Recent Advances in Functionalization of Pyrroles and their Translational Potential

Among the known aromatic nitrogen heterocycles, pyrrole represents a privileged aromatic heterocycle ranging its occurrence in the key component of “pigments of life” to biologically active natural products to active pharmaceuticals. Pyrrole being an electron‐rich heteroaromatic compound, its predom...

Full description

Saved in:
Bibliographic Details
Published inChemical record Vol. 21; no. 4; pp. 715 - 780
Main Authors Hunjan, Mandeep Kaur, Panday, Surabhi, Gupta, Anjali, Bhaumik, Jayeeta, Das, Parthasarathi, Laha, Joydev K.
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.04.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Among the known aromatic nitrogen heterocycles, pyrrole represents a privileged aromatic heterocycle ranging its occurrence in the key component of “pigments of life” to biologically active natural products to active pharmaceuticals. Pyrrole being an electron‐rich heteroaromatic compound, its predominant functionalization is legendary to aromatic electrophilic substitution reactions. Although a few excellent reviews on the functionalization of pyrroles including the reports by Baltazzi in 1963, Casiraghi and Rassu in 1995, and Banwell in 2006 are available, they are fragmentary and over fifteen years old, and do not cover the modern aspects of catalysis. A review covering a comprehensive package of direct functionalization on pyrroles via catalytic and non‐catalytic methods including their translational potential is described. Subsequent to statutory yet concise introduction, the classical functionalization on pyrroles using Lewis acids largely following an ionic mechanism is discussed. The subsequent discussion follows the various metal‐catalyzed C−H functionalization on pyrroles, which are otherwise difficult to implement by Lewis acids. A major emphasize is given on the radical based pyrrole functionalization under metal‐free oxidative conditions, which is otherwise poorly highlighted in the literature. Towards the end, the current development of pyrrole functionalization under photocatalyzed and electrochemical conditions is appended. Only a selected examples of substrates and important mechanisms are discussed for different methods highlighting their scopes and limitations. The aromatic nucleophillic substitution on pyrroles (being an electron‐rich heterocycle) happened to be the subject of recent investigations, which has also been covered accentuating their underlying conceptual development. Despite great achievements over the past several years in these areas, many challenges and problems are yet to be solved, which are all discussed in summary and outlook. A review on direct functionalization on pyrroles via catalytic and non‐catalytic methods including their translational potential is described. The direct functionalization includes various Lewis acids and transition metal‐catalyzed C‐H functionalization on pyrroles. A major emphasize is given on the radical based pyrrole functionalization under metal‐free oxidative conditions. Finally, the current development of pyrrole functionalization under photocatalyzed and electrochemical conditions is appended.
AbstractList Among the known aromatic nitrogen heterocycles, pyrrole represents a privileged aromatic heterocycle ranging its occurrence in the key component of “pigments of life” to biologically active natural products to active pharmaceuticals. Pyrrole being an electron‐rich heteroaromatic compound, its predominant functionalization is legendary to aromatic electrophilic substitution reactions. Although a few excellent reviews on the functionalization of pyrroles including the reports by Baltazzi in 1963, Casiraghi and Rassu in 1995, and Banwell in 2006 are available, they are fragmentary and over fifteen years old, and do not cover the modern aspects of catalysis. A review covering a comprehensive package of direct functionalization on pyrroles via catalytic and non‐catalytic methods including their translational potential is described. Subsequent to statutory yet concise introduction, the classical functionalization on pyrroles using Lewis acids largely following an ionic mechanism is discussed. The subsequent discussion follows the various metal‐catalyzed C−H functionalization on pyrroles, which are otherwise difficult to implement by Lewis acids. A major emphasize is given on the radical based pyrrole functionalization under metal‐free oxidative conditions, which is otherwise poorly highlighted in the literature. Towards the end, the current development of pyrrole functionalization under photocatalyzed and electrochemical conditions is appended. Only a selected examples of substrates and important mechanisms are discussed for different methods highlighting their scopes and limitations. The aromatic nucleophillic substitution on pyrroles (being an electron‐rich heterocycle) happened to be the subject of recent investigations, which has also been covered accentuating their underlying conceptual development. Despite great achievements over the past several years in these areas, many challenges and problems are yet to be solved, which are all discussed in summary and outlook.
Among the known aromatic nitrogen heterocycles, pyrrole represents a privileged aromatic heterocycle ranging its occurrence in the key component of "pigments of life" to biologically active natural products to active pharmaceuticals. Pyrrole being an electron-rich heteroaromatic compound, its predominant functionalization is legendary to aromatic electrophilic substitution reactions. Although a few excellent reviews on the functionalization of pyrroles including the reports by Baltazzi in 1963, Casiraghi and Rassu in 1995, and Banwell in 2006 are available, they are fragmentary and over fifteen years old, and do not cover the modern aspects of catalysis. A review covering a comprehensive package of direct functionalization on pyrroles via catalytic and non-catalytic methods including their translational potential is described. Subsequent to statutory yet concise introduction, the classical functionalization on pyrroles using Lewis acids largely following an ionic mechanism is discussed. The subsequent discussion follows the various metal-catalyzed C-H functionalization on pyrroles, which are otherwise difficult to implement by Lewis acids. A major emphasize is given on the radical based pyrrole functionalization under metal-free oxidative conditions, which is otherwise poorly highlighted in the literature. Towards the end, the current development of pyrrole functionalization under photocatalyzed and electrochemical conditions is appended. Only a selected examples of substrates and important mechanisms are discussed for different methods highlighting their scopes and limitations. The aromatic nucleophillic substitution on pyrroles (being an electron-rich heterocycle) happened to be the subject of recent investigations, which has also been covered accentuating their underlying conceptual development. Despite great achievements over the past several years in these areas, many challenges and problems are yet to be solved, which are all discussed in summary and outlook.Among the known aromatic nitrogen heterocycles, pyrrole represents a privileged aromatic heterocycle ranging its occurrence in the key component of "pigments of life" to biologically active natural products to active pharmaceuticals. Pyrrole being an electron-rich heteroaromatic compound, its predominant functionalization is legendary to aromatic electrophilic substitution reactions. Although a few excellent reviews on the functionalization of pyrroles including the reports by Baltazzi in 1963, Casiraghi and Rassu in 1995, and Banwell in 2006 are available, they are fragmentary and over fifteen years old, and do not cover the modern aspects of catalysis. A review covering a comprehensive package of direct functionalization on pyrroles via catalytic and non-catalytic methods including their translational potential is described. Subsequent to statutory yet concise introduction, the classical functionalization on pyrroles using Lewis acids largely following an ionic mechanism is discussed. The subsequent discussion follows the various metal-catalyzed C-H functionalization on pyrroles, which are otherwise difficult to implement by Lewis acids. A major emphasize is given on the radical based pyrrole functionalization under metal-free oxidative conditions, which is otherwise poorly highlighted in the literature. Towards the end, the current development of pyrrole functionalization under photocatalyzed and electrochemical conditions is appended. Only a selected examples of substrates and important mechanisms are discussed for different methods highlighting their scopes and limitations. The aromatic nucleophillic substitution on pyrroles (being an electron-rich heterocycle) happened to be the subject of recent investigations, which has also been covered accentuating their underlying conceptual development. Despite great achievements over the past several years in these areas, many challenges and problems are yet to be solved, which are all discussed in summary and outlook.
Among the known aromatic nitrogen heterocycles, pyrrole represents a privileged aromatic heterocycle ranging its occurrence in the key component of “pigments of life” to biologically active natural products to active pharmaceuticals. Pyrrole being an electron‐rich heteroaromatic compound, its predominant functionalization is legendary to aromatic electrophilic substitution reactions. Although a few excellent reviews on the functionalization of pyrroles including the reports by Baltazzi in 1963, Casiraghi and Rassu in 1995, and Banwell in 2006 are available, they are fragmentary and over fifteen years old, and do not cover the modern aspects of catalysis. A review covering a comprehensive package of direct functionalization on pyrroles via catalytic and non‐catalytic methods including their translational potential is described. Subsequent to statutory yet concise introduction, the classical functionalization on pyrroles using Lewis acids largely following an ionic mechanism is discussed. The subsequent discussion follows the various metal‐catalyzed C−H functionalization on pyrroles, which are otherwise difficult to implement by Lewis acids. A major emphasize is given on the radical based pyrrole functionalization under metal‐free oxidative conditions, which is otherwise poorly highlighted in the literature. Towards the end, the current development of pyrrole functionalization under photocatalyzed and electrochemical conditions is appended. Only a selected examples of substrates and important mechanisms are discussed for different methods highlighting their scopes and limitations. The aromatic nucleophillic substitution on pyrroles (being an electron‐rich heterocycle) happened to be the subject of recent investigations, which has also been covered accentuating their underlying conceptual development. Despite great achievements over the past several years in these areas, many challenges and problems are yet to be solved, which are all discussed in summary and outlook. A review on direct functionalization on pyrroles via catalytic and non‐catalytic methods including their translational potential is described. The direct functionalization includes various Lewis acids and transition metal‐catalyzed C‐H functionalization on pyrroles. A major emphasize is given on the radical based pyrrole functionalization under metal‐free oxidative conditions. Finally, the current development of pyrrole functionalization under photocatalyzed and electrochemical conditions is appended.
Among the known aromatic nitrogen heterocycles, pyrrole represents a privileged aromatic heterocycle ranging its occurrence in the key component of "pigments of life" to biologically active natural products to active pharmaceuticals. Pyrrole being an electron-rich heteroaromatic compound, its predominant functionalization is legendary to aromatic electrophilic substitution reactions. Although a few excellent reviews on the functionalization of pyrroles including the reports by Baltazzi in 1963, Casiraghi and Rassu in 1995, and Banwell in 2006 are available, they are fragmentary and over fifteen years old, and do not cover the modern aspects of catalysis. A review covering a comprehensive package of direct functionalization on pyrroles via catalytic and non-catalytic methods including their translational potential is described. Subsequent to statutory yet concise introduction, the classical functionalization on pyrroles using Lewis acids largely following an ionic mechanism is discussed. The subsequent discussion follows the various metal-catalyzed C-H functionalization on pyrroles, which are otherwise difficult to implement by Lewis acids. A major emphasize is given on the radical based pyrrole functionalization under metal-free oxidative conditions, which is otherwise poorly highlighted in the literature. Towards the end, the current development of pyrrole functionalization under photocatalyzed and electrochemical conditions is appended. Only a selected examples of substrates and important mechanisms are discussed for different methods highlighting their scopes and limitations. The aromatic nucleophillic substitution on pyrroles (being an electron-rich heterocycle) happened to be the subject of recent investigations, which has also been covered accentuating their underlying conceptual development. Despite great achievements over the past several years in these areas, many challenges and problems are yet to be solved, which are all discussed in summary and outlook.
Among the known aromatic nitrogen heterocycles, pyrrole represents a privileged aromatic heterocycle ranging its occurrence in the key component of “pigments of life” to biologically active natural products to active pharmaceuticals. Pyrrole being an electron‐rich heteroaromatic compound, its predominant functionalization is legendary to aromatic electrophilic substitution reactions. Although a few excellent reviews on the functionalization of pyrroles including the reports by Baltazzi in 1963, Casiraghi and Rassu in 1995, and Banwell in 2006 are available, they are fragmentary and over fifteen years old, and do not cover the modern aspects of catalysis. A review covering a comprehensive package of direct functionalization on pyrroles via catalytic and non‐catalytic methods including their translational potential is described. Subsequent to statutory yet concise introduction, the classical functionalization on pyrroles using Lewis acids largely following an ionic mechanism is discussed. The subsequent discussion follows the various metal‐catalyzed C−H functionalization on pyrroles, which are otherwise difficult to implement by Lewis acids. A major emphasize is given on the radical based pyrrole functionalization under metal‐free oxidative conditions, which is otherwise poorly highlighted in the literature. Towards the end, the current development of pyrrole functionalization under photocatalyzed and electrochemical conditions is appended. Only a selected examples of substrates and important mechanisms are discussed for different methods highlighting their scopes and limitations. The aromatic nucleophillic substitution on pyrroles (being an electron‐rich heterocycle) happened to be the subject of recent investigations, which has also been covered accentuating their underlying conceptual development. Despite great achievements over the past several years in these areas, many challenges and problems are yet to be solved, which are all discussed in summary and outlook.
Author Hunjan, Mandeep Kaur
Laha, Joydev K.
Das, Parthasarathi
Gupta, Anjali
Panday, Surabhi
Bhaumik, Jayeeta
Author_xml – sequence: 1
  givenname: Mandeep Kaur
  surname: Hunjan
  fullname: Hunjan, Mandeep Kaur
  organization: National Institute of Pharmaceutical Education & Research (NIPER) S.A.S. Nagar
– sequence: 2
  givenname: Surabhi
  surname: Panday
  fullname: Panday, Surabhi
  organization: National Institute of Pharmaceutical Education & Research (NIPER) S.A.S. Nagar
– sequence: 3
  givenname: Anjali
  surname: Gupta
  fullname: Gupta, Anjali
  organization: National Institute of Pharmaceutical Education & Research (NIPER) S.A.S. Nagar
– sequence: 4
  givenname: Jayeeta
  surname: Bhaumik
  fullname: Bhaumik, Jayeeta
  organization: Center of Innovative and Applied Bioprocessing (CIAB)
– sequence: 5
  givenname: Parthasarathi
  surname: Das
  fullname: Das, Parthasarathi
  organization: Indian Institute of Technology (Indian School of Mines) Dhanbad
– sequence: 6
  givenname: Joydev K.
  orcidid: 0000-0003-0481-5891
  surname: Laha
  fullname: Laha, Joydev K.
  email: jlaha@niper.ac.in
  organization: National Institute of Pharmaceutical Education & Research (NIPER) S.A.S. Nagar
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33650751$$D View this record in MEDLINE/PubMed
BookMark eNp90UtLAzEQAOAgirXVo1dZ8OJldfLa3RylWBUEpdTzkmazmJImmuwq9deb2qog6CFkCN_MhJkh2nXeaYSOMZxjAHLRqXBOgKQYMOygA8xJlUMh8O5nXOaVEGKAhjEuksCsLPfRgNKCQ8nxAZpOtdKuyy6bV-mUjplx2aR3qjPeSWve5TrIfJs9rELwNgHpmqx70iZksyBdtHJDswffpUJG2kO010ob9dH2HqHHydVsfJPf3V_fji_vckULATlmuNQNgGwLTYksdEWhkhhLICBEwRoQFWFUAeMta9v0PucMizmf86IlVNEROtvUfQ7-pdexq5cmKm2tdNr3sSZMcAakJCTR01904fuQfp0UxyQdUfCkTraqny91Uz8Hs5RhVX9NK4F8A1TwMQbdfhMM9XobddpG_b2N5Okvr0z3Oa8uSGP_zCo3WW_G6tX_LerZePqT-QHmqJt_
CitedBy_id crossref_primary_10_1021_acs_orglett_3c00945
crossref_primary_10_1002_slct_202103015
crossref_primary_10_1002_ajoc_202100427
crossref_primary_10_1002_ange_202401359
crossref_primary_10_1039_D4QO01793E
crossref_primary_10_1002_anie_202111679
crossref_primary_10_1002_anie_202317104
crossref_primary_10_1002_adsc_202301238
crossref_primary_10_1055_a_2380_3855
crossref_primary_10_1142_S1088424623501171
crossref_primary_10_1016_j_jscs_2023_101600
crossref_primary_10_1021_acs_joc_3c01790
crossref_primary_10_1002_slct_202203531
crossref_primary_10_1021_acs_orglett_3c01357
crossref_primary_10_1021_acs_orglett_2c02922
crossref_primary_10_1016_j_molstruc_2022_134321
crossref_primary_10_1002_jhet_4612
crossref_primary_10_1016_j_cclet_2023_108271
crossref_primary_10_1021_acscatal_1c04594
crossref_primary_10_1002_slct_202103486
crossref_primary_10_1021_acs_joc_2c00802
crossref_primary_10_1039_D1CC04378A
crossref_primary_10_1021_acs_jcim_2c00731
crossref_primary_10_1021_acsomega_1c02436
crossref_primary_10_1039_D2OB00961G
crossref_primary_10_1039_D4QO01307G
crossref_primary_10_1039_D4QO01816H
crossref_primary_10_1002_adsc_202400576
crossref_primary_10_1002_anie_202401359
crossref_primary_10_1039_D2QO00787H
crossref_primary_10_1016_j_jorganchem_2021_122013
crossref_primary_10_1055_a_2395_5804
crossref_primary_10_1002_adsc_202200399
crossref_primary_10_1021_acs_joc_4c02680
crossref_primary_10_1002_adsc_202400608
crossref_primary_10_1007_s42823_021_00252_3
crossref_primary_10_1016_j_jaap_2023_106166
crossref_primary_10_1039_D4GC04495A
crossref_primary_10_1021_acs_orglett_2c02135
crossref_primary_10_1002_ajoc_202200571
crossref_primary_10_1055_a_1758_6312
crossref_primary_10_1039_D1OB02176A
crossref_primary_10_1002_ange_202111679
crossref_primary_10_1039_D3OB00326D
crossref_primary_10_1002_tcr_202100171
crossref_primary_10_37827_ntsh_chem_2024_75_090
crossref_primary_10_1021_acscatal_4c06788
crossref_primary_10_1039_D4CC02158D
crossref_primary_10_1039_D1OB01455B
crossref_primary_10_1039_D4OB01187B
crossref_primary_10_1021_acs_orglett_2c02108
crossref_primary_10_1039_D4CC06706A
crossref_primary_10_1002_cbdv_202301684
crossref_primary_10_1002_ange_202317104
crossref_primary_10_1007_s10562_024_04888_4
crossref_primary_10_1016_j_microc_2024_111819
crossref_primary_10_1021_acs_orglett_2c00240
crossref_primary_10_1142_S1088424621500619
crossref_primary_10_1002_tcr_202100288
crossref_primary_10_1039_D3GC01229H
crossref_primary_10_1002_slct_202203722
crossref_primary_10_1007_s11426_024_2382_y
crossref_primary_10_1016_j_cej_2024_154995
crossref_primary_10_1021_acs_orglett_4c00423
crossref_primary_10_1039_D4OB01729C
crossref_primary_10_1002_cjoc_202400723
crossref_primary_10_1002_slct_202200730
Cites_doi 10.1002/ejoc.201900353
10.1002/adsc.201901629
10.1021/cs5005823
10.1039/C8RA09367A
10.1002/ejoc.202000949
10.1021/acs.orglett.7b03596
10.1021/jacs.6b04920
10.1002/adsc.201400497
10.1002/1099-0690(200206)2002:12<1877::AID-EJOC1877>3.0.CO;2-U
10.1016/j.tetlet.2015.10.018
10.1002/ejoc.202000519
10.1038/s41467-019-12607-6
10.1002/ejoc.200500911
10.1016/j.tetlet.2016.04.105
10.1021/ol500744k
10.1002/cctc.201300099
10.1016/j.tet.2016.03.067
10.1021/acs.orglett.5b00290
10.1039/c3cc44631j
10.1021/jo1018969
10.1016/j.tetlet.2019.01.004
10.1016/j.tetlet.2011.11.081
10.1039/C5QO00203F
10.1055/s-1995-3983
10.1002/chem.201904169
10.3762/bjoc.9.35
10.1071/CH17341
10.1039/C7NJ01709J
10.1021/acs.orglett.7b02219
10.1021/ol202457n
10.1039/C8CC06451B
10.1016/j.ica.2017.05.047
10.1126/science.aaw3254
10.1021/ja212099r
10.1002/slct.201801045
10.1002/ange.201612565
10.1039/c1sc00190f
10.1002/chem.201700630
10.1002/chem.201200188
10.1021/acsomega.7b00988
10.1002/chem.201302761
10.1021/acs.joc.9b01113
10.1002/anie.201510990
10.1002/ejoc.201600680
10.1016/j.jfluchem.2019.109361
10.1021/jo5023712
10.1021/acs.orglett.0c00797
10.1021/ja0423217
10.1002/ajoc.201800262
10.1021/ol501086q
10.1039/C7OB02676E
10.1002/adsc.201800677
10.1021/ol802509m
10.1002/ejoc.202000688
10.1002/chem.201000568
10.1055/s-0039-1691564
10.1021/ol900651u
10.1039/C7OB01999H
10.1002/anie.201904774
10.1002/marc.201300303
10.1021/acs.orglett.7b02210
10.1039/C7QO00440K
10.1039/C4CC10055G
10.1039/C7OB02102J
10.1021/ol2010648
10.1007/s11164-011-0418-4
10.1039/C3CC45240A
10.1007/s11172-015-1042-z
10.1002/chem.202001832
10.1021/acs.joc.8b02383
10.1021/ol902703k
10.1021/jo902739n
10.1021/jo201511d
10.1021/ol9028226
10.1016/j.mencom.2018.11.030
10.1126/science.1258232
10.1002/cber.18850180154
10.1021/ol102035s
10.1002/adsc.201400736
10.1039/C7QO00815E
10.1021/acs.orglett.0c00041
10.1039/C9OB00659A
10.1002/chem.201000438
10.1039/C6CC00133E
10.1002/ejoc.201600570
10.1021/ol100838m
10.1002/ange.200462048
10.1039/C9OB02421B
10.1039/C6CC05885J
10.1021/jo401579m
10.1021/jo501460h
10.1021/ja512059d
10.1002/ange.201301154
10.1021/acs.joc.9b00937
10.1021/acs.orglett.6b03510
10.1039/C7CC00852J
10.1002/chem.201403640
10.1021/jo402181w
10.1002/chem.201701429
10.1021/ol1025348
10.1002/adsc.201300700
10.1080/00397911.2015.1136644
10.1039/C6QO00851H
10.1002/anie.201703193
10.1021/ol902360b
10.1039/C5CC09911K
10.1039/C7OB01688C
10.1002/ajoc.201700353
10.1021/ja403535a
10.1021/ol9028385
10.1246/cl.130547
10.1038/s41929-019-0415-3
10.1021/acscatal.6b01452
10.1021/acs.orglett.0c01519
10.3987/COM-18-S(T)52
10.1021/acs.orglett.5b03581
10.1016/j.mencom.2019.05.032
10.1002/chem.201405931
10.1021/acs.joc.7b00446
10.1021/ja508449y
10.1039/C9OB01560D
10.1021/acs.chemrev.7b00307
10.1002/cctc.201200521
10.1039/C9CC10069E
10.1021/ja511011m
10.1021/cr1003776
10.1021/ol102734g
10.1007/s12039-016-1169-y
10.1002/cctc.201601468
10.1021/acs.oprd.8b00233
10.1021/jo300539y
10.1039/C9GC04248B
10.1002/anie.201002987
10.1021/acs.joc.6b02977
10.1246/cl.2011.555
10.1021/jo100269y
10.1021/acs.orglett.7b01111
10.1002/ijch.201900181
10.1021/acs.orglett.5b01702
10.1002/ejoc.201500006
10.1002/cber.187000301169
10.1002/ejoc.201900185
10.1002/ejoc.201601518
10.1021/acs.orglett.6b02947
10.1021/ol503078h
10.1002/ejoc.201900084
10.1002/chem.201301987
10.1021/acs.joc.6b00346
10.1002/cber.18850180175
10.1021/ol202335p
10.1021/jacs.7b03887
10.1039/C6CC06111G
10.1039/C6CC00946H
10.1002/ange.201400881
10.1021/acs.orglett.7b00408
10.1021/ol200602x
10.1039/C9CC02739D
10.1021/ol200601e
10.1039/C9SC00833K
10.1021/acs.joc.7b02731
10.3998/ark.5550190.p009.828
10.1002/andp.18341070502
10.1002/adsc.201000723
10.1021/cr60225a004
10.1002/chem.201405903
10.1002/ejoc.201701491
10.1002/asia.201800558
10.1039/C7SC04086E
10.1007/128_2009_15
10.1016/j.chempr.2016.08.002
10.1039/C7CC07089F
10.1021/acs.joc.5b00034
10.1021/acs.orglett.8b02423
10.1016/j.tetlet.2020.151994
10.1016/j.ica.2018.03.036
10.1055/s-0035-1561320
10.1134/S1070363218040217
10.1021/acs.orglett.0c00290
10.3389/fchem.2019.00613
10.1021/acs.joc.7b01340
10.1055/s-0036-1590471
10.1021/jacs.5b13450
10.1002/anie.201710592
10.1039/C7GC03106H
10.1002/chem.201604192
10.1039/c2cc34803a
10.1039/c1ob05269a
10.1039/C8QO01222A
10.1021/ol300632p
10.1039/C7QO00732A
10.1002/ejoc.201901228
10.1002/adsc.201400598
10.1002/anie.201412319
ContentType Journal Article
Copyright 2021 The Chemical Society of Japan & Wiley‐VCH GmbH
2021 The Chemical Society of Japan & Wiley-VCH GmbH.
Copyright_xml – notice: 2021 The Chemical Society of Japan & Wiley‐VCH GmbH
– notice: 2021 The Chemical Society of Japan & Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7QO
7T7
8FD
C1K
FR3
P64
7X8
DOI 10.1002/tcr.202100010
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Engineering Research Database
MEDLINE - Academic

PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1528-0691
EndPage 780
ExternalDocumentID 33650751
10_1002_tcr_202100010
TCR202100010
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: CSIR
  funderid: 02(0337)/18/EMR-II
– fundername: CSIR
  grantid: 02(0337)/18/EMR-II
GroupedDBID ---
.3N
.Y3
05W
0R~
10A
123
1OC
29B
31~
33P
3WU
4.4
50Y
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
53G
5VS
66C
702
7PT
8-1
8UM
A00
AAESR
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BMXJE
BROTX
BRXPI
BY8
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
F5P
FEDTE
G-S
G.N
GODZA
HF~
HGLYW
HVGLF
HZ~
IX1
J0M
LATKE
LAW
LC2
LC3
LEEKS
LH-
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MSFUL
MSSTM
MXFUL
MXSTM
MY~
N9A
O9-
OIG
P2W
P4D
Q11
QB0
QRW
R.K
ROL
RX1
SUPJJ
V2E
W99
WBKPD
WOHZO
WQJ
WXSBR
WYJ
WYUIH
XG1
XV2
ZZTAW
~IA
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
NPM
7QO
7T7
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
P64
7X8
ID FETCH-LOGICAL-c3690-1417ed00af6e32a6e8308a11a0209964d098243c045f4ff1a0b5419b5b56f23c3
IEDL.DBID DR2
ISSN 1527-8999
1528-0691
IngestDate Thu Jul 10 23:06:10 EDT 2025
Fri Jul 25 10:47:41 EDT 2025
Wed Feb 19 02:27:47 EST 2025
Thu Apr 24 23:01:30 EDT 2025
Tue Jul 01 00:57:28 EDT 2025
Wed Jan 22 16:29:11 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords C−H functionalization
Pyrrole derivatization
Pyrrole
Language English
License 2021 The Chemical Society of Japan & Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3690-1417ed00af6e32a6e8308a11a0209964d098243c045f4ff1a0b5419b5b56f23c3
Notes Equal contributions
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-0481-5891
PMID 33650751
PQID 2512251965
PQPubID 1006501
PageCount 66
ParticipantIDs proquest_miscellaneous_2495402722
proquest_journals_2512251965
pubmed_primary_33650751
crossref_primary_10_1002_tcr_202100010
crossref_citationtrail_10_1002_tcr_202100010
wiley_primary_10_1002_tcr_202100010_TCR202100010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2021
2021-04-00
2021-Apr
20210401
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: April 2021
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Chemical record
PublicationTitleAlternate Chem Rec
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 12
2019; 2019
2010; 16
2017; 82
2019; 10
2002; 12
2019; 13
2014; 27
2019; 17
2013; 125
2012; 18
2015; 80
2012; 14
2013; 5
2014; 136
2011; 353
2011; 111
2013; 9
2014; 20
2020; 18
2018; 7
2009; 11
2018; 9
2018; 8
2018; 3
2018; 5
2012; 134
2010; 24
2015; 137
2019; 23
2019; 26
2014; 16
2019; 29
2016; 48
2016; 46
2014; 126
2015; 56
2019; 7
2018; 28
2011; 2
2019; 6
2019; 31
2015; 51
1963; 63
2019; 37
2015; 54
2019; 226
2011; 76
2012; 38
2016; 18
2011; 5
2018; 20
1995; 6
2017; 138
2017; 139
2011; 9
2016; 5
2017; 53
2016; 6
2010; 49
2016; 1
2013; 78
2015; 64
2018; 478
2005; 127
2017; 56
2020; 28
2016; 21
2015; 2015
2020; 26
2020; 25
2020; 22
2012; 48
2016; 27
2018; 97
2018; 13
2017; 6
2017; 41
2017; 2
2018; 360
2017; 4
1834; 107
2020; Just published
2019; 55
2020; 362
2020; 61
2017; 49
2020; 60
2019; 58
2011; 13
2016; 72
2018; 84
2020; 56
2018; 83
2018; 88
1885; 18
2017; 9
2012; 53
2019; 365
2017; 117
2013; 19
2019; 60
2014; 4
2020; 3
2020; 52
2016; 81
2018; 71
2014; 9
2014; 50
2017; 129
2015; 2
2010; 75
2015; 17
2013; 49
2006; 14
2011; 40
2013; 42
2017; 23
2009
2016; 52
2016; 128
2012; 77
2005; 44
2014; 356
2016; 57
2016; 55
2019; 84
2017; 15
2020
2013; 34
2015; 21
1870; 3
2019
2014; 79
2013; 135
2017; 19
2016; 138
2013
2017; 465
2018; 54
2014; 346
2018; 57
e_1_2_7_3_1
e_1_2_7_104_1
e_1_2_7_127_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_11_1
e_1_2_7_68_1
e_1_2_7_142_1
e_1_2_7_165_1
e_1_2_7_188_1
e_1_2_7_202_1
e_1_2_7_116_1
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_180_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_56_1
e_1_2_7_79_1
e_1_2_7_154_1
e_1_2_7_177_1
e_1_2_7_139_1
e_1_2_7_4_1
e_1_2_7_128_1
Sasaki I. (e_1_2_7_84_1) 2020; 61
e_1_2_7_105_1
e_1_2_7_82_1
e_1_2_7_120_1
e_1_2_7_12_2
e_1_2_7_44_1
e_1_2_7_67_1
e_1_2_7_143_1
e_1_2_7_189_1
e_1_2_7_29_1
e_1_2_7_203_1
e_1_2_7_166_1
Mal'kina A. G. (e_1_2_7_160_1) 2016; 48
e_1_2_7_117_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_181_1
e_1_2_7_24_1
e_1_2_7_55_1
e_1_2_7_78_1
e_1_2_7_193_1
e_1_2_7_132_1
e_1_2_7_155_1
e_1_2_7_178_1
Erdenebileg U. (e_1_2_7_192_1) 2018; 28
e_1_2_7_106_1
e_1_2_7_129_1
e_1_2_7_9_1
Miao T. (e_1_2_7_148_1) 2015; 17
e_1_2_7_81_1
e_1_2_7_121_1
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_170_1
e_1_2_7_89_1
e_1_2_7_182_1
e_1_2_7_28_1
e_1_2_7_144_1
e_1_2_7_167_1
e_1_2_7_204_1
e_1_2_7_118_1
e_1_2_7_110_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_171_2
e_1_2_7_194_1
Zhang M. (e_1_2_7_174_1) 2019
e_1_2_7_39_1
e_1_2_7_133_1
e_1_2_7_156_1
e_1_2_7_179_1
Santiago C. (e_1_2_7_45_1) 2020
e_1_2_7_107_1
e_1_2_7_80_1
e_1_2_7_122_1
e_1_2_7_2_1
e_1_2_7_14_2
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_205_1
e_1_2_7_183_1
e_1_2_7_27_1
e_1_2_7_145_1
e_1_2_7_168_1
e_1_2_7_119_1
e_1_2_7_91_1
e_1_2_7_111_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_195_1
e_1_2_7_172_2
e_1_2_7_38_1
e_1_2_7_134_1
e_1_2_7_157_1
e_1_2_7_108_1
e_1_2_7_7_1
e_1_2_7_100_1
e_1_2_7_123_1
e_1_2_7_15_2
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_161_1
e_1_2_7_184_1
e_1_2_7_206_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_146_1
e_1_2_7_169_1
e_1_2_7_90_1
e_1_2_7_112_1
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_75_1
e_1_2_7_150_1
e_1_2_7_196_1
e_1_2_7_37_1
e_1_2_7_173_1
e_1_2_7_135_1
e_1_2_7_158_1
Bizouard P. (e_1_2_7_32_1) 2014; 27
e_1_2_7_109_1
e_1_2_7_8_1
e_1_2_7_124_1
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_63_1
e_1_2_7_86_1
e_1_2_7_185_1
e_1_2_7_48_1
e_1_2_7_162_1
e_1_2_7_147_1
e_1_2_7_113_1
e_1_2_7_51_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_151_1
e_1_2_7_197_1
e_1_2_7_136_1
e_1_2_7_159_1
e_1_2_7_5_1
e_1_2_7_102_1
e_1_2_7_125_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_85_1
e_1_2_7_47_1
e_1_2_7_140_1
e_1_2_7_163_1
Yamaguchi T. (e_1_2_7_191_1) 2017; 138
e_1_2_7_186_1
e_1_2_7_200_1
e_1_2_7_114_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_152_1
e_1_2_7_175_1
e_1_2_7_198_1
e_1_2_7_137_1
e_1_2_7_6_1
e_1_2_7_126_1
e_1_2_7_103_1
e_1_2_7_18_1
e_1_2_7_61_1
e_1_2_7_190_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_69_1
e_1_2_7_141_1
e_1_2_7_201_1
e_1_2_7_164_1
e_1_2_7_187_1
e_1_2_7_149_1
e_1_2_7_115_1
e_1_2_7_72_1
e_1_2_7_95_1
Duan G. J. (e_1_2_7_131_1) 2013
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_130_1
e_1_2_7_153_1
e_1_2_7_176_1
e_1_2_7_199_1
e_1_2_7_138_1
References_xml – volume: 11
  start-page: 441
  year: 2009
  end-page: 444
  publication-title: Org. Lett.
– volume: 15
  start-page: 10082
  year: 2017
  end-page: 10086
  publication-title: Org. Biomol. Chem.
– volume: 58
  start-page: 11044
  year: 2019
  end-page: 11048
  publication-title: Angew. Chem. Int. Ed.
– volume: 356
  start-page: 3784
  year: 2014
  end-page: 3788
  publication-title: Adv. Synth. Catal.
– volume: 54
  start-page: 11471
  year: 2018
  end-page: 11474
  publication-title: Chem. Commun.
– volume: 55
  start-page: 7331
  year: 2019
  end-page: 7334
  publication-title: Chem. Commun.
– volume: 42
  start-page: 1203
  year: 2013
  end-page: 1205
  publication-title: Chem. Lett.
– volume: 27
  start-page: 754
  year: 2016
  end-page: 758
  publication-title: Synlett
– volume: 13
  start-page: 5846
  year: 2011
  end-page: 5849
  publication-title: Org. Lett.
– volume: 3
  start-page: 5600
  year: 2018
  end-page: 5607
  publication-title: ChemistrySelect
– volume: 18
  start-page: 299
  year: 1885
  end-page: 311
  publication-title: Ber. Dtsch. Chem. Ges.
– volume: 22
  start-page: 1442
  year: 2020
  end-page: 1447
  publication-title: Org. Lett.
– volume: 22
  start-page: 1911
  year: 2020
  end-page: 1918
  publication-title: Green Chem.
– volume: 21
  start-page: 3509
  year: 2016
  end-page: 3513
  publication-title: Eur. J. Org. Chem.
– volume: 12
  start-page: 80
  year: 2010
  end-page: 83
  publication-title: Org. Lett.
– volume: 82
  start-page: 5178
  year: 2017
  end-page: 5197
  publication-title: J. Org. Chem.
– volume: 9
  start-page: 1092
  year: 2017
  end-page: 1096
  publication-title: ChemCatChem.
– volume: 13
  start-page: 2339
  year: 2019
  end-page: 2343
  publication-title: Eur. J. Org. Chem.
– volume: 365
  start-page: 360
  year: 2019
  end-page: 366
  publication-title: Science
– volume: 52
  start-page: 5375
  year: 2016
  end-page: 5378
  publication-title: Chem. Commun.
– volume: 138
  start-page: 2520
  year: 2017
  end-page: 2523
  publication-title: Org. Lett.
– start-page: 85
  year: 2009
  end-page: 121
  publication-title: Top. Curr. Chem.
– volume: 2015
  start-page: 1727
  year: 2015
  end-page: 1734
  publication-title: Eur. J. Org. Chem.
– volume: 51
  start-page: 8432
  year: 2015
  end-page: 8435
  publication-title: Chem. Commun.
– volume: 9
  start-page: 9472
  year: 2014
  end-page: 9480
  publication-title: J. Org. Chem.
– volume: 18
  start-page: 544
  year: 2016
  end-page: 547
  publication-title: Org. Lett.
– volume: 77
  start-page: 4479
  year: 2012
  end-page: 4483
  publication-title: J. Org. Chem.
– volume: 79
  start-page: 11690
  year: 2014
  end-page: 11699
  publication-title: J. Org. Chem.
– volume: 117
  start-page: 8481
  year: 2017
  end-page: 8482
  publication-title: Chem. Rev.
– volume: 5
  start-page: 2504
  year: 2013
  end-page: 2511
  publication-title: ChemCatChem
– volume: 137
  start-page: 644
  year: 2015
  end-page: 647
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 5484
  year: 2019
  end-page: 5488
  publication-title: Chem. Sci.
– volume: 12
  start-page: 924
  year: 2010
  end-page: 927
  publication-title: Org. Lett.
– volume: 48
  start-page: 271
  year: 2016
  end-page: 280
  publication-title: Synthesis
– volume: 80
  start-page: 3806
  year: 2015
  end-page: 3814
  publication-title: J. Org. Chem.
– volume: 49
  start-page: 6650
  year: 2010
  end-page: 6654
  publication-title: Angew. Chem. Int. Ed.
– volume: 23
  start-page: 614
  year: 2019
  end-page: 618
  publication-title: Org. Process Res. Dev.
– volume: 20
  start-page: 974
  year: 2014
  end-page: 978
  publication-title: Chem. Eur. J.
– volume: 15
  start-page: 8280
  year: 2017
  end-page: 8284
  publication-title: Org. Biomol. Chem.
– volume: 2
  start-page: 1361
  year: 2015
  end-page: 1365
  publication-title: Org. Chem. Front.
– volume: 127
  start-page: 4154
  year: 2005
  end-page: 4155
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 1
  year: 2019
  end-page: 10
  publication-title: Nat. Commun.
– volume: 56
  start-page: 7156
  year: 2017
  end-page: 7160
  publication-title: Angew. Chem. Int. Ed.
– volume: 53
  start-page: 4497
  year: 2017
  end-page: 4500
  publication-title: Chem. Commun.
– volume: 6
  start-page: 1604
  year: 2017
  end-page: 1611
  publication-title: Asian J. Org. Chem.
– volume: 46
  start-page: 322
  year: 2016
  end-page: 331
  publication-title: Synth. Commun.
– volume: 20
  start-page: 12754
  year: 2014
  end-page: 12758
  publication-title: Chem. Eur. J.
– volume: 356
  start-page: 137
  year: 2014
  end-page: 143
  publication-title: Adv. Synth. Catal.
– volume: 16
  start-page: 2244
  year: 2014
  end-page: 2247
  publication-title: Org. Lett.
– volume: 5
  start-page: 279
  year: 2016
  end-page: 300
  publication-title: Arkivoc
– volume: 29
  start-page: 334
  year: 2019
  end-page: 336
  publication-title: Mendeleev Commun.
– volume: 478
  start-page: 139
  year: 2018
  end-page: 147
  publication-title: Inorg. Chim. Acta
– volume: 52
  start-page: 9036
  year: 2016
  end-page: 9039
  publication-title: Chem. Commun.
– volume: 360
  start-page: 3889
  year: 2018
  end-page: 3893
  publication-title: Adv. Synth. Catal.
– volume: 17
  start-page: 8153
  year: 2019
  end-page: 8165
  publication-title: Org. Biomol. Chem.
– volume: 97
  start-page: 632
  year: 2018
  end-page: 645
  publication-title: Heterocycles
– volume: 135
  start-page: 8169
  year: 2013
  end-page: 8172
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 5608
  year: 2011
  end-page: 5611
  publication-title: Org. Lett.
– volume: 8
  start-page: 933
  year: 2018
  end-page: 956
  publication-title: Eur. J. Org. Chem.
– volume: 27
  start-page: 1227
  year: 2014
  end-page: 1231
  publication-title: Synlett
– volume: 60
  start-page: 485
  year: 2020
  end-page: 489
  publication-title: Isr. J. Chem.
– volume: 128
  start-page: 1725
  year: 2016
  end-page: 1735
  publication-title: J. Chem. Sci.
– volume: 52
  start-page: 4329
  year: 2016
  end-page: 4332
  publication-title: Chem. Commun.
– volume: 20
  start-page: 284
  year: 2018
  end-page: 287
  publication-title: Org. Lett.
– volume: 52
  start-page: 10918
  year: 2016
  end-page: 10921
  publication-title: Chem. Commun.
– volume: 18
  start-page: 367
  year: 1885
  end-page: 371
  publication-title: Ber. Dtsch. Chem. Ges.
– start-page: 1
  year: 2019
  end-page: 8
  publication-title: Mol. Diversity
– start-page: 49
  year: 2013
  end-page: 4627
  publication-title: Chem. Commun.
– volume: 139
  start-page: 9605
  year: 2017
  end-page: 9614
  publication-title: J. Am. Chem. Soc.
– volume: 81
  start-page: 3688
  year: 2016
  end-page: 3699
  publication-title: J. Org. Chem.
– volume: 16
  start-page: 9117
  year: 2010
  end-page: 9122
  publication-title: Chem. Eur. J.
– volume: 49
  start-page: 8620
  year: 2013
  end-page: 8622
  publication-title: Chem. Commun.
– volume: 26
  start-page: 9749
  year: 2020
  end-page: 9783
  publication-title: Chem. Eur. J.
– volume: 21
  start-page: 1463
  year: 2015
  end-page: 1467
  publication-title: Chem. Eur. J.
– volume: 75
  start-page: 3144
  year: 2010
  end-page: 3146
  publication-title: J. Org. Chem.
– volume: 5
  start-page: 611
  year: 2018
  end-page: 614
  publication-title: Org. Chem. Front.
– volume: 76
  start-page: 471
  year: 2011
  end-page: 483
  publication-title: J. Org. Chem.
– volume: 356
  start-page: 3831
  year: 2014
  end-page: 3841
  publication-title: Adv. Synth. Catal.
– volume: 28
  start-page: 907
  year: 2018
  end-page: 912
  publication-title: Synlett
– volume: 12
  start-page: 604
  year: 2010
  end-page: 607
  publication-title: Org. Lett.
– volume: 18
  start-page: 6302
  year: 2012
  end-page: 6308
  publication-title: Chem. Eur. J.
– volume: 7
  start-page: 613
  year: 2019
  publication-title: Front. Chem.
– volume: 23
  start-page: 7703
  year: 2017
  end-page: 7709
  publication-title: Chem. Eur. J.
– volume: 21
  start-page: 5380
  year: 2015
  end-page: 5386
  publication-title: Chem. Eur. J.
– volume: 19
  start-page: 4608
  year: 2017
  end-page: 4611
  publication-title: Org. Lett.
– volume: 107
  start-page: 65
  year: 1834
  end-page: 78
  publication-title: Ann. Phys.
– volume: 16
  start-page: 3192
  year: 2014
  end-page: 3195
  publication-title: Org. Lett.
– volume: 111
  start-page: 7749
  year: 2011
  end-page: 73
  publication-title: Chem. Rev.
– volume: 71
  start-page: 95
  year: 2018
  end-page: 101
  publication-title: Aust. J. Chem.
– volume: 21
  start-page: 3491
  year: 2016
  end-page: 3494
  publication-title: Eur. J. Org. Chem.
– volume: 28
  start-page: 651
  year: 2018
  end-page: 652
  publication-title: Mendeleev Commun.
– volume: 28
  start-page: 4243
  year: 2020
  end-page: 4432
  publication-title: Eur. J. Org. Chem.
– volume: 22
  start-page: 4511
  year: 2020
  end-page: 4516
  publication-title: Org. Lett.
– volume: 3
  start-page: 163
  year: 2020
  end-page: 169
  publication-title: Nat. Catal.
– volume: 19
  start-page: 11863
  year: 2013
  end-page: 11868
  publication-title: Chem. Eur. J.
– volume: 1
  start-page: 456
  year: 2016
  end-page: 472
  publication-title: Chem.
– volume: 84
  start-page: 9322
  year: 2019
  end-page: 9329
  publication-title: J. Org. Chem.
– volume: 53
  start-page: 509
  year: 2012
  end-page: 513
  publication-title: Tetrahedron Lett.
– volume: 129
  start-page: 4019
  year: 2017
  end-page: 4023
  publication-title: Angew. Chem. Int. Ed.
– volume: 56
  start-page: 3445
  year: 2020
  end-page: 3448
  publication-title: Chem. Commun.
– volume: 138
  start-page: 8092
  year: 2016
  end-page: 8095
  publication-title: J. Am. Chem. Soc.
– volume: 57
  start-page: 272
  year: 2018
  end-page: 276
  publication-title: Angew. Chem. Int. Ed.
– volume: 25
  start-page: 3896
  year: 2020
  end-page: 3905
  publication-title: Eur. J. Org. Chem.
– volume: 63
  start-page: 511
  year: 1963
  end-page: 556
  publication-title: Chem. Rev.
– volume: 136
  start-page: 13226
  year: 2014
  end-page: 13232
  publication-title: J. Am. Chem. Soc.
– volume: 75
  start-page: 3109
  year: 2010
  end-page: 3112
  publication-title: J. Org. Chem.
– volume: 7
  start-page: 1396
  year: 2018
  end-page: 1402
  publication-title: Asian J. Org. Chem.
– volume: 6
  start-page: 6780
  year: 2016
  end-page: 6784
  publication-title: ACS Catal.
– volume: 57
  start-page: 2530
  year: 2016
  end-page: 2532
  publication-title: Tetrahedron Lett.
– volume: 19
  start-page: 2754
  year: 2017
  end-page: 2757
  publication-title: Org. Lett.
– volume: 26
  start-page: 543
  year: 2019
  end-page: 547
  publication-title: Chem. Eur. J.
– volume: 17
  start-page: 4364
  year: 2019
  end-page: 4369
  publication-title: Org. Biomol. Chem.
– volume: 88
  start-page: 758
  year: 2018
  end-page: 766
  publication-title: Russ. J. Gen. Chem.
– volume: 16
  start-page: 6756
  year: 2010
  end-page: 6760
  publication-title: Chem. Eur. J.
– volume: 15
  start-page: 2104
  year: 2017
  end-page: 2107
  publication-title: Eur. J. Org. Chem.
– volume: 37
  start-page: 6396
  year: 2019
  end-page: 6400
  publication-title: Eur. J. Org. Chem.
– volume: 353
  start-page: 925
  year: 2011
  end-page: 930
  publication-title: Adv. Synth. Catal.
– volume: 138
  start-page: 2520
  year: 2016
  end-page: 2523
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 2164
  year: 2011
  end-page: 2167
  publication-title: Org. Lett.
– volume: 60
  start-page: 449
  year: 2019
  end-page: 451
  publication-title: Tetrahedron Lett.
– volume: 2
  start-page: 5000
  year: 2017
  end-page: 5004
  publication-title: ACS Omega
– volume: 13
  start-page: 288
  year: 2011
  end-page: 291
  publication-title: Org. Lett.
– volume: Just published
  year: 2020
  publication-title: Eur. J. Org. Chem.
– volume: 20
  start-page: 5482
  year: 2018
  end-page: 5485
  publication-title: Org. Lett.
– volume: 6
  start-page: 256
  year: 2019
  end-page: 262
  publication-title: Org. Chem. Front.
– volume: 40
  start-page: 555
  year: 2011
  end-page: 557
  publication-title: Chem. Lett.
– volume: 82
  start-page: 9350
  year: 2017
  end-page: 9359
  publication-title: J. Org. Chem.
– volume: 52
  start-page: 1407
  year: 2020
  end-page: 1416
  publication-title: Synthesis
– volume: 56
  start-page: 6669
  year: 2015
  end-page: 6673
  publication-title: Tetrahedron Lett.
– volume: 34
  start-page: 1151
  year: 2013
  end-page: 1156
  publication-title: Macromol. Rapid Commun.
– volume: 5
  start-page: 162
  year: 2018
  end-page: 165
  publication-title: Org. Chem. Front.
– start-page: 6859
  year: 2020
  end-page: 6869
  publication-title: Eur. J. Org. Chem.
– volume: 72
  start-page: 2456
  year: 2016
  end-page: 2463
  publication-title: Tetrahedron
– volume: 83
  start-page: 330
  year: 2018
  end-page: 337
  publication-title: J. Org. Chem.
– volume: 17
  start-page: 4832
  year: 2015
  end-page: 835
  publication-title: Org. Lett.
– volume: 19
  start-page: 1586
  year: 2017
  end-page: 1589
  publication-title: Org. Lett.
– volume: 12
  start-page: 1877
  year: 2002
  end-page: 1894
  publication-title: Eur. J. Org. Chem.
– volume: 8
  start-page: 41651
  year: 2018
  end-page: 41656
  publication-title: RSC Adv.
– volume: 23
  start-page: 2044
  year: 2017
  end-page: 2050
  publication-title: Chem. Eur. J.
– volume: 16
  start-page: 6334
  year: 2014
  end-page: 6337
  publication-title: Org. Lett.
– volume: 125
  start-page: 6196
  year: 2013
  end-page: 6199
  publication-title: Angew. Chem. Int. Ed.
– volume: 9
  start-page: 634
  year: 2018
  end-page: 639
  publication-title: Chem. Sci.
– volume: 78
  start-page: 9345
  year: 2013
  end-page: 9353
  publication-title: J. Org. Chem.
– volume: 79
  start-page: 529
  year: 2014
  end-page: 537
  publication-title: J. Org. Chem.
– volume: 54
  start-page: 6352
  year: 2015
  end-page: 6355
  publication-title: Angew. Chem. Int. Ed.
– volume: 13
  start-page: 2418
  year: 2018
  end-page: 2422
  publication-title: Chem. Asian J.
– volume: 13
  start-page: 2358
  year: 2011
  end-page: 2360
  publication-title: Org. Lett.
– volume: 49
  start-page: 3476
  year: 2017
  end-page: 3484
  publication-title: Synthesis
– volume: 134
  start-page: 2958
  year: 2012
  end-page: 2961
  publication-title: J. Am. Chem. Soc.
– volume: 76
  start-page: 8781
  year: 2011
  end-page: 8793
  publication-title: J. Org. Chem.
– volume: 2
  start-page: 1344
  year: 2011
  end-page: 1348
  publication-title: Chem. Sci.
– volume: 22
  start-page: 3033
  year: 2020
  end-page: 3038
  publication-title: Org. Lett.
– volume: 52
  start-page: 13341
  year: 2016
  end-page: 13344
  publication-title: Chem. Commun.
– volume: 12
  start-page: 2694
  year: 2010
  end-page: 2697
  publication-title: Org. Lett.
– volume: 61
  start-page: 1
  year: 2020
  end-page: 12
  publication-title: Tetrahedron Lett.
– volume: 38
  start-page: 795
  year: 2012
  end-page: 806
  publication-title: Res. Chem. Intermed.
– volume: 22
  start-page: 1929
  year: 2020
  end-page: 1933
  publication-title: Org. Lett.
– volume: 20
  start-page: 760
  year: 2018
  end-page: 764
  publication-title: Green Chem.
– volume: 3
  start-page: 514
  year: 1870
  end-page: 517
  publication-title: Ber. Dtsch. Chem. Ges.
– volume: 48
  start-page: 9281
  year: 2012
  end-page: 9283
  publication-title: Chem. Commun.
– volume: 12
  start-page: 4872
  year: 2010
  end-page: 4875
  publication-title: Org. Lett.
– volume: 4
  start-page: 2530
  year: 2014
  end-page: 2535
  publication-title: ACS Catal.
– volume: 14
  start-page: 3043
  year: 2006
  end-page: 3060
  publication-title: Eur. J. Org. Chem.
– volume: 82
  start-page: 3491
  year: 2017
  end-page: 3499
  publication-title: J. Org. Chem.
– volume: 18
  start-page: 5716
  year: 2016
  end-page: 5719
  publication-title: Org. Lett.
– volume: 5
  start-page: 255
  year: 2011
  end-page: 262
  publication-title: ChemCatChem
– volume: 4
  start-page: 1091
  year: 2017
  end-page: 1102
  publication-title: Org. Chem. Front.
– volume: 41
  start-page: 8791
  year: 2017
  end-page: 8803
  publication-title: New J. Chem.
– volume: 11
  start-page: 2129
  year: 2009
  end-page: 2132
  publication-title: Org. Lett.
– volume: 226
  year: 2019
  publication-title: J. Fluorine Chem.
– volume: 50
  start-page: 5236
  year: 2014
  end-page: 5238
  publication-title: Chem. Commun.
– volume: 14
  start-page: 1934
  year: 2012
  end-page: 1937
  publication-title: Org. Lett.
– volume: 346
  start-page: 725
  year: 2014
  end-page: 728
  publication-title: Science
– volume: 9
  start-page: 4927
  year: 2011
  end-page: 4935
  publication-title: Org. Biomol. Chem.
– volume: 23
  start-page: 9647
  year: 2017
  end-page: 9656
  publication-title: Chem. Eur. J.
– volume: 2019
  start-page: 3591
  year: 2019
  end-page: 3598
  publication-title: Eur. J. Org. Chem.
– volume: 15
  start-page: 7157
  year: 2017
  end-page: 7164
  publication-title: Org. Biomol. Chem.
– volume: 31
  start-page: 5261
  year: 2019
  end-page: 5274
  publication-title: Eur. J. Org. Chem.
– volume: 44
  start-page: 615
  year: 2005
  end-page: 618
  publication-title: Angew. Chem. Int. Ed.
– volume: 9
  start-page: 303
  year: 2013
  end-page: 312
  publication-title: Beilstein J. Org. Chem.
– volume: 13
  start-page: 3332
  year: 2011
  end-page: 3335
  publication-title: Org. Lett.
– volume: 17
  start-page: 1296
  year: 2015
  end-page: 1299
  publication-title: Org. Lett.
– volume: 17
  start-page: 3718
  year: 2015
  end-page: 3721
  publication-title: Org. Lett.
– volume: 19
  start-page: 4794
  year: 2017
  end-page: 4797
  publication-title: Org. Lett.
– volume: 6
  start-page: 607
  year: 1995
  end-page: 626
  publication-title: Synthesis.
– volume: 84
  start-page: 4661
  year: 2018
  end-page: 4669
  publication-title: J. Org. Chem.
– volume: 61
  start-page: 51564
  year: 2020
  publication-title: Tetrahedron Lett.
– volume: 362
  start-page: 1998
  year: 2020
  end-page: 2004
  publication-title: Adv. Synth. Catal.
– volume: 15
  start-page: 8119
  year: 2017
  end-page: 8133
  publication-title: Org. Biomol. Chem.
– volume: 24
  start-page: 5740
  year: 2010
  end-page: 5743
  publication-title: Org. Lett.
– volume: 53
  start-page: 11572
  year: 2017
  end-page: 11575
  publication-title: Chem. Commun.
– volume: 84
  start-page: 9946
  year: 2019
  end-page: 9956
  publication-title: J. Org. Chem.
– volume: 12
  start-page: 368
  year: 2010
  end-page: 371
  publication-title: Org. Lett.
– volume: 18
  start-page: 500
  year: 2020
  end-page: 513
  publication-title: Org. Biomol. Chem.
– volume: 19
  start-page: 972
  year: 2017
  end-page: 975
  publication-title: Org. Lett.
– volume: 465
  start-page: 44
  year: 2017
  end-page: 49
  publication-title: Inorg. Chim. Acta
– volume: 126
  start-page: 5242
  year: 2014
  end-page: 5246
  publication-title: Angew. Chem. Int. Ed.
– volume: 64
  start-page: 1564
  year: 2015
  end-page: 1568
  publication-title: Russ. Chem. Bull.
– volume: 55
  start-page: 1
  year: 2016
  end-page: 5
  publication-title: Angew. Chem. Int. Ed.
– volume: 356
  start-page: 1
  year: 2014
  end-page: 12
  publication-title: Adv. Synth. Catal.
– volume: 136
  start-page: 17722
  year: 2014
  end-page: 17725
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 2170
  year: 2017
  end-page: 2174
  publication-title: Org. Chem. Front.
– ident: e_1_2_7_145_1
  doi: 10.1002/ejoc.201900353
– ident: e_1_2_7_68_1
  doi: 10.1002/adsc.201901629
– volume: 138
  start-page: 2520
  year: 2017
  ident: e_1_2_7_191_1
  publication-title: Org. Lett.
– ident: e_1_2_7_181_1
  doi: 10.1021/cs5005823
– ident: e_1_2_7_151_1
  doi: 10.1039/C8RA09367A
– ident: e_1_2_7_11_1
– ident: e_1_2_7_7_1
  doi: 10.1002/ejoc.202000949
– ident: e_1_2_7_57_1
  doi: 10.1021/acs.orglett.7b03596
– ident: e_1_2_7_185_1
  doi: 10.1021/jacs.6b04920
– ident: e_1_2_7_132_1
  doi: 10.1002/adsc.201400497
– ident: e_1_2_7_129_1
  doi: 10.1002/1099-0690(200206)2002:12<1877::AID-EJOC1877>3.0.CO;2-U
– ident: e_1_2_7_66_1
  doi: 10.1016/j.tetlet.2015.10.018
– ident: e_1_2_7_137_1
  doi: 10.1002/ejoc.202000519
– ident: e_1_2_7_203_1
  doi: 10.1038/s41467-019-12607-6
– ident: e_1_2_7_10_1
  doi: 10.1002/ejoc.200500911
– ident: e_1_2_7_117_1
  doi: 10.1016/j.tetlet.2016.04.105
– ident: e_1_2_7_80_1
  doi: 10.1021/ol500744k
– ident: e_1_2_7_28_1
  doi: 10.1002/cctc.201300099
– ident: e_1_2_7_155_1
  doi: 10.1016/j.tet.2016.03.067
– volume: 61
  start-page: 51564
  year: 2020
  ident: e_1_2_7_84_1
  publication-title: Tetrahedron Lett.
– ident: e_1_2_7_51_1
  doi: 10.1021/acs.orglett.5b00290
– ident: e_1_2_7_27_1
  doi: 10.1039/c3cc44631j
– year: 2020
  ident: e_1_2_7_45_1
  publication-title: Eur. J. Org. Chem.
– ident: e_1_2_7_22_1
  doi: 10.1021/jo1018969
– ident: e_1_2_7_58_1
  doi: 10.1016/j.tetlet.2019.01.004
– ident: e_1_2_7_25_1
  doi: 10.1016/j.tetlet.2011.11.081
– ident: e_1_2_7_50_1
  doi: 10.1039/C5QO00203F
– ident: e_1_2_7_9_1
  doi: 10.1055/s-1995-3983
– ident: e_1_2_7_195_1
  doi: 10.1002/chem.201904169
– ident: e_1_2_7_26_1
  doi: 10.3762/bjoc.9.35
– ident: e_1_2_7_149_1
  doi: 10.1071/CH17341
– ident: e_1_2_7_34_1
  doi: 10.1039/C7NJ01709J
– ident: e_1_2_7_36_1
  doi: 10.1021/acs.orglett.7b02219
– ident: e_1_2_7_165_1
  doi: 10.1021/ol202457n
– ident: e_1_2_7_204_1
  doi: 10.1039/C8CC06451B
– ident: e_1_2_7_35_1
  doi: 10.1016/j.ica.2017.05.047
– start-page: 1
  year: 2019
  ident: e_1_2_7_174_1
  publication-title: Mol. Diversity
– ident: e_1_2_7_199_1
  doi: 10.1126/science.aaw3254
– ident: e_1_2_7_180_1
  doi: 10.1021/ja212099r
– ident: e_1_2_7_37_1
  doi: 10.1002/slct.201801045
– ident: e_1_2_7_71_1
  doi: 10.1002/ange.201612565
– ident: e_1_2_7_130_1
  doi: 10.1039/c1sc00190f
– ident: e_1_2_7_143_1
  doi: 10.1002/chem.201700630
– ident: e_1_2_7_98_1
  doi: 10.1002/chem.201200188
– ident: e_1_2_7_146_1
  doi: 10.1021/acsomega.7b00988
– ident: e_1_2_7_162_1
  doi: 10.1002/chem.201302761
– ident: e_1_2_7_141_1
  doi: 10.1021/acs.joc.9b01113
– ident: e_1_2_7_187_1
  doi: 10.1002/anie.201510990
– ident: e_1_2_7_33_1
  doi: 10.1002/ejoc.201600680
– ident: e_1_2_7_175_1
  doi: 10.1016/j.jfluchem.2019.109361
– ident: e_1_2_7_110_1
  doi: 10.1021/jo5023712
– start-page: 49
  year: 2013
  ident: e_1_2_7_131_1
  publication-title: Chem. Commun.
– ident: e_1_2_7_74_1
  doi: 10.1021/acs.orglett.0c00797
– ident: e_1_2_7_126_1
  doi: 10.1021/ja0423217
– ident: e_1_2_7_94_1
  doi: 10.1002/ajoc.201800262
– ident: e_1_2_7_128_1
  doi: 10.1021/ol501086q
– ident: e_1_2_7_56_1
  doi: 10.1039/C7OB02676E
– ident: e_1_2_7_194_1
  doi: 10.1002/adsc.201800677
– ident: e_1_2_7_127_1
  doi: 10.1021/ol802509m
– ident: e_1_2_7_15_2
  doi: 10.1002/ejoc.202000688
– ident: e_1_2_7_124_1
  doi: 10.1002/chem.201000568
– ident: e_1_2_7_44_1
  doi: 10.1055/s-0039-1691564
– ident: e_1_2_7_125_1
  doi: 10.1021/ol900651u
– ident: e_1_2_7_161_1
  doi: 10.1039/C7OB01999H
– ident: e_1_2_7_122_1
  doi: 10.1002/anie.201904774
– ident: e_1_2_7_170_1
– ident: e_1_2_7_100_1
  doi: 10.1002/marc.201300303
– ident: e_1_2_7_82_1
  doi: 10.1021/acs.orglett.7b02210
– ident: e_1_2_7_55_1
  doi: 10.1039/C7QO00440K
– ident: e_1_2_7_120_1
  doi: 10.1039/C4CC10055G
– ident: e_1_2_7_79_1
  doi: 10.1039/C7OB02102J
– ident: e_1_2_7_97_1
  doi: 10.1021/ol2010648
– ident: e_1_2_7_134_1
  doi: 10.1007/s11164-011-0418-4
– ident: e_1_2_7_61_1
  doi: 10.1039/C3CC45240A
– ident: e_1_2_7_67_1
  doi: 10.1007/s11172-015-1042-z
– ident: e_1_2_7_14_2
  doi: 10.1002/chem.202001832
– volume: 28
  start-page: 907
  year: 2018
  ident: e_1_2_7_192_1
  publication-title: Synlett
– ident: e_1_2_7_38_1
  doi: 10.1021/acs.joc.8b02383
– ident: e_1_2_7_178_1
  doi: 10.1021/ol902703k
– ident: e_1_2_7_20_1
  doi: 10.1021/jo902739n
– ident: e_1_2_7_63_1
  doi: 10.1021/jo201511d
– ident: e_1_2_7_95_1
  doi: 10.1021/ol9028226
– ident: e_1_2_7_205_1
  doi: 10.1016/j.mencom.2018.11.030
– ident: e_1_2_7_182_1
  doi: 10.1126/science.1258232
– ident: e_1_2_7_3_1
  doi: 10.1002/cber.18850180154
– ident: e_1_2_7_59_1
  doi: 10.1021/ol102035s
– ident: e_1_2_7_29_1
  doi: 10.1002/adsc.201400736
– ident: e_1_2_7_49_1
  doi: 10.1039/C7QO00815E
– ident: e_1_2_7_136_1
  doi: 10.1021/acs.orglett.0c00041
– ident: e_1_2_7_197_1
  doi: 10.1039/C9OB00659A
– ident: e_1_2_7_152_1
  doi: 10.1002/chem.201000438
– ident: e_1_2_7_31_1
  doi: 10.1039/C6CC00133E
– ident: e_1_2_7_156_1
  doi: 10.1002/ejoc.201600570
– ident: e_1_2_7_106_1
  doi: 10.1021/ol100838m
– ident: e_1_2_7_6_1
  doi: 10.1002/ange.200462048
– ident: e_1_2_7_104_1
  doi: 10.1039/C9OB02421B
– ident: e_1_2_7_107_1
  doi: 10.1039/C6CC05885J
– ident: e_1_2_7_99_1
  doi: 10.1021/jo401579m
– ident: e_1_2_7_101_1
  doi: 10.1021/jo501460h
– ident: e_1_2_7_91_1
  doi: 10.1021/ja512059d
– ident: e_1_2_7_48_1
  doi: 10.1002/ange.201301154
– ident: e_1_2_7_198_1
  doi: 10.1021/acs.joc.9b00937
– ident: e_1_2_7_115_1
  doi: 10.1021/acs.orglett.6b03510
– ident: e_1_2_7_121_1
  doi: 10.1039/C7CC00852J
– ident: e_1_2_7_62_1
  doi: 10.1002/chem.201403640
– ident: e_1_2_7_30_1
  doi: 10.1021/jo402181w
– ident: e_1_2_7_144_1
  doi: 10.1002/chem.201701429
– ident: e_1_2_7_133_1
  doi: 10.1021/ol1025348
– ident: e_1_2_7_90_1
  doi: 10.1002/adsc.201300700
– ident: e_1_2_7_18_1
  doi: 10.1080/00397911.2015.1136644
– ident: e_1_2_7_150_1
  doi: 10.1039/C6QO00851H
– ident: e_1_2_7_116_1
  doi: 10.1002/anie.201703193
– ident: e_1_2_7_111_1
  doi: 10.1021/ol902360b
– volume: 48
  start-page: 271
  year: 2016
  ident: e_1_2_7_160_1
  publication-title: Synthesis
– ident: e_1_2_7_142_1
  doi: 10.1039/C5CC09911K
– ident: e_1_2_7_166_1
  doi: 10.1039/C7OB01688C
– ident: e_1_2_7_169_1
  doi: 10.1002/ajoc.201700353
– ident: e_1_2_7_123_1
  doi: 10.1021/ja403535a
– ident: e_1_2_7_85_1
  doi: 10.1021/ol9028385
– ident: e_1_2_7_179_1
  doi: 10.1246/cl.130547
– ident: e_1_2_7_200_1
  doi: 10.1038/s41929-019-0415-3
– ident: e_1_2_7_184_1
  doi: 10.1021/acscatal.6b01452
– ident: e_1_2_7_75_1
  doi: 10.1021/acs.orglett.0c01519
– ident: e_1_2_7_138_1
  doi: 10.3987/COM-18-S(T)52
– ident: e_1_2_7_202_1
  doi: 10.1021/acs.orglett.5b03581
– ident: e_1_2_7_206_1
  doi: 10.1016/j.mencom.2019.05.032
– ident: e_1_2_7_102_1
  doi: 10.1002/chem.201405931
– ident: e_1_2_7_65_1
  doi: 10.1021/ol501086q
– ident: e_1_2_7_119_1
  doi: 10.1021/acs.joc.7b00446
– ident: e_1_2_7_5_1
  doi: 10.1021/ja508449y
– ident: e_1_2_7_176_1
  doi: 10.1039/C9OB01560D
– ident: e_1_2_7_13_2
  doi: 10.1021/acs.chemrev.7b00307
– ident: e_1_2_7_24_1
  doi: 10.1002/cctc.201200521
– ident: e_1_2_7_118_1
  doi: 10.1039/C9CC10069E
– ident: e_1_2_7_112_1
  doi: 10.1021/ja511011m
– volume: 17
  start-page: 4832
  year: 2015
  ident: e_1_2_7_148_1
  publication-title: Org. Lett.
– ident: e_1_2_7_171_2
  doi: 10.1021/cr1003776
– ident: e_1_2_7_23_1
  doi: 10.1021/ol102734g
– ident: e_1_2_7_103_1
  doi: 10.1007/s12039-016-1169-y
– ident: e_1_2_7_39_1
  doi: 10.1002/cctc.201601468
– ident: e_1_2_7_16_1
  doi: 10.1021/acs.oprd.8b00233
– ident: e_1_2_7_47_1
  doi: 10.1021/jo300539y
– ident: e_1_2_7_201_1
  doi: 10.1039/C9GC04248B
– ident: e_1_2_7_19_1
  doi: 10.1002/anie.201002987
– ident: e_1_2_7_167_1
  doi: 10.1021/acs.joc.6b02977
– ident: e_1_2_7_21_1
  doi: 10.1246/cl.2011.555
– ident: e_1_2_7_96_1
  doi: 10.1021/jo100269y
– ident: e_1_2_7_70_1
  doi: 10.1021/acs.orglett.7b01111
– ident: e_1_2_7_73_1
  doi: 10.1002/ijch.201900181
– ident: e_1_2_7_158_1
  doi: 10.1021/acs.orglett.5b01702
– ident: e_1_2_7_183_1
  doi: 10.1002/ejoc.201500006
– ident: e_1_2_7_2_1
  doi: 10.1002/cber.187000301169
– ident: e_1_2_7_157_1
  doi: 10.1002/ejoc.201900185
– ident: e_1_2_7_193_1
  doi: 10.1002/ejoc.201601518
– ident: e_1_2_7_53_1
  doi: 10.1021/acs.orglett.6b02947
– ident: e_1_2_7_89_1
  doi: 10.1021/ja508449y
– ident: e_1_2_7_153_1
  doi: 10.1021/ol503078h
– ident: e_1_2_7_173_1
  doi: 10.1002/ejoc.201900084
– ident: e_1_2_7_87_1
  doi: 10.1002/chem.201301987
– ident: e_1_2_7_78_1
  doi: 10.1021/acs.joc.6b00346
– ident: e_1_2_7_4_1
  doi: 10.1002/cber.18850180175
– ident: e_1_2_7_17_1
  doi: 10.1021/ol202335p
– ident: e_1_2_7_40_1
  doi: 10.1021/jacs.7b03887
– ident: e_1_2_7_186_1
  doi: 10.1039/C6CC06111G
– ident: e_1_2_7_69_1
  doi: 10.1039/C6CC00946H
– ident: e_1_2_7_88_1
  doi: 10.1002/ange.201400881
– ident: e_1_2_7_168_1
  doi: 10.1021/acs.orglett.7b00408
– ident: e_1_2_7_46_1
  doi: 10.1021/ol200602x
– ident: e_1_2_7_147_1
  doi: 10.1039/C9CC02739D
– ident: e_1_2_7_139_1
  doi: 10.1021/ol200601e
– ident: e_1_2_7_196_1
  doi: 10.1039/C9SC00833K
– ident: e_1_2_7_92_1
  doi: 10.1021/acs.joc.7b02731
– volume: 27
  start-page: 1227
  year: 2014
  ident: e_1_2_7_32_1
  publication-title: Synlett
– ident: e_1_2_7_159_1
  doi: 10.3998/ark.5550190.p009.828
– ident: e_1_2_7_1_1
  doi: 10.1002/andp.18341070502
– ident: e_1_2_7_140_1
  doi: 10.1002/adsc.201000723
– ident: e_1_2_7_8_1
  doi: 10.1021/cr60225a004
– ident: e_1_2_7_76_1
  doi: 10.1002/chem.201405903
– ident: e_1_2_7_172_2
  doi: 10.1002/ejoc.201701491
– ident: e_1_2_7_42_1
  doi: 10.1002/asia.201800558
– ident: e_1_2_7_83_1
  doi: 10.1039/C7SC04086E
– ident: e_1_2_7_12_2
  doi: 10.1007/128_2009_15
– ident: e_1_2_7_188_1
  doi: 10.1016/j.chempr.2016.08.002
– ident: e_1_2_7_108_1
  doi: 10.1039/C7CC07089F
– ident: e_1_2_7_77_1
  doi: 10.1021/acs.joc.5b00034
– ident: e_1_2_7_135_1
  doi: 10.1021/acs.orglett.8b02423
– ident: e_1_2_7_177_1
  doi: 10.1016/j.tetlet.2020.151994
– ident: e_1_2_7_109_1
  doi: 10.1016/j.ica.2018.03.036
– ident: e_1_2_7_189_1
  doi: 10.1055/s-0035-1561320
– ident: e_1_2_7_93_1
  doi: 10.1134/S1070363218040217
– ident: e_1_2_7_105_1
  doi: 10.1021/acs.orglett.0c00290
– ident: e_1_2_7_72_1
  doi: 10.3389/fchem.2019.00613
– ident: e_1_2_7_54_1
  doi: 10.1021/acs.joc.7b01340
– ident: e_1_2_7_114_1
  doi: 10.1055/s-0036-1590471
– ident: e_1_2_7_190_1
  doi: 10.1021/jacs.5b13450
– ident: e_1_2_7_81_1
  doi: 10.1002/anie.201710592
– ident: e_1_2_7_163_1
  doi: 10.1039/C7GC03106H
– ident: e_1_2_7_52_1
  doi: 10.1002/chem.201604192
– ident: e_1_2_7_64_1
  doi: 10.1039/c2cc34803a
– ident: e_1_2_7_60_1
  doi: 10.1039/c1ob05269a
– ident: e_1_2_7_164_1
  doi: 10.1039/C8QO01222A
– ident: e_1_2_7_86_1
  doi: 10.1021/ol300632p
– ident: e_1_2_7_41_1
  doi: 10.1039/C7QO00732A
– ident: e_1_2_7_154_1
  doi: 10.1002/ejoc.201901228
– ident: e_1_2_7_43_1
  doi: 10.1002/adsc.201400598
– ident: e_1_2_7_113_1
  doi: 10.1002/anie.201412319
SSID ssj0011477
Score 2.5266595
SecondaryResourceType review_article
Snippet Among the known aromatic nitrogen heterocycles, pyrrole represents a privileged aromatic heterocycle ranging its occurrence in the key component of “pigments...
Among the known aromatic nitrogen heterocycles, pyrrole represents a privileged aromatic heterocycle ranging its occurrence in the key component of "pigments...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 715
SubjectTerms Acids
Biological activity
Catalysis
C−H functionalization
Electrochemistry
Heterocyclic compounds
Natural products
Pigments
Pyrrole
Pyrrole derivatization
Pyrroles
Substitution reactions
Substrates
Translation
Title Recent Advances in Functionalization of Pyrroles and their Translational Potential
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ftcr.202100010
https://www.ncbi.nlm.nih.gov/pubmed/33650751
https://www.proquest.com/docview/2512251965
https://www.proquest.com/docview/2495402722
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB7Ei158P-qLCOLJatuk6fYoi4sIiiwK3mrSJCAuXXF3D_rrnWm6lVUUxFsfCU2TSeabZOYbgCPjcl5mKgrxNQ-Fk1GYC56FWpaZkYaOhijA-fpGXt6Lq4f0oclzSrEwnh-i3XCjmVGv1zTBlR6dfZKG4kKF5l1C-9N1iBX5axEo6rf0UQj168yLlLk1RLsibzg2sf7ZTO1ZnfQNaM7i1lrx9Jbhcdpk72_yfDoZ69Py_Qub4z_-aQWWGlDKzr0UrcKcrdZgoTvNBbcOfUSXqJ3YufcYGLGnivVQI_qNxCaUkw0du317JX_FEVOVYfUhBKu14aDZc2S3wzH5J6nBBtz3Lu66l2GTjSEsOZrQYSzizJooUk5anihpOzzqqDhWEUXfSmGivJMIXiJGdMI5fK5TEec61al0CS_5JsxXw8puA1POqDwWxrrYIZyzuTK4cFKqTq6VTmQAJ9PxKMqGqpwyZgwKT7KcFNhRRdtRARy3xV88R8dPBfemg1s0U3VUEMCj8F2ZBnDYvsb-pZMTVdnhBMugGYmGdpYkAWx5oWi_xFHuEHfFAUT10P7ehOKu229vdv5eZRcW6dr7Du3B_Ph1YvcRFo31QS37HzrIAkA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VcigX3o9AASMBJ9L6FWdz4FBtWW3pQ9VqK_UWnMSWEKss6u4KlV_FX-EfMRMnQQsCiUMPHDdxso499nwznvkG4GXlM1Wmlsd4W8XaGx5nWqVxYcq0MhUdDVGC8_GJGZ_p9-fJ-QZ863JhAj9E73CjldHs17TAySG9-5M1FHcqtO8kOagFb8MqD93lFzTaFm8P9nGGX0k5ejcdjuO2rkBcKjQGY6FF6irOrTdOSWvcQPGBFcJyyiM1uuLZQGpVItrx2nu8XiRaZEVSJMZLVSp87zW4TlXEia1_f9ITVqFx0dR6pFqxMVoyWcvqiR3eXevuuhb8DdquI-VG1Y1uwfdukEKEy6ed1bLYKb_-wh_5P43ibbjZ4m62FxbKHdhw9V3YGnbl7u7BBAE0KmC2F4IiFuxjzUao9IOvtM1WZXPPTi8vKCRzwWxdseachTUKf9a6VdnpfEkhWHZ2H86u5JMewGY9r90jYNZXNhO6cl54RKwusxXqBqpGqgpbSBPBm04A8rJlY6eiILM88EjLHCcm7ycmgtd988-BhuRPDbc7acrb3WiRE4alDGWTRPCiv43jS4dDtnbzFbZBS1lzmUoZwcMghf0_KYU4Pk1EBLyRpb93IZ8OJ_2Px__-yHPYGk-Pj_Kjg5PDJ3CDrodQqW3YXF6s3FNEgcviWbPwGHy4ahn9AcvCXOk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIgGX8qahBYwEnEjrV5zNgUO1y6qlUK1WrdRb6sS2hLrKVt1dVeVP9a_0J3UcJ0ELAolDDxzjOInjGXu-Gc8D4J1xmShTTWO8LWLpFI0zKdK4UGVqlPFHQz7A-duB2j2SX46T4xW4amNhQn6IzuDmV0a9X_sFfmbc9s-kobhRoXrHvX2a0carct9eXqDONvu0N0ACv-d8-Pmwvxs3ZQXiUqAuGDPJUmso1U5ZwbWyPUF7mjFNfRipkoZmPS5FiWDHSeewvUgky4qkSJTjohT43jtwVyqa-VoRg3GXrwp1i7rUoy8VG6MikzVJPXHA20vDXRaCvyHbZaBcS7rhQ7hu5yg4uJxuLebFVvnjl_SR_9EkPoK1BnWTnbBMHsOKrZ7A_X5b7O4pjBE-o_glO8ElYka-V2SIIj9YSptYVTJ1ZHR57h0yZ0RXhtSnLKQW95PGqEpG07l3wNKTZ3B0K7_0HFaraWXXgWhndMaksY45xKs20wYlg69FKgpdcBXBx5b-ednkYvclQSZ5yCLNcyRM3hEmgg9d97OQhORPHTdbZsqbvWiWewTr45NVEsHb7jbOrz8a0pWdLrAP6smS8pTzCF4EJuy-JASi-DRhEdCalf4-hPywP-4uXv77I2_g3mgwzL_uHexvwAPfHPykNmF1fr6wrxACzovX9bIjcHLbLHoDKBpbmA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances+in+Functionalization+of+Pyrroles+and+their+Translational+Potential&rft.jtitle=Chemical+record&rft.au=Hunjan%2C+Mandeep+Kaur&rft.au=Panday%2C+Surabhi&rft.au=Gupta%2C+Anjali&rft.au=Bhaumik%2C+Jayeeta&rft.date=2021-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1527-8999&rft.eissn=1528-0691&rft.volume=21&rft.issue=4&rft.spage=715&rft.epage=780&rft_id=info:doi/10.1002%2Ftcr.202100010&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1527-8999&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1527-8999&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1527-8999&client=summon