01_FGI9SvpRSfdGmJgkdYkm3iD7kr1Vaf0B9JcBa6V5xk-g7Nlm_2Gk_OdxVzt6Kvf6Bz_46U24WmNSoO-H0bPYc0WL-DJYCkG9xJ2EV6iewr6fsvALBgXwUBOVVkE_aI0mIDgN_hVmvHi8vb6ZoTpnrkTA_FXcDLcPx4chLXuQqipSGloeC4wDBHUqjiWRCgdCakt08LkiRacazSsNamwjvyPKSoUZzpnMmXS0qhHX0OrKAv7FgL0fBjfSIM4UrJcmoRQpjDIynmiImJ5G74sDZ_pmpTcaWNcZJ5OOcrQIlljkTZ8bopPPBvH3wp2lr2Y1ZNylkUx4ruUJi77Y5ONhnT_SGRhywWWETGrOGpIG9743m-eRLmICSeYQ6o-fLgJ2fHgqLnY-vcqH-Dxz71h9n10-O0dbLhkv4ewA635dGG3EQvN1ftqvN8BZpr9lQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances+in+Carbon+Anodes+for+Sodium%E2%80%90Ion+Batteries&rft.jtitle=Chemical+record&rft.au=Zhang%2C+Tengfei&rft.au=Li%2C+Chen&rft.au=Wang%2C+Fan&rft.au=Noori%2C+Abolhassan&rft.date=2022-10-01&rft.issn=1527-8999&rft.eissn=1528-0691&rft.volume=22&rft.issue=10&rft_id=info:doi/10.1002%2Ftcr.202200083&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_tcr_202200083 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1527-8999&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1527-8999&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1527-8999&client=summon |