Reinforcing CoO Covalency via Ce(4f)─O(2p)─Co(3d) Gradient Orbital Coupling for High‐Efficiency Oxygen Evolution

Rare‐earth (RE)‐based transition metal oxides (TMO) are emerging as a frontier toward the oxygen evolution reaction (OER), yet the knowledge regarding their electrocatalytic mechanism and active sites is very limited. In this work, atomically dispersed Ce on CoO is successfully designed and synthesi...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 35; no. 30; pp. e2302462 - n/a
Main Authors Li, Meng, Wang, Xuan, Liu, Kun, Sun, Huamei, Sun, Dongmei, Huang, Kai, Tang, Yawen, Xing, Wei, Li, Hao, Fu, Gengtao
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rare‐earth (RE)‐based transition metal oxides (TMO) are emerging as a frontier toward the oxygen evolution reaction (OER), yet the knowledge regarding their electrocatalytic mechanism and active sites is very limited. In this work, atomically dispersed Ce on CoO is successfully designed and synthesized by an effective plasma (P)‐assisted strategy as a model (P‐Ce SAs@CoO) to investigate the origin of OER performance in RE–TMO systems. The P‐Ce SAs@CoO exhibits favorable performance with an overpotential of only 261 mV at 10 mA cm−2 and robust electrochemical stability, superior to individual CoO. X‐ray absorption spectroscopy and in situ electrochemical Raman spectroscopy reveal that the Ce‐induced electron redistribution inhibits CoO bond breakage in the CoOCe unit site. Theoretical analysis demonstrates that the gradient orbital coupling reinforces the CoO covalency of the Ce(4f)─O(2p)─Co(3d) unit active site with an optimized Co‐3d‐eg occupancy, which can balance the adsorption strength of intermediates and in turn reach the apex of the theoretical OER maximum, in excellent agreement with experimental observations. It is believed that the establishment of this Ce–CoO model can set a basis for the mechanistic understanding and structural design of high‐performance RE–TMO catalysts. Atomically dispersed Ce on CoO is prepared as a model to identify the active sites of rare‐earth‐based transition metal oxides toward oxygen evolution reaction (OER) and the corresponding catalytic mechanism is elucidated. The CeOCo unit site is identified as the active center. The enhanced OER performance is ascribed to reinforce CoO covalency through Ce(4f)─O(2p)─Co(3d) gradient orbital coupling.
AbstractList Rare‐earth (RE)‐based transition metal oxides (TMO) are emerging as a frontier toward the oxygen evolution reaction (OER), yet the knowledge regarding their electrocatalytic mechanism and active sites is very limited. In this work, atomically dispersed Ce on CoO is successfully designed and synthesized by an effective plasma (P)‐assisted strategy as a model (P‐Ce SAs@CoO) to investigate the origin of OER performance in RE–TMO systems. The P‐Ce SAs@CoO exhibits favorable performance with an overpotential of only 261 mV at 10 mA cm−2 and robust electrochemical stability, superior to individual CoO. X‐ray absorption spectroscopy and in situ electrochemical Raman spectroscopy reveal that the Ce‐induced electron redistribution inhibits CoO bond breakage in the CoOCe unit site. Theoretical analysis demonstrates that the gradient orbital coupling reinforces the CoO covalency of the Ce(4f)─O(2p)─Co(3d) unit active site with an optimized Co‐3d‐eg occupancy, which can balance the adsorption strength of intermediates and in turn reach the apex of the theoretical OER maximum, in excellent agreement with experimental observations. It is believed that the establishment of this Ce–CoO model can set a basis for the mechanistic understanding and structural design of high‐performance RE–TMO catalysts.
Rare‐earth (RE)‐based transition metal oxides (TMO) are emerging as a frontier toward the oxygen evolution reaction (OER), yet the knowledge regarding their electrocatalytic mechanism and active sites is very limited. In this work, atomically dispersed Ce on CoO is successfully designed and synthesized by an effective plasma (P)‐assisted strategy as a model (P‐Ce SAs@CoO) to investigate the origin of OER performance in RE–TMO systems. The P‐Ce SAs@CoO exhibits favorable performance with an overpotential of only 261 mV at 10 mA cm −2 and robust electrochemical stability, superior to individual CoO. X‐ray absorption spectroscopy and in situ electrochemical Raman spectroscopy reveal that the Ce‐induced electron redistribution inhibits CoO bond breakage in the CoOCe unit site. Theoretical analysis demonstrates that the gradient orbital coupling reinforces the CoO covalency of the Ce(4f)─O(2p)─Co(3d) unit active site with an optimized Co‐3d‐e g occupancy, which can balance the adsorption strength of intermediates and in turn reach the apex of the theoretical OER maximum, in excellent agreement with experimental observations. It is believed that the establishment of this Ce–CoO model can set a basis for the mechanistic understanding and structural design of high‐performance RE–TMO catalysts.
Rare-earth (RE)-based transition metal oxides (TMO) are emerging as a frontier toward the oxygen evolution reaction (OER), yet the knowledge regarding their electrocatalytic mechanism and active sites is very limited. In this work, atomically dispersed Ce on CoO is successfully designed and synthesized by an effective plasma (P)-assisted strategy as a model (P-Ce SAs@CoO) to investigate the origin of OER performance in RE-TMO systems. The P-Ce SAs@CoO exhibits favorable performance with an overpotential of only 261 mV at 10 mA cm-2 and robust electrochemical stability, superior to individual CoO. X-ray absorption spectroscopy and in situ electrochemical Raman spectroscopy reveal that the Ce-induced electron redistribution inhibits CoO bond breakage in the CoOCe unit site. Theoretical analysis demonstrates that the gradient orbital coupling reinforces the CoO covalency of the Ce(4f)─O(2p)─Co(3d) unit active site with an optimized Co-3d-eg occupancy, which can balance the adsorption strength of intermediates and in turn reach the apex of the theoretical OER maximum, in excellent agreement with experimental observations. It is believed that the establishment of this Ce-CoO model can set a basis for the mechanistic understanding and structural design of high-performance RE-TMO catalysts.Rare-earth (RE)-based transition metal oxides (TMO) are emerging as a frontier toward the oxygen evolution reaction (OER), yet the knowledge regarding their electrocatalytic mechanism and active sites is very limited. In this work, atomically dispersed Ce on CoO is successfully designed and synthesized by an effective plasma (P)-assisted strategy as a model (P-Ce SAs@CoO) to investigate the origin of OER performance in RE-TMO systems. The P-Ce SAs@CoO exhibits favorable performance with an overpotential of only 261 mV at 10 mA cm-2 and robust electrochemical stability, superior to individual CoO. X-ray absorption spectroscopy and in situ electrochemical Raman spectroscopy reveal that the Ce-induced electron redistribution inhibits CoO bond breakage in the CoOCe unit site. Theoretical analysis demonstrates that the gradient orbital coupling reinforces the CoO covalency of the Ce(4f)─O(2p)─Co(3d) unit active site with an optimized Co-3d-eg occupancy, which can balance the adsorption strength of intermediates and in turn reach the apex of the theoretical OER maximum, in excellent agreement with experimental observations. It is believed that the establishment of this Ce-CoO model can set a basis for the mechanistic understanding and structural design of high-performance RE-TMO catalysts.
Rare‐earth (RE)‐based transition metal oxides (TMO) are emerging as a frontier toward the oxygen evolution reaction (OER), yet the knowledge regarding their electrocatalytic mechanism and active sites is very limited. In this work, atomically dispersed Ce on CoO is successfully designed and synthesized by an effective plasma (P)‐assisted strategy as a model (P‐Ce SAs@CoO) to investigate the origin of OER performance in RE–TMO systems. The P‐Ce SAs@CoO exhibits favorable performance with an overpotential of only 261 mV at 10 mA cm−2 and robust electrochemical stability, superior to individual CoO. X‐ray absorption spectroscopy and in situ electrochemical Raman spectroscopy reveal that the Ce‐induced electron redistribution inhibits CoO bond breakage in the CoOCe unit site. Theoretical analysis demonstrates that the gradient orbital coupling reinforces the CoO covalency of the Ce(4f)─O(2p)─Co(3d) unit active site with an optimized Co‐3d‐eg occupancy, which can balance the adsorption strength of intermediates and in turn reach the apex of the theoretical OER maximum, in excellent agreement with experimental observations. It is believed that the establishment of this Ce–CoO model can set a basis for the mechanistic understanding and structural design of high‐performance RE–TMO catalysts. Atomically dispersed Ce on CoO is prepared as a model to identify the active sites of rare‐earth‐based transition metal oxides toward oxygen evolution reaction (OER) and the corresponding catalytic mechanism is elucidated. The CeOCo unit site is identified as the active center. The enhanced OER performance is ascribed to reinforce CoO covalency through Ce(4f)─O(2p)─Co(3d) gradient orbital coupling.
Rare-earth (RE)-based transition metal oxides (TMO) are emerging as a frontier toward the oxygen evolution reaction (OER), yet the knowledge regarding their electrocatalytic mechanism and active sites is very limited. In this work, atomically dispersed Ce on CoO is successfully designed and synthesized by an effective plasma (P)-assisted strategy as a model (P-Ce SAs@CoO) to investigate the origin of OER performance in RE-TMO systems. The P-Ce SAs@CoO exhibits favorable performance with an overpotential of only 261 mV at 10 mA cm and robust electrochemical stability, superior to individual CoO. X-ray absorption spectroscopy and in situ electrochemical Raman spectroscopy reveal that the Ce-induced electron redistribution inhibits CoO bond breakage in the CoOCe unit site. Theoretical analysis demonstrates that the gradient orbital coupling reinforces the CoO covalency of the Ce(4f)─O(2p)─Co(3d) unit active site with an optimized Co-3d-e occupancy, which can balance the adsorption strength of intermediates and in turn reach the apex of the theoretical OER maximum, in excellent agreement with experimental observations. It is believed that the establishment of this Ce-CoO model can set a basis for the mechanistic understanding and structural design of high-performance RE-TMO catalysts.
Author Liu, Kun
Xing, Wei
Li, Meng
Li, Hao
Sun, Dongmei
Wang, Xuan
Sun, Huamei
Fu, Gengtao
Huang, Kai
Tang, Yawen
Author_xml – sequence: 1
  givenname: Meng
  surname: Li
  fullname: Li, Meng
  organization: Southeast University
– sequence: 2
  givenname: Xuan
  surname: Wang
  fullname: Wang, Xuan
  organization: Nanjing Normal University
– sequence: 3
  givenname: Kun
  surname: Liu
  fullname: Liu, Kun
  organization: Nanjing Normal University
– sequence: 4
  givenname: Huamei
  surname: Sun
  fullname: Sun, Huamei
  organization: Nanjing Normal University
– sequence: 5
  givenname: Dongmei
  surname: Sun
  fullname: Sun, Dongmei
  organization: Nanjing Normal University
– sequence: 6
  givenname: Kai
  surname: Huang
  fullname: Huang, Kai
  organization: Southeast University
– sequence: 7
  givenname: Yawen
  surname: Tang
  fullname: Tang, Yawen
  organization: Nanjing Normal University
– sequence: 8
  givenname: Wei
  surname: Xing
  fullname: Xing, Wei
  organization: University of Science and Technology of China
– sequence: 9
  givenname: Hao
  surname: Li
  fullname: Li, Hao
  email: li.hao.b8@tohoku.ac.jp
  organization: Tohoku University
– sequence: 10
  givenname: Gengtao
  orcidid: 0000-0003-0411-645X
  surname: Fu
  fullname: Fu, Gengtao
  email: gengtaofu@njnu.edu.cn
  organization: Nanjing Normal University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37070755$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1uEzEAhS1URNPCliUaiU26mOC_mdjLaAhtpaKRUFmPHP8EV44dPDMps-sRWHADDsJdegGuUA8pRapUIS_e5nvP9ntH4MAHrwF4jeAMQYjfCbURMwwxgZiW-BmYoAKjnEJeHIAJ5KTIeUnZIThq2ysIIS9h-QIckjlMpygmYPikrTchSuvXWRV-__xVJ9kJp70csp0VWaWn1Jzc_ripp3g7ahWmRJ1kp1Eoq32X1XFlO-GSrd-6MSbFZWd2_eX25vvSGCvtn6z627DWPlvugus7G_xL8NwI1-pX93oMPn9YXlZn-UV9el4tLnJJSo5zhhgxDEvJoJgbzbVgfEXMnMD0L6IMo3MlBBNcMlYgwYyiEq-YLBSiAiJFjsF0n7uN4Wuv267Z2FZq54TXoW8bzCBmjBGME_r2EXoV-ujT6xJFMaEFIyRRb-6pfrXRqtlGuxFxaP6WmoDZHpAxtG3U5gFBsBlXa8bVmofVkoE-MsjU6FhSF4V1T9v43nZtnR7-c0mzeP9x8c97B4_Lrhc
CitedBy_id crossref_primary_10_1039_D3CC04070D
crossref_primary_10_1021_acsanm_4c03420
crossref_primary_10_1016_j_ccr_2024_216111
crossref_primary_10_1039_D4SE01613K
crossref_primary_10_1016_j_jcis_2024_01_024
crossref_primary_10_1016_j_jcis_2024_05_205
crossref_primary_10_1021_acs_inorgchem_3c03301
crossref_primary_10_1039_D3TA06135C
crossref_primary_10_1016_j_jtice_2024_105653
crossref_primary_10_1002_cphc_202400701
crossref_primary_10_1016_j_cej_2025_161519
crossref_primary_10_1021_acsami_4c12767
crossref_primary_10_1021_acsnano_4c11614
crossref_primary_10_1002_smtd_202300816
crossref_primary_10_1002_ange_202418422
crossref_primary_10_1002_advs_202403206
crossref_primary_10_1002_aenm_202303529
crossref_primary_10_1002_anie_202415306
crossref_primary_10_1038_s41467_024_49834_5
crossref_primary_10_1039_D4TA02907K
crossref_primary_10_1016_j_mseb_2023_116884
crossref_primary_10_1002_adfm_202306098
crossref_primary_10_1039_D4CY00557K
crossref_primary_10_1002_ange_202419083
crossref_primary_10_1002_smll_202410384
crossref_primary_10_1016_j_fuel_2024_131214
crossref_primary_10_1016_j_jcis_2023_12_080
crossref_primary_10_1002_anie_202418422
crossref_primary_10_1002_ange_202411000
crossref_primary_10_1002_cey2_529
crossref_primary_10_1039_D4TA02918F
crossref_primary_10_1002_anie_202419718
crossref_primary_10_1021_acsanm_4c00570
crossref_primary_10_1002_ange_202400206
crossref_primary_10_1021_acsnano_4c08156
crossref_primary_10_1039_D4DT00619D
crossref_primary_10_1021_acssuschemeng_4c02912
crossref_primary_10_1002_smll_202409343
crossref_primary_10_1021_acs_langmuir_4c02475
crossref_primary_10_1002_batt_202400402
crossref_primary_10_1016_j_cej_2024_155299
crossref_primary_10_1002_adfm_202305268
crossref_primary_10_1002_adfm_202308533
crossref_primary_10_1002_ppsc_202400226
crossref_primary_10_1016_j_matlet_2023_134987
crossref_primary_10_1016_j_apsusc_2024_160481
crossref_primary_10_1002_anie_202406711
crossref_primary_10_1021_acssuschemeng_4c01787
crossref_primary_10_1016_j_apcatb_2024_124506
crossref_primary_10_1002_adfm_202410700
crossref_primary_10_1021_acsami_3c10238
crossref_primary_10_1039_D3GC02075D
crossref_primary_10_1016_j_nanoen_2024_109868
crossref_primary_10_1039_D3DT01819A
crossref_primary_10_1016_j_cej_2024_148926
crossref_primary_10_1002_adfm_202423158
crossref_primary_10_1021_acs_nanolett_4c00088
crossref_primary_10_1039_D4SC07442D
crossref_primary_10_1002_adma_202405533
crossref_primary_10_1002_smll_202309363
crossref_primary_10_1021_acs_energyfuels_3c02987
crossref_primary_10_1016_j_est_2024_111378
crossref_primary_10_1002_adfm_202413491
crossref_primary_10_1016_j_jcis_2023_08_141
crossref_primary_10_1002_adma_202411090
crossref_primary_10_1016_j_jcis_2024_10_048
crossref_primary_10_1002_adma_202313057
crossref_primary_10_1016_j_cej_2024_151490
crossref_primary_10_1016_j_jcis_2023_09_179
crossref_primary_10_1002_smll_202302738
crossref_primary_10_1002_ange_202406711
crossref_primary_10_1002_smll_202406075
crossref_primary_10_1002_ange_202415306
crossref_primary_10_1002_anie_202400206
crossref_primary_10_1021_acs_jpcc_4c02846
crossref_primary_10_3390_molecules28155620
crossref_primary_10_1016_j_jcis_2024_09_111
crossref_primary_10_1039_D3TA05029G
crossref_primary_10_1039_D3TA05897B
crossref_primary_10_1039_D4TA07515C
crossref_primary_10_1016_j_apsusc_2023_159223
crossref_primary_10_1007_s40820_023_01164_9
crossref_primary_10_1002_advs_202403197
crossref_primary_10_1007_s40843_023_2606_0
crossref_primary_10_1002_ange_202313298
crossref_primary_10_1039_D3NJ03483F
crossref_primary_10_1021_jacs_4c05983
crossref_primary_10_1016_j_cej_2024_150253
crossref_primary_10_1039_D3QM00841J
crossref_primary_10_1002_smll_202407860
crossref_primary_10_1016_j_cej_2025_159475
crossref_primary_10_1063_5_0211941
crossref_primary_10_1039_D4QM00285G
crossref_primary_10_1021_acsanm_4c01317
crossref_primary_10_1002_anie_202416274
crossref_primary_10_1039_D3CP04284G
crossref_primary_10_1002_anie_202412591
crossref_primary_10_1016_j_apcatb_2023_123277
crossref_primary_10_1002_adfm_202315563
crossref_primary_10_1038_s41467_024_54226_w
crossref_primary_10_1002_anie_202414893
crossref_primary_10_1021_acs_iecr_3c01793
crossref_primary_10_1039_D4EE01588F
crossref_primary_10_1002_cssc_202400827
crossref_primary_10_1002_ange_202419718
crossref_primary_10_1039_D4NR02788D
crossref_primary_10_1002_adfm_202411094
crossref_primary_10_1016_j_jcis_2024_10_146
crossref_primary_10_1039_D4QI01435A
crossref_primary_10_1002_adma_202416483
crossref_primary_10_1039_D3EE03396A
crossref_primary_10_1039_D3TA04714H
crossref_primary_10_1021_acssuschemeng_3c06895
crossref_primary_10_1016_j_cej_2024_154059
crossref_primary_10_1002_smm2_1281
crossref_primary_10_1039_D3TA03197G
crossref_primary_10_1007_s12598_024_03025_9
crossref_primary_10_26599_NR_2025_94907016
crossref_primary_10_1016_j_ijhydene_2023_10_256
crossref_primary_10_1002_adfm_202412979
crossref_primary_10_1016_j_ccr_2024_215920
crossref_primary_10_1039_D4QI00518J
crossref_primary_10_1021_acssuschemeng_4c09591
crossref_primary_10_1002_ange_202412591
crossref_primary_10_1002_ange_202416274
crossref_primary_10_1016_j_cplett_2023_141058
crossref_primary_10_1016_j_fuel_2024_132757
crossref_primary_10_1002_aenm_202403744
crossref_primary_10_1002_aoc_7734
crossref_primary_10_1002_smll_202407881
crossref_primary_10_1016_j_cej_2024_153195
crossref_primary_10_1039_D3NR06245G
crossref_primary_10_1021_acs_est_4c02277
crossref_primary_10_1002_anie_202419083
crossref_primary_10_1016_j_jcis_2023_12_171
crossref_primary_10_1039_D4NR01168F
crossref_primary_10_1364_OE_533851
crossref_primary_10_1002_aenm_202401716
crossref_primary_10_1016_j_apcatb_2023_123659
crossref_primary_10_1002_aenm_202402923
crossref_primary_10_1007_s41918_024_00237_6
crossref_primary_10_1039_D3SE01067H
crossref_primary_10_1016_j_jallcom_2023_171722
crossref_primary_10_1021_acs_analchem_4c05534
crossref_primary_10_1002_aenm_202301162
crossref_primary_10_1002_smll_202302781
crossref_primary_10_1002_cssc_202401435
crossref_primary_10_1016_j_nanoen_2024_110529
crossref_primary_10_1016_j_cej_2024_149121
crossref_primary_10_1021_acs_energyfuels_3c01992
crossref_primary_10_1002_aenm_202303863
crossref_primary_10_1002_smll_202311124
crossref_primary_10_1002_anie_202411000
crossref_primary_10_1002_adma_202405970
crossref_primary_10_1021_acsnano_4c05130
crossref_primary_10_52396_JUSTC_2024_0046
crossref_primary_10_1002_adfm_202425138
crossref_primary_10_1007_s40820_024_01403_7
crossref_primary_10_1021_acs_nanolett_4c03670
crossref_primary_10_1016_j_apsusc_2024_161258
crossref_primary_10_1021_acs_inorgchem_4c02111
crossref_primary_10_1002_anie_202313298
crossref_primary_10_1007_s40820_024_01528_9
crossref_primary_10_1002_smll_202407510
crossref_primary_10_1039_D3QM00516J
crossref_primary_10_1039_D4NJ00252K
crossref_primary_10_1016_j_cej_2024_153464
crossref_primary_10_1002_adfm_202411024
crossref_primary_10_1002_cssc_202402194
crossref_primary_10_1021_acssuschemeng_3c05384
crossref_primary_10_1016_j_jelechem_2024_118737
crossref_primary_10_1002_ange_202414893
crossref_primary_10_1021_acscatal_4c03088
crossref_primary_10_1016_j_jcis_2023_11_027
crossref_primary_10_1039_D4NR01743A
crossref_primary_10_1002_adfm_202404061
Cites_doi 10.1126/sciadv.abc7323
10.1038/s41467-022-30064-6
10.1039/C9CS00607A
10.1002/anie.202103058
10.1038/s41467-022-34380-9
10.1038/s41467-021-23390-8
10.1007/s40843-020-1571-y
10.1002/cctc.201000397
10.1039/C9TA00530G
10.1038/s41560-019-0355-9
10.1002/cey2.279
10.1016/0038-1098(96)00477-2
10.1021/jp306303y
10.1039/D0CC08091H
10.26599/NRE.2023.9120056
10.1002/adfm.202107382
10.1021/acscatal.9b01819
10.1002/adma.202107956
10.1021/acs.jpcc.9b03830
10.1002/adma.202102593
10.1021/acs.jpcc.5b10071
10.1103/PhysRevB.44.6090
10.1038/s41929-021-00723-w
10.1038/s41596-022-00762-y
10.1038/s44160-022-00232-z
10.1016/j.ccr.2021.214049
10.1002/aenm.202003755
10.1103/PhysRevB.75.104306
10.1103/PhysRevLett.55.418
10.1021/jacs.1c12520
10.1021/jacs.1c04682
10.1002/smtd.202300100
10.1021/acsmaterialslett.2c00810
10.1016/j.enchem.2022.100088
10.1002/adma.202004243
10.1038/s41467-022-31874-4
10.1016/j.apmate.2021.11.007
10.1126/sciadv.aav6262
10.1016/j.checat.2022.02.007
10.1021/acscatal.0c02608
10.1021/acscatal.9b02936
10.1002/adma.202206540
10.1002/chem.202202872
10.1038/s41586-022-05296-7
10.1002/aenm.201903120
10.1002/aenm.202203244
10.1103/PhysRevB.103.165108
10.1016/j.chempr.2017.09.003
10.1021/jacs.2c02989
10.1021/acs.jpcc.6b09141
10.1002/adma.202002235
10.1002/smtd.202200413
10.1016/j.joule.2021.05.018
10.1038/s41560-018-0097-0
10.1021/acs.nanolett.6b03133
10.1002/smll.202206531
10.1039/D2EE01036D
10.1038/s41929-020-0465-6
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202302462
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
CrossRef
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 37070755
10_1002_adma_202302462
ADMA202302462
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22109073; 22072067; 22232004; 22279062
– fundername: JSPS KAKENHI
  funderid: JP23K13703
– fundername: Natural Science Foundation of Jiangsu Province
  funderid: BK20221321
– fundername: MASAMUNE‐IMR
  funderid: 202212‐SCKXX‐0204
– fundername: National Natural Science Foundation of China
  grantid: 22279062
– fundername: National Natural Science Foundation of China
  grantid: 22232004
– fundername: JSPS KAKENHI
  grantid: JP23K13703
– fundername: National Natural Science Foundation of China
  grantid: 22072067
– fundername: MASAMUNE-IMR
  grantid: 202212-SCKXX-0204
– fundername: National Natural Science Foundation of China
  grantid: 22109073
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20221321
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c3692-8183f82cc80a7fe9ea89b3f7306483df847daa8a9c8851a8fd4c2b8c5d14a01d3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 09:09:01 EDT 2025
Sat Jul 26 02:33:47 EDT 2025
Thu Apr 03 07:04:46 EDT 2025
Thu Apr 24 22:54:00 EDT 2025
Tue Jul 01 02:33:33 EDT 2025
Wed Jan 22 16:19:09 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 30
Keywords Ce─O─Co unit site
gradient orbital coupling
Co─O covalency
4f buffer bands
oxygen evolution
Language English
License 2023 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3692-8183f82cc80a7fe9ea89b3f7306483df847daa8a9c8851a8fd4c2b8c5d14a01d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0411-645X
PMID 37070755
PQID 2842345833
PQPubID 2045203
PageCount 13
ParticipantIDs proquest_miscellaneous_2802888322
proquest_journals_2842345833
pubmed_primary_37070755
crossref_primary_10_1002_adma_202302462
crossref_citationtrail_10_1002_adma_202302462
wiley_primary_10_1002_adma_202302462_ADMA202302462
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 7
2021; 7
2019; 9
2021; 5
2019; 4
2023; 13
2021; 64
2017; 3
2019; 5
2023; 18
2023; 5
2021; 444
2021; 103
2023; 19
1996; 100
2023; 2
2020; 32
2020; 10
2021; 143
2007; 75
2011; 3
2016; 16
2016; 120
2022; 611
2019; 123
2022; 144
2021; 57
2018; 3
2020; 3
2021; 12
2021; 33
2021; 11
2023
2023; 29
2022; 4
2022; 5
2022; 6
1991; 44
2022; 34
2022; 13
2020; 49
2022; 15
2022; 32
2022; 1
2022; 2
1985; 55
2021; 60
2012; 116
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 103
  year: 2021
  publication-title: Phys. Rev. B
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 13
  start-page: 4106
  year: 2022
  publication-title: Nat. Commun.
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 6
  year: 2022
  publication-title: Small Methods
– volume: 9
  start-page: 9212
  year: 2019
  publication-title: ACS Catal.
– volume: 3
  start-page: 812
  year: 2017
  publication-title: Chem
– volume: 4
  start-page: 329
  year: 2019
  publication-title: Nat. Energy
– volume: 55
  start-page: 418
  year: 1985
  publication-title: Phys. Rev. Lett.
– volume: 13
  start-page: 2294
  year: 2022
  publication-title: Nat. Commun.
– volume: 4
  start-page: 2195
  year: 2022
  publication-title: ACS Mater. Lett.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 116
  year: 2012
  publication-title: J. Phys. Chem. C
– volume: 3
  start-page: 1159
  year: 2011
  publication-title: ChemCatChem
– volume: 5
  start-page: 2164
  year: 2021
  publication-title: Joule
– volume: 144
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 120
  start-page: 78
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 5
  start-page: 30
  year: 2022
  publication-title: Nat. Catal.
– volume: 100
  start-page: 457
  year: 1996
  publication-title: Solid State Commun.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 2
  start-page: 101
  year: 2023
  publication-title: Nat. Synth.
– volume: 9
  start-page: 6484
  year: 2019
  publication-title: ACS Catal.
– volume: 2
  start-page: 967
  year: 2022
  publication-title: Chem. Catal.
– volume: 44
  start-page: 6090
  year: 1991
  publication-title: Phys. Rev. B
– volume: 49
  start-page: 2196
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 57
  start-page: 2879
  year: 2021
  publication-title: Chem. Commun.
– volume: 19
  year: 2023
  publication-title: Small
– volume: 444
  year: 2021
  publication-title: Coord. Chem. Rev.
– volume: 4
  year: 2022
  publication-title: EnergyChem
– volume: 611
  start-page: 702
  year: 2022
  publication-title: Nature
– year: 2023
  publication-title: Small Methods
– volume: 2
  year: 2023
  publication-title: Nano Res. Energy
– volume: 75
  year: 2007
  publication-title: Phys. Rev. B
– volume: 3
  start-page: 373
  year: 2018
  publication-title: Nat. Energy
– volume: 16
  start-page: 6516
  year: 2016
  publication-title: Nano Lett.
– volume: 5
  year: 2023
  publication-title: Carbon Energy
– volume: 1
  year: 2022
  publication-title: Adv. Powder Mater.
– volume: 13
  start-page: 6650
  year: 2022
  publication-title: Nat. Commun.
– volume: 3
  start-page: 554
  year: 2020
  publication-title: Nat. Catal.
– volume: 18
  start-page: 555
  year: 2023
  publication-title: Nat. Protoc.
– volume: 13
  year: 2023
  publication-title: Adv. Energy Mater.
– volume: 143
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 15
  start-page: 3257
  year: 2022
  publication-title: Energy Environ. Sci.
– volume: 120
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 11
  start-page: 424
  year: 2021
  publication-title: ACS Catal.
– volume: 12
  start-page: 3036
  year: 2021
  publication-title: Nat. Commun.
– volume: 7
  year: 2021
  publication-title: Sci. Adv.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 29
  year: 2023
  publication-title: Chem. ‐ Eur. J.
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 123
  year: 2019
  publication-title: J. Phys. Chem. C
– volume: 64
  start-page: 1653
  year: 2021
  publication-title: Sci. China Mater.
– volume: 144
  start-page: 3590
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 5769
  year: 2019
  publication-title: J. Mater. Chem. A
– ident: e_1_2_7_5_1
  doi: 10.1126/sciadv.abc7323
– ident: e_1_2_7_54_1
  doi: 10.1038/s41467-022-30064-6
– ident: e_1_2_7_16_1
  doi: 10.1039/C9CS00607A
– ident: e_1_2_7_20_1
  doi: 10.1002/anie.202103058
– ident: e_1_2_7_9_1
  doi: 10.1038/s41467-022-34380-9
– ident: e_1_2_7_28_1
  doi: 10.1038/s41467-021-23390-8
– ident: e_1_2_7_38_1
  doi: 10.1007/s40843-020-1571-y
– ident: e_1_2_7_57_1
  doi: 10.1002/cctc.201000397
– ident: e_1_2_7_36_1
  doi: 10.1039/C9TA00530G
– ident: e_1_2_7_21_1
  doi: 10.1038/s41560-019-0355-9
– ident: e_1_2_7_50_1
  doi: 10.1002/cey2.279
– ident: e_1_2_7_41_1
  doi: 10.1016/0038-1098(96)00477-2
– ident: e_1_2_7_56_1
  doi: 10.1021/jp306303y
– ident: e_1_2_7_4_1
  doi: 10.1039/D0CC08091H
– ident: e_1_2_7_8_1
  doi: 10.26599/NRE.2023.9120056
– ident: e_1_2_7_7_1
  doi: 10.1002/adfm.202107382
– ident: e_1_2_7_30_1
  doi: 10.1021/acscatal.9b01819
– ident: e_1_2_7_15_1
  doi: 10.1002/adma.202107956
– ident: e_1_2_7_53_1
  doi: 10.1021/acs.jpcc.9b03830
– ident: e_1_2_7_29_1
  doi: 10.1002/adma.202102593
– ident: e_1_2_7_24_1
  doi: 10.1021/acs.jpcc.5b10071
– ident: e_1_2_7_46_1
  doi: 10.1103/PhysRevB.44.6090
– ident: e_1_2_7_51_1
  doi: 10.1038/s41929-021-00723-w
– ident: e_1_2_7_3_1
  doi: 10.1038/s41596-022-00762-y
– ident: e_1_2_7_48_1
  doi: 10.1038/s44160-022-00232-z
– ident: e_1_2_7_1_1
  doi: 10.1016/j.ccr.2021.214049
– ident: e_1_2_7_32_1
  doi: 10.1002/aenm.202003755
– ident: e_1_2_7_43_1
  doi: 10.1103/PhysRevB.75.104306
– ident: e_1_2_7_47_1
  doi: 10.1103/PhysRevLett.55.418
– ident: e_1_2_7_52_1
  doi: 10.1021/jacs.1c12520
– ident: e_1_2_7_58_1
  doi: 10.1021/jacs.1c04682
– ident: e_1_2_7_40_1
  doi: 10.1002/smtd.202300100
– ident: e_1_2_7_45_1
  doi: 10.1021/acsmaterialslett.2c00810
– ident: e_1_2_7_25_1
  doi: 10.1016/j.enchem.2022.100088
– ident: e_1_2_7_2_1
  doi: 10.1002/adma.202004243
– ident: e_1_2_7_34_1
  doi: 10.1038/s41467-022-31874-4
– ident: e_1_2_7_14_1
  doi: 10.1016/j.apmate.2021.11.007
– ident: e_1_2_7_17_1
  doi: 10.1126/sciadv.aav6262
– ident: e_1_2_7_26_1
  doi: 10.1016/j.checat.2022.02.007
– ident: e_1_2_7_33_1
  doi: 10.1021/acscatal.0c02608
– ident: e_1_2_7_31_1
  doi: 10.1021/acscatal.9b02936
– ident: e_1_2_7_39_1
  doi: 10.1002/adma.202206540
– ident: e_1_2_7_13_1
  doi: 10.1002/chem.202202872
– ident: e_1_2_7_18_1
  doi: 10.1038/s41586-022-05296-7
– ident: e_1_2_7_12_1
  doi: 10.1002/aenm.201903120
– ident: e_1_2_7_37_1
  doi: 10.1002/aenm.202203244
– ident: e_1_2_7_42_1
  doi: 10.1103/PhysRevB.103.165108
– ident: e_1_2_7_19_1
  doi: 10.1016/j.chempr.2017.09.003
– ident: e_1_2_7_23_1
  doi: 10.1021/jacs.2c02989
– ident: e_1_2_7_55_1
  doi: 10.1021/acs.jpcc.6b09141
– ident: e_1_2_7_6_1
  doi: 10.1002/adma.202002235
– ident: e_1_2_7_27_1
  doi: 10.1002/smtd.202200413
– ident: e_1_2_7_11_1
  doi: 10.1016/j.joule.2021.05.018
– ident: e_1_2_7_44_1
  doi: 10.1038/s41560-018-0097-0
– ident: e_1_2_7_49_1
  doi: 10.1021/acs.nanolett.6b03133
– ident: e_1_2_7_35_1
  doi: 10.1002/smll.202206531
– ident: e_1_2_7_10_1
  doi: 10.1039/D2EE01036D
– ident: e_1_2_7_22_1
  doi: 10.1038/s41929-020-0465-6
SSID ssj0009606
Score 2.7156708
Snippet Rare‐earth (RE)‐based transition metal oxides (TMO) are emerging as a frontier toward the oxygen evolution reaction (OER), yet the knowledge regarding their...
Rare-earth (RE)-based transition metal oxides (TMO) are emerging as a frontier toward the oxygen evolution reaction (OER), yet the knowledge regarding their...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2302462
SubjectTerms 4f buffer bands
Absorption spectroscopy
Ce─O─Co unit site
Coupling
Co─O covalency
gradient orbital coupling
oxygen evolution
Oxygen evolution reactions
Raman spectroscopy
Spectrum analysis
Structural design
Transition metal oxides
Title Reinforcing CoO Covalency via Ce(4f)─O(2p)─Co(3d) Gradient Orbital Coupling for High‐Efficiency Oxygen Evolution
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202302462
https://www.ncbi.nlm.nih.gov/pubmed/37070755
https://www.proquest.com/docview/2842345833
https://www.proquest.com/docview/2802888322
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LbtNAFIZHqCtYcL8YChokJNKF22TGY88so5BSIUGkikrdWWduCIGSKk0qyqqPwII34EF4l74Ar8A5Y8dtQAgJVo6VGXvinMtv-8w3jD1Dxeowz0BellU_L5TxuY3oV1ZVrtRgrQ6J9vmm3DsoXh2qw0uz-Bs-RPfAjTwjxWtycLDHOxfQUPCJG4QSWhQpCFPBFqmi_Qt-FMnzBNuTKjdloVfUxr7YWe--npV-k5rryjWlnt0bDFaDbipOPmwvF3bbff6F5_g_v-omu97qUj5sDOkWuxKmt9m1S7TCO-x0PyTMqsM9Ppr9-PZ9ghu0VJq9yU_eAx-FXhG3zr-eTXriiLajWU_6Lf5yngrLFnwyt7RICXZb0kzgdxwPx6nU5PzsyzjBLNKxJp9O0a75-KT1i7vsYHf8drSXtys35E6WBkMsBoqohXO6D1UMJoA2VsaKbne09BFTogfQYJxGxQc6-sIJq53ygwL6Ay_vsY3pbBoeMG5AeRMsYenKwngBKsaqctYbGCjnXMby1T9XuxZrTqtrfKwbILOo6ZLW3SXN2POu_VED9Phjy82VIdStYx_XmM2FpHfNMmNPu6_RJek9C0zDbEltULRpCpUZu98YUHcqWRFfSamMiWQGfxlDPXzxetjtPfyXTo_YVfrclBhvso3FfBkeo5Ba2CfJWX4CgxoWxA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbhMxFL1CZQEseNMOFDASEuli2sQez9jLKKQEaBupaiV2Iz8RKkqqkFSUVT-BBX_Ah_Av_QF-AV_PowSEkGBlecae8Xju49i-PgZ4GhCrCX5GpXledNOMS5tqH_RK88LkQmktXGT73MtHh9mrN7yJJsS9MBU_RDvhhpoR7TUqOE5Ib12whiobiYMChqYZWuHLeKx3HFXtXzBIIUCPdHuMpzLPRMPb2KVby_WX_dJvYHMZu0bns30DdNPsKubkaHMx15vm0y-Mjv_1XTfheg1NSb-SpVtwyU1uw7WfCAvvwOm-i0yrJuTIYPr967dxSIKw4gZOcvJOkYHrZH7j_MvZuEOPMR1MO8xukBezGFs2J-OZxnNKQrUFbgZ-S8LjCEabnJ99HkY-i_is8cfTINpkeFKrxl043B4eDEZpfXhDalgug5UNtsILaozoqsI76ZSQmvkCRzyCWR-8olVKKGlEAH1KeJsZqoXhtpepbs-ye7AymU7cGhCpuJVOIzNdnklLFfe-KIy2UvW4MSaBtPl1pamZzfGAjfdlxclMS-zSsu3SBJ615Y8rTo8_llxvJKGsdftDGRw6ZbjczBJ40t4OWolLLWripgssE3CbQGuZwGolQe2rWIEUS5wnQKMc_KUNZf_5br_N3f-XSo_hyuhgd6fcebn3-gFcxetVxPE6rMxnC_cw4Kq5fhQ15wfgAhrf
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3JbtQwGMctVCQEB8pO2gJGQmJ6SJvxktjH0SyUrYMqKvUWeUUINDMaZiraUx-BA2_Ag_Rd-gJ9Bfw5mbQDQkhwipLYiZN8yz-J_TNCz4JiNSHPqDTPiyxlXNpU--BXmhcmF0pr4SLtczff2WevDvjBpVH8FR-i-eAGnhHjNTj4xPrtC2iospEbFCQ0YRCEr7I8E2DXvb0LgBTo80jbozyVORMLbGNGtpfrL6el37TmsnSNuWewitSi1VWXk09b85neMse_AB3_57JuoZu1MMWdypJuoytudAfduIQrvIuO9lzkrJqwhrvj8x-nw7AIpgrDN_HhR4W7rsX85tn3k2GLTGDZHbeo3cQvprFn2QwPpxpmKQnV5jAU-AMOh8PQ1-Ts5Fs_0izisYZfj4Jh4_5h7Rj30P6g_767k9ZTN6SG5jLE2BApvCDGiEwV3kmnhNTUF_C-I6j1ISdapYSSRgTJp4S3zBAtDLdtprK2pffRymg8cg8Rlopb6TRw6XImLVHc-6Iw2krV5saYBKWLJ1eammsO02t8LisiMynhlpbNLU3Q86b8pCJ6_LHkxsIQytqzv5QhnRMKP5tpgp42u4NPwo8WNXLjOZQJqk1ArEzQg8qAmlPRAgBLnCeIRDP4SxvKTu9tp1lb-5dKT9C1d71B-ebl7ut1dB02V92NN9DKbDp3j4KomunH0W9-ApbcGZc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reinforcing+Co%EF%A3%BFO+Covalency+via+Ce%284f%29%E2%94%80O%282p%29%E2%94%80Co%283d%29+Gradient+Orbital+Coupling+for+High-Efficiency+Oxygen+Evolution&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Li%2C+Meng&rft.au=Wang%2C+Xuan&rft.au=Liu%2C+Kun&rft.au=Sun%2C+Huamei&rft.date=2023-07-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=35&rft.issue=30&rft.spage=e2302462&rft_id=info:doi/10.1002%2Fadma.202302462&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon