Reinforcing CoO Covalency via Ce(4f)─O(2p)─Co(3d) Gradient Orbital Coupling for High‐Efficiency Oxygen Evolution
Rare‐earth (RE)‐based transition metal oxides (TMO) are emerging as a frontier toward the oxygen evolution reaction (OER), yet the knowledge regarding their electrocatalytic mechanism and active sites is very limited. In this work, atomically dispersed Ce on CoO is successfully designed and synthesi...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 35; no. 30; pp. e2302462 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rare‐earth (RE)‐based transition metal oxides (TMO) are emerging as a frontier toward the oxygen evolution reaction (OER), yet the knowledge regarding their electrocatalytic mechanism and active sites is very limited. In this work, atomically dispersed Ce on CoO is successfully designed and synthesized by an effective plasma (P)‐assisted strategy as a model (P‐Ce SAs@CoO) to investigate the origin of OER performance in RE–TMO systems. The P‐Ce SAs@CoO exhibits favorable performance with an overpotential of only 261 mV at 10 mA cm−2 and robust electrochemical stability, superior to individual CoO. X‐ray absorption spectroscopy and in situ electrochemical Raman spectroscopy reveal that the Ce‐induced electron redistribution inhibits CoO bond breakage in the CoOCe unit site. Theoretical analysis demonstrates that the gradient orbital coupling reinforces the CoO covalency of the Ce(4f)─O(2p)─Co(3d) unit active site with an optimized Co‐3d‐eg occupancy, which can balance the adsorption strength of intermediates and in turn reach the apex of the theoretical OER maximum, in excellent agreement with experimental observations. It is believed that the establishment of this Ce–CoO model can set a basis for the mechanistic understanding and structural design of high‐performance RE–TMO catalysts.
Atomically dispersed Ce on CoO is prepared as a model to identify the active sites of rare‐earth‐based transition metal oxides toward oxygen evolution reaction (OER) and the corresponding catalytic mechanism is elucidated. The CeOCo unit site is identified as the active center. The enhanced OER performance is ascribed to reinforce CoO covalency through Ce(4f)─O(2p)─Co(3d) gradient orbital coupling. |
---|---|
AbstractList | Rare‐earth (RE)‐based transition metal oxides (TMO) are emerging as a frontier toward the oxygen evolution reaction (OER), yet the knowledge regarding their electrocatalytic mechanism and active sites is very limited. In this work, atomically dispersed Ce on CoO is successfully designed and synthesized by an effective plasma (P)‐assisted strategy as a model (P‐Ce SAs@CoO) to investigate the origin of OER performance in RE–TMO systems. The P‐Ce SAs@CoO exhibits favorable performance with an overpotential of only 261 mV at 10 mA cm−2 and robust electrochemical stability, superior to individual CoO. X‐ray absorption spectroscopy and in situ electrochemical Raman spectroscopy reveal that the Ce‐induced electron redistribution inhibits CoO bond breakage in the CoOCe unit site. Theoretical analysis demonstrates that the gradient orbital coupling reinforces the CoO covalency of the Ce(4f)─O(2p)─Co(3d) unit active site with an optimized Co‐3d‐eg occupancy, which can balance the adsorption strength of intermediates and in turn reach the apex of the theoretical OER maximum, in excellent agreement with experimental observations. It is believed that the establishment of this Ce–CoO model can set a basis for the mechanistic understanding and structural design of high‐performance RE–TMO catalysts. Rare‐earth (RE)‐based transition metal oxides (TMO) are emerging as a frontier toward the oxygen evolution reaction (OER), yet the knowledge regarding their electrocatalytic mechanism and active sites is very limited. In this work, atomically dispersed Ce on CoO is successfully designed and synthesized by an effective plasma (P)‐assisted strategy as a model (P‐Ce SAs@CoO) to investigate the origin of OER performance in RE–TMO systems. The P‐Ce SAs@CoO exhibits favorable performance with an overpotential of only 261 mV at 10 mA cm −2 and robust electrochemical stability, superior to individual CoO. X‐ray absorption spectroscopy and in situ electrochemical Raman spectroscopy reveal that the Ce‐induced electron redistribution inhibits CoO bond breakage in the CoOCe unit site. Theoretical analysis demonstrates that the gradient orbital coupling reinforces the CoO covalency of the Ce(4f)─O(2p)─Co(3d) unit active site with an optimized Co‐3d‐e g occupancy, which can balance the adsorption strength of intermediates and in turn reach the apex of the theoretical OER maximum, in excellent agreement with experimental observations. It is believed that the establishment of this Ce–CoO model can set a basis for the mechanistic understanding and structural design of high‐performance RE–TMO catalysts. Rare-earth (RE)-based transition metal oxides (TMO) are emerging as a frontier toward the oxygen evolution reaction (OER), yet the knowledge regarding their electrocatalytic mechanism and active sites is very limited. In this work, atomically dispersed Ce on CoO is successfully designed and synthesized by an effective plasma (P)-assisted strategy as a model (P-Ce SAs@CoO) to investigate the origin of OER performance in RE-TMO systems. The P-Ce SAs@CoO exhibits favorable performance with an overpotential of only 261 mV at 10 mA cm-2 and robust electrochemical stability, superior to individual CoO. X-ray absorption spectroscopy and in situ electrochemical Raman spectroscopy reveal that the Ce-induced electron redistribution inhibits CoO bond breakage in the CoOCe unit site. Theoretical analysis demonstrates that the gradient orbital coupling reinforces the CoO covalency of the Ce(4f)─O(2p)─Co(3d) unit active site with an optimized Co-3d-eg occupancy, which can balance the adsorption strength of intermediates and in turn reach the apex of the theoretical OER maximum, in excellent agreement with experimental observations. It is believed that the establishment of this Ce-CoO model can set a basis for the mechanistic understanding and structural design of high-performance RE-TMO catalysts.Rare-earth (RE)-based transition metal oxides (TMO) are emerging as a frontier toward the oxygen evolution reaction (OER), yet the knowledge regarding their electrocatalytic mechanism and active sites is very limited. In this work, atomically dispersed Ce on CoO is successfully designed and synthesized by an effective plasma (P)-assisted strategy as a model (P-Ce SAs@CoO) to investigate the origin of OER performance in RE-TMO systems. The P-Ce SAs@CoO exhibits favorable performance with an overpotential of only 261 mV at 10 mA cm-2 and robust electrochemical stability, superior to individual CoO. X-ray absorption spectroscopy and in situ electrochemical Raman spectroscopy reveal that the Ce-induced electron redistribution inhibits CoO bond breakage in the CoOCe unit site. Theoretical analysis demonstrates that the gradient orbital coupling reinforces the CoO covalency of the Ce(4f)─O(2p)─Co(3d) unit active site with an optimized Co-3d-eg occupancy, which can balance the adsorption strength of intermediates and in turn reach the apex of the theoretical OER maximum, in excellent agreement with experimental observations. It is believed that the establishment of this Ce-CoO model can set a basis for the mechanistic understanding and structural design of high-performance RE-TMO catalysts. Rare‐earth (RE)‐based transition metal oxides (TMO) are emerging as a frontier toward the oxygen evolution reaction (OER), yet the knowledge regarding their electrocatalytic mechanism and active sites is very limited. In this work, atomically dispersed Ce on CoO is successfully designed and synthesized by an effective plasma (P)‐assisted strategy as a model (P‐Ce SAs@CoO) to investigate the origin of OER performance in RE–TMO systems. The P‐Ce SAs@CoO exhibits favorable performance with an overpotential of only 261 mV at 10 mA cm−2 and robust electrochemical stability, superior to individual CoO. X‐ray absorption spectroscopy and in situ electrochemical Raman spectroscopy reveal that the Ce‐induced electron redistribution inhibits CoO bond breakage in the CoOCe unit site. Theoretical analysis demonstrates that the gradient orbital coupling reinforces the CoO covalency of the Ce(4f)─O(2p)─Co(3d) unit active site with an optimized Co‐3d‐eg occupancy, which can balance the adsorption strength of intermediates and in turn reach the apex of the theoretical OER maximum, in excellent agreement with experimental observations. It is believed that the establishment of this Ce–CoO model can set a basis for the mechanistic understanding and structural design of high‐performance RE–TMO catalysts. Atomically dispersed Ce on CoO is prepared as a model to identify the active sites of rare‐earth‐based transition metal oxides toward oxygen evolution reaction (OER) and the corresponding catalytic mechanism is elucidated. The CeOCo unit site is identified as the active center. The enhanced OER performance is ascribed to reinforce CoO covalency through Ce(4f)─O(2p)─Co(3d) gradient orbital coupling. Rare-earth (RE)-based transition metal oxides (TMO) are emerging as a frontier toward the oxygen evolution reaction (OER), yet the knowledge regarding their electrocatalytic mechanism and active sites is very limited. In this work, atomically dispersed Ce on CoO is successfully designed and synthesized by an effective plasma (P)-assisted strategy as a model (P-Ce SAs@CoO) to investigate the origin of OER performance in RE-TMO systems. The P-Ce SAs@CoO exhibits favorable performance with an overpotential of only 261 mV at 10 mA cm and robust electrochemical stability, superior to individual CoO. X-ray absorption spectroscopy and in situ electrochemical Raman spectroscopy reveal that the Ce-induced electron redistribution inhibits CoO bond breakage in the CoOCe unit site. Theoretical analysis demonstrates that the gradient orbital coupling reinforces the CoO covalency of the Ce(4f)─O(2p)─Co(3d) unit active site with an optimized Co-3d-e occupancy, which can balance the adsorption strength of intermediates and in turn reach the apex of the theoretical OER maximum, in excellent agreement with experimental observations. It is believed that the establishment of this Ce-CoO model can set a basis for the mechanistic understanding and structural design of high-performance RE-TMO catalysts. |
Author | Liu, Kun Xing, Wei Li, Meng Li, Hao Sun, Dongmei Wang, Xuan Sun, Huamei Fu, Gengtao Huang, Kai Tang, Yawen |
Author_xml | – sequence: 1 givenname: Meng surname: Li fullname: Li, Meng organization: Southeast University – sequence: 2 givenname: Xuan surname: Wang fullname: Wang, Xuan organization: Nanjing Normal University – sequence: 3 givenname: Kun surname: Liu fullname: Liu, Kun organization: Nanjing Normal University – sequence: 4 givenname: Huamei surname: Sun fullname: Sun, Huamei organization: Nanjing Normal University – sequence: 5 givenname: Dongmei surname: Sun fullname: Sun, Dongmei organization: Nanjing Normal University – sequence: 6 givenname: Kai surname: Huang fullname: Huang, Kai organization: Southeast University – sequence: 7 givenname: Yawen surname: Tang fullname: Tang, Yawen organization: Nanjing Normal University – sequence: 8 givenname: Wei surname: Xing fullname: Xing, Wei organization: University of Science and Technology of China – sequence: 9 givenname: Hao surname: Li fullname: Li, Hao email: li.hao.b8@tohoku.ac.jp organization: Tohoku University – sequence: 10 givenname: Gengtao orcidid: 0000-0003-0411-645X surname: Fu fullname: Fu, Gengtao email: gengtaofu@njnu.edu.cn organization: Nanjing Normal University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37070755$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1uEzEAhS1URNPCliUaiU26mOC_mdjLaAhtpaKRUFmPHP8EV44dPDMps-sRWHADDsJdegGuUA8pRapUIS_e5nvP9ntH4MAHrwF4jeAMQYjfCbURMwwxgZiW-BmYoAKjnEJeHIAJ5KTIeUnZIThq2ysIIS9h-QIckjlMpygmYPikrTchSuvXWRV-__xVJ9kJp70csp0VWaWn1Jzc_ripp3g7ahWmRJ1kp1Eoq32X1XFlO-GSrd-6MSbFZWd2_eX25vvSGCvtn6z627DWPlvugus7G_xL8NwI1-pX93oMPn9YXlZn-UV9el4tLnJJSo5zhhgxDEvJoJgbzbVgfEXMnMD0L6IMo3MlBBNcMlYgwYyiEq-YLBSiAiJFjsF0n7uN4Wuv267Z2FZq54TXoW8bzCBmjBGME_r2EXoV-ujT6xJFMaEFIyRRb-6pfrXRqtlGuxFxaP6WmoDZHpAxtG3U5gFBsBlXa8bVmofVkoE-MsjU6FhSF4V1T9v43nZtnR7-c0mzeP9x8c97B4_Lrhc |
CitedBy_id | crossref_primary_10_1039_D3CC04070D crossref_primary_10_1021_acsanm_4c03420 crossref_primary_10_1016_j_ccr_2024_216111 crossref_primary_10_1039_D4SE01613K crossref_primary_10_1016_j_jcis_2024_01_024 crossref_primary_10_1016_j_jcis_2024_05_205 crossref_primary_10_1021_acs_inorgchem_3c03301 crossref_primary_10_1039_D3TA06135C crossref_primary_10_1016_j_jtice_2024_105653 crossref_primary_10_1002_cphc_202400701 crossref_primary_10_1016_j_cej_2025_161519 crossref_primary_10_1021_acsami_4c12767 crossref_primary_10_1021_acsnano_4c11614 crossref_primary_10_1002_smtd_202300816 crossref_primary_10_1002_ange_202418422 crossref_primary_10_1002_advs_202403206 crossref_primary_10_1002_aenm_202303529 crossref_primary_10_1002_anie_202415306 crossref_primary_10_1038_s41467_024_49834_5 crossref_primary_10_1039_D4TA02907K crossref_primary_10_1016_j_mseb_2023_116884 crossref_primary_10_1002_adfm_202306098 crossref_primary_10_1039_D4CY00557K crossref_primary_10_1002_ange_202419083 crossref_primary_10_1002_smll_202410384 crossref_primary_10_1016_j_fuel_2024_131214 crossref_primary_10_1016_j_jcis_2023_12_080 crossref_primary_10_1002_anie_202418422 crossref_primary_10_1002_ange_202411000 crossref_primary_10_1002_cey2_529 crossref_primary_10_1039_D4TA02918F crossref_primary_10_1002_anie_202419718 crossref_primary_10_1021_acsanm_4c00570 crossref_primary_10_1002_ange_202400206 crossref_primary_10_1021_acsnano_4c08156 crossref_primary_10_1039_D4DT00619D crossref_primary_10_1021_acssuschemeng_4c02912 crossref_primary_10_1002_smll_202409343 crossref_primary_10_1021_acs_langmuir_4c02475 crossref_primary_10_1002_batt_202400402 crossref_primary_10_1016_j_cej_2024_155299 crossref_primary_10_1002_adfm_202305268 crossref_primary_10_1002_adfm_202308533 crossref_primary_10_1002_ppsc_202400226 crossref_primary_10_1016_j_matlet_2023_134987 crossref_primary_10_1016_j_apsusc_2024_160481 crossref_primary_10_1002_anie_202406711 crossref_primary_10_1021_acssuschemeng_4c01787 crossref_primary_10_1016_j_apcatb_2024_124506 crossref_primary_10_1002_adfm_202410700 crossref_primary_10_1021_acsami_3c10238 crossref_primary_10_1039_D3GC02075D crossref_primary_10_1016_j_nanoen_2024_109868 crossref_primary_10_1039_D3DT01819A crossref_primary_10_1016_j_cej_2024_148926 crossref_primary_10_1002_adfm_202423158 crossref_primary_10_1021_acs_nanolett_4c00088 crossref_primary_10_1039_D4SC07442D crossref_primary_10_1002_adma_202405533 crossref_primary_10_1002_smll_202309363 crossref_primary_10_1021_acs_energyfuels_3c02987 crossref_primary_10_1016_j_est_2024_111378 crossref_primary_10_1002_adfm_202413491 crossref_primary_10_1016_j_jcis_2023_08_141 crossref_primary_10_1002_adma_202411090 crossref_primary_10_1016_j_jcis_2024_10_048 crossref_primary_10_1002_adma_202313057 crossref_primary_10_1016_j_cej_2024_151490 crossref_primary_10_1016_j_jcis_2023_09_179 crossref_primary_10_1002_smll_202302738 crossref_primary_10_1002_ange_202406711 crossref_primary_10_1002_smll_202406075 crossref_primary_10_1002_ange_202415306 crossref_primary_10_1002_anie_202400206 crossref_primary_10_1021_acs_jpcc_4c02846 crossref_primary_10_3390_molecules28155620 crossref_primary_10_1016_j_jcis_2024_09_111 crossref_primary_10_1039_D3TA05029G crossref_primary_10_1039_D3TA05897B crossref_primary_10_1039_D4TA07515C crossref_primary_10_1016_j_apsusc_2023_159223 crossref_primary_10_1007_s40820_023_01164_9 crossref_primary_10_1002_advs_202403197 crossref_primary_10_1007_s40843_023_2606_0 crossref_primary_10_1002_ange_202313298 crossref_primary_10_1039_D3NJ03483F crossref_primary_10_1021_jacs_4c05983 crossref_primary_10_1016_j_cej_2024_150253 crossref_primary_10_1039_D3QM00841J crossref_primary_10_1002_smll_202407860 crossref_primary_10_1016_j_cej_2025_159475 crossref_primary_10_1063_5_0211941 crossref_primary_10_1039_D4QM00285G crossref_primary_10_1021_acsanm_4c01317 crossref_primary_10_1002_anie_202416274 crossref_primary_10_1039_D3CP04284G crossref_primary_10_1002_anie_202412591 crossref_primary_10_1016_j_apcatb_2023_123277 crossref_primary_10_1002_adfm_202315563 crossref_primary_10_1038_s41467_024_54226_w crossref_primary_10_1002_anie_202414893 crossref_primary_10_1021_acs_iecr_3c01793 crossref_primary_10_1039_D4EE01588F crossref_primary_10_1002_cssc_202400827 crossref_primary_10_1002_ange_202419718 crossref_primary_10_1039_D4NR02788D crossref_primary_10_1002_adfm_202411094 crossref_primary_10_1016_j_jcis_2024_10_146 crossref_primary_10_1039_D4QI01435A crossref_primary_10_1002_adma_202416483 crossref_primary_10_1039_D3EE03396A crossref_primary_10_1039_D3TA04714H crossref_primary_10_1021_acssuschemeng_3c06895 crossref_primary_10_1016_j_cej_2024_154059 crossref_primary_10_1002_smm2_1281 crossref_primary_10_1039_D3TA03197G crossref_primary_10_1007_s12598_024_03025_9 crossref_primary_10_26599_NR_2025_94907016 crossref_primary_10_1016_j_ijhydene_2023_10_256 crossref_primary_10_1002_adfm_202412979 crossref_primary_10_1016_j_ccr_2024_215920 crossref_primary_10_1039_D4QI00518J crossref_primary_10_1021_acssuschemeng_4c09591 crossref_primary_10_1002_ange_202412591 crossref_primary_10_1002_ange_202416274 crossref_primary_10_1016_j_cplett_2023_141058 crossref_primary_10_1016_j_fuel_2024_132757 crossref_primary_10_1002_aenm_202403744 crossref_primary_10_1002_aoc_7734 crossref_primary_10_1002_smll_202407881 crossref_primary_10_1016_j_cej_2024_153195 crossref_primary_10_1039_D3NR06245G crossref_primary_10_1021_acs_est_4c02277 crossref_primary_10_1002_anie_202419083 crossref_primary_10_1016_j_jcis_2023_12_171 crossref_primary_10_1039_D4NR01168F crossref_primary_10_1364_OE_533851 crossref_primary_10_1002_aenm_202401716 crossref_primary_10_1016_j_apcatb_2023_123659 crossref_primary_10_1002_aenm_202402923 crossref_primary_10_1007_s41918_024_00237_6 crossref_primary_10_1039_D3SE01067H crossref_primary_10_1016_j_jallcom_2023_171722 crossref_primary_10_1021_acs_analchem_4c05534 crossref_primary_10_1002_aenm_202301162 crossref_primary_10_1002_smll_202302781 crossref_primary_10_1002_cssc_202401435 crossref_primary_10_1016_j_nanoen_2024_110529 crossref_primary_10_1016_j_cej_2024_149121 crossref_primary_10_1021_acs_energyfuels_3c01992 crossref_primary_10_1002_aenm_202303863 crossref_primary_10_1002_smll_202311124 crossref_primary_10_1002_anie_202411000 crossref_primary_10_1002_adma_202405970 crossref_primary_10_1021_acsnano_4c05130 crossref_primary_10_52396_JUSTC_2024_0046 crossref_primary_10_1002_adfm_202425138 crossref_primary_10_1007_s40820_024_01403_7 crossref_primary_10_1021_acs_nanolett_4c03670 crossref_primary_10_1016_j_apsusc_2024_161258 crossref_primary_10_1021_acs_inorgchem_4c02111 crossref_primary_10_1002_anie_202313298 crossref_primary_10_1007_s40820_024_01528_9 crossref_primary_10_1002_smll_202407510 crossref_primary_10_1039_D3QM00516J crossref_primary_10_1039_D4NJ00252K crossref_primary_10_1016_j_cej_2024_153464 crossref_primary_10_1002_adfm_202411024 crossref_primary_10_1002_cssc_202402194 crossref_primary_10_1021_acssuschemeng_3c05384 crossref_primary_10_1016_j_jelechem_2024_118737 crossref_primary_10_1002_ange_202414893 crossref_primary_10_1021_acscatal_4c03088 crossref_primary_10_1016_j_jcis_2023_11_027 crossref_primary_10_1039_D4NR01743A crossref_primary_10_1002_adfm_202404061 |
Cites_doi | 10.1126/sciadv.abc7323 10.1038/s41467-022-30064-6 10.1039/C9CS00607A 10.1002/anie.202103058 10.1038/s41467-022-34380-9 10.1038/s41467-021-23390-8 10.1007/s40843-020-1571-y 10.1002/cctc.201000397 10.1039/C9TA00530G 10.1038/s41560-019-0355-9 10.1002/cey2.279 10.1016/0038-1098(96)00477-2 10.1021/jp306303y 10.1039/D0CC08091H 10.26599/NRE.2023.9120056 10.1002/adfm.202107382 10.1021/acscatal.9b01819 10.1002/adma.202107956 10.1021/acs.jpcc.9b03830 10.1002/adma.202102593 10.1021/acs.jpcc.5b10071 10.1103/PhysRevB.44.6090 10.1038/s41929-021-00723-w 10.1038/s41596-022-00762-y 10.1038/s44160-022-00232-z 10.1016/j.ccr.2021.214049 10.1002/aenm.202003755 10.1103/PhysRevB.75.104306 10.1103/PhysRevLett.55.418 10.1021/jacs.1c12520 10.1021/jacs.1c04682 10.1002/smtd.202300100 10.1021/acsmaterialslett.2c00810 10.1016/j.enchem.2022.100088 10.1002/adma.202004243 10.1038/s41467-022-31874-4 10.1016/j.apmate.2021.11.007 10.1126/sciadv.aav6262 10.1016/j.checat.2022.02.007 10.1021/acscatal.0c02608 10.1021/acscatal.9b02936 10.1002/adma.202206540 10.1002/chem.202202872 10.1038/s41586-022-05296-7 10.1002/aenm.201903120 10.1002/aenm.202203244 10.1103/PhysRevB.103.165108 10.1016/j.chempr.2017.09.003 10.1021/jacs.2c02989 10.1021/acs.jpcc.6b09141 10.1002/adma.202002235 10.1002/smtd.202200413 10.1016/j.joule.2021.05.018 10.1038/s41560-018-0097-0 10.1021/acs.nanolett.6b03133 10.1002/smll.202206531 10.1039/D2EE01036D 10.1038/s41929-020-0465-6 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202302462 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 37070755 10_1002_adma_202302462 ADMA202302462 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22109073; 22072067; 22232004; 22279062 – fundername: JSPS KAKENHI funderid: JP23K13703 – fundername: Natural Science Foundation of Jiangsu Province funderid: BK20221321 – fundername: MASAMUNE‐IMR funderid: 202212‐SCKXX‐0204 – fundername: National Natural Science Foundation of China grantid: 22279062 – fundername: National Natural Science Foundation of China grantid: 22232004 – fundername: JSPS KAKENHI grantid: JP23K13703 – fundername: National Natural Science Foundation of China grantid: 22072067 – fundername: MASAMUNE-IMR grantid: 202212-SCKXX-0204 – fundername: National Natural Science Foundation of China grantid: 22109073 – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20221321 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c3692-8183f82cc80a7fe9ea89b3f7306483df847daa8a9c8851a8fd4c2b8c5d14a01d3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 09:09:01 EDT 2025 Sat Jul 26 02:33:47 EDT 2025 Thu Apr 03 07:04:46 EDT 2025 Thu Apr 24 22:54:00 EDT 2025 Tue Jul 01 02:33:33 EDT 2025 Wed Jan 22 16:19:09 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 30 |
Keywords | Ce─O─Co unit site gradient orbital coupling Co─O covalency 4f buffer bands oxygen evolution |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3692-8183f82cc80a7fe9ea89b3f7306483df847daa8a9c8851a8fd4c2b8c5d14a01d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0411-645X |
PMID | 37070755 |
PQID | 2842345833 |
PQPubID | 2045203 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2802888322 proquest_journals_2842345833 pubmed_primary_37070755 crossref_primary_10_1002_adma_202302462 crossref_citationtrail_10_1002_adma_202302462 wiley_primary_10_1002_adma_202302462_ADMA202302462 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-01 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 7 2021; 7 2019; 9 2021; 5 2019; 4 2023; 13 2021; 64 2017; 3 2019; 5 2023; 18 2023; 5 2021; 444 2021; 103 2023; 19 1996; 100 2023; 2 2020; 32 2020; 10 2021; 143 2007; 75 2011; 3 2016; 16 2016; 120 2022; 611 2019; 123 2022; 144 2021; 57 2018; 3 2020; 3 2021; 12 2021; 33 2021; 11 2023 2023; 29 2022; 4 2022; 5 2022; 6 1991; 44 2022; 34 2022; 13 2020; 49 2022; 15 2022; 32 2022; 1 2022; 2 1985; 55 2021; 60 2012; 116 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 103 year: 2021 publication-title: Phys. Rev. B – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 13 start-page: 4106 year: 2022 publication-title: Nat. Commun. – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 6 year: 2022 publication-title: Small Methods – volume: 9 start-page: 9212 year: 2019 publication-title: ACS Catal. – volume: 3 start-page: 812 year: 2017 publication-title: Chem – volume: 4 start-page: 329 year: 2019 publication-title: Nat. Energy – volume: 55 start-page: 418 year: 1985 publication-title: Phys. Rev. Lett. – volume: 13 start-page: 2294 year: 2022 publication-title: Nat. Commun. – volume: 4 start-page: 2195 year: 2022 publication-title: ACS Mater. Lett. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 116 year: 2012 publication-title: J. Phys. Chem. C – volume: 3 start-page: 1159 year: 2011 publication-title: ChemCatChem – volume: 5 start-page: 2164 year: 2021 publication-title: Joule – volume: 144 year: 2022 publication-title: J. Am. Chem. Soc. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 120 start-page: 78 year: 2016 publication-title: J. Phys. Chem. C – volume: 5 start-page: 30 year: 2022 publication-title: Nat. Catal. – volume: 100 start-page: 457 year: 1996 publication-title: Solid State Commun. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 2 start-page: 101 year: 2023 publication-title: Nat. Synth. – volume: 9 start-page: 6484 year: 2019 publication-title: ACS Catal. – volume: 2 start-page: 967 year: 2022 publication-title: Chem. Catal. – volume: 44 start-page: 6090 year: 1991 publication-title: Phys. Rev. B – volume: 49 start-page: 2196 year: 2020 publication-title: Chem. Soc. Rev. – volume: 57 start-page: 2879 year: 2021 publication-title: Chem. Commun. – volume: 19 year: 2023 publication-title: Small – volume: 444 year: 2021 publication-title: Coord. Chem. Rev. – volume: 4 year: 2022 publication-title: EnergyChem – volume: 611 start-page: 702 year: 2022 publication-title: Nature – year: 2023 publication-title: Small Methods – volume: 2 year: 2023 publication-title: Nano Res. Energy – volume: 75 year: 2007 publication-title: Phys. Rev. B – volume: 3 start-page: 373 year: 2018 publication-title: Nat. Energy – volume: 16 start-page: 6516 year: 2016 publication-title: Nano Lett. – volume: 5 year: 2023 publication-title: Carbon Energy – volume: 1 year: 2022 publication-title: Adv. Powder Mater. – volume: 13 start-page: 6650 year: 2022 publication-title: Nat. Commun. – volume: 3 start-page: 554 year: 2020 publication-title: Nat. Catal. – volume: 18 start-page: 555 year: 2023 publication-title: Nat. Protoc. – volume: 13 year: 2023 publication-title: Adv. Energy Mater. – volume: 143 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 3257 year: 2022 publication-title: Energy Environ. Sci. – volume: 120 year: 2016 publication-title: J. Phys. Chem. C – volume: 11 start-page: 424 year: 2021 publication-title: ACS Catal. – volume: 12 start-page: 3036 year: 2021 publication-title: Nat. Commun. – volume: 7 year: 2021 publication-title: Sci. Adv. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 29 year: 2023 publication-title: Chem. ‐ Eur. J. – volume: 5 year: 2019 publication-title: Sci. Adv. – volume: 123 year: 2019 publication-title: J. Phys. Chem. C – volume: 64 start-page: 1653 year: 2021 publication-title: Sci. China Mater. – volume: 144 start-page: 3590 year: 2022 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 5769 year: 2019 publication-title: J. Mater. Chem. A – ident: e_1_2_7_5_1 doi: 10.1126/sciadv.abc7323 – ident: e_1_2_7_54_1 doi: 10.1038/s41467-022-30064-6 – ident: e_1_2_7_16_1 doi: 10.1039/C9CS00607A – ident: e_1_2_7_20_1 doi: 10.1002/anie.202103058 – ident: e_1_2_7_9_1 doi: 10.1038/s41467-022-34380-9 – ident: e_1_2_7_28_1 doi: 10.1038/s41467-021-23390-8 – ident: e_1_2_7_38_1 doi: 10.1007/s40843-020-1571-y – ident: e_1_2_7_57_1 doi: 10.1002/cctc.201000397 – ident: e_1_2_7_36_1 doi: 10.1039/C9TA00530G – ident: e_1_2_7_21_1 doi: 10.1038/s41560-019-0355-9 – ident: e_1_2_7_50_1 doi: 10.1002/cey2.279 – ident: e_1_2_7_41_1 doi: 10.1016/0038-1098(96)00477-2 – ident: e_1_2_7_56_1 doi: 10.1021/jp306303y – ident: e_1_2_7_4_1 doi: 10.1039/D0CC08091H – ident: e_1_2_7_8_1 doi: 10.26599/NRE.2023.9120056 – ident: e_1_2_7_7_1 doi: 10.1002/adfm.202107382 – ident: e_1_2_7_30_1 doi: 10.1021/acscatal.9b01819 – ident: e_1_2_7_15_1 doi: 10.1002/adma.202107956 – ident: e_1_2_7_53_1 doi: 10.1021/acs.jpcc.9b03830 – ident: e_1_2_7_29_1 doi: 10.1002/adma.202102593 – ident: e_1_2_7_24_1 doi: 10.1021/acs.jpcc.5b10071 – ident: e_1_2_7_46_1 doi: 10.1103/PhysRevB.44.6090 – ident: e_1_2_7_51_1 doi: 10.1038/s41929-021-00723-w – ident: e_1_2_7_3_1 doi: 10.1038/s41596-022-00762-y – ident: e_1_2_7_48_1 doi: 10.1038/s44160-022-00232-z – ident: e_1_2_7_1_1 doi: 10.1016/j.ccr.2021.214049 – ident: e_1_2_7_32_1 doi: 10.1002/aenm.202003755 – ident: e_1_2_7_43_1 doi: 10.1103/PhysRevB.75.104306 – ident: e_1_2_7_47_1 doi: 10.1103/PhysRevLett.55.418 – ident: e_1_2_7_52_1 doi: 10.1021/jacs.1c12520 – ident: e_1_2_7_58_1 doi: 10.1021/jacs.1c04682 – ident: e_1_2_7_40_1 doi: 10.1002/smtd.202300100 – ident: e_1_2_7_45_1 doi: 10.1021/acsmaterialslett.2c00810 – ident: e_1_2_7_25_1 doi: 10.1016/j.enchem.2022.100088 – ident: e_1_2_7_2_1 doi: 10.1002/adma.202004243 – ident: e_1_2_7_34_1 doi: 10.1038/s41467-022-31874-4 – ident: e_1_2_7_14_1 doi: 10.1016/j.apmate.2021.11.007 – ident: e_1_2_7_17_1 doi: 10.1126/sciadv.aav6262 – ident: e_1_2_7_26_1 doi: 10.1016/j.checat.2022.02.007 – ident: e_1_2_7_33_1 doi: 10.1021/acscatal.0c02608 – ident: e_1_2_7_31_1 doi: 10.1021/acscatal.9b02936 – ident: e_1_2_7_39_1 doi: 10.1002/adma.202206540 – ident: e_1_2_7_13_1 doi: 10.1002/chem.202202872 – ident: e_1_2_7_18_1 doi: 10.1038/s41586-022-05296-7 – ident: e_1_2_7_12_1 doi: 10.1002/aenm.201903120 – ident: e_1_2_7_37_1 doi: 10.1002/aenm.202203244 – ident: e_1_2_7_42_1 doi: 10.1103/PhysRevB.103.165108 – ident: e_1_2_7_19_1 doi: 10.1016/j.chempr.2017.09.003 – ident: e_1_2_7_23_1 doi: 10.1021/jacs.2c02989 – ident: e_1_2_7_55_1 doi: 10.1021/acs.jpcc.6b09141 – ident: e_1_2_7_6_1 doi: 10.1002/adma.202002235 – ident: e_1_2_7_27_1 doi: 10.1002/smtd.202200413 – ident: e_1_2_7_11_1 doi: 10.1016/j.joule.2021.05.018 – ident: e_1_2_7_44_1 doi: 10.1038/s41560-018-0097-0 – ident: e_1_2_7_49_1 doi: 10.1021/acs.nanolett.6b03133 – ident: e_1_2_7_35_1 doi: 10.1002/smll.202206531 – ident: e_1_2_7_10_1 doi: 10.1039/D2EE01036D – ident: e_1_2_7_22_1 doi: 10.1038/s41929-020-0465-6 |
SSID | ssj0009606 |
Score | 2.7156708 |
Snippet | Rare‐earth (RE)‐based transition metal oxides (TMO) are emerging as a frontier toward the oxygen evolution reaction (OER), yet the knowledge regarding their... Rare-earth (RE)-based transition metal oxides (TMO) are emerging as a frontier toward the oxygen evolution reaction (OER), yet the knowledge regarding their... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2302462 |
SubjectTerms | 4f buffer bands Absorption spectroscopy Ce─O─Co unit site Coupling Co─O covalency gradient orbital coupling oxygen evolution Oxygen evolution reactions Raman spectroscopy Spectrum analysis Structural design Transition metal oxides |
Title | Reinforcing CoO Covalency via Ce(4f)─O(2p)─Co(3d) Gradient Orbital Coupling for High‐Efficiency Oxygen Evolution |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202302462 https://www.ncbi.nlm.nih.gov/pubmed/37070755 https://www.proquest.com/docview/2842345833 https://www.proquest.com/docview/2802888322 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LbtNAFIZHqCtYcL8YChokJNKF22TGY88so5BSIUGkikrdWWduCIGSKk0qyqqPwII34EF4l74Ar8A5Y8dtQAgJVo6VGXvinMtv-8w3jD1Dxeowz0BellU_L5TxuY3oV1ZVrtRgrQ6J9vmm3DsoXh2qw0uz-Bs-RPfAjTwjxWtycLDHOxfQUPCJG4QSWhQpCFPBFqmi_Qt-FMnzBNuTKjdloVfUxr7YWe--npV-k5rryjWlnt0bDFaDbipOPmwvF3bbff6F5_g_v-omu97qUj5sDOkWuxKmt9m1S7TCO-x0PyTMqsM9Ppr9-PZ9ghu0VJq9yU_eAx-FXhG3zr-eTXriiLajWU_6Lf5yngrLFnwyt7RICXZb0kzgdxwPx6nU5PzsyzjBLNKxJp9O0a75-KT1i7vsYHf8drSXtys35E6WBkMsBoqohXO6D1UMJoA2VsaKbne09BFTogfQYJxGxQc6-sIJq53ygwL6Ay_vsY3pbBoeMG5AeRMsYenKwngBKsaqctYbGCjnXMby1T9XuxZrTqtrfKwbILOo6ZLW3SXN2POu_VED9Phjy82VIdStYx_XmM2FpHfNMmNPu6_RJek9C0zDbEltULRpCpUZu98YUHcqWRFfSamMiWQGfxlDPXzxetjtPfyXTo_YVfrclBhvso3FfBkeo5Ba2CfJWX4CgxoWxA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbhMxFL1CZQEseNMOFDASEuli2sQez9jLKKQEaBupaiV2Iz8RKkqqkFSUVT-BBX_Ah_Av_QF-AV_PowSEkGBlecae8Xju49i-PgZ4GhCrCX5GpXledNOMS5tqH_RK88LkQmktXGT73MtHh9mrN7yJJsS9MBU_RDvhhpoR7TUqOE5Ib12whiobiYMChqYZWuHLeKx3HFXtXzBIIUCPdHuMpzLPRMPb2KVby_WX_dJvYHMZu0bns30DdNPsKubkaHMx15vm0y-Mjv_1XTfheg1NSb-SpVtwyU1uw7WfCAvvwOm-i0yrJuTIYPr967dxSIKw4gZOcvJOkYHrZH7j_MvZuEOPMR1MO8xukBezGFs2J-OZxnNKQrUFbgZ-S8LjCEabnJ99HkY-i_is8cfTINpkeFKrxl043B4eDEZpfXhDalgug5UNtsILaozoqsI76ZSQmvkCRzyCWR-8olVKKGlEAH1KeJsZqoXhtpepbs-ye7AymU7cGhCpuJVOIzNdnklLFfe-KIy2UvW4MSaBtPl1pamZzfGAjfdlxclMS-zSsu3SBJ615Y8rTo8_llxvJKGsdftDGRw6ZbjczBJ40t4OWolLLWripgssE3CbQGuZwGolQe2rWIEUS5wnQKMc_KUNZf_5br_N3f-XSo_hyuhgd6fcebn3-gFcxetVxPE6rMxnC_cw4Kq5fhQ15wfgAhrf |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3JbtQwGMctVCQEB8pO2gJGQmJ6SJvxktjH0SyUrYMqKvUWeUUINDMaZiraUx-BA2_Ag_Rd-gJ9Bfw5mbQDQkhwipLYiZN8yz-J_TNCz4JiNSHPqDTPiyxlXNpU--BXmhcmF0pr4SLtczff2WevDvjBpVH8FR-i-eAGnhHjNTj4xPrtC2iospEbFCQ0YRCEr7I8E2DXvb0LgBTo80jbozyVORMLbGNGtpfrL6el37TmsnSNuWewitSi1VWXk09b85neMse_AB3_57JuoZu1MMWdypJuoytudAfduIQrvIuO9lzkrJqwhrvj8x-nw7AIpgrDN_HhR4W7rsX85tn3k2GLTGDZHbeo3cQvprFn2QwPpxpmKQnV5jAU-AMOh8PQ1-Ts5Fs_0izisYZfj4Jh4_5h7Rj30P6g_767k9ZTN6SG5jLE2BApvCDGiEwV3kmnhNTUF_C-I6j1ISdapYSSRgTJp4S3zBAtDLdtprK2pffRymg8cg8Rlopb6TRw6XImLVHc-6Iw2krV5saYBKWLJ1eammsO02t8LisiMynhlpbNLU3Q86b8pCJ6_LHkxsIQytqzv5QhnRMKP5tpgp42u4NPwo8WNXLjOZQJqk1ArEzQg8qAmlPRAgBLnCeIRDP4SxvKTu9tp1lb-5dKT9C1d71B-ebl7ut1dB02V92NN9DKbDp3j4KomunH0W9-ApbcGZc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reinforcing+Co%EF%A3%BFO+Covalency+via+Ce%284f%29%E2%94%80O%282p%29%E2%94%80Co%283d%29+Gradient+Orbital+Coupling+for+High-Efficiency+Oxygen+Evolution&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Li%2C+Meng&rft.au=Wang%2C+Xuan&rft.au=Liu%2C+Kun&rft.au=Sun%2C+Huamei&rft.date=2023-07-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=35&rft.issue=30&rft.spage=e2302462&rft_id=info:doi/10.1002%2Fadma.202302462&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |