Triazolization of Enolizable Ketones with Primary Amines: A General Strategy toward Multifunctional 1,2,3‐Triazoles
The development of metal‐free syntheses toward 1,2,3‐triazoles has been a burgeoning research area throughout the past decade. Despite the numerous advances, the scarceness of methods for the preparation of 1,5‐disubstituted 1,2,3‐triazoles from readily available substrates remained a challenge that...
Saved in:
Published in | Chemical record Vol. 21; no. 2; pp. 376 - 385 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.02.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The development of metal‐free syntheses toward 1,2,3‐triazoles has been a burgeoning research area throughout the past decade. Despite the numerous advances, the scarceness of methods for the preparation of 1,5‐disubstituted 1,2,3‐triazoles from readily available substrates remained a challenge that was addressed by our group in 2016. A metal‐free three‐component reaction, which we have dubbed the triazolization reaction, was established for the rapid synthesis of 1,5‐disubstituted, fully functionalized and NH‐1,2,3‐triazoles. This novel approach stands out because it utilizes widely available starting materials, namely primary amines and enolizable ketones. Furthermore, the broad substrate scope is a major advantage, and was further expanded by the number of modified protocols that have been reported. Triazolization products have successfully found utility as intermediates in various synthetic transformations, and were the subject of a few interesting biological activity studies.
This account describes the first five years of developments since the discovery of the three‐component triazolization reaction. Starting from readily available enolizable ketones and primary amines or ammonium acetate, this method provides access to various 1,5‐di‐, (fused) 1,4,5‐trisubstituted and NH‐1,2,3‐triazoles. The triazolization reaction has already found utility in several synthetic pathways. |
---|---|
AbstractList | The development of metal‐free syntheses toward 1,2,3‐triazoles has been a burgeoning research area throughout the past decade. Despite the numerous advances, the scarceness of methods for the preparation of 1,5‐disubstituted 1,2,3‐triazoles from readily available substrates remained a challenge that was addressed by our group in 2016. A metal‐free three‐component reaction, which we have dubbed the triazolization reaction, was established for the rapid synthesis of 1,5‐disubstituted, fully functionalized and
NH
‐1,2,3‐triazoles. This novel approach stands out because it utilizes widely available starting materials, namely primary amines and enolizable ketones. Furthermore, the broad substrate scope is a major advantage, and was further expanded by the number of modified protocols that have been reported. Triazolization products have successfully found utility as intermediates in various synthetic transformations, and were the subject of a few interesting biological activity studies. The development of metal‐free syntheses toward 1,2,3‐triazoles has been a burgeoning research area throughout the past decade. Despite the numerous advances, the scarceness of methods for the preparation of 1,5‐disubstituted 1,2,3‐triazoles from readily available substrates remained a challenge that was addressed by our group in 2016. A metal‐free three‐component reaction, which we have dubbed the triazolization reaction, was established for the rapid synthesis of 1,5‐disubstituted, fully functionalized and NH‐1,2,3‐triazoles. This novel approach stands out because it utilizes widely available starting materials, namely primary amines and enolizable ketones. Furthermore, the broad substrate scope is a major advantage, and was further expanded by the number of modified protocols that have been reported. Triazolization products have successfully found utility as intermediates in various synthetic transformations, and were the subject of a few interesting biological activity studies. This account describes the first five years of developments since the discovery of the three‐component triazolization reaction. Starting from readily available enolizable ketones and primary amines or ammonium acetate, this method provides access to various 1,5‐di‐, (fused) 1,4,5‐trisubstituted and NH‐1,2,3‐triazoles. The triazolization reaction has already found utility in several synthetic pathways. The development of metal-free syntheses toward 1,2,3-triazoles has been a burgeoning research area throughout the past decade. Despite the numerous advances, the scarceness of methods for the preparation of 1,5-disubstituted 1,2,3-triazoles from readily available substrates remained a challenge that was addressed by our group in 2016. A metal-free three-component reaction, which we have dubbed the triazolization reaction, was established for the rapid synthesis of 1,5-disubstituted, fully functionalized and NH-1,2,3-triazoles. This novel approach stands out because it utilizes widely available starting materials, namely primary amines and enolizable ketones. Furthermore, the broad substrate scope is a major advantage, and was further expanded by the number of modified protocols that have been reported. Triazolization products have successfully found utility as intermediates in various synthetic transformations, and were the subject of a few interesting biological activity studies.The development of metal-free syntheses toward 1,2,3-triazoles has been a burgeoning research area throughout the past decade. Despite the numerous advances, the scarceness of methods for the preparation of 1,5-disubstituted 1,2,3-triazoles from readily available substrates remained a challenge that was addressed by our group in 2016. A metal-free three-component reaction, which we have dubbed the triazolization reaction, was established for the rapid synthesis of 1,5-disubstituted, fully functionalized and NH-1,2,3-triazoles. This novel approach stands out because it utilizes widely available starting materials, namely primary amines and enolizable ketones. Furthermore, the broad substrate scope is a major advantage, and was further expanded by the number of modified protocols that have been reported. Triazolization products have successfully found utility as intermediates in various synthetic transformations, and were the subject of a few interesting biological activity studies. The development of metal-free syntheses toward 1,2,3-triazoles has been a burgeoning research area throughout the past decade. Despite the numerous advances, the scarceness of methods for the preparation of 1,5-disubstituted 1,2,3-triazoles from readily available substrates remained a challenge that was addressed by our group in 2016. A metal-free three-component reaction, which we have dubbed the triazolization reaction, was established for the rapid synthesis of 1,5-disubstituted, fully functionalized and NH-1,2,3-triazoles. This novel approach stands out because it utilizes widely available starting materials, namely primary amines and enolizable ketones. Furthermore, the broad substrate scope is a major advantage, and was further expanded by the number of modified protocols that have been reported. Triazolization products have successfully found utility as intermediates in various synthetic transformations, and were the subject of a few interesting biological activity studies. |
Author | Prakash, Rashmi Opsomer, Tomas Dehaen, Wim |
Author_xml | – sequence: 1 givenname: Rashmi surname: Prakash fullname: Prakash, Rashmi organization: KU Leuven – sequence: 2 givenname: Tomas orcidid: 0000-0002-8272-0292 surname: Opsomer fullname: Opsomer, Tomas organization: KU Leuven – sequence: 3 givenname: Wim orcidid: 0000-0002-9597-0629 surname: Dehaen fullname: Dehaen, Wim email: wim.dehaen@kuleuven.be organization: KU Leuven |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33350560$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctuFDEQRS0URB6wZIsssWGRTvzotrvZjUYhQQQFwbC2PHYZHPW0g-3WaLLiE_KN-ZJ4HgEpEqxsl0_dsu89RHtDGACh15ScUELYaTbxhBFGCKENfYYOaMPaioiO7m32smq7rttHhyldF4TWUr5A-5zzhjSCHKBxFr2-Db2_1dmHAQeHz4bNcd4D_gS5TEt46fNP_CX6hY4rPFn4UnuPJ_gcBoi6x99y1Bl-rHAOSx0t_jz22btxMGvJck-P2TG__323mwXpJXrudJ_g1W49Qt8_nM2mF9Xl1fnH6eSyMrz8oBJQa2tr41qYt1boupl3NTBimXSECCmktVwwzru2A9oa0zrSWiM5F652xvIj9G6rexPDrxFSVgufDPS9HiCMSbFaMkpJ09QFffsEvQ5jLK9fUx1pKJNcFOrNjhrnC7DqZuuJejS0AHwLmBhSiuCU8XljbfHI94oStY5NldjUn9hKV_Wk61H4X7zc8kvfw-r_sJpNv_7tfAA7pKn0 |
CitedBy_id | crossref_primary_10_3390_molecules26206297 crossref_primary_10_3390_org2040024 crossref_primary_10_1016_j_matchemphys_2021_125242 crossref_primary_10_1039_D1OB00784J crossref_primary_10_3390_molecules29133149 crossref_primary_10_1039_D0CC06654K crossref_primary_10_1039_D3RA06045D crossref_primary_10_26565_2220_637X_2022_39_01 crossref_primary_10_1007_s10593_021_02985_5 crossref_primary_10_1016_j_bioorg_2022_105853 crossref_primary_10_1016_j_ejmech_2021_113727 crossref_primary_10_1002_ardp_202300442 crossref_primary_10_1021_acs_joc_1c01459 crossref_primary_10_3390_molecules29102229 crossref_primary_10_1039_D1OB01408K crossref_primary_10_1039_D3CC00987D |
Cites_doi | 10.1039/b904091a 10.1039/C5RA25942H 10.1021/acs.chemrev.6b00466 10.3390/molecules22020303 10.1021/ol200430c 10.1002/adsc.201700756 10.1039/C9NJ06330G 10.1080/17460441.2019.1614910 10.1002/cmdc.201402233 10.1080/00397911.2017.1303511 10.1021/ar200235m 10.1016/j.ccr.2014.04.006 10.1002/ejoc.201800925 10.1021/ja054114s 10.1016/j.tetlet.2014.12.019 10.1039/C7DT00624A 10.1039/c003740k 10.1021/acs.accounts.7b00371 10.1002/ange.201008142 10.1002/1521-3757(20020715)114:14<2708::AID-ANGE2708>3.0.CO;2-0 10.1021/jo401576n 10.1039/C6CC03744E 10.1021/acs.orglett.9b01707 10.1002/cjoc.201700459 10.1002/ejoc.201701031 10.1021/acs.orglett.6b03309 10.1039/C5CC04114G 10.1039/D0GC01832E 10.1016/j.bmc.2017.04.041 10.1039/C9GC01626K 10.1016/j.ccr.2017.06.017 10.1021/acs.joc.6b02607 10.1039/B613014N 10.1039/C5CC02319J 10.1002/slct.201600994 10.1021/jo011148j 10.1039/c3ra47062h 10.1002/ange.200806390 10.1002/ange.201307499 10.1021/acs.joc.0c01153 10.1002/anie.201008142 10.1021/jo5004339 10.3390/catal8090364 10.1021/acs.orglett.0c01069 10.1002/cber.19630960321 10.1039/C8OB00533H 10.1021/cr200409f 10.1021/ja044996f 10.1002/anie.201915944 10.1016/S0040-4039(00)90150-3 10.1016/j.drudis.2017.05.014 10.1021/acs.orglett.5b01000 10.1039/C5CC08347H 10.1002/anie.200806390 10.1002/anie.201307499 10.1039/C6SC01832G 10.1002/ejoc.201501465 10.1007/s41061-016-0016-4 10.1002/med.20107 10.1039/c1cc10685f 10.1073/pnas.0707090104 10.1016/j.bmcl.2018.09.019 10.1039/C9DT04623B 10.1021/acs.joc.5b01121 10.1021/cr0783479 10.1055/s-0036-1588856 |
ContentType | Journal Article |
Copyright | 2020 The Chemical Society of Japan & Wiley‐VCH GmbH 2020 The Chemical Society of Japan & Wiley‐VCH GmbH. 2021 The Chemical Society of Japan & Wiley‐VCH GmbH |
Copyright_xml | – notice: 2020 The Chemical Society of Japan & Wiley‐VCH GmbH – notice: 2020 The Chemical Society of Japan & Wiley‐VCH GmbH. – notice: 2021 The Chemical Society of Japan & Wiley‐VCH GmbH |
DBID | AAYXX CITATION NPM 7QO 7T7 8FD C1K FR3 P64 7X8 |
DOI | 10.1002/tcr.202000151 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Engineering Research Database Biotechnology Research Abstracts Technology Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic PubMed Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1528-0691 |
EndPage | 385 |
ExternalDocumentID | 33350560 10_1002_tcr_202000151 TCR202000151 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: KU Leuven funderid: C14/19/78 – fundername: KU Leuven grantid: C14/19/78 |
GroupedDBID | --- .3N .Y3 05W 0R~ 10A 123 1OC 29B 31~ 33P 3WU 4.4 50Y 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 53G 5VS 66C 702 7PT 8-1 8UM A00 AAESR AAHHS AAHQN AAMNL AANHP AANLZ AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ASPBG AVWKF AZFZN AZVAB BDRZF BFHJK BMXJE BROTX BRXPI BY8 CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD F5P FEDTE G-S G.N GODZA HF~ HGLYW HVGLF HZ~ IX1 J0M LATKE LAW LC2 LC3 LEEKS LH- LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MSFUL MSSTM MXFUL MXSTM MY~ N9A O9- OIG P2W P4D Q11 QB0 QRW R.K ROL RX1 SUPJJ V2E W99 WBKPD WOHZO WQJ WXSBR WYJ WYUIH XG1 XV2 ZZTAW ~IA AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION NPM 7QO 7T7 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 P64 7X8 |
ID | FETCH-LOGICAL-c3691-6e4add4cf8eb8d6a45b94e20d27f006767dd36233989e18cc8f08dc7336f4fcd3 |
IEDL.DBID | DR2 |
ISSN | 1527-8999 1528-0691 |
IngestDate | Fri Jul 11 10:00:46 EDT 2025 Sun Jul 13 04:25:54 EDT 2025 Thu Apr 03 07:06:41 EDT 2025 Tue Jul 01 00:57:28 EDT 2025 Thu Apr 24 23:05:50 EDT 2025 Wed Jan 22 16:30:11 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Triazolization 1,2,3-Triazole Cyclization Ketones Biological activity |
Language | English |
License | 2020 The Chemical Society of Japan & Wiley‐VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3691-6e4add4cf8eb8d6a45b94e20d27f006767dd36233989e18cc8f08dc7336f4fcd3 |
Notes | Equal contribution ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-9597-0629 0000-0002-8272-0292 |
PMID | 33350560 |
PQID | 2490512736 |
PQPubID | 1006501 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2472110554 proquest_journals_2490512736 pubmed_primary_33350560 crossref_citationtrail_10_1002_tcr_202000151 crossref_primary_10_1002_tcr_202000151 wiley_primary_10_1002_tcr_202000151_TCR202000151 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2021 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: February 2021 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Chemical record |
PublicationTitleAlternate | Chem Rec |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2007; 104 2004; 126 2009 2009; 48 121 2017; 47 2017; 49 2002; 114 2017; 46 2019; 14 2008; 108 2020; 59 2011; 13 2017; 350 2015; 80 2007; 36 2013 2013; 52 125 2017; 359 2018; 8 2014; 4 2019; 21 1965; 6 2017; 35 2008; 28 2020; 49 2013; 113 2016; 116 2020; 44 2016; 81 2014; 9 2015; 56 2018; 28 2015; 17 2017; 25 2020; 85 2015; 51 2010; 39 2017; 22 2016; 52 2014; 272 2016; 18 2017; 50 2016; 6 2016; 7 2018; 2018 2016; 1 2013; 78 2020 1963; 96 2002; 67 2005; 127 2016; 374 2014; 79 2016 2011 2011; 50 123 2020; 22 2011; 47 2012; 45 2018; 16 Jalani H. B. (e_1_2_8_30_1) 2017; 49 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 Anebouselvy K. (e_1_2_8_28_1) 2016 e_1_2_8_62_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_13_2 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 De Nino A. (e_1_2_8_37_1) 2018; 8 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 Wang R. (e_1_2_8_59_1) 2020 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_39_2 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_14_2 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 2018 start-page: 4850 year: 2018 end-page: 4856 publication-title: Eur. J. Org. Chem. – volume: 46 start-page: 5269 year: 2017 end-page: 5278 publication-title: Dalton Trans. – volume: 56 start-page: 514 year: 2015 end-page: 516 publication-title: Tetrahedron Lett. – volume: 22 start-page: 303 year: 2017 publication-title: Molecules – volume: 39 start-page: 1302 year: 2010 end-page: 1315 publication-title: Chem. Soc. Rev. – volume: 21 start-page: 5002 year: 2019 end-page: 5005 publication-title: Org. Lett. – start-page: 668 year: 2016 end-page: 672 publication-title: Eur. J. Org. Chem. – volume: 116 start-page: 14726 year: 2016 end-page: 14768 publication-title: Chem. Rev. – volume: 4 start-page: 9275 year: 2014 end-page: 9278 publication-title: RSC Adv. – volume: 108 start-page: 2952 year: 2008 end-page: 3015 publication-title: Chem. Rev. – volume: 47 start-page: 1193 year: 2017 end-page: 1200 publication-title: Synth. Commun. – volume: 25 start-page: 3671 year: 2017 end-page: 3676 publication-title: Bioorg. Med. Chem. – volume: 127 start-page: 15998 year: 2005 end-page: 15999 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 3693 year: 2016 end-page: 3698 publication-title: ChemistrySelect – volume: 52 start-page: 2885 year: 2016 end-page: 2888 publication-title: Chem. Commun. – volume: 52 start-page: 9236 year: 2016 end-page: 9239 publication-title: Chem. Commun. – volume: 9 start-page: 2497 year: 2014 end-page: 2508 publication-title: ChemMedChem – volume: 16 start-page: 3168 year: 2018 end-page: 3176 publication-title: Org. Biomol. Chem. – volume: 50 123 start-page: 5207 5313 year: 2011 2011 end-page: 5211 5317 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 22 start-page: 1572 year: 2017 end-page: 1581 publication-title: Drug Discovery Today – volume: 359 start-page: 3085 year: 2017 end-page: 3089 publication-title: Adv. Synth. Catal. – volume: 45 start-page: 630 year: 2012 end-page: 640 publication-title: Acc. Chem. Res. – volume: 28 start-page: 278 year: 2008 end-page: 308 publication-title: Med. Res. Rev. – volume: 21 start-page: 3948 year: 2019 end-page: 3960 publication-title: Green Chem. – volume: 17 start-page: 2898 year: 2015 end-page: 2901 publication-title: Org. Lett. – volume: 6 start-page: 2043 year: 1965 end-page: 2045 publication-title: Tetrahedron Lett. – start-page: 207 year: 2020 publication-title: Eur. J. Med. Chem. – volume: 96 start-page: 802 year: 1963 end-page: 812 publication-title: Chem. Ber. – volume: 350 start-page: 136 year: 2017 end-page: 154 publication-title: Coord. Chem. Rev. – volume: 51 start-page: 10784 year: 2015 end-page: 10796 publication-title: Chem. Commun. – volume: 80 start-page: 9028 year: 2015 end-page: 9033 publication-title: J. Org. Chem. – volume: 114 start-page: 2708 year: 2002 end-page: 2711 publication-title: Angew. Chem. Int. Ed. – volume: 36 start-page: 1249 year: 2007 end-page: 1262 publication-title: Chem. Soc. Rev. – volume: 35 start-page: 1797 year: 2017 end-page: 1807 publication-title: Chin. J. Chem. – volume: 8 start-page: 364 year: 2018 publication-title: Catalysts – volume: 39 start-page: 1231 year: 2010 end-page: 1232 publication-title: Chem. Soc. Rev. – volume: 6 start-page: 7977 year: 2016 end-page: 7981 publication-title: RSC Adv. – volume: 7 start-page: 6298 year: 2016 end-page: 6308 publication-title: Chem. Sci. – volume: 47 start-page: 8740 year: 2011 end-page: 8749 publication-title: Chem. Commun. – volume: 22 start-page: 3596 year: 2020 end-page: 3600 publication-title: Org. Lett. – start-page: 99 year: 2016 end-page: 139 – volume: 48 121 start-page: 5042 5143 year: 2009 2009 end-page: 5045 5147 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 78 start-page: 9865 year: 2013 end-page: 9875 publication-title: J. Org. Chem. – volume: 2018 start-page: 262 year: 2018 end-page: 294 publication-title: Eur. J. Org. Chem. – volume: 81 start-page: 12426 year: 2016 end-page: 12432 publication-title: J. Org. Chem. – volume: 85 start-page: 9434 year: 2020 end-page: 9439 publication-title: J. Org. Chem. – volume: 126 start-page: 15046 year: 2004 end-page: 15047 publication-title: J. Am. Chem. Soc. – volume: 50 start-page: 2610 year: 2017 end-page: 2620 publication-title: Acc. Chem. Res. – volume: 13 start-page: 2038 year: 2011 end-page: 2041 publication-title: Org. Lett. – volume: 49 start-page: 29 year: 2017 end-page: 41 publication-title: Synthesis – volume: 28 start-page: 3472 year: 2018 end-page: 3476 publication-title: Bioorg. Med. Chem. Lett. – volume: 272 start-page: 145 year: 2014 end-page: 165 publication-title: Coord. Chem. Rev. – volume: 51 start-page: 10797 year: 2015 end-page: 10806 publication-title: Chem. Commun. – volume: 374 start-page: 16 year: 2016 publication-title: Top. Curr. Chem. – volume: 49 start-page: 3532 year: 2020 end-page: 3544 publication-title: Dalton Trans. – volume: 22 start-page: 5225 year: 2020 end-page: 5252 publication-title: Green Chem. – volume: 49 start-page: 4191 year: 2017 end-page: 4198 publication-title: Synthesis – volume: 18 start-page: 6412 year: 2016 end-page: 6415 publication-title: Org. Lett. – volume: 79 start-page: 4463 year: 2014 end-page: 4469 publication-title: J. Org. Chem. – volume: 52 125 start-page: 13265 13507 year: 2013 2013 end-page: 13268 13510 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 104 start-page: 16793 year: 2007 end-page: 16797 publication-title: Proc. Mont. Acad. Sci. – volume: 113 start-page: 4905 year: 2013 end-page: 4979 publication-title: Chem. Rev. – volume: 67 start-page: 3057 year: 2002 end-page: 3064 publication-title: J. Org. Chem. – volume: 44 start-page: 3546 year: 2020 end-page: 3561 publication-title: New J. Chem. – volume: 14 start-page: 779 year: 2019 end-page: 789 publication-title: Expert Opin. Drug Discovery – volume: 59 start-page: 6740 year: 2020 end-page: 6744 publication-title: Angew. Chem. Int. Ed. – ident: e_1_2_8_20_1 doi: 10.1039/b904091a – ident: e_1_2_8_33_1 doi: 10.1039/C5RA25942H – ident: e_1_2_8_22_1 doi: 10.1021/acs.chemrev.6b00466 – ident: e_1_2_8_56_1 doi: 10.3390/molecules22020303 – ident: e_1_2_8_45_1 doi: 10.1021/ol200430c – ident: e_1_2_8_53_1 doi: 10.1002/adsc.201700756 – ident: e_1_2_8_5_1 doi: 10.1039/C9NJ06330G – ident: e_1_2_8_10_1 doi: 10.1080/17460441.2019.1614910 – ident: e_1_2_8_16_1 doi: 10.1002/cmdc.201402233 – ident: e_1_2_8_29_1 doi: 10.1080/00397911.2017.1303511 – ident: e_1_2_8_9_1 doi: 10.1021/ar200235m – ident: e_1_2_8_8_1 doi: 10.1016/j.ccr.2014.04.006 – ident: e_1_2_8_51_1 doi: 10.1002/ejoc.201800925 – ident: e_1_2_8_21_1 doi: 10.1021/ja054114s – ident: e_1_2_8_44_1 doi: 10.1016/j.tetlet.2014.12.019 – ident: e_1_2_8_50_1 doi: 10.1039/C7DT00624A – ident: e_1_2_8_1_1 doi: 10.1039/c003740k – ident: e_1_2_8_7_1 doi: 10.1021/acs.accounts.7b00371 – ident: e_1_2_8_13_2 doi: 10.1002/ange.201008142 – ident: e_1_2_8_18_1 doi: 10.1002/1521-3757(20020715)114:14<2708::AID-ANGE2708>3.0.CO;2-0 – ident: e_1_2_8_34_1 doi: 10.1021/jo401576n – ident: e_1_2_8_49_1 doi: 10.1039/C6CC03744E – ident: e_1_2_8_54_1 doi: 10.1021/acs.orglett.9b01707 – ident: e_1_2_8_31_1 doi: 10.1002/cjoc.201700459 – ident: e_1_2_8_61_1 doi: 10.1002/ejoc.201701031 – ident: e_1_2_8_52_1 doi: 10.1021/acs.orglett.6b03309 – ident: e_1_2_8_27_1 doi: 10.1039/C5CC04114G – ident: e_1_2_8_63_1 doi: 10.1039/D0GC01832E – ident: e_1_2_8_57_1 doi: 10.1016/j.bmc.2017.04.041 – ident: e_1_2_8_65_1 doi: 10.1039/C9GC01626K – ident: e_1_2_8_6_1 doi: 10.1016/j.ccr.2017.06.017 – ident: e_1_2_8_48_1 doi: 10.1021/acs.joc.6b02607 – ident: e_1_2_8_2_1 doi: 10.1039/B613014N – ident: e_1_2_8_26_1 doi: 10.1039/C5CC02319J – ident: e_1_2_8_35_1 doi: 10.1002/slct.201600994 – ident: e_1_2_8_17_1 doi: 10.1021/jo011148j – start-page: 99 volume-title: Synthesis of Substituted 1,2,3-Triazoles through Organocatalysis. year: 2016 ident: e_1_2_8_28_1 – ident: e_1_2_8_32_1 doi: 10.1039/c3ra47062h – ident: e_1_2_8_14_2 doi: 10.1002/ange.200806390 – ident: e_1_2_8_39_2 doi: 10.1002/ange.201307499 – ident: e_1_2_8_66_1 doi: 10.1021/acs.joc.0c01153 – volume: 49 start-page: 29 year: 2017 ident: e_1_2_8_30_1 publication-title: Synthesis – ident: e_1_2_8_13_1 doi: 10.1002/anie.201008142 – ident: e_1_2_8_36_1 doi: 10.1021/jo5004339 – volume: 8 start-page: 364 year: 2018 ident: e_1_2_8_37_1 publication-title: Catalysts doi: 10.3390/catal8090364 – ident: e_1_2_8_55_1 doi: 10.1021/acs.orglett.0c01069 – ident: e_1_2_8_62_1 doi: 10.1002/cber.19630960321 – start-page: 207 year: 2020 ident: e_1_2_8_59_1 publication-title: Eur. J. Med. Chem. – ident: e_1_2_8_46_1 doi: 10.1039/C8OB00533H – ident: e_1_2_8_12_1 doi: 10.1021/cr200409f – ident: e_1_2_8_24_1 doi: 10.1021/ja044996f – ident: e_1_2_8_42_1 doi: 10.1002/anie.201915944 – ident: e_1_2_8_60_1 doi: 10.1016/S0040-4039(00)90150-3 – ident: e_1_2_8_11_1 doi: 10.1016/j.drudis.2017.05.014 – ident: e_1_2_8_41_1 doi: 10.1021/acs.orglett.5b01000 – ident: e_1_2_8_43_1 doi: 10.1039/C5CC08347H – ident: e_1_2_8_14_1 doi: 10.1002/anie.200806390 – ident: e_1_2_8_39_1 doi: 10.1002/anie.201307499 – ident: e_1_2_8_4_1 doi: 10.1039/C6SC01832G – ident: e_1_2_8_38_1 doi: 10.1002/ejoc.201501465 – ident: e_1_2_8_25_1 doi: 10.1007/s41061-016-0016-4 – ident: e_1_2_8_15_1 doi: 10.1002/med.20107 – ident: e_1_2_8_3_1 doi: 10.1039/c1cc10685f – ident: e_1_2_8_23_1 doi: 10.1073/pnas.0707090104 – ident: e_1_2_8_58_1 doi: 10.1016/j.bmcl.2018.09.019 – ident: e_1_2_8_64_1 doi: 10.1039/C9DT04623B – ident: e_1_2_8_40_1 doi: 10.1021/acs.joc.5b01121 – ident: e_1_2_8_19_1 doi: 10.1021/cr0783479 – ident: e_1_2_8_47_1 doi: 10.1055/s-0036-1588856 |
SSID | ssj0011477 |
Score | 2.3782258 |
SecondaryResourceType | review_article |
Snippet | The development of metal‐free syntheses toward 1,2,3‐triazoles has been a burgeoning research area throughout the past decade. Despite the numerous advances,... The development of metal-free syntheses toward 1,2,3-triazoles has been a burgeoning research area throughout the past decade. Despite the numerous advances,... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 376 |
SubjectTerms | 1,2,3-Triazole Amines Biological activity Cyclization Intermediates Ketones Substrates Triazoles Triazolization |
Title | Triazolization of Enolizable Ketones with Primary Amines: A General Strategy toward Multifunctional 1,2,3‐Triazoles |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ftcr.202000151 https://www.ncbi.nlm.nih.gov/pubmed/33350560 https://www.proquest.com/docview/2490512736 https://www.proquest.com/docview/2472110554 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NbxMxEB2hXuACBVq6EJCREKdsu2s7jpdbFDWqQEKoSqXetrbXvjRNKpIc2lN_Qn8jv4QZr7MoVCAhjtbastdf8549fgPwgQ8d0gbjc2WQosgwKHKLDAxZa2lU2eggbfTy_apOzuTn88F5inNKb2FafYjuwI1WRtyvaYEbuzz6JRqKGxXSOx4fAxP9IX8tAkWnnXwUQv0YeZEit-bIK6qksYnlj7ZKb9ukB0BzG7dGwzN5BhebJrf-JpeH65U9dLe_qTn-xz_twtMEStmonUXP4ZGfv4DH400suJewnuI8vV3M0qNNtgjseB6TdubZF0-K3ktGZ7rsWytfwUZX5FD_iY1YUrZmSQj3hq2iqy6Lb3_JrrbHkazs8774cXef6vLLPTibHE_HJ3kK2JA7oaoyV17idild0N7qRhk5sJX0vGj4MJBZVMOmQYMpRKUrX2rndCh040iRMcjgGrEPO3Ns8AEwq6pKKl4M6GKUm1JrERCKmqEziGhUk0F_M2S1S2rmFFRjVrc6zLzGvqy7vszgY5f9uu2HP2Xsbca_Tqt5WSNFxb0LgZ7K4H33GYeALlfM3C_WlCdyaURnGbxq501XkxCCgGaRQRFH_-9NqKfj0y7x-t-LvIEnnBxvomt5D3ZW39f-LSKnlX0Xl8dPI40O3Q |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NTxsxEB1VcKCXAv3cQqkrVT1lYdd2HG9vUQRKC0UVChK3lddrX0gT1CSHcupP4DfyS5jxOgtp1UpVj9bau15_zXv2-A3Ae96zSBuMS5VBiiJ9N0srZGDIWnOj8lp7WQUv31M1PJefL7oXD27xN_oQ7YYbzYywXtMEpw3pg3vVUFypkN_xcBsY-c86RfUOpOqsFZBCsB9iL1Ls1hSZRRFVNvEFByvFV63Sb1BzFbkG03O0CWZZ6cbj5HJ_Ma_27fUveo7_81db8CTiUtZvBtI2PHKTp7AxWIaDewaLEQ7V6-k43ttkU88OJyFZjR07diTqPWO0rcu-NgoWrP-NfOo_sj6L4tYsauH-YPPgrcvC9V8yrc2OJMs7vCNuf97Eb7nZczg_OhwNhmmM2ZBaoYo8VU7iiimt167StTKyWxXS8azmPU-WUfXqGm2mEIUuXK6t1T7TtSVRRi-9rcULWJtghV8Bq1RRSMWzLp2NcpNrLTyiUdOzBkGNqhPoLPustFHQnOJqjMtGipmX2JZl25YJfGizXzXt8KeMu8sBUMYJPSuRpeLyhVhPJfCufYxdQOcrZuKmC8oT6DQCtAReNgOn_ZIQgrBmlkAWuv_vVShHg7M28frfi7yFjeHoy0l58un0eAcec_LDCZ7mu7A2_75wbxBIzau9MFfuAA9zEvg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbhMxFL2qilTYFMqjHSjFSIhVpp2xHcfDLkobFYqqqkql7oYZPzZNk4okC7riE_hGvoR7Pc6ggECqurTGnvH4dc-xr88FeMd7BmlD5VJVIUWRvpulNTIwZK15pXKrvayDl--pOr6Qny67lzHOKd2FafQh2g03mhlhvaYJfmP9wW_RUFyokN7xcBkY6c8DqTJNw_rwvNWPQqwfQi9S6NYUiUURRTbxBQcrxVeN0l9IcxW4BsszfAxflnVuHE6u9hfzet_c_iHneI-fegKbEZWyfjOMtmDNTZ7Cw8EyGNwzWIxwoN5Ox_HWJpt6djQJyXrs2IkjSe8Zo01ddtboV7D-NXnUf2B9FqWtWVTC_cbmwVeXhcu_ZFib_UiWd3hH_Pz-I37LzZ7DxfBoNDhOY8SG1AhV5KlyEtdLabx2tbaqkt26kI5nlvc82UXVsxYtphCFLlyujdE-09aQJKOX3ljxAtYnWOEdYLUqCql41qWTUV7lWguPWLTqmQohjbIJdJZdVpooZ05RNcZlI8TMS2zLsm3LBN632W-advhXxt1l_5dxOs9K5Ki4eCHSUwm8bR9jF9DpSjVx0wXlCWQa4VkC2824ab8khCCkmSWQhd7_fxXK0eC8Tby8e5E3sHF2OCw_fzw9eQWPODnhBDfzXViff12414ii5vVemCm_ANw9EbA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Triazolization+of+Enolizable+Ketones+with+Primary+Amines%3A+A+General+Strategy+toward+Multifunctional+1%2C2%2C3%E2%80%90Triazoles&rft.jtitle=Chemical+record&rft.au=Prakash%2C+Rashmi&rft.au=Opsomer%2C+Tomas&rft.au=Dehaen%2C+Wim&rft.date=2021-02-01&rft.issn=1527-8999&rft.eissn=1528-0691&rft.volume=21&rft.issue=2&rft.spage=376&rft.epage=385&rft_id=info:doi/10.1002%2Ftcr.202000151&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_tcr_202000151 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1527-8999&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1527-8999&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1527-8999&client=summon |