Recent Advances in Functionalization of Pyrroles and their Translational Potential
Among the known aromatic nitrogen heterocycles, pyrrole represents a privileged aromatic heterocycle ranging its occurrence in the key component of “pigments of life” to biologically active natural products to active pharmaceuticals. Pyrrole being an electron‐rich heteroaromatic compound, its predom...
Saved in:
Published in | Chemical record Vol. 21; no. 4; pp. 715 - 780 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.04.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Among the known aromatic nitrogen heterocycles, pyrrole represents a privileged aromatic heterocycle ranging its occurrence in the key component of “pigments of life” to biologically active natural products to active pharmaceuticals. Pyrrole being an electron‐rich heteroaromatic compound, its predominant functionalization is legendary to aromatic electrophilic substitution reactions. Although a few excellent reviews on the functionalization of pyrroles including the reports by Baltazzi in 1963, Casiraghi and Rassu in 1995, and Banwell in 2006 are available, they are fragmentary and over fifteen years old, and do not cover the modern aspects of catalysis. A review covering a comprehensive package of direct functionalization on pyrroles via catalytic and non‐catalytic methods including their translational potential is described. Subsequent to statutory yet concise introduction, the classical functionalization on pyrroles using Lewis acids largely following an ionic mechanism is discussed. The subsequent discussion follows the various metal‐catalyzed C−H functionalization on pyrroles, which are otherwise difficult to implement by Lewis acids. A major emphasize is given on the radical based pyrrole functionalization under metal‐free oxidative conditions, which is otherwise poorly highlighted in the literature. Towards the end, the current development of pyrrole functionalization under photocatalyzed and electrochemical conditions is appended. Only a selected examples of substrates and important mechanisms are discussed for different methods highlighting their scopes and limitations. The aromatic nucleophillic substitution on pyrroles (being an electron‐rich heterocycle) happened to be the subject of recent investigations, which has also been covered accentuating their underlying conceptual development. Despite great achievements over the past several years in these areas, many challenges and problems are yet to be solved, which are all discussed in summary and outlook.
A review on direct functionalization on pyrroles via catalytic and non‐catalytic methods including their translational potential is described. The direct functionalization includes various Lewis acids and transition metal‐catalyzed C‐H functionalization on pyrroles. A major emphasize is given on the radical based pyrrole functionalization under metal‐free oxidative conditions. Finally, the current development of pyrrole functionalization under photocatalyzed and electrochemical conditions is appended. |
---|---|
AbstractList | Among the known aromatic nitrogen heterocycles, pyrrole represents a privileged aromatic heterocycle ranging its occurrence in the key component of “pigments of life” to biologically active natural products to active pharmaceuticals. Pyrrole being an electron‐rich heteroaromatic compound, its predominant functionalization is legendary to aromatic electrophilic substitution reactions. Although a few excellent reviews on the functionalization of pyrroles including the reports by Baltazzi in 1963, Casiraghi and Rassu in 1995, and Banwell in 2006 are available, they are fragmentary and over fifteen years old, and do not cover the modern aspects of catalysis. A review covering a comprehensive package of direct functionalization on pyrroles via catalytic and non‐catalytic methods including their translational potential is described. Subsequent to statutory yet concise introduction, the classical functionalization on pyrroles using Lewis acids largely following an ionic mechanism is discussed. The subsequent discussion follows the various metal‐catalyzed C−H functionalization on pyrroles, which are otherwise difficult to implement by Lewis acids. A major emphasize is given on the radical based pyrrole functionalization under metal‐free oxidative conditions, which is otherwise poorly highlighted in the literature. Towards the end, the current development of pyrrole functionalization under photocatalyzed and electrochemical conditions is appended. Only a selected examples of substrates and important mechanisms are discussed for different methods highlighting their scopes and limitations. The aromatic nucleophillic substitution on pyrroles (being an electron‐rich heterocycle) happened to be the subject of recent investigations, which has also been covered accentuating their underlying conceptual development. Despite great achievements over the past several years in these areas, many challenges and problems are yet to be solved, which are all discussed in summary and outlook. Among the known aromatic nitrogen heterocycles, pyrrole represents a privileged aromatic heterocycle ranging its occurrence in the key component of "pigments of life" to biologically active natural products to active pharmaceuticals. Pyrrole being an electron-rich heteroaromatic compound, its predominant functionalization is legendary to aromatic electrophilic substitution reactions. Although a few excellent reviews on the functionalization of pyrroles including the reports by Baltazzi in 1963, Casiraghi and Rassu in 1995, and Banwell in 2006 are available, they are fragmentary and over fifteen years old, and do not cover the modern aspects of catalysis. A review covering a comprehensive package of direct functionalization on pyrroles via catalytic and non-catalytic methods including their translational potential is described. Subsequent to statutory yet concise introduction, the classical functionalization on pyrroles using Lewis acids largely following an ionic mechanism is discussed. The subsequent discussion follows the various metal-catalyzed C-H functionalization on pyrroles, which are otherwise difficult to implement by Lewis acids. A major emphasize is given on the radical based pyrrole functionalization under metal-free oxidative conditions, which is otherwise poorly highlighted in the literature. Towards the end, the current development of pyrrole functionalization under photocatalyzed and electrochemical conditions is appended. Only a selected examples of substrates and important mechanisms are discussed for different methods highlighting their scopes and limitations. The aromatic nucleophillic substitution on pyrroles (being an electron-rich heterocycle) happened to be the subject of recent investigations, which has also been covered accentuating their underlying conceptual development. Despite great achievements over the past several years in these areas, many challenges and problems are yet to be solved, which are all discussed in summary and outlook.Among the known aromatic nitrogen heterocycles, pyrrole represents a privileged aromatic heterocycle ranging its occurrence in the key component of "pigments of life" to biologically active natural products to active pharmaceuticals. Pyrrole being an electron-rich heteroaromatic compound, its predominant functionalization is legendary to aromatic electrophilic substitution reactions. Although a few excellent reviews on the functionalization of pyrroles including the reports by Baltazzi in 1963, Casiraghi and Rassu in 1995, and Banwell in 2006 are available, they are fragmentary and over fifteen years old, and do not cover the modern aspects of catalysis. A review covering a comprehensive package of direct functionalization on pyrroles via catalytic and non-catalytic methods including their translational potential is described. Subsequent to statutory yet concise introduction, the classical functionalization on pyrroles using Lewis acids largely following an ionic mechanism is discussed. The subsequent discussion follows the various metal-catalyzed C-H functionalization on pyrroles, which are otherwise difficult to implement by Lewis acids. A major emphasize is given on the radical based pyrrole functionalization under metal-free oxidative conditions, which is otherwise poorly highlighted in the literature. Towards the end, the current development of pyrrole functionalization under photocatalyzed and electrochemical conditions is appended. Only a selected examples of substrates and important mechanisms are discussed for different methods highlighting their scopes and limitations. The aromatic nucleophillic substitution on pyrroles (being an electron-rich heterocycle) happened to be the subject of recent investigations, which has also been covered accentuating their underlying conceptual development. Despite great achievements over the past several years in these areas, many challenges and problems are yet to be solved, which are all discussed in summary and outlook. Among the known aromatic nitrogen heterocycles, pyrrole represents a privileged aromatic heterocycle ranging its occurrence in the key component of “pigments of life” to biologically active natural products to active pharmaceuticals. Pyrrole being an electron‐rich heteroaromatic compound, its predominant functionalization is legendary to aromatic electrophilic substitution reactions. Although a few excellent reviews on the functionalization of pyrroles including the reports by Baltazzi in 1963, Casiraghi and Rassu in 1995, and Banwell in 2006 are available, they are fragmentary and over fifteen years old, and do not cover the modern aspects of catalysis. A review covering a comprehensive package of direct functionalization on pyrroles via catalytic and non‐catalytic methods including their translational potential is described. Subsequent to statutory yet concise introduction, the classical functionalization on pyrroles using Lewis acids largely following an ionic mechanism is discussed. The subsequent discussion follows the various metal‐catalyzed C−H functionalization on pyrroles, which are otherwise difficult to implement by Lewis acids. A major emphasize is given on the radical based pyrrole functionalization under metal‐free oxidative conditions, which is otherwise poorly highlighted in the literature. Towards the end, the current development of pyrrole functionalization under photocatalyzed and electrochemical conditions is appended. Only a selected examples of substrates and important mechanisms are discussed for different methods highlighting their scopes and limitations. The aromatic nucleophillic substitution on pyrroles (being an electron‐rich heterocycle) happened to be the subject of recent investigations, which has also been covered accentuating their underlying conceptual development. Despite great achievements over the past several years in these areas, many challenges and problems are yet to be solved, which are all discussed in summary and outlook. A review on direct functionalization on pyrroles via catalytic and non‐catalytic methods including their translational potential is described. The direct functionalization includes various Lewis acids and transition metal‐catalyzed C‐H functionalization on pyrroles. A major emphasize is given on the radical based pyrrole functionalization under metal‐free oxidative conditions. Finally, the current development of pyrrole functionalization under photocatalyzed and electrochemical conditions is appended. Among the known aromatic nitrogen heterocycles, pyrrole represents a privileged aromatic heterocycle ranging its occurrence in the key component of "pigments of life" to biologically active natural products to active pharmaceuticals. Pyrrole being an electron-rich heteroaromatic compound, its predominant functionalization is legendary to aromatic electrophilic substitution reactions. Although a few excellent reviews on the functionalization of pyrroles including the reports by Baltazzi in 1963, Casiraghi and Rassu in 1995, and Banwell in 2006 are available, they are fragmentary and over fifteen years old, and do not cover the modern aspects of catalysis. A review covering a comprehensive package of direct functionalization on pyrroles via catalytic and non-catalytic methods including their translational potential is described. Subsequent to statutory yet concise introduction, the classical functionalization on pyrroles using Lewis acids largely following an ionic mechanism is discussed. The subsequent discussion follows the various metal-catalyzed C-H functionalization on pyrroles, which are otherwise difficult to implement by Lewis acids. A major emphasize is given on the radical based pyrrole functionalization under metal-free oxidative conditions, which is otherwise poorly highlighted in the literature. Towards the end, the current development of pyrrole functionalization under photocatalyzed and electrochemical conditions is appended. Only a selected examples of substrates and important mechanisms are discussed for different methods highlighting their scopes and limitations. The aromatic nucleophillic substitution on pyrroles (being an electron-rich heterocycle) happened to be the subject of recent investigations, which has also been covered accentuating their underlying conceptual development. Despite great achievements over the past several years in these areas, many challenges and problems are yet to be solved, which are all discussed in summary and outlook. Among the known aromatic nitrogen heterocycles, pyrrole represents a privileged aromatic heterocycle ranging its occurrence in the key component of “pigments of life” to biologically active natural products to active pharmaceuticals. Pyrrole being an electron‐rich heteroaromatic compound, its predominant functionalization is legendary to aromatic electrophilic substitution reactions. Although a few excellent reviews on the functionalization of pyrroles including the reports by Baltazzi in 1963, Casiraghi and Rassu in 1995, and Banwell in 2006 are available, they are fragmentary and over fifteen years old, and do not cover the modern aspects of catalysis. A review covering a comprehensive package of direct functionalization on pyrroles via catalytic and non‐catalytic methods including their translational potential is described. Subsequent to statutory yet concise introduction, the classical functionalization on pyrroles using Lewis acids largely following an ionic mechanism is discussed. The subsequent discussion follows the various metal‐catalyzed C−H functionalization on pyrroles, which are otherwise difficult to implement by Lewis acids. A major emphasize is given on the radical based pyrrole functionalization under metal‐free oxidative conditions, which is otherwise poorly highlighted in the literature. Towards the end, the current development of pyrrole functionalization under photocatalyzed and electrochemical conditions is appended. Only a selected examples of substrates and important mechanisms are discussed for different methods highlighting their scopes and limitations. The aromatic nucleophillic substitution on pyrroles (being an electron‐rich heterocycle) happened to be the subject of recent investigations, which has also been covered accentuating their underlying conceptual development. Despite great achievements over the past several years in these areas, many challenges and problems are yet to be solved, which are all discussed in summary and outlook. |
Author | Hunjan, Mandeep Kaur Laha, Joydev K. Das, Parthasarathi Gupta, Anjali Panday, Surabhi Bhaumik, Jayeeta |
Author_xml | – sequence: 1 givenname: Mandeep Kaur surname: Hunjan fullname: Hunjan, Mandeep Kaur organization: National Institute of Pharmaceutical Education & Research (NIPER) S.A.S. Nagar – sequence: 2 givenname: Surabhi surname: Panday fullname: Panday, Surabhi organization: National Institute of Pharmaceutical Education & Research (NIPER) S.A.S. Nagar – sequence: 3 givenname: Anjali surname: Gupta fullname: Gupta, Anjali organization: National Institute of Pharmaceutical Education & Research (NIPER) S.A.S. Nagar – sequence: 4 givenname: Jayeeta surname: Bhaumik fullname: Bhaumik, Jayeeta organization: Center of Innovative and Applied Bioprocessing (CIAB) – sequence: 5 givenname: Parthasarathi surname: Das fullname: Das, Parthasarathi organization: Indian Institute of Technology (Indian School of Mines) Dhanbad – sequence: 6 givenname: Joydev K. orcidid: 0000-0003-0481-5891 surname: Laha fullname: Laha, Joydev K. email: jlaha@niper.ac.in organization: National Institute of Pharmaceutical Education & Research (NIPER) S.A.S. Nagar |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33650751$$D View this record in MEDLINE/PubMed |
BookMark | eNp90UtLAzEQAOAgirXVo1dZ8OJldfLa3RylWBUEpdTzkmazmJImmuwq9deb2qog6CFkCN_MhJkh2nXeaYSOMZxjAHLRqXBOgKQYMOygA8xJlUMh8O5nXOaVEGKAhjEuksCsLPfRgNKCQ8nxAZpOtdKuyy6bV-mUjplx2aR3qjPeSWve5TrIfJs9rELwNgHpmqx70iZksyBdtHJDswffpUJG2kO010ob9dH2HqHHydVsfJPf3V_fji_vckULATlmuNQNgGwLTYksdEWhkhhLICBEwRoQFWFUAeMta9v0PucMizmf86IlVNEROtvUfQ7-pdexq5cmKm2tdNr3sSZMcAakJCTR01904fuQfp0UxyQdUfCkTraqny91Uz8Hs5RhVX9NK4F8A1TwMQbdfhMM9XobddpG_b2N5Okvr0z3Oa8uSGP_zCo3WW_G6tX_LerZePqT-QHmqJt_ |
CitedBy_id | crossref_primary_10_1021_acs_orglett_3c00945 crossref_primary_10_1002_slct_202103015 crossref_primary_10_1002_ajoc_202100427 crossref_primary_10_1002_ange_202401359 crossref_primary_10_1039_D4QO01793E crossref_primary_10_1002_anie_202111679 crossref_primary_10_1002_anie_202317104 crossref_primary_10_1002_adsc_202301238 crossref_primary_10_1055_a_2380_3855 crossref_primary_10_1142_S1088424623501171 crossref_primary_10_1016_j_jscs_2023_101600 crossref_primary_10_1021_acs_joc_3c01790 crossref_primary_10_1002_slct_202203531 crossref_primary_10_1021_acs_orglett_3c01357 crossref_primary_10_1021_acs_orglett_2c02922 crossref_primary_10_1016_j_molstruc_2022_134321 crossref_primary_10_1002_jhet_4612 crossref_primary_10_1016_j_cclet_2023_108271 crossref_primary_10_1021_acscatal_1c04594 crossref_primary_10_1002_slct_202103486 crossref_primary_10_1021_acs_joc_2c00802 crossref_primary_10_1039_D1CC04378A crossref_primary_10_1021_acs_jcim_2c00731 crossref_primary_10_1021_acsomega_1c02436 crossref_primary_10_1039_D2OB00961G crossref_primary_10_1039_D4QO01307G crossref_primary_10_1039_D4QO01816H crossref_primary_10_1002_adsc_202400576 crossref_primary_10_1002_anie_202401359 crossref_primary_10_1039_D2QO00787H crossref_primary_10_1016_j_jorganchem_2021_122013 crossref_primary_10_1055_a_2395_5804 crossref_primary_10_1002_adsc_202200399 crossref_primary_10_1021_acs_joc_4c02680 crossref_primary_10_1002_adsc_202400608 crossref_primary_10_1007_s42823_021_00252_3 crossref_primary_10_1016_j_jaap_2023_106166 crossref_primary_10_1039_D4GC04495A crossref_primary_10_1021_acs_orglett_2c02135 crossref_primary_10_1002_ajoc_202200571 crossref_primary_10_1055_a_1758_6312 crossref_primary_10_1039_D1OB02176A crossref_primary_10_1002_ange_202111679 crossref_primary_10_1039_D3OB00326D crossref_primary_10_1002_tcr_202100171 crossref_primary_10_37827_ntsh_chem_2024_75_090 crossref_primary_10_1021_acscatal_4c06788 crossref_primary_10_1039_D4CC02158D crossref_primary_10_1039_D1OB01455B crossref_primary_10_1039_D4OB01187B crossref_primary_10_1021_acs_orglett_2c02108 crossref_primary_10_1039_D4CC06706A crossref_primary_10_1002_cbdv_202301684 crossref_primary_10_1002_ange_202317104 crossref_primary_10_1007_s10562_024_04888_4 crossref_primary_10_1016_j_microc_2024_111819 crossref_primary_10_1021_acs_orglett_2c00240 crossref_primary_10_1142_S1088424621500619 crossref_primary_10_1002_tcr_202100288 crossref_primary_10_1039_D3GC01229H crossref_primary_10_1002_slct_202203722 crossref_primary_10_1007_s11426_024_2382_y crossref_primary_10_1016_j_cej_2024_154995 crossref_primary_10_1021_acs_orglett_4c00423 crossref_primary_10_1039_D4OB01729C crossref_primary_10_1002_cjoc_202400723 crossref_primary_10_1002_slct_202200730 |
Cites_doi | 10.1002/ejoc.201900353 10.1002/adsc.201901629 10.1021/cs5005823 10.1039/C8RA09367A 10.1002/ejoc.202000949 10.1021/acs.orglett.7b03596 10.1021/jacs.6b04920 10.1002/adsc.201400497 10.1002/1099-0690(200206)2002:12<1877::AID-EJOC1877>3.0.CO;2-U 10.1016/j.tetlet.2015.10.018 10.1002/ejoc.202000519 10.1038/s41467-019-12607-6 10.1002/ejoc.200500911 10.1016/j.tetlet.2016.04.105 10.1021/ol500744k 10.1002/cctc.201300099 10.1016/j.tet.2016.03.067 10.1021/acs.orglett.5b00290 10.1039/c3cc44631j 10.1021/jo1018969 10.1016/j.tetlet.2019.01.004 10.1016/j.tetlet.2011.11.081 10.1039/C5QO00203F 10.1055/s-1995-3983 10.1002/chem.201904169 10.3762/bjoc.9.35 10.1071/CH17341 10.1039/C7NJ01709J 10.1021/acs.orglett.7b02219 10.1021/ol202457n 10.1039/C8CC06451B 10.1016/j.ica.2017.05.047 10.1126/science.aaw3254 10.1021/ja212099r 10.1002/slct.201801045 10.1002/ange.201612565 10.1039/c1sc00190f 10.1002/chem.201700630 10.1002/chem.201200188 10.1021/acsomega.7b00988 10.1002/chem.201302761 10.1021/acs.joc.9b01113 10.1002/anie.201510990 10.1002/ejoc.201600680 10.1016/j.jfluchem.2019.109361 10.1021/jo5023712 10.1021/acs.orglett.0c00797 10.1021/ja0423217 10.1002/ajoc.201800262 10.1021/ol501086q 10.1039/C7OB02676E 10.1002/adsc.201800677 10.1021/ol802509m 10.1002/ejoc.202000688 10.1002/chem.201000568 10.1055/s-0039-1691564 10.1021/ol900651u 10.1039/C7OB01999H 10.1002/anie.201904774 10.1002/marc.201300303 10.1021/acs.orglett.7b02210 10.1039/C7QO00440K 10.1039/C4CC10055G 10.1039/C7OB02102J 10.1021/ol2010648 10.1007/s11164-011-0418-4 10.1039/C3CC45240A 10.1007/s11172-015-1042-z 10.1002/chem.202001832 10.1021/acs.joc.8b02383 10.1021/ol902703k 10.1021/jo902739n 10.1021/jo201511d 10.1021/ol9028226 10.1016/j.mencom.2018.11.030 10.1126/science.1258232 10.1002/cber.18850180154 10.1021/ol102035s 10.1002/adsc.201400736 10.1039/C7QO00815E 10.1021/acs.orglett.0c00041 10.1039/C9OB00659A 10.1002/chem.201000438 10.1039/C6CC00133E 10.1002/ejoc.201600570 10.1021/ol100838m 10.1002/ange.200462048 10.1039/C9OB02421B 10.1039/C6CC05885J 10.1021/jo401579m 10.1021/jo501460h 10.1021/ja512059d 10.1002/ange.201301154 10.1021/acs.joc.9b00937 10.1021/acs.orglett.6b03510 10.1039/C7CC00852J 10.1002/chem.201403640 10.1021/jo402181w 10.1002/chem.201701429 10.1021/ol1025348 10.1002/adsc.201300700 10.1080/00397911.2015.1136644 10.1039/C6QO00851H 10.1002/anie.201703193 10.1021/ol902360b 10.1039/C5CC09911K 10.1039/C7OB01688C 10.1002/ajoc.201700353 10.1021/ja403535a 10.1021/ol9028385 10.1246/cl.130547 10.1038/s41929-019-0415-3 10.1021/acscatal.6b01452 10.1021/acs.orglett.0c01519 10.3987/COM-18-S(T)52 10.1021/acs.orglett.5b03581 10.1016/j.mencom.2019.05.032 10.1002/chem.201405931 10.1021/acs.joc.7b00446 10.1021/ja508449y 10.1039/C9OB01560D 10.1021/acs.chemrev.7b00307 10.1002/cctc.201200521 10.1039/C9CC10069E 10.1021/ja511011m 10.1021/cr1003776 10.1021/ol102734g 10.1007/s12039-016-1169-y 10.1002/cctc.201601468 10.1021/acs.oprd.8b00233 10.1021/jo300539y 10.1039/C9GC04248B 10.1002/anie.201002987 10.1021/acs.joc.6b02977 10.1246/cl.2011.555 10.1021/jo100269y 10.1021/acs.orglett.7b01111 10.1002/ijch.201900181 10.1021/acs.orglett.5b01702 10.1002/ejoc.201500006 10.1002/cber.187000301169 10.1002/ejoc.201900185 10.1002/ejoc.201601518 10.1021/acs.orglett.6b02947 10.1021/ol503078h 10.1002/ejoc.201900084 10.1002/chem.201301987 10.1021/acs.joc.6b00346 10.1002/cber.18850180175 10.1021/ol202335p 10.1021/jacs.7b03887 10.1039/C6CC06111G 10.1039/C6CC00946H 10.1002/ange.201400881 10.1021/acs.orglett.7b00408 10.1021/ol200602x 10.1039/C9CC02739D 10.1021/ol200601e 10.1039/C9SC00833K 10.1021/acs.joc.7b02731 10.3998/ark.5550190.p009.828 10.1002/andp.18341070502 10.1002/adsc.201000723 10.1021/cr60225a004 10.1002/chem.201405903 10.1002/ejoc.201701491 10.1002/asia.201800558 10.1039/C7SC04086E 10.1007/128_2009_15 10.1016/j.chempr.2016.08.002 10.1039/C7CC07089F 10.1021/acs.joc.5b00034 10.1021/acs.orglett.8b02423 10.1016/j.tetlet.2020.151994 10.1016/j.ica.2018.03.036 10.1055/s-0035-1561320 10.1134/S1070363218040217 10.1021/acs.orglett.0c00290 10.3389/fchem.2019.00613 10.1021/acs.joc.7b01340 10.1055/s-0036-1590471 10.1021/jacs.5b13450 10.1002/anie.201710592 10.1039/C7GC03106H 10.1002/chem.201604192 10.1039/c2cc34803a 10.1039/c1ob05269a 10.1039/C8QO01222A 10.1021/ol300632p 10.1039/C7QO00732A 10.1002/ejoc.201901228 10.1002/adsc.201400598 10.1002/anie.201412319 |
ContentType | Journal Article |
Copyright | 2021 The Chemical Society of Japan & Wiley‐VCH GmbH 2021 The Chemical Society of Japan & Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 The Chemical Society of Japan & Wiley‐VCH GmbH – notice: 2021 The Chemical Society of Japan & Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7QO 7T7 8FD C1K FR3 P64 7X8 |
DOI | 10.1002/tcr.202100010 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Engineering Research Database Biotechnology Research Abstracts Technology Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Engineering Research Database MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1528-0691 |
EndPage | 780 |
ExternalDocumentID | 33650751 10_1002_tcr_202100010 TCR202100010 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: CSIR funderid: 02(0337)/18/EMR-II – fundername: CSIR grantid: 02(0337)/18/EMR-II |
GroupedDBID | --- .3N .Y3 05W 0R~ 10A 123 1OC 29B 31~ 33P 3WU 4.4 50Y 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 53G 5VS 66C 702 7PT 8-1 8UM A00 AAESR AAHHS AAHQN AAMNL AANHP AANLZ AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ASPBG AVWKF AZFZN AZVAB BDRZF BFHJK BMXJE BROTX BRXPI BY8 CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD F5P FEDTE G-S G.N GODZA HF~ HGLYW HVGLF HZ~ IX1 J0M LATKE LAW LC2 LC3 LEEKS LH- LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MSFUL MSSTM MXFUL MXSTM MY~ N9A O9- OIG P2W P4D Q11 QB0 QRW R.K ROL RX1 SUPJJ V2E W99 WBKPD WOHZO WQJ WXSBR WYJ WYUIH XG1 XV2 ZZTAW ~IA AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION NPM 7QO 7T7 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 P64 7X8 |
ID | FETCH-LOGICAL-c3690-1417ed00af6e32a6e8308a11a0209964d098243c045f4ff1a0b5419b5b56f23c3 |
IEDL.DBID | DR2 |
ISSN | 1527-8999 1528-0691 |
IngestDate | Thu Jul 10 23:06:10 EDT 2025 Fri Jul 25 10:47:41 EDT 2025 Wed Feb 19 02:27:47 EST 2025 Thu Apr 24 23:01:30 EDT 2025 Tue Jul 01 00:57:28 EDT 2025 Wed Jan 22 16:29:11 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | C−H functionalization Pyrrole derivatization Pyrrole |
Language | English |
License | 2021 The Chemical Society of Japan & Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3690-1417ed00af6e32a6e8308a11a0209964d098243c045f4ff1a0b5419b5b56f23c3 |
Notes | Equal contributions ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-0481-5891 |
PMID | 33650751 |
PQID | 2512251965 |
PQPubID | 1006501 |
PageCount | 66 |
ParticipantIDs | proquest_miscellaneous_2495402722 proquest_journals_2512251965 pubmed_primary_33650751 crossref_primary_10_1002_tcr_202100010 crossref_citationtrail_10_1002_tcr_202100010 wiley_primary_10_1002_tcr_202100010_TCR202100010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2021 2021-04-00 2021-Apr 20210401 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: April 2021 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Chemical record |
PublicationTitleAlternate | Chem Rec |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 12 2019; 2019 2010; 16 2017; 82 2019; 10 2002; 12 2019; 13 2014; 27 2019; 17 2013; 125 2012; 18 2015; 80 2012; 14 2013; 5 2014; 136 2011; 353 2011; 111 2013; 9 2014; 20 2020; 18 2018; 7 2009; 11 2018; 9 2018; 8 2018; 3 2018; 5 2012; 134 2010; 24 2015; 137 2019; 23 2019; 26 2014; 16 2019; 29 2016; 48 2016; 46 2014; 126 2015; 56 2019; 7 2018; 28 2011; 2 2019; 6 2019; 31 2015; 51 1963; 63 2019; 37 2015; 54 2019; 226 2011; 76 2012; 38 2016; 18 2011; 5 2018; 20 1995; 6 2017; 138 2017; 139 2011; 9 2016; 5 2017; 53 2016; 6 2010; 49 2016; 1 2013; 78 2015; 64 2018; 478 2005; 127 2017; 56 2020; 28 2016; 21 2015; 2015 2020; 26 2020; 25 2020; 22 2012; 48 2016; 27 2018; 97 2018; 13 2017; 6 2017; 41 2017; 2 2018; 360 2017; 4 1834; 107 2020; Just published 2019; 55 2020; 362 2020; 61 2017; 49 2020; 60 2019; 58 2011; 13 2016; 72 2018; 84 2020; 56 2018; 83 2018; 88 1885; 18 2017; 9 2012; 53 2019; 365 2017; 117 2013; 19 2019; 60 2014; 4 2020; 3 2020; 52 2016; 81 2018; 71 2014; 9 2014; 50 2017; 129 2015; 2 2010; 75 2015; 17 2013; 49 2006; 14 2011; 40 2013; 42 2017; 23 2009 2016; 52 2016; 128 2012; 77 2005; 44 2014; 356 2016; 57 2016; 55 2019; 84 2017; 15 2020 2013; 34 2015; 21 1870; 3 2019 2014; 79 2013; 135 2017; 19 2016; 138 2013 2017; 465 2018; 54 2014; 346 2018; 57 e_1_2_7_3_1 e_1_2_7_104_1 e_1_2_7_127_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_11_1 e_1_2_7_68_1 e_1_2_7_142_1 e_1_2_7_165_1 e_1_2_7_188_1 e_1_2_7_202_1 e_1_2_7_116_1 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_180_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_56_1 e_1_2_7_79_1 e_1_2_7_154_1 e_1_2_7_177_1 e_1_2_7_139_1 e_1_2_7_4_1 e_1_2_7_128_1 Sasaki I. (e_1_2_7_84_1) 2020; 61 e_1_2_7_105_1 e_1_2_7_82_1 e_1_2_7_120_1 e_1_2_7_12_2 e_1_2_7_44_1 e_1_2_7_67_1 e_1_2_7_143_1 e_1_2_7_189_1 e_1_2_7_29_1 e_1_2_7_203_1 e_1_2_7_166_1 Mal'kina A. G. (e_1_2_7_160_1) 2016; 48 e_1_2_7_117_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_181_1 e_1_2_7_24_1 e_1_2_7_55_1 e_1_2_7_78_1 e_1_2_7_193_1 e_1_2_7_132_1 e_1_2_7_155_1 e_1_2_7_178_1 Erdenebileg U. (e_1_2_7_192_1) 2018; 28 e_1_2_7_106_1 e_1_2_7_129_1 e_1_2_7_9_1 Miao T. (e_1_2_7_148_1) 2015; 17 e_1_2_7_81_1 e_1_2_7_121_1 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_170_1 e_1_2_7_89_1 e_1_2_7_182_1 e_1_2_7_28_1 e_1_2_7_144_1 e_1_2_7_167_1 e_1_2_7_204_1 e_1_2_7_118_1 e_1_2_7_110_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_171_2 e_1_2_7_194_1 Zhang M. (e_1_2_7_174_1) 2019 e_1_2_7_39_1 e_1_2_7_133_1 e_1_2_7_156_1 e_1_2_7_179_1 Santiago C. (e_1_2_7_45_1) 2020 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_122_1 e_1_2_7_2_1 e_1_2_7_14_2 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_205_1 e_1_2_7_183_1 e_1_2_7_27_1 e_1_2_7_145_1 e_1_2_7_168_1 e_1_2_7_119_1 e_1_2_7_91_1 e_1_2_7_111_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_195_1 e_1_2_7_172_2 e_1_2_7_38_1 e_1_2_7_134_1 e_1_2_7_157_1 e_1_2_7_108_1 e_1_2_7_7_1 e_1_2_7_100_1 e_1_2_7_123_1 e_1_2_7_15_2 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_161_1 e_1_2_7_184_1 e_1_2_7_206_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_146_1 e_1_2_7_169_1 e_1_2_7_90_1 e_1_2_7_112_1 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_75_1 e_1_2_7_150_1 e_1_2_7_196_1 e_1_2_7_37_1 e_1_2_7_173_1 e_1_2_7_135_1 e_1_2_7_158_1 Bizouard P. (e_1_2_7_32_1) 2014; 27 e_1_2_7_109_1 e_1_2_7_8_1 e_1_2_7_124_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_63_1 e_1_2_7_86_1 e_1_2_7_185_1 e_1_2_7_48_1 e_1_2_7_162_1 e_1_2_7_147_1 e_1_2_7_113_1 e_1_2_7_51_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_151_1 e_1_2_7_197_1 e_1_2_7_136_1 e_1_2_7_159_1 e_1_2_7_5_1 e_1_2_7_102_1 e_1_2_7_125_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_85_1 e_1_2_7_47_1 e_1_2_7_140_1 e_1_2_7_163_1 Yamaguchi T. (e_1_2_7_191_1) 2017; 138 e_1_2_7_186_1 e_1_2_7_200_1 e_1_2_7_114_1 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_152_1 e_1_2_7_175_1 e_1_2_7_198_1 e_1_2_7_137_1 e_1_2_7_6_1 e_1_2_7_126_1 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_61_1 e_1_2_7_190_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_69_1 e_1_2_7_141_1 e_1_2_7_201_1 e_1_2_7_164_1 e_1_2_7_187_1 e_1_2_7_149_1 e_1_2_7_115_1 e_1_2_7_72_1 e_1_2_7_95_1 Duan G. J. (e_1_2_7_131_1) 2013 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_130_1 e_1_2_7_153_1 e_1_2_7_176_1 e_1_2_7_199_1 e_1_2_7_138_1 |
References_xml | – volume: 11 start-page: 441 year: 2009 end-page: 444 publication-title: Org. Lett. – volume: 15 start-page: 10082 year: 2017 end-page: 10086 publication-title: Org. Biomol. Chem. – volume: 58 start-page: 11044 year: 2019 end-page: 11048 publication-title: Angew. Chem. Int. Ed. – volume: 356 start-page: 3784 year: 2014 end-page: 3788 publication-title: Adv. Synth. Catal. – volume: 54 start-page: 11471 year: 2018 end-page: 11474 publication-title: Chem. Commun. – volume: 55 start-page: 7331 year: 2019 end-page: 7334 publication-title: Chem. Commun. – volume: 42 start-page: 1203 year: 2013 end-page: 1205 publication-title: Chem. Lett. – volume: 27 start-page: 754 year: 2016 end-page: 758 publication-title: Synlett – volume: 13 start-page: 5846 year: 2011 end-page: 5849 publication-title: Org. Lett. – volume: 3 start-page: 5600 year: 2018 end-page: 5607 publication-title: ChemistrySelect – volume: 18 start-page: 299 year: 1885 end-page: 311 publication-title: Ber. Dtsch. Chem. Ges. – volume: 22 start-page: 1442 year: 2020 end-page: 1447 publication-title: Org. Lett. – volume: 22 start-page: 1911 year: 2020 end-page: 1918 publication-title: Green Chem. – volume: 21 start-page: 3509 year: 2016 end-page: 3513 publication-title: Eur. J. Org. Chem. – volume: 12 start-page: 80 year: 2010 end-page: 83 publication-title: Org. Lett. – volume: 82 start-page: 5178 year: 2017 end-page: 5197 publication-title: J. Org. Chem. – volume: 9 start-page: 1092 year: 2017 end-page: 1096 publication-title: ChemCatChem. – volume: 13 start-page: 2339 year: 2019 end-page: 2343 publication-title: Eur. J. Org. Chem. – volume: 365 start-page: 360 year: 2019 end-page: 366 publication-title: Science – volume: 52 start-page: 5375 year: 2016 end-page: 5378 publication-title: Chem. Commun. – volume: 138 start-page: 2520 year: 2017 end-page: 2523 publication-title: Org. Lett. – start-page: 85 year: 2009 end-page: 121 publication-title: Top. Curr. Chem. – volume: 2015 start-page: 1727 year: 2015 end-page: 1734 publication-title: Eur. J. Org. Chem. – volume: 51 start-page: 8432 year: 2015 end-page: 8435 publication-title: Chem. Commun. – volume: 9 start-page: 9472 year: 2014 end-page: 9480 publication-title: J. Org. Chem. – volume: 18 start-page: 544 year: 2016 end-page: 547 publication-title: Org. Lett. – volume: 77 start-page: 4479 year: 2012 end-page: 4483 publication-title: J. Org. Chem. – volume: 79 start-page: 11690 year: 2014 end-page: 11699 publication-title: J. Org. Chem. – volume: 117 start-page: 8481 year: 2017 end-page: 8482 publication-title: Chem. Rev. – volume: 5 start-page: 2504 year: 2013 end-page: 2511 publication-title: ChemCatChem – volume: 137 start-page: 644 year: 2015 end-page: 647 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 5484 year: 2019 end-page: 5488 publication-title: Chem. Sci. – volume: 12 start-page: 924 year: 2010 end-page: 927 publication-title: Org. Lett. – volume: 48 start-page: 271 year: 2016 end-page: 280 publication-title: Synthesis – volume: 80 start-page: 3806 year: 2015 end-page: 3814 publication-title: J. Org. Chem. – volume: 49 start-page: 6650 year: 2010 end-page: 6654 publication-title: Angew. Chem. Int. Ed. – volume: 23 start-page: 614 year: 2019 end-page: 618 publication-title: Org. Process Res. Dev. – volume: 20 start-page: 974 year: 2014 end-page: 978 publication-title: Chem. Eur. J. – volume: 15 start-page: 8280 year: 2017 end-page: 8284 publication-title: Org. Biomol. Chem. – volume: 2 start-page: 1361 year: 2015 end-page: 1365 publication-title: Org. Chem. Front. – volume: 127 start-page: 4154 year: 2005 end-page: 4155 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 1 year: 2019 end-page: 10 publication-title: Nat. Commun. – volume: 56 start-page: 7156 year: 2017 end-page: 7160 publication-title: Angew. Chem. Int. Ed. – volume: 53 start-page: 4497 year: 2017 end-page: 4500 publication-title: Chem. Commun. – volume: 6 start-page: 1604 year: 2017 end-page: 1611 publication-title: Asian J. Org. Chem. – volume: 46 start-page: 322 year: 2016 end-page: 331 publication-title: Synth. Commun. – volume: 20 start-page: 12754 year: 2014 end-page: 12758 publication-title: Chem. Eur. J. – volume: 356 start-page: 137 year: 2014 end-page: 143 publication-title: Adv. Synth. Catal. – volume: 16 start-page: 2244 year: 2014 end-page: 2247 publication-title: Org. Lett. – volume: 5 start-page: 279 year: 2016 end-page: 300 publication-title: Arkivoc – volume: 29 start-page: 334 year: 2019 end-page: 336 publication-title: Mendeleev Commun. – volume: 478 start-page: 139 year: 2018 end-page: 147 publication-title: Inorg. Chim. Acta – volume: 52 start-page: 9036 year: 2016 end-page: 9039 publication-title: Chem. Commun. – volume: 360 start-page: 3889 year: 2018 end-page: 3893 publication-title: Adv. Synth. Catal. – volume: 17 start-page: 8153 year: 2019 end-page: 8165 publication-title: Org. Biomol. Chem. – volume: 97 start-page: 632 year: 2018 end-page: 645 publication-title: Heterocycles – volume: 135 start-page: 8169 year: 2013 end-page: 8172 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 5608 year: 2011 end-page: 5611 publication-title: Org. Lett. – volume: 8 start-page: 933 year: 2018 end-page: 956 publication-title: Eur. J. Org. Chem. – volume: 27 start-page: 1227 year: 2014 end-page: 1231 publication-title: Synlett – volume: 60 start-page: 485 year: 2020 end-page: 489 publication-title: Isr. J. Chem. – volume: 128 start-page: 1725 year: 2016 end-page: 1735 publication-title: J. Chem. Sci. – volume: 52 start-page: 4329 year: 2016 end-page: 4332 publication-title: Chem. Commun. – volume: 20 start-page: 284 year: 2018 end-page: 287 publication-title: Org. Lett. – volume: 52 start-page: 10918 year: 2016 end-page: 10921 publication-title: Chem. Commun. – volume: 18 start-page: 367 year: 1885 end-page: 371 publication-title: Ber. Dtsch. Chem. Ges. – start-page: 1 year: 2019 end-page: 8 publication-title: Mol. Diversity – start-page: 49 year: 2013 end-page: 4627 publication-title: Chem. Commun. – volume: 139 start-page: 9605 year: 2017 end-page: 9614 publication-title: J. Am. Chem. Soc. – volume: 81 start-page: 3688 year: 2016 end-page: 3699 publication-title: J. Org. Chem. – volume: 16 start-page: 9117 year: 2010 end-page: 9122 publication-title: Chem. Eur. J. – volume: 49 start-page: 8620 year: 2013 end-page: 8622 publication-title: Chem. Commun. – volume: 26 start-page: 9749 year: 2020 end-page: 9783 publication-title: Chem. Eur. J. – volume: 21 start-page: 1463 year: 2015 end-page: 1467 publication-title: Chem. Eur. J. – volume: 75 start-page: 3144 year: 2010 end-page: 3146 publication-title: J. Org. Chem. – volume: 5 start-page: 611 year: 2018 end-page: 614 publication-title: Org. Chem. Front. – volume: 76 start-page: 471 year: 2011 end-page: 483 publication-title: J. Org. Chem. – volume: 356 start-page: 3831 year: 2014 end-page: 3841 publication-title: Adv. Synth. Catal. – volume: 28 start-page: 907 year: 2018 end-page: 912 publication-title: Synlett – volume: 12 start-page: 604 year: 2010 end-page: 607 publication-title: Org. Lett. – volume: 18 start-page: 6302 year: 2012 end-page: 6308 publication-title: Chem. Eur. J. – volume: 7 start-page: 613 year: 2019 publication-title: Front. Chem. – volume: 23 start-page: 7703 year: 2017 end-page: 7709 publication-title: Chem. Eur. J. – volume: 21 start-page: 5380 year: 2015 end-page: 5386 publication-title: Chem. Eur. J. – volume: 19 start-page: 4608 year: 2017 end-page: 4611 publication-title: Org. Lett. – volume: 107 start-page: 65 year: 1834 end-page: 78 publication-title: Ann. Phys. – volume: 16 start-page: 3192 year: 2014 end-page: 3195 publication-title: Org. Lett. – volume: 111 start-page: 7749 year: 2011 end-page: 73 publication-title: Chem. Rev. – volume: 71 start-page: 95 year: 2018 end-page: 101 publication-title: Aust. J. Chem. – volume: 21 start-page: 3491 year: 2016 end-page: 3494 publication-title: Eur. J. Org. Chem. – volume: 28 start-page: 651 year: 2018 end-page: 652 publication-title: Mendeleev Commun. – volume: 28 start-page: 4243 year: 2020 end-page: 4432 publication-title: Eur. J. Org. Chem. – volume: 22 start-page: 4511 year: 2020 end-page: 4516 publication-title: Org. Lett. – volume: 3 start-page: 163 year: 2020 end-page: 169 publication-title: Nat. Catal. – volume: 19 start-page: 11863 year: 2013 end-page: 11868 publication-title: Chem. Eur. J. – volume: 1 start-page: 456 year: 2016 end-page: 472 publication-title: Chem. – volume: 84 start-page: 9322 year: 2019 end-page: 9329 publication-title: J. Org. Chem. – volume: 53 start-page: 509 year: 2012 end-page: 513 publication-title: Tetrahedron Lett. – volume: 129 start-page: 4019 year: 2017 end-page: 4023 publication-title: Angew. Chem. Int. Ed. – volume: 56 start-page: 3445 year: 2020 end-page: 3448 publication-title: Chem. Commun. – volume: 138 start-page: 8092 year: 2016 end-page: 8095 publication-title: J. Am. Chem. Soc. – volume: 57 start-page: 272 year: 2018 end-page: 276 publication-title: Angew. Chem. Int. Ed. – volume: 25 start-page: 3896 year: 2020 end-page: 3905 publication-title: Eur. J. Org. Chem. – volume: 63 start-page: 511 year: 1963 end-page: 556 publication-title: Chem. Rev. – volume: 136 start-page: 13226 year: 2014 end-page: 13232 publication-title: J. Am. Chem. Soc. – volume: 75 start-page: 3109 year: 2010 end-page: 3112 publication-title: J. Org. Chem. – volume: 7 start-page: 1396 year: 2018 end-page: 1402 publication-title: Asian J. Org. Chem. – volume: 6 start-page: 6780 year: 2016 end-page: 6784 publication-title: ACS Catal. – volume: 57 start-page: 2530 year: 2016 end-page: 2532 publication-title: Tetrahedron Lett. – volume: 19 start-page: 2754 year: 2017 end-page: 2757 publication-title: Org. Lett. – volume: 26 start-page: 543 year: 2019 end-page: 547 publication-title: Chem. Eur. J. – volume: 17 start-page: 4364 year: 2019 end-page: 4369 publication-title: Org. Biomol. Chem. – volume: 88 start-page: 758 year: 2018 end-page: 766 publication-title: Russ. J. Gen. Chem. – volume: 16 start-page: 6756 year: 2010 end-page: 6760 publication-title: Chem. Eur. J. – volume: 15 start-page: 2104 year: 2017 end-page: 2107 publication-title: Eur. J. Org. Chem. – volume: 37 start-page: 6396 year: 2019 end-page: 6400 publication-title: Eur. J. Org. Chem. – volume: 353 start-page: 925 year: 2011 end-page: 930 publication-title: Adv. Synth. Catal. – volume: 138 start-page: 2520 year: 2016 end-page: 2523 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 2164 year: 2011 end-page: 2167 publication-title: Org. Lett. – volume: 60 start-page: 449 year: 2019 end-page: 451 publication-title: Tetrahedron Lett. – volume: 2 start-page: 5000 year: 2017 end-page: 5004 publication-title: ACS Omega – volume: 13 start-page: 288 year: 2011 end-page: 291 publication-title: Org. Lett. – volume: Just published year: 2020 publication-title: Eur. J. Org. Chem. – volume: 20 start-page: 5482 year: 2018 end-page: 5485 publication-title: Org. Lett. – volume: 6 start-page: 256 year: 2019 end-page: 262 publication-title: Org. Chem. Front. – volume: 40 start-page: 555 year: 2011 end-page: 557 publication-title: Chem. Lett. – volume: 82 start-page: 9350 year: 2017 end-page: 9359 publication-title: J. Org. Chem. – volume: 52 start-page: 1407 year: 2020 end-page: 1416 publication-title: Synthesis – volume: 56 start-page: 6669 year: 2015 end-page: 6673 publication-title: Tetrahedron Lett. – volume: 34 start-page: 1151 year: 2013 end-page: 1156 publication-title: Macromol. Rapid Commun. – volume: 5 start-page: 162 year: 2018 end-page: 165 publication-title: Org. Chem. Front. – start-page: 6859 year: 2020 end-page: 6869 publication-title: Eur. J. Org. Chem. – volume: 72 start-page: 2456 year: 2016 end-page: 2463 publication-title: Tetrahedron – volume: 83 start-page: 330 year: 2018 end-page: 337 publication-title: J. Org. Chem. – volume: 17 start-page: 4832 year: 2015 end-page: 835 publication-title: Org. Lett. – volume: 19 start-page: 1586 year: 2017 end-page: 1589 publication-title: Org. Lett. – volume: 12 start-page: 1877 year: 2002 end-page: 1894 publication-title: Eur. J. Org. Chem. – volume: 8 start-page: 41651 year: 2018 end-page: 41656 publication-title: RSC Adv. – volume: 23 start-page: 2044 year: 2017 end-page: 2050 publication-title: Chem. Eur. J. – volume: 16 start-page: 6334 year: 2014 end-page: 6337 publication-title: Org. Lett. – volume: 125 start-page: 6196 year: 2013 end-page: 6199 publication-title: Angew. Chem. Int. Ed. – volume: 9 start-page: 634 year: 2018 end-page: 639 publication-title: Chem. Sci. – volume: 78 start-page: 9345 year: 2013 end-page: 9353 publication-title: J. Org. Chem. – volume: 79 start-page: 529 year: 2014 end-page: 537 publication-title: J. Org. Chem. – volume: 54 start-page: 6352 year: 2015 end-page: 6355 publication-title: Angew. Chem. Int. Ed. – volume: 13 start-page: 2418 year: 2018 end-page: 2422 publication-title: Chem. Asian J. – volume: 13 start-page: 2358 year: 2011 end-page: 2360 publication-title: Org. Lett. – volume: 49 start-page: 3476 year: 2017 end-page: 3484 publication-title: Synthesis – volume: 134 start-page: 2958 year: 2012 end-page: 2961 publication-title: J. Am. Chem. Soc. – volume: 76 start-page: 8781 year: 2011 end-page: 8793 publication-title: J. Org. Chem. – volume: 2 start-page: 1344 year: 2011 end-page: 1348 publication-title: Chem. Sci. – volume: 22 start-page: 3033 year: 2020 end-page: 3038 publication-title: Org. Lett. – volume: 52 start-page: 13341 year: 2016 end-page: 13344 publication-title: Chem. Commun. – volume: 12 start-page: 2694 year: 2010 end-page: 2697 publication-title: Org. Lett. – volume: 61 start-page: 1 year: 2020 end-page: 12 publication-title: Tetrahedron Lett. – volume: 38 start-page: 795 year: 2012 end-page: 806 publication-title: Res. Chem. Intermed. – volume: 22 start-page: 1929 year: 2020 end-page: 1933 publication-title: Org. Lett. – volume: 20 start-page: 760 year: 2018 end-page: 764 publication-title: Green Chem. – volume: 3 start-page: 514 year: 1870 end-page: 517 publication-title: Ber. Dtsch. Chem. Ges. – volume: 48 start-page: 9281 year: 2012 end-page: 9283 publication-title: Chem. Commun. – volume: 12 start-page: 4872 year: 2010 end-page: 4875 publication-title: Org. Lett. – volume: 4 start-page: 2530 year: 2014 end-page: 2535 publication-title: ACS Catal. – volume: 14 start-page: 3043 year: 2006 end-page: 3060 publication-title: Eur. J. Org. Chem. – volume: 82 start-page: 3491 year: 2017 end-page: 3499 publication-title: J. Org. Chem. – volume: 18 start-page: 5716 year: 2016 end-page: 5719 publication-title: Org. Lett. – volume: 5 start-page: 255 year: 2011 end-page: 262 publication-title: ChemCatChem – volume: 4 start-page: 1091 year: 2017 end-page: 1102 publication-title: Org. Chem. Front. – volume: 41 start-page: 8791 year: 2017 end-page: 8803 publication-title: New J. Chem. – volume: 11 start-page: 2129 year: 2009 end-page: 2132 publication-title: Org. Lett. – volume: 226 year: 2019 publication-title: J. Fluorine Chem. – volume: 50 start-page: 5236 year: 2014 end-page: 5238 publication-title: Chem. Commun. – volume: 14 start-page: 1934 year: 2012 end-page: 1937 publication-title: Org. Lett. – volume: 346 start-page: 725 year: 2014 end-page: 728 publication-title: Science – volume: 9 start-page: 4927 year: 2011 end-page: 4935 publication-title: Org. Biomol. Chem. – volume: 23 start-page: 9647 year: 2017 end-page: 9656 publication-title: Chem. Eur. J. – volume: 2019 start-page: 3591 year: 2019 end-page: 3598 publication-title: Eur. J. Org. Chem. – volume: 15 start-page: 7157 year: 2017 end-page: 7164 publication-title: Org. Biomol. Chem. – volume: 31 start-page: 5261 year: 2019 end-page: 5274 publication-title: Eur. J. Org. Chem. – volume: 44 start-page: 615 year: 2005 end-page: 618 publication-title: Angew. Chem. Int. Ed. – volume: 9 start-page: 303 year: 2013 end-page: 312 publication-title: Beilstein J. Org. Chem. – volume: 13 start-page: 3332 year: 2011 end-page: 3335 publication-title: Org. Lett. – volume: 17 start-page: 1296 year: 2015 end-page: 1299 publication-title: Org. Lett. – volume: 17 start-page: 3718 year: 2015 end-page: 3721 publication-title: Org. Lett. – volume: 19 start-page: 4794 year: 2017 end-page: 4797 publication-title: Org. Lett. – volume: 6 start-page: 607 year: 1995 end-page: 626 publication-title: Synthesis. – volume: 84 start-page: 4661 year: 2018 end-page: 4669 publication-title: J. Org. Chem. – volume: 61 start-page: 51564 year: 2020 publication-title: Tetrahedron Lett. – volume: 362 start-page: 1998 year: 2020 end-page: 2004 publication-title: Adv. Synth. Catal. – volume: 15 start-page: 8119 year: 2017 end-page: 8133 publication-title: Org. Biomol. Chem. – volume: 24 start-page: 5740 year: 2010 end-page: 5743 publication-title: Org. Lett. – volume: 53 start-page: 11572 year: 2017 end-page: 11575 publication-title: Chem. Commun. – volume: 84 start-page: 9946 year: 2019 end-page: 9956 publication-title: J. Org. Chem. – volume: 12 start-page: 368 year: 2010 end-page: 371 publication-title: Org. Lett. – volume: 18 start-page: 500 year: 2020 end-page: 513 publication-title: Org. Biomol. Chem. – volume: 19 start-page: 972 year: 2017 end-page: 975 publication-title: Org. Lett. – volume: 465 start-page: 44 year: 2017 end-page: 49 publication-title: Inorg. Chim. Acta – volume: 126 start-page: 5242 year: 2014 end-page: 5246 publication-title: Angew. Chem. Int. Ed. – volume: 64 start-page: 1564 year: 2015 end-page: 1568 publication-title: Russ. Chem. Bull. – volume: 55 start-page: 1 year: 2016 end-page: 5 publication-title: Angew. Chem. Int. Ed. – volume: 356 start-page: 1 year: 2014 end-page: 12 publication-title: Adv. Synth. Catal. – volume: 136 start-page: 17722 year: 2014 end-page: 17725 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 2170 year: 2017 end-page: 2174 publication-title: Org. Chem. Front. – ident: e_1_2_7_145_1 doi: 10.1002/ejoc.201900353 – ident: e_1_2_7_68_1 doi: 10.1002/adsc.201901629 – volume: 138 start-page: 2520 year: 2017 ident: e_1_2_7_191_1 publication-title: Org. Lett. – ident: e_1_2_7_181_1 doi: 10.1021/cs5005823 – ident: e_1_2_7_151_1 doi: 10.1039/C8RA09367A – ident: e_1_2_7_11_1 – ident: e_1_2_7_7_1 doi: 10.1002/ejoc.202000949 – ident: e_1_2_7_57_1 doi: 10.1021/acs.orglett.7b03596 – ident: e_1_2_7_185_1 doi: 10.1021/jacs.6b04920 – ident: e_1_2_7_132_1 doi: 10.1002/adsc.201400497 – ident: e_1_2_7_129_1 doi: 10.1002/1099-0690(200206)2002:12<1877::AID-EJOC1877>3.0.CO;2-U – ident: e_1_2_7_66_1 doi: 10.1016/j.tetlet.2015.10.018 – ident: e_1_2_7_137_1 doi: 10.1002/ejoc.202000519 – ident: e_1_2_7_203_1 doi: 10.1038/s41467-019-12607-6 – ident: e_1_2_7_10_1 doi: 10.1002/ejoc.200500911 – ident: e_1_2_7_117_1 doi: 10.1016/j.tetlet.2016.04.105 – ident: e_1_2_7_80_1 doi: 10.1021/ol500744k – ident: e_1_2_7_28_1 doi: 10.1002/cctc.201300099 – ident: e_1_2_7_155_1 doi: 10.1016/j.tet.2016.03.067 – volume: 61 start-page: 51564 year: 2020 ident: e_1_2_7_84_1 publication-title: Tetrahedron Lett. – ident: e_1_2_7_51_1 doi: 10.1021/acs.orglett.5b00290 – ident: e_1_2_7_27_1 doi: 10.1039/c3cc44631j – year: 2020 ident: e_1_2_7_45_1 publication-title: Eur. J. Org. Chem. – ident: e_1_2_7_22_1 doi: 10.1021/jo1018969 – ident: e_1_2_7_58_1 doi: 10.1016/j.tetlet.2019.01.004 – ident: e_1_2_7_25_1 doi: 10.1016/j.tetlet.2011.11.081 – ident: e_1_2_7_50_1 doi: 10.1039/C5QO00203F – ident: e_1_2_7_9_1 doi: 10.1055/s-1995-3983 – ident: e_1_2_7_195_1 doi: 10.1002/chem.201904169 – ident: e_1_2_7_26_1 doi: 10.3762/bjoc.9.35 – ident: e_1_2_7_149_1 doi: 10.1071/CH17341 – ident: e_1_2_7_34_1 doi: 10.1039/C7NJ01709J – ident: e_1_2_7_36_1 doi: 10.1021/acs.orglett.7b02219 – ident: e_1_2_7_165_1 doi: 10.1021/ol202457n – ident: e_1_2_7_204_1 doi: 10.1039/C8CC06451B – ident: e_1_2_7_35_1 doi: 10.1016/j.ica.2017.05.047 – start-page: 1 year: 2019 ident: e_1_2_7_174_1 publication-title: Mol. Diversity – ident: e_1_2_7_199_1 doi: 10.1126/science.aaw3254 – ident: e_1_2_7_180_1 doi: 10.1021/ja212099r – ident: e_1_2_7_37_1 doi: 10.1002/slct.201801045 – ident: e_1_2_7_71_1 doi: 10.1002/ange.201612565 – ident: e_1_2_7_130_1 doi: 10.1039/c1sc00190f – ident: e_1_2_7_143_1 doi: 10.1002/chem.201700630 – ident: e_1_2_7_98_1 doi: 10.1002/chem.201200188 – ident: e_1_2_7_146_1 doi: 10.1021/acsomega.7b00988 – ident: e_1_2_7_162_1 doi: 10.1002/chem.201302761 – ident: e_1_2_7_141_1 doi: 10.1021/acs.joc.9b01113 – ident: e_1_2_7_187_1 doi: 10.1002/anie.201510990 – ident: e_1_2_7_33_1 doi: 10.1002/ejoc.201600680 – ident: e_1_2_7_175_1 doi: 10.1016/j.jfluchem.2019.109361 – ident: e_1_2_7_110_1 doi: 10.1021/jo5023712 – start-page: 49 year: 2013 ident: e_1_2_7_131_1 publication-title: Chem. Commun. – ident: e_1_2_7_74_1 doi: 10.1021/acs.orglett.0c00797 – ident: e_1_2_7_126_1 doi: 10.1021/ja0423217 – ident: e_1_2_7_94_1 doi: 10.1002/ajoc.201800262 – ident: e_1_2_7_128_1 doi: 10.1021/ol501086q – ident: e_1_2_7_56_1 doi: 10.1039/C7OB02676E – ident: e_1_2_7_194_1 doi: 10.1002/adsc.201800677 – ident: e_1_2_7_127_1 doi: 10.1021/ol802509m – ident: e_1_2_7_15_2 doi: 10.1002/ejoc.202000688 – ident: e_1_2_7_124_1 doi: 10.1002/chem.201000568 – ident: e_1_2_7_44_1 doi: 10.1055/s-0039-1691564 – ident: e_1_2_7_125_1 doi: 10.1021/ol900651u – ident: e_1_2_7_161_1 doi: 10.1039/C7OB01999H – ident: e_1_2_7_122_1 doi: 10.1002/anie.201904774 – ident: e_1_2_7_170_1 – ident: e_1_2_7_100_1 doi: 10.1002/marc.201300303 – ident: e_1_2_7_82_1 doi: 10.1021/acs.orglett.7b02210 – ident: e_1_2_7_55_1 doi: 10.1039/C7QO00440K – ident: e_1_2_7_120_1 doi: 10.1039/C4CC10055G – ident: e_1_2_7_79_1 doi: 10.1039/C7OB02102J – ident: e_1_2_7_97_1 doi: 10.1021/ol2010648 – ident: e_1_2_7_134_1 doi: 10.1007/s11164-011-0418-4 – ident: e_1_2_7_61_1 doi: 10.1039/C3CC45240A – ident: e_1_2_7_67_1 doi: 10.1007/s11172-015-1042-z – ident: e_1_2_7_14_2 doi: 10.1002/chem.202001832 – volume: 28 start-page: 907 year: 2018 ident: e_1_2_7_192_1 publication-title: Synlett – ident: e_1_2_7_38_1 doi: 10.1021/acs.joc.8b02383 – ident: e_1_2_7_178_1 doi: 10.1021/ol902703k – ident: e_1_2_7_20_1 doi: 10.1021/jo902739n – ident: e_1_2_7_63_1 doi: 10.1021/jo201511d – ident: e_1_2_7_95_1 doi: 10.1021/ol9028226 – ident: e_1_2_7_205_1 doi: 10.1016/j.mencom.2018.11.030 – ident: e_1_2_7_182_1 doi: 10.1126/science.1258232 – ident: e_1_2_7_3_1 doi: 10.1002/cber.18850180154 – ident: e_1_2_7_59_1 doi: 10.1021/ol102035s – ident: e_1_2_7_29_1 doi: 10.1002/adsc.201400736 – ident: e_1_2_7_49_1 doi: 10.1039/C7QO00815E – ident: e_1_2_7_136_1 doi: 10.1021/acs.orglett.0c00041 – ident: e_1_2_7_197_1 doi: 10.1039/C9OB00659A – ident: e_1_2_7_152_1 doi: 10.1002/chem.201000438 – ident: e_1_2_7_31_1 doi: 10.1039/C6CC00133E – ident: e_1_2_7_156_1 doi: 10.1002/ejoc.201600570 – ident: e_1_2_7_106_1 doi: 10.1021/ol100838m – ident: e_1_2_7_6_1 doi: 10.1002/ange.200462048 – ident: e_1_2_7_104_1 doi: 10.1039/C9OB02421B – ident: e_1_2_7_107_1 doi: 10.1039/C6CC05885J – ident: e_1_2_7_99_1 doi: 10.1021/jo401579m – ident: e_1_2_7_101_1 doi: 10.1021/jo501460h – ident: e_1_2_7_91_1 doi: 10.1021/ja512059d – ident: e_1_2_7_48_1 doi: 10.1002/ange.201301154 – ident: e_1_2_7_198_1 doi: 10.1021/acs.joc.9b00937 – ident: e_1_2_7_115_1 doi: 10.1021/acs.orglett.6b03510 – ident: e_1_2_7_121_1 doi: 10.1039/C7CC00852J – ident: e_1_2_7_62_1 doi: 10.1002/chem.201403640 – ident: e_1_2_7_30_1 doi: 10.1021/jo402181w – ident: e_1_2_7_144_1 doi: 10.1002/chem.201701429 – ident: e_1_2_7_133_1 doi: 10.1021/ol1025348 – ident: e_1_2_7_90_1 doi: 10.1002/adsc.201300700 – ident: e_1_2_7_18_1 doi: 10.1080/00397911.2015.1136644 – ident: e_1_2_7_150_1 doi: 10.1039/C6QO00851H – ident: e_1_2_7_116_1 doi: 10.1002/anie.201703193 – ident: e_1_2_7_111_1 doi: 10.1021/ol902360b – volume: 48 start-page: 271 year: 2016 ident: e_1_2_7_160_1 publication-title: Synthesis – ident: e_1_2_7_142_1 doi: 10.1039/C5CC09911K – ident: e_1_2_7_166_1 doi: 10.1039/C7OB01688C – ident: e_1_2_7_169_1 doi: 10.1002/ajoc.201700353 – ident: e_1_2_7_123_1 doi: 10.1021/ja403535a – ident: e_1_2_7_85_1 doi: 10.1021/ol9028385 – ident: e_1_2_7_179_1 doi: 10.1246/cl.130547 – ident: e_1_2_7_200_1 doi: 10.1038/s41929-019-0415-3 – ident: e_1_2_7_184_1 doi: 10.1021/acscatal.6b01452 – ident: e_1_2_7_75_1 doi: 10.1021/acs.orglett.0c01519 – ident: e_1_2_7_138_1 doi: 10.3987/COM-18-S(T)52 – ident: e_1_2_7_202_1 doi: 10.1021/acs.orglett.5b03581 – ident: e_1_2_7_206_1 doi: 10.1016/j.mencom.2019.05.032 – ident: e_1_2_7_102_1 doi: 10.1002/chem.201405931 – ident: e_1_2_7_65_1 doi: 10.1021/ol501086q – ident: e_1_2_7_119_1 doi: 10.1021/acs.joc.7b00446 – ident: e_1_2_7_5_1 doi: 10.1021/ja508449y – ident: e_1_2_7_176_1 doi: 10.1039/C9OB01560D – ident: e_1_2_7_13_2 doi: 10.1021/acs.chemrev.7b00307 – ident: e_1_2_7_24_1 doi: 10.1002/cctc.201200521 – ident: e_1_2_7_118_1 doi: 10.1039/C9CC10069E – ident: e_1_2_7_112_1 doi: 10.1021/ja511011m – volume: 17 start-page: 4832 year: 2015 ident: e_1_2_7_148_1 publication-title: Org. Lett. – ident: e_1_2_7_171_2 doi: 10.1021/cr1003776 – ident: e_1_2_7_23_1 doi: 10.1021/ol102734g – ident: e_1_2_7_103_1 doi: 10.1007/s12039-016-1169-y – ident: e_1_2_7_39_1 doi: 10.1002/cctc.201601468 – ident: e_1_2_7_16_1 doi: 10.1021/acs.oprd.8b00233 – ident: e_1_2_7_47_1 doi: 10.1021/jo300539y – ident: e_1_2_7_201_1 doi: 10.1039/C9GC04248B – ident: e_1_2_7_19_1 doi: 10.1002/anie.201002987 – ident: e_1_2_7_167_1 doi: 10.1021/acs.joc.6b02977 – ident: e_1_2_7_21_1 doi: 10.1246/cl.2011.555 – ident: e_1_2_7_96_1 doi: 10.1021/jo100269y – ident: e_1_2_7_70_1 doi: 10.1021/acs.orglett.7b01111 – ident: e_1_2_7_73_1 doi: 10.1002/ijch.201900181 – ident: e_1_2_7_158_1 doi: 10.1021/acs.orglett.5b01702 – ident: e_1_2_7_183_1 doi: 10.1002/ejoc.201500006 – ident: e_1_2_7_2_1 doi: 10.1002/cber.187000301169 – ident: e_1_2_7_157_1 doi: 10.1002/ejoc.201900185 – ident: e_1_2_7_193_1 doi: 10.1002/ejoc.201601518 – ident: e_1_2_7_53_1 doi: 10.1021/acs.orglett.6b02947 – ident: e_1_2_7_89_1 doi: 10.1021/ja508449y – ident: e_1_2_7_153_1 doi: 10.1021/ol503078h – ident: e_1_2_7_173_1 doi: 10.1002/ejoc.201900084 – ident: e_1_2_7_87_1 doi: 10.1002/chem.201301987 – ident: e_1_2_7_78_1 doi: 10.1021/acs.joc.6b00346 – ident: e_1_2_7_4_1 doi: 10.1002/cber.18850180175 – ident: e_1_2_7_17_1 doi: 10.1021/ol202335p – ident: e_1_2_7_40_1 doi: 10.1021/jacs.7b03887 – ident: e_1_2_7_186_1 doi: 10.1039/C6CC06111G – ident: e_1_2_7_69_1 doi: 10.1039/C6CC00946H – ident: e_1_2_7_88_1 doi: 10.1002/ange.201400881 – ident: e_1_2_7_168_1 doi: 10.1021/acs.orglett.7b00408 – ident: e_1_2_7_46_1 doi: 10.1021/ol200602x – ident: e_1_2_7_147_1 doi: 10.1039/C9CC02739D – ident: e_1_2_7_139_1 doi: 10.1021/ol200601e – ident: e_1_2_7_196_1 doi: 10.1039/C9SC00833K – ident: e_1_2_7_92_1 doi: 10.1021/acs.joc.7b02731 – volume: 27 start-page: 1227 year: 2014 ident: e_1_2_7_32_1 publication-title: Synlett – ident: e_1_2_7_159_1 doi: 10.3998/ark.5550190.p009.828 – ident: e_1_2_7_1_1 doi: 10.1002/andp.18341070502 – ident: e_1_2_7_140_1 doi: 10.1002/adsc.201000723 – ident: e_1_2_7_8_1 doi: 10.1021/cr60225a004 – ident: e_1_2_7_76_1 doi: 10.1002/chem.201405903 – ident: e_1_2_7_172_2 doi: 10.1002/ejoc.201701491 – ident: e_1_2_7_42_1 doi: 10.1002/asia.201800558 – ident: e_1_2_7_83_1 doi: 10.1039/C7SC04086E – ident: e_1_2_7_12_2 doi: 10.1007/128_2009_15 – ident: e_1_2_7_188_1 doi: 10.1016/j.chempr.2016.08.002 – ident: e_1_2_7_108_1 doi: 10.1039/C7CC07089F – ident: e_1_2_7_77_1 doi: 10.1021/acs.joc.5b00034 – ident: e_1_2_7_135_1 doi: 10.1021/acs.orglett.8b02423 – ident: e_1_2_7_177_1 doi: 10.1016/j.tetlet.2020.151994 – ident: e_1_2_7_109_1 doi: 10.1016/j.ica.2018.03.036 – ident: e_1_2_7_189_1 doi: 10.1055/s-0035-1561320 – ident: e_1_2_7_93_1 doi: 10.1134/S1070363218040217 – ident: e_1_2_7_105_1 doi: 10.1021/acs.orglett.0c00290 – ident: e_1_2_7_72_1 doi: 10.3389/fchem.2019.00613 – ident: e_1_2_7_54_1 doi: 10.1021/acs.joc.7b01340 – ident: e_1_2_7_114_1 doi: 10.1055/s-0036-1590471 – ident: e_1_2_7_190_1 doi: 10.1021/jacs.5b13450 – ident: e_1_2_7_81_1 doi: 10.1002/anie.201710592 – ident: e_1_2_7_163_1 doi: 10.1039/C7GC03106H – ident: e_1_2_7_52_1 doi: 10.1002/chem.201604192 – ident: e_1_2_7_64_1 doi: 10.1039/c2cc34803a – ident: e_1_2_7_60_1 doi: 10.1039/c1ob05269a – ident: e_1_2_7_164_1 doi: 10.1039/C8QO01222A – ident: e_1_2_7_86_1 doi: 10.1021/ol300632p – ident: e_1_2_7_41_1 doi: 10.1039/C7QO00732A – ident: e_1_2_7_154_1 doi: 10.1002/ejoc.201901228 – ident: e_1_2_7_43_1 doi: 10.1002/adsc.201400598 – ident: e_1_2_7_113_1 doi: 10.1002/anie.201412319 |
SSID | ssj0011477 |
Score | 2.5266595 |
SecondaryResourceType | review_article |
Snippet | Among the known aromatic nitrogen heterocycles, pyrrole represents a privileged aromatic heterocycle ranging its occurrence in the key component of “pigments... Among the known aromatic nitrogen heterocycles, pyrrole represents a privileged aromatic heterocycle ranging its occurrence in the key component of "pigments... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 715 |
SubjectTerms | Acids Biological activity Catalysis C−H functionalization Electrochemistry Heterocyclic compounds Natural products Pigments Pyrrole Pyrrole derivatization Pyrroles Substitution reactions Substrates Translation |
Title | Recent Advances in Functionalization of Pyrroles and their Translational Potential |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ftcr.202100010 https://www.ncbi.nlm.nih.gov/pubmed/33650751 https://www.proquest.com/docview/2512251965 https://www.proquest.com/docview/2495402722 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB7Ei158P-qLCOLJatuk6fYoi4sIiiwK3mrSJCAuXXF3D_rrnWm6lVUUxFsfCU2TSeabZOYbgCPjcl5mKgrxNQ-Fk1GYC56FWpaZkYaOhijA-fpGXt6Lq4f0oclzSrEwnh-i3XCjmVGv1zTBlR6dfZKG4kKF5l1C-9N1iBX5axEo6rf0UQj168yLlLk1RLsibzg2sf7ZTO1ZnfQNaM7i1lrx9Jbhcdpk72_yfDoZ69Py_Qub4z_-aQWWGlDKzr0UrcKcrdZgoTvNBbcOfUSXqJ3YufcYGLGnivVQI_qNxCaUkw0du317JX_FEVOVYfUhBKu14aDZc2S3wzH5J6nBBtz3Lu66l2GTjSEsOZrQYSzizJooUk5anihpOzzqqDhWEUXfSmGivJMIXiJGdMI5fK5TEec61al0CS_5JsxXw8puA1POqDwWxrrYIZyzuTK4cFKqTq6VTmQAJ9PxKMqGqpwyZgwKT7KcFNhRRdtRARy3xV88R8dPBfemg1s0U3VUEMCj8F2ZBnDYvsb-pZMTVdnhBMugGYmGdpYkAWx5oWi_xFHuEHfFAUT10P7ehOKu229vdv5eZRcW6dr7Du3B_Ph1YvcRFo31QS37HzrIAkA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VcigX3o9AASMBJ9L6FWdz4FBtWW3pQ9VqK_UWnMSWEKss6u4KlV_FX-EfMRMnQQsCiUMPHDdxso499nwznvkG4GXlM1Wmlsd4W8XaGx5nWqVxYcq0MhUdDVGC8_GJGZ_p9-fJ-QZ863JhAj9E73CjldHs17TAySG9-5M1FHcqtO8kOagFb8MqD93lFzTaFm8P9nGGX0k5ejcdjuO2rkBcKjQGY6FF6irOrTdOSWvcQPGBFcJyyiM1uuLZQGpVItrx2nu8XiRaZEVSJMZLVSp87zW4TlXEia1_f9ITVqFx0dR6pFqxMVoyWcvqiR3eXevuuhb8DdquI-VG1Y1uwfdukEKEy6ed1bLYKb_-wh_5P43ibbjZ4m62FxbKHdhw9V3YGnbl7u7BBAE0KmC2F4IiFuxjzUao9IOvtM1WZXPPTi8vKCRzwWxdseachTUKf9a6VdnpfEkhWHZ2H86u5JMewGY9r90jYNZXNhO6cl54RKwusxXqBqpGqgpbSBPBm04A8rJlY6eiILM88EjLHCcm7ycmgtd988-BhuRPDbc7acrb3WiRE4alDGWTRPCiv43jS4dDtnbzFbZBS1lzmUoZwcMghf0_KYU4Pk1EBLyRpb93IZ8OJ_2Px__-yHPYGk-Pj_Kjg5PDJ3CDrodQqW3YXF6s3FNEgcviWbPwGHy4ahn9AcvCXOk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIgGX8qahBYwEnEjrV5zNgUO1y6qlUK1WrdRb6sS2hLrKVt1dVeVP9a_0J3UcJ0ELAolDDxzjOInjGXu-Gc8D4J1xmShTTWO8LWLpFI0zKdK4UGVqlPFHQz7A-duB2j2SX46T4xW4amNhQn6IzuDmV0a9X_sFfmbc9s-kobhRoXrHvX2a0carct9eXqDONvu0N0ACv-d8-Pmwvxs3ZQXiUqAuGDPJUmso1U5ZwbWyPUF7mjFNfRipkoZmPS5FiWDHSeewvUgky4qkSJTjohT43jtwVyqa-VoRg3GXrwp1i7rUoy8VG6MikzVJPXHA20vDXRaCvyHbZaBcS7rhQ7hu5yg4uJxuLebFVvnjl_SR_9EkPoK1BnWTnbBMHsOKrZ7A_X5b7O4pjBE-o_glO8ElYka-V2SIIj9YSptYVTJ1ZHR57h0yZ0RXhtSnLKQW95PGqEpG07l3wNKTZ3B0K7_0HFaraWXXgWhndMaksY45xKs20wYlg69FKgpdcBXBx5b-ednkYvclQSZ5yCLNcyRM3hEmgg9d97OQhORPHTdbZsqbvWiWewTr45NVEsHb7jbOrz8a0pWdLrAP6smS8pTzCF4EJuy-JASi-DRhEdCalf4-hPywP-4uXv77I2_g3mgwzL_uHexvwAPfHPykNmF1fr6wrxACzovX9bIjcHLbLHoDKBpbmA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances+in+Functionalization+of+Pyrroles+and+their+Translational+Potential&rft.jtitle=Chemical+record&rft.au=Hunjan%2C+Mandeep+Kaur&rft.au=Panday%2C+Surabhi&rft.au=Gupta%2C+Anjali&rft.au=Bhaumik%2C+Jayeeta&rft.date=2021-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1527-8999&rft.eissn=1528-0691&rft.volume=21&rft.issue=4&rft.spage=715&rft.epage=780&rft_id=info:doi/10.1002%2Ftcr.202100010&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1527-8999&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1527-8999&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1527-8999&client=summon |