EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces
Objective. Brain-computer interfaces (BCI) enable direct communication with a computer, using neural activity as the control signal. This neural signal is generally chosen from a variety of well-studied electroencephalogram (EEG) signals. For a given BCI paradigm, feature extractors and classifiers...
Saved in:
Published in | Journal of neural engineering Vol. 15; no. 5; pp. 56013 - 56029 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
IOP Publishing
01.10.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1741-2560 1741-2552 1741-2552 |
DOI | 10.1088/1741-2552/aace8c |
Cover
Loading…
Abstract | Objective. Brain-computer interfaces (BCI) enable direct communication with a computer, using neural activity as the control signal. This neural signal is generally chosen from a variety of well-studied electroencephalogram (EEG) signals. For a given BCI paradigm, feature extractors and classifiers are tailored to the distinct characteristics of its expected EEG control signal, limiting its application to that specific signal. Convolutional neural networks (CNNs), which have been used in computer vision and speech recognition to perform automatic feature extraction and classification, have successfully been applied to EEG-based BCIs; however, they have mainly been applied to single BCI paradigms and thus it remains unclear how these architectures generalize to other paradigms. Here, we ask if we can design a single CNN architecture to accurately classify EEG signals from different BCI paradigms, while simultaneously being as compact as possible. Approach. In this work we introduce EEGNet, a compact convolutional neural network for EEG-based BCIs. We introduce the use of depthwise and separable convolutions to construct an EEG-specific model which encapsulates well-known EEG feature extraction concepts for BCI. We compare EEGNet, both for within-subject and cross-subject classification, to current state-of-the-art approaches across four BCI paradigms: P300 visual-evoked potentials, error-related negativity responses (ERN), movement-related cortical potentials (MRCP), and sensory motor rhythms (SMR). Main results. We show that EEGNet generalizes across paradigms better than, and achieves comparably high performance to, the reference algorithms when only limited training data is available across all tested paradigms. In addition, we demonstrate three different approaches to visualize the contents of a trained EEGNet model to enable interpretation of the learned features. Significance. Our results suggest that EEGNet is robust enough to learn a wide variety of interpretable features over a range of BCI tasks. Our models can be found at: https://github.com/vlawhern/arl-eegmodels. |
---|---|
AbstractList | Brain-computer interfaces (BCI) enable direct communication with a computer, using neural activity as the control signal. This neural signal is generally chosen from a variety of well-studied electroencephalogram (EEG) signals. For a given BCI paradigm, feature extractors and classifiers are tailored to the distinct characteristics of its expected EEG control signal, limiting its application to that specific signal. Convolutional neural networks (CNNs), which have been used in computer vision and speech recognition to perform automatic feature extraction and classification, have successfully been applied to EEG-based BCIs; however, they have mainly been applied to single BCI paradigms and thus it remains unclear how these architectures generalize to other paradigms. Here, we ask if we can design a single CNN architecture to accurately classify EEG signals from different BCI paradigms, while simultaneously being as compact as possible.OBJECTIVEBrain-computer interfaces (BCI) enable direct communication with a computer, using neural activity as the control signal. This neural signal is generally chosen from a variety of well-studied electroencephalogram (EEG) signals. For a given BCI paradigm, feature extractors and classifiers are tailored to the distinct characteristics of its expected EEG control signal, limiting its application to that specific signal. Convolutional neural networks (CNNs), which have been used in computer vision and speech recognition to perform automatic feature extraction and classification, have successfully been applied to EEG-based BCIs; however, they have mainly been applied to single BCI paradigms and thus it remains unclear how these architectures generalize to other paradigms. Here, we ask if we can design a single CNN architecture to accurately classify EEG signals from different BCI paradigms, while simultaneously being as compact as possible.In this work we introduce EEGNet, a compact convolutional neural network for EEG-based BCIs. We introduce the use of depthwise and separable convolutions to construct an EEG-specific model which encapsulates well-known EEG feature extraction concepts for BCI. We compare EEGNet, both for within-subject and cross-subject classification, to current state-of-the-art approaches across four BCI paradigms: P300 visual-evoked potentials, error-related negativity responses (ERN), movement-related cortical potentials (MRCP), and sensory motor rhythms (SMR).APPROACHIn this work we introduce EEGNet, a compact convolutional neural network for EEG-based BCIs. We introduce the use of depthwise and separable convolutions to construct an EEG-specific model which encapsulates well-known EEG feature extraction concepts for BCI. We compare EEGNet, both for within-subject and cross-subject classification, to current state-of-the-art approaches across four BCI paradigms: P300 visual-evoked potentials, error-related negativity responses (ERN), movement-related cortical potentials (MRCP), and sensory motor rhythms (SMR).We show that EEGNet generalizes across paradigms better than, and achieves comparably high performance to, the reference algorithms when only limited training data is available across all tested paradigms. In addition, we demonstrate three different approaches to visualize the contents of a trained EEGNet model to enable interpretation of the learned features.MAIN RESULTSWe show that EEGNet generalizes across paradigms better than, and achieves comparably high performance to, the reference algorithms when only limited training data is available across all tested paradigms. In addition, we demonstrate three different approaches to visualize the contents of a trained EEGNet model to enable interpretation of the learned features.Our results suggest that EEGNet is robust enough to learn a wide variety of interpretable features over a range of BCI tasks. Our models can be found at: https://github.com/vlawhern/arl-eegmodels.SIGNIFICANCEOur results suggest that EEGNet is robust enough to learn a wide variety of interpretable features over a range of BCI tasks. Our models can be found at: https://github.com/vlawhern/arl-eegmodels. Objective. Brain-computer interfaces (BCI) enable direct communication with a computer, using neural activity as the control signal. This neural signal is generally chosen from a variety of well-studied electroencephalogram (EEG) signals. For a given BCI paradigm, feature extractors and classifiers are tailored to the distinct characteristics of its expected EEG control signal, limiting its application to that specific signal. Convolutional neural networks (CNNs), which have been used in computer vision and speech recognition to perform automatic feature extraction and classification, have successfully been applied to EEG-based BCIs; however, they have mainly been applied to single BCI paradigms and thus it remains unclear how these architectures generalize to other paradigms. Here, we ask if we can design a single CNN architecture to accurately classify EEG signals from different BCI paradigms, while simultaneously being as compact as possible. Approach. In this work we introduce EEGNet, a compact convolutional neural network for EEG-based BCIs. We introduce the use of depthwise and separable convolutions to construct an EEG-specific model which encapsulates well-known EEG feature extraction concepts for BCI. We compare EEGNet, both for within-subject and cross-subject classification, to current state-of-the-art approaches across four BCI paradigms: P300 visual-evoked potentials, error-related negativity responses (ERN), movement-related cortical potentials (MRCP), and sensory motor rhythms (SMR). Main results. We show that EEGNet generalizes across paradigms better than, and achieves comparably high performance to, the reference algorithms when only limited training data is available across all tested paradigms. In addition, we demonstrate three different approaches to visualize the contents of a trained EEGNet model to enable interpretation of the learned features. Significance. Our results suggest that EEGNet is robust enough to learn a wide variety of interpretable features over a range of BCI tasks. Our models can be found at: https://github.com/vlawhern/arl-eegmodels. Brain-computer interfaces (BCI) enable direct communication with a computer, using neural activity as the control signal. This neural signal is generally chosen from a variety of well-studied electroencephalogram (EEG) signals. For a given BCI paradigm, feature extractors and classifiers are tailored to the distinct characteristics of its expected EEG control signal, limiting its application to that specific signal. Convolutional neural networks (CNNs), which have been used in computer vision and speech recognition to perform automatic feature extraction and classification, have successfully been applied to EEG-based BCIs; however, they have mainly been applied to single BCI paradigms and thus it remains unclear how these architectures generalize to other paradigms. Here, we ask if we can design a single CNN architecture to accurately classify EEG signals from different BCI paradigms, while simultaneously being as compact as possible. In this work we introduce EEGNet, a compact convolutional neural network for EEG-based BCIs. We introduce the use of depthwise and separable convolutions to construct an EEG-specific model which encapsulates well-known EEG feature extraction concepts for BCI. We compare EEGNet, both for within-subject and cross-subject classification, to current state-of-the-art approaches across four BCI paradigms: P300 visual-evoked potentials, error-related negativity responses (ERN), movement-related cortical potentials (MRCP), and sensory motor rhythms (SMR). We show that EEGNet generalizes across paradigms better than, and achieves comparably high performance to, the reference algorithms when only limited training data is available across all tested paradigms. In addition, we demonstrate three different approaches to visualize the contents of a trained EEGNet model to enable interpretation of the learned features. Our results suggest that EEGNet is robust enough to learn a wide variety of interpretable features over a range of BCI tasks. Our models can be found at: https://github.com/vlawhern/arl-eegmodels. |
Author | Lance, Brent J Hung, Chou P Lawhern, Vernon J Waytowich, Nicholas R Solon, Amelia J Gordon, Stephen M |
Author_xml | – sequence: 1 givenname: Vernon J orcidid: 0000-0002-3921-8723 surname: Lawhern fullname: Lawhern, Vernon J email: vernon.j.lawhern.civ@mail.mil organization: U.S. Army Research Laboratory Human Research and Engineering Directorate, Aberdeen Proving Ground, MD, United States of America – sequence: 2 givenname: Amelia J surname: Solon fullname: Solon, Amelia J organization: DCS Corporation , Alexandria, VA, United States of America – sequence: 3 givenname: Nicholas R surname: Waytowich fullname: Waytowich, Nicholas R organization: Columbia University Department of Biomedical Engineering, New York, NY, United States of America – sequence: 4 givenname: Stephen M surname: Gordon fullname: Gordon, Stephen M organization: DCS Corporation , Alexandria, VA, United States of America – sequence: 5 givenname: Chou P surname: Hung fullname: Hung, Chou P organization: Georgetown University Department of Neuroscience, Washington, DC, United States of America – sequence: 6 givenname: Brent J surname: Lance fullname: Lance, Brent J organization: U.S. Army Research Laboratory Human Research and Engineering Directorate, Aberdeen Proving Ground, MD, United States of America |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29932424$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kb9P3DAYhq0KVDjo3glla4cG_CPOOd0qdKWVTrAAq_XF-SzlyNnBdqj63-Nw9AZUMdivZT2vZT9ekAPnHRLymdFzRpW6YMuKlVxKfgFgUJkP5Hi_dbBf1_SILGLcUCrYsqEfyRFvGsErXh2T-9Xq6hrT9wIK47cjmJTTPflhSr13MBQOp_AS6Y8PD4X1ociVsoWIXdEG6F05F6eEoehdnm2-STwlhxaGiJ9e84Tc_VzdXv4q1zdXvy9_rEsjapVKu1RIAbHu6rqS0JmmbhvkXcWBWSFUfodohBXQdUwqzqGVggoppKJM2ArECfm6O3cM_nHCmPS2jwaHARz6KWpOpZJ51DSjZ6_o1G6x02PotxD-6n8uMkB3gAk-xoB2jzCqZ9169qlnt3qnO1fqNxXTJ5jNpWxmeK_4bVfs_ag3fgpZdXwP__IffONQM6mlpvmLmdBjZ8Uz0nGfZQ |
CODEN | JNEIEZ |
CitedBy_id | crossref_primary_10_1088_1741_2552_abe357 crossref_primary_10_1109_ACCESS_2025_3540436 crossref_primary_10_1007_s13042_024_02158_8 crossref_primary_10_1016_j_asoc_2021_108359 crossref_primary_10_1186_s12984_024_01342_9 crossref_primary_10_1016_j_bspc_2022_104153 crossref_primary_10_1016_j_compbiomed_2024_108788 crossref_primary_10_1016_j_displa_2023_102415 crossref_primary_10_3389_fnins_2023_1276067 crossref_primary_10_1109_JBHI_2023_3242262 crossref_primary_10_1142_S0129065723500557 crossref_primary_10_1038_s41598_024_58889_9 crossref_primary_10_1089_big_2021_0204 crossref_primary_10_1109_ACCESS_2023_3268233 crossref_primary_10_1088_1741_2552_acacca crossref_primary_10_1109_ACCESS_2020_2983182 crossref_primary_10_1016_j_bea_2025_100156 crossref_primary_10_1109_TBME_2021_3064794 crossref_primary_10_1007_s11760_023_02986_1 crossref_primary_10_1007_s40815_022_01307_x crossref_primary_10_1109_TNSRE_2025_3547616 crossref_primary_10_1109_TII_2022_3197419 crossref_primary_10_3390_s21165436 crossref_primary_10_3390_systems10060236 crossref_primary_10_1007_s11269_024_03962_1 crossref_primary_10_1088_1741_2552_abb5bd crossref_primary_10_1088_1741_2552_ac63ec crossref_primary_10_1109_TNSRE_2021_3106897 crossref_primary_10_1109_TNSRE_2023_3288835 crossref_primary_10_1109_ACCESS_2019_2895688 crossref_primary_10_1007_s11571_021_09717_7 crossref_primary_10_1088_1741_2552_ab1876 crossref_primary_10_1109_TIM_2024_3500057 crossref_primary_10_1109_TNSRE_2023_3310883 crossref_primary_10_1016_j_neunet_2025_107124 crossref_primary_10_1109_JSEN_2025_3527015 crossref_primary_10_1016_j_neunet_2025_107127 crossref_primary_10_3389_fnins_2025_1469244 crossref_primary_10_3389_fnins_2023_1153568 crossref_primary_10_1007_s10115_019_01404_8 crossref_primary_10_1016_j_engappai_2023_106237 crossref_primary_10_1016_j_ymeth_2021_04_017 crossref_primary_10_1016_j_bspc_2022_104183 crossref_primary_10_1007_s11571_021_09676_z crossref_primary_10_1016_j_physrep_2021_03_002 crossref_primary_10_1007_s11571_024_10127_8 crossref_primary_10_1016_j_bspc_2023_104885 crossref_primary_10_1109_JSEN_2024_3510059 crossref_primary_10_1109_TBCAS_2020_3018465 crossref_primary_10_1186_s42234_020_0040_0 crossref_primary_10_3389_fnins_2023_1167719 crossref_primary_10_1016_j_bandl_2021_104968 crossref_primary_10_1002_hbm_26767 crossref_primary_10_1109_TII_2023_3280560 crossref_primary_10_1016_j_displa_2024_102704 crossref_primary_10_1088_1741_2552_acbfdf crossref_primary_10_1016_j_eswa_2024_125364 crossref_primary_10_1109_ACCESS_2024_3434675 crossref_primary_10_1016_j_ymeth_2021_04_009 crossref_primary_10_1016_j_bspc_2024_106930 crossref_primary_10_1016_j_bspc_2023_105325 crossref_primary_10_1007_s13042_023_01964_w crossref_primary_10_1109_TBME_2023_3333327 crossref_primary_10_1016_j_bspc_2023_105317 crossref_primary_10_1093_bib_bbaa355 crossref_primary_10_1088_1741_2552_acbfe0 crossref_primary_10_3390_s25020494 crossref_primary_10_3389_fmolb_2023_1146606 crossref_primary_10_1360_nso_20220023 crossref_primary_10_3390_app142311208 crossref_primary_10_1016_j_bspc_2023_105312 crossref_primary_10_1109_TAFFC_2024_3392904 crossref_primary_10_1109_TCDS_2023_3289845 crossref_primary_10_1016_j_cmpb_2024_108213 crossref_primary_10_1016_j_bspc_2022_104119 crossref_primary_10_3390_s20195474 crossref_primary_10_1016_j_cmpb_2024_108218 crossref_primary_10_1109_RBME_2024_3492381 crossref_primary_10_1088_1741_2552_acb089 crossref_primary_10_1109_TNSRE_2023_3265304 crossref_primary_10_1016_j_neunet_2025_107133 crossref_primary_10_1049_ell2_12275 crossref_primary_10_1038_s41598_021_02798_8 crossref_primary_10_1109_JBHI_2023_3304646 crossref_primary_10_1109_JSEN_2024_3353146 crossref_primary_10_1016_j_brainresbull_2025_111206 crossref_primary_10_3390_s23115275 crossref_primary_10_1016_j_compbiomed_2024_109217 crossref_primary_10_1038_s41598_022_26882_9 crossref_primary_10_1109_TNSRE_2024_3465515 crossref_primary_10_1109_TBME_2024_3492506 crossref_primary_10_3390_s24030877 crossref_primary_10_1109_TIM_2023_3307724 crossref_primary_10_1145_3699732 crossref_primary_10_1016_j_bspc_2024_106905 crossref_primary_10_3389_fnins_2024_1434444 crossref_primary_10_3389_fninf_2024_1345425 crossref_primary_10_1371_journal_pcbi_1012376 crossref_primary_10_1186_s12911_019_0967_9 crossref_primary_10_1088_2057_1976_ad3647 crossref_primary_10_1109_TIM_2024_3366285 crossref_primary_10_1109_JETCAS_2020_3031698 crossref_primary_10_1007_s11517_023_02857_4 crossref_primary_10_1016_j_neucom_2019_11_106 crossref_primary_10_1016_j_neuroimage_2023_120209 crossref_primary_10_1007_s13534_021_00190_z crossref_primary_10_1142_S0129065721500477 crossref_primary_10_1088_1741_2552_ac0f4c crossref_primary_10_1016_j_compbiomed_2022_105519 crossref_primary_10_3389_fnins_2021_715855 crossref_primary_10_1109_JSEN_2023_3295407 crossref_primary_10_1109_TIM_2025_3548181 crossref_primary_10_1109_OJSP_2024_3378604 crossref_primary_10_1007_s11571_022_09821_2 crossref_primary_10_1088_2057_1976_ad2f58 crossref_primary_10_1088_1741_2552_ab6a67 crossref_primary_10_1145_3699744 crossref_primary_10_1109_TNSRE_2023_3243992 crossref_primary_10_1016_j_eswa_2023_121986 crossref_primary_10_1088_1741_2552_ac41ac crossref_primary_10_3390_life12030374 crossref_primary_10_1016_j_neucom_2021_04_009 crossref_primary_10_1016_j_knosys_2024_111904 crossref_primary_10_1088_1741_2552_ac1610 crossref_primary_10_1088_1741_2552_aced22 crossref_primary_10_1088_1741_2552_adba8c crossref_primary_10_1007_s10489_024_05374_5 crossref_primary_10_1109_TIM_2023_3276515 crossref_primary_10_1088_1741_2552_adaef0 crossref_primary_10_1088_1741_2552_ab094a crossref_primary_10_1088_1741_2552_ac823e crossref_primary_10_1088_1741_2552_adba8a crossref_primary_10_2139_ssrn_4068456 crossref_primary_10_1109_LSP_2023_3337727 crossref_primary_10_1109_JIOT_2022_3180215 crossref_primary_10_3389_fncel_2022_845832 crossref_primary_10_3389_fnins_2022_971039 crossref_primary_10_1016_j_bspc_2024_106063 crossref_primary_10_1109_ACCESS_2020_3040286 crossref_primary_10_3389_fbioe_2023_917328 crossref_primary_10_3389_fnins_2023_1288433 crossref_primary_10_1109_TNSRE_2022_3168829 crossref_primary_10_3389_fnins_2018_00843 crossref_primary_10_1109_TNSRE_2022_3201158 crossref_primary_10_1109_ACCESS_2024_3467154 crossref_primary_10_1109_TCYB_2021_3122969 crossref_primary_10_1016_j_knosys_2023_110756 crossref_primary_10_3389_fnbot_2022_995552 crossref_primary_10_1109_TCSS_2022_3158585 crossref_primary_10_3389_fnins_2022_1097660 crossref_primary_10_1109_LSP_2019_2906826 crossref_primary_10_1109_LSP_2019_2906824 crossref_primary_10_1016_j_eswa_2023_120205 crossref_primary_10_1109_TCSS_2023_3291950 crossref_primary_10_1109_ACCESS_2020_2994226 crossref_primary_10_1109_LSP_2024_3419424 crossref_primary_10_1016_j_neunet_2020_05_032 crossref_primary_10_1016_j_neunet_2024_106351 crossref_primary_10_1109_JIOT_2023_3281911 crossref_primary_10_1088_1741_2552_ab405f crossref_primary_10_1016_j_compbiomed_2024_109260 crossref_primary_10_1016_j_bspc_2025_107674 crossref_primary_10_1177_23312165241282872 crossref_primary_10_1016_j_bspc_2024_106046 crossref_primary_10_1007_s11831_023_09920_1 crossref_primary_10_3389_fnbot_2024_1502560 crossref_primary_10_3390_electronics13214310 crossref_primary_10_1007_s11517_023_02840_z crossref_primary_10_3390_brainsci13091326 crossref_primary_10_1016_j_celrep_2024_114924 crossref_primary_10_3389_fnins_2022_1044631 crossref_primary_10_1109_JSEN_2023_3309260 crossref_primary_10_1109_TNSRE_2023_3329059 crossref_primary_10_1016_j_neuroimage_2019_04_068 crossref_primary_10_1088_1741_2552_ad2710 crossref_primary_10_1109_LSP_2024_3465348 crossref_primary_10_1109_TSMC_2024_3382828 crossref_primary_10_1016_j_compbiomed_2022_106431 crossref_primary_10_3390_electronics11172706 crossref_primary_10_1109_TCDS_2023_3343469 crossref_primary_10_1016_j_neuroimage_2020_117021 crossref_primary_10_1109_TBME_2022_3193277 crossref_primary_10_3390_s24082534 crossref_primary_10_1016_j_bspc_2024_106092 crossref_primary_10_3390_s20247103 crossref_primary_10_1109_TNSRE_2023_3285309 crossref_primary_10_1016_j_bspc_2021_103370 crossref_primary_10_1109_JBHI_2023_3311338 crossref_primary_10_1186_s12911_020_01309_5 crossref_primary_10_1109_ACCESS_2020_2976866 crossref_primary_10_1016_j_compbiomed_2022_106420 crossref_primary_10_1038_s41598_022_08490_9 crossref_primary_10_1016_j_eswa_2023_120279 crossref_primary_10_1093_cercor_bhad511 crossref_primary_10_1016_j_celrep_2023_112449 crossref_primary_10_1007_s11571_020_09626_1 crossref_primary_10_1109_TNSRE_2023_3320693 crossref_primary_10_1088_1741_2552_abd82b crossref_primary_10_1016_j_future_2023_01_028 crossref_primary_10_1109_TBME_2024_3439820 crossref_primary_10_1080_10447318_2023_2275088 crossref_primary_10_1145_3648106 crossref_primary_10_1155_2024_4459867 crossref_primary_10_1016_j_ipm_2022_103001 crossref_primary_10_3390_brainsci15010050 crossref_primary_10_3389_fnhum_2023_1194751 crossref_primary_10_3390_e25030464 crossref_primary_10_1016_j_jnrt_2024_100122 crossref_primary_10_1016_j_bspc_2024_106081 crossref_primary_10_1007_s00521_020_05393_6 crossref_primary_10_1109_TCYB_2024_3410844 crossref_primary_10_1109_TNNLS_2022_3159573 crossref_primary_10_1016_j_eswa_2024_123972 crossref_primary_10_1016_j_eswa_2024_123975 crossref_primary_10_1109_ACCESS_2020_3032153 crossref_primary_10_1016_j_jneumeth_2020_109037 crossref_primary_10_1109_TNSRE_2023_3257319 crossref_primary_10_1007_s11571_023_09947_x crossref_primary_10_3389_fnins_2022_796290 crossref_primary_10_1109_TCDS_2023_3257428 crossref_primary_10_1016_j_heliyon_2024_e30406 crossref_primary_10_1109_TNSRE_2024_3457502 crossref_primary_10_1080_2326263X_2023_2254463 crossref_primary_10_1016_j_knosys_2025_113096 crossref_primary_10_1109_TNSRE_2024_3457504 crossref_primary_10_3389_fncom_2024_1379368 crossref_primary_10_1109_JBHI_2023_3337072 crossref_primary_10_3389_fnins_2024_1493264 crossref_primary_10_1016_j_bspc_2024_106583 crossref_primary_10_1109_JBHI_2024_3452701 crossref_primary_10_1016_j_ifacol_2023_10_1458 crossref_primary_10_1088_1402_4896_ad5237 crossref_primary_10_1016_j_cmpb_2025_108594 crossref_primary_10_1088_1741_2552_ad9778 crossref_primary_10_3389_fncom_2022_803384 crossref_primary_10_3390_math13010166 crossref_primary_10_1016_j_cmpb_2025_108595 crossref_primary_10_1016_j_aei_2024_102522 crossref_primary_10_1016_j_aej_2024_06_058 crossref_primary_10_1109_JSEN_2023_3265688 crossref_primary_10_3389_fninf_2022_811756 crossref_primary_10_1007_s11042_024_18698_8 crossref_primary_10_1109_ACCESS_2020_2971656 crossref_primary_10_1109_JBHI_2024_3498916 crossref_primary_10_1088_1741_2552_ac7f5d crossref_primary_10_1145_3344258 crossref_primary_10_3389_fnrgo_2023_1274730 crossref_primary_10_1016_j_eswa_2024_123993 crossref_primary_10_3389_fnhum_2023_1033420 crossref_primary_10_1016_j_neuroimage_2022_119783 crossref_primary_10_1109_JBHI_2024_3392564 crossref_primary_10_3389_fnins_2024_1309594 crossref_primary_10_1016_j_mlwa_2024_100542 crossref_primary_10_3390_s20072027 crossref_primary_10_1109_ACCESS_2019_2934018 crossref_primary_10_1016_j_aei_2024_102971 crossref_primary_10_1016_j_jneumeth_2021_109346 crossref_primary_10_1016_j_compbiolchem_2023_107863 crossref_primary_10_1016_j_inffus_2024_102447 crossref_primary_10_3390_electronics10233020 crossref_primary_10_1002_jdn_10166 crossref_primary_10_1109_ACCESS_2023_3262025 crossref_primary_10_1109_TCSII_2022_3169004 crossref_primary_10_3389_fnins_2024_1508747 crossref_primary_10_1109_TIM_2024_3375980 crossref_primary_10_3390_brainsci13111583 crossref_primary_10_1109_TNSRE_2025_3528409 crossref_primary_10_1007_s11831_021_09684_6 crossref_primary_10_1109_ACCESS_2020_2988057 crossref_primary_10_1109_THMS_2023_3332209 crossref_primary_10_1142_S0129065723500090 crossref_primary_10_1016_j_bspc_2025_107706 crossref_primary_10_1088_1741_2552_ac5d69 crossref_primary_10_1016_j_engappai_2024_109256 crossref_primary_10_1016_j_compbiomed_2023_106782 crossref_primary_10_1145_3666002 crossref_primary_10_1016_j_eswa_2023_122356 crossref_primary_10_1109_TNSRE_2023_3299156 crossref_primary_10_1088_1741_2552_acf2c9 crossref_primary_10_1109_JBHI_2024_3496757 crossref_primary_10_1016_j_bspc_2024_106131 crossref_primary_10_1109_TITS_2024_3522308 crossref_primary_10_3389_fnins_2023_1219988 crossref_primary_10_1016_j_irbm_2021_04_004 crossref_primary_10_1016_j_brainres_2025_149484 crossref_primary_10_1016_j_compbiomed_2023_107649 crossref_primary_10_1016_j_neucom_2024_128624 crossref_primary_10_1016_j_neunet_2024_106338 crossref_primary_10_1109_TBME_2021_3062502 crossref_primary_10_1016_j_jneumeth_2021_109367 crossref_primary_10_3389_fnhum_2019_00201 crossref_primary_10_1063_5_0232481 crossref_primary_10_1016_j_neunet_2023_01_009 crossref_primary_10_1007_s11571_025_10239_9 crossref_primary_10_3390_app122010273 crossref_primary_10_1109_JSEN_2024_3468951 crossref_primary_10_1038_s41467_022_28451_0 crossref_primary_10_1109_TIM_2024_3476618 crossref_primary_10_1109_TNSRE_2022_3228216 crossref_primary_10_12677_CSA_2024_143052 crossref_primary_10_3390_s21196672 crossref_primary_10_14789_jmj_JMJ23_0011_R crossref_primary_10_1007_s00521_021_06202_4 crossref_primary_10_3389_fnhum_2023_1126938 crossref_primary_10_1080_27706710_2024_2366193 crossref_primary_10_1109_ACCESS_2022_3195513 crossref_primary_10_1109_TNSRE_2023_3259991 crossref_primary_10_1109_TBME_2021_3095848 crossref_primary_10_1109_TNSRE_2023_3236434 crossref_primary_10_1109_ACCESS_2021_3088757 crossref_primary_10_3389_fphys_2023_1188678 crossref_primary_10_1109_THMS_2022_3168421 crossref_primary_10_1016_j_neuroscience_2025_01_049 crossref_primary_10_1109_MSMC_2021_3090569 crossref_primary_10_1088_1741_2552_abc902 crossref_primary_10_1088_1741_2552_abc903 crossref_primary_10_1080_27706710_2024_2438050 crossref_primary_10_1016_j_eswa_2024_123550 crossref_primary_10_1016_j_neunet_2024_106313 crossref_primary_10_1109_ACCESS_2024_3522996 crossref_primary_10_1109_ACCESS_2023_3320561 crossref_primary_10_1109_JBHI_2024_3404664 crossref_primary_10_1016_j_bspc_2024_107458 crossref_primary_10_1109_LSENS_2023_3320066 crossref_primary_10_1007_s11571_022_09906_y crossref_primary_10_1016_j_bspc_2025_107756 crossref_primary_10_1109_ACCESS_2024_3405652 crossref_primary_10_1109_JSEN_2024_3363754 crossref_primary_10_1186_s40708_023_00201_y crossref_primary_10_1109_JBHI_2023_3292909 crossref_primary_10_1109_TNSRE_2021_3095298 crossref_primary_10_1088_1741_2552_ada30b crossref_primary_10_1007_s11571_024_10162_5 crossref_primary_10_3390_diagnostics12040995 crossref_primary_10_1109_TAI_2024_3385390 crossref_primary_10_3390_s23239588 crossref_primary_10_1109_TCDS_2024_3370261 crossref_primary_10_1186_s12938_023_01129_4 crossref_primary_10_1016_j_engappai_2024_109642 crossref_primary_10_3390_s21175765 crossref_primary_10_1080_2326263X_2024_2347790 crossref_primary_10_3390_math12203286 crossref_primary_10_1080_27706710_2023_2181102 crossref_primary_10_1109_TNSRE_2024_3445115 crossref_primary_10_3389_fnhum_2024_1334721 crossref_primary_10_1016_j_bspc_2024_106985 crossref_primary_10_1109_MSMC_2021_3069145 crossref_primary_10_1134_S1064226924700359 crossref_primary_10_1109_TII_2021_3132340 crossref_primary_10_1088_1741_2552_adaf58 crossref_primary_10_1016_j_aej_2021_10_034 crossref_primary_10_1109_TNSRE_2022_3173724 crossref_primary_10_2139_ssrn_3986909 crossref_primary_10_1109_JSTSP_2024_3408100 crossref_primary_10_1109_TNSRE_2023_3339698 crossref_primary_10_1016_j_medntd_2021_100100 crossref_primary_10_3389_fnhum_2021_765525 crossref_primary_10_1016_j_neuri_2023_100154 crossref_primary_10_1016_j_bspc_2020_102227 crossref_primary_10_1109_ACCESS_2022_3176367 crossref_primary_10_1016_j_aei_2024_102575 crossref_primary_10_3390_s21175746 crossref_primary_10_32604_cmc_2024_049898 crossref_primary_10_3390_s21175740 crossref_primary_10_1016_j_dsp_2023_104278 crossref_primary_10_1109_TNSRE_2022_3211881 crossref_primary_10_1371_journal_pone_0234178 crossref_primary_10_1088_1741_2552_ac115d crossref_primary_10_1007_s10489_023_04561_0 crossref_primary_10_1016_j_neucom_2022_09_124 crossref_primary_10_1016_j_compbiomed_2023_107235 crossref_primary_10_1016_j_imu_2023_101352 crossref_primary_10_1155_2024_6091523 crossref_primary_10_1109_TCDS_2021_3079712 crossref_primary_10_1109_TNNLS_2022_3172108 crossref_primary_10_1088_1741_2552_ac463a crossref_primary_10_1016_j_neunet_2024_106734 crossref_primary_10_1016_j_eswa_2023_121915 crossref_primary_10_3389_fnhum_2023_1153413 crossref_primary_10_1109_TETCI_2024_3359097 crossref_primary_10_1098_rsos_230022 crossref_primary_10_1109_ACCESS_2020_2971600 crossref_primary_10_1109_TAFFC_2022_3169001 crossref_primary_10_1038_s42003_020_0846_z crossref_primary_10_1109_TMRB_2020_3025364 crossref_primary_10_3390_fi13050103 crossref_primary_10_1016_j_eswa_2024_125303 crossref_primary_10_1016_j_device_2024_100425 crossref_primary_10_1016_j_energy_2024_133476 crossref_primary_10_1088_1741_2552_ac028b crossref_primary_10_1109_ACCESS_2020_3047678 crossref_primary_10_3389_fnins_2020_587520 crossref_primary_10_1088_1741_2552_ac93b4 crossref_primary_10_3390_electronics13091646 crossref_primary_10_3390_s22218250 crossref_primary_10_1007_s11571_024_10073_5 crossref_primary_10_1016_j_compbiomed_2023_107254 crossref_primary_10_1016_j_jad_2024_09_006 crossref_primary_10_1109_TMC_2024_3446829 crossref_primary_10_1038_s42256_023_00714_5 crossref_primary_10_1109_TAFFC_2022_3210958 crossref_primary_10_3390_s24134167 crossref_primary_10_1002_eng2_12827 crossref_primary_10_1016_j_neucom_2021_08_067 crossref_primary_10_1109_JBHI_2024_3386565 crossref_primary_10_3390_brainsci11111397 crossref_primary_10_1016_j_bspc_2024_106996 crossref_primary_10_1088_1741_2552_acabe9 crossref_primary_10_1088_1741_2552_ad29d6 crossref_primary_10_1109_TNSRE_2023_3242280 crossref_primary_10_1038_s41598_024_59469_7 crossref_primary_10_1109_ACCESS_2022_3178100 crossref_primary_10_1088_1741_2552_ad5761 crossref_primary_10_1162_jocn_a_02279 crossref_primary_10_1007_s11432_022_3440_5 crossref_primary_10_1007_s11760_023_02965_6 crossref_primary_10_1007_s00521_022_07518_5 crossref_primary_10_1016_j_bspc_2021_102507 crossref_primary_10_3390_bioengineering9070323 crossref_primary_10_1109_TNSRE_2024_3502135 crossref_primary_10_1155_2020_6631400 crossref_primary_10_3390_technologies12120261 crossref_primary_10_1016_j_bbe_2022_05_002 crossref_primary_10_1080_27706710_2023_2285052 crossref_primary_10_1088_1361_6501_ad1157 crossref_primary_10_1107_S1600576724001390 crossref_primary_10_1109_TBME_2020_3004548 crossref_primary_10_15622_ia_2021_20_1_4 crossref_primary_10_1016_j_bbe_2021_10_001 crossref_primary_10_1016_j_ipm_2024_104012 crossref_primary_10_1109_TNSRE_2023_3324148 crossref_primary_10_1016_j_prime_2024_100451 crossref_primary_10_3389_fnins_2022_792318 crossref_primary_10_3390_s21062096 crossref_primary_10_1109_TOH_2024_3428308 crossref_primary_10_3390_app112210906 crossref_primary_10_1088_1741_2552_ab260c crossref_primary_10_3390_brainsci14090860 crossref_primary_10_1109_TNSRE_2023_3321640 crossref_primary_10_1016_j_bspc_2023_105885 crossref_primary_10_1016_j_future_2025_107782 crossref_primary_10_1016_j_ijmedinf_2025_105859 crossref_primary_10_1109_ACCESS_2021_3105917 crossref_primary_10_1109_JIOT_2024_3367690 crossref_primary_10_3390_brainsci14121211 crossref_primary_10_1088_1741_2552_ac1d36 crossref_primary_10_1080_10255842_2024_2355490 crossref_primary_10_1088_1741_2552_ac1d32 crossref_primary_10_1088_1741_2552_ac84a9 crossref_primary_10_1186_s12984_023_01181_0 crossref_primary_10_1088_1741_2552_ac9050 crossref_primary_10_1088_1741_2552_ad8efc crossref_primary_10_1007_s11571_024_10215_9 crossref_primary_10_3389_fninf_2024_1459970 crossref_primary_10_1016_j_neuroscience_2024_02_011 crossref_primary_10_1109_JSEN_2025_3528009 crossref_primary_10_1109_TCE_2023_3330423 crossref_primary_10_1016_j_medengphy_2023_104069 crossref_primary_10_1109_JBHI_2024_3443651 crossref_primary_10_3390_math10132302 crossref_primary_10_1109_TNSRE_2024_3460348 crossref_primary_10_1088_1741_2552_adbcda crossref_primary_10_1016_j_bspc_2023_105867 crossref_primary_10_1016_j_neucom_2023_01_087 crossref_primary_10_1109_TCYB_2022_3211694 crossref_primary_10_3389_fnhum_2021_646915 crossref_primary_10_3389_fnbot_2024_1485640 crossref_primary_10_3390_math12131989 crossref_primary_10_1109_TMM_2024_3385676 crossref_primary_10_3389_fnins_2024_1480871 crossref_primary_10_1109_TIM_2024_3480232 crossref_primary_10_1109_ACCESS_2020_2984383 crossref_primary_10_1109_ACCESS_2021_3078470 crossref_primary_10_1016_j_jneumeth_2020_108886 crossref_primary_10_3389_fpsyg_2022_924793 crossref_primary_10_1088_1741_2552_ad7904 crossref_primary_10_3390_electronics11223674 crossref_primary_10_3389_fnhum_2022_986928 crossref_primary_10_1109_TNSRE_2022_3154369 crossref_primary_10_1016_j_neuroimage_2023_120142 crossref_primary_10_1016_j_dsp_2024_104856 crossref_primary_10_1016_j_patrec_2023_10_011 crossref_primary_10_1007_s11571_024_10192_z crossref_primary_10_1016_j_bspc_2023_105854 crossref_primary_10_1088_1741_2552_ac9c94 crossref_primary_10_1109_TIM_2024_3381720 crossref_primary_10_1088_1741_2552_abe20f crossref_primary_10_1088_1741_2552_ad6cf5 crossref_primary_10_1088_1741_2552_ac9c98 crossref_primary_10_1109_TIFS_2021_3067998 crossref_primary_10_1016_j_bspc_2023_104999 crossref_primary_10_1016_j_bspc_2023_104998 crossref_primary_10_1109_ACCESS_2020_2997681 crossref_primary_10_1016_j_engappai_2023_106122 crossref_primary_10_1016_j_neuroscience_2023_07_020 crossref_primary_10_1162_imag_a_00511 crossref_primary_10_1088_2631_8695_adb00d crossref_primary_10_1109_TCYB_2021_3052813 crossref_primary_10_1007_s11517_024_03137_5 crossref_primary_10_1002_sdtp_13086 crossref_primary_10_1109_ACCESS_2022_3167703 crossref_primary_10_1016_j_eswa_2024_126127 crossref_primary_10_1080_2326263X_2022_2134623 crossref_primary_10_3390_brainsci15020129 crossref_primary_10_3390_diagnostics13040640 crossref_primary_10_1186_s12859_024_06024_w crossref_primary_10_1109_TNSRE_2021_3087506 crossref_primary_10_1109_TBME_2018_2889512 crossref_primary_10_1038_s41598_019_53751_9 crossref_primary_10_1109_TIM_2024_3481538 crossref_primary_10_1088_1741_2552_ad0c61 crossref_primary_10_3389_fnins_2023_1124089 crossref_primary_10_1109_TNSRE_2021_3096874 crossref_primary_10_1088_1741_2552_acf78a crossref_primary_10_1038_s41386_023_01658_5 crossref_primary_10_1186_s40708_023_00198_4 crossref_primary_10_3389_fnhum_2024_1442398 crossref_primary_10_1111_nyas_15288 crossref_primary_10_1016_j_jiixd_2024_06_003 crossref_primary_10_1109_ACCESS_2024_3371904 crossref_primary_10_1109_TNSRE_2020_3006180 crossref_primary_10_1016_j_bspc_2023_104579 crossref_primary_10_1109_JBHI_2024_3411646 crossref_primary_10_1109_ACCESS_2024_3501013 crossref_primary_10_1109_MCI_2021_3129956 crossref_primary_10_3389_fnhum_2021_653659 crossref_primary_10_1109_TNSRE_2020_2981659 crossref_primary_10_3390_diagnostics13061122 crossref_primary_10_3390_s23010498 crossref_primary_10_1109_TCSII_2022_3177616 crossref_primary_10_1007_s11517_023_02967_z crossref_primary_10_1088_1741_2552_ad3986 crossref_primary_10_1109_ACCESS_2021_3072731 crossref_primary_10_1016_j_displa_2024_102879 crossref_primary_10_3390_s25020397 crossref_primary_10_1088_1741_2552_ad3987 crossref_primary_10_1109_JBHI_2022_3185587 crossref_primary_10_3389_fnbot_2025_1540033 crossref_primary_10_3390_s24248127 crossref_primary_10_1016_j_foodchem_2024_141533 crossref_primary_10_1109_TMC_2023_3283022 crossref_primary_10_1088_1741_2552_acec14 crossref_primary_10_1109_JSEN_2023_3313236 crossref_primary_10_1088_1741_2552_ab3bb4 crossref_primary_10_3389_fnhum_2021_655840 crossref_primary_10_3390_s25010120 crossref_primary_10_1109_JSEN_2024_3389685 crossref_primary_10_1109_TCBB_2021_3052811 crossref_primary_10_3390_brainsci14121201 crossref_primary_10_1186_s12911_020_01306_8 crossref_primary_10_1109_TNSRE_2024_3454088 crossref_primary_10_3390_brainsci15020124 crossref_primary_10_3390_bioengineering11040347 crossref_primary_10_1109_TNNLS_2023_3305621 crossref_primary_10_1038_s41598_022_27332_2 crossref_primary_10_1007_s10055_023_00818_8 crossref_primary_10_1016_j_engappai_2025_110340 crossref_primary_10_1016_j_neunet_2024_106497 crossref_primary_10_1038_s41597_023_02787_8 crossref_primary_10_1007_s10489_023_05258_0 crossref_primary_10_1016_j_jneumeth_2023_109969 crossref_primary_10_1016_j_patcog_2024_111114 crossref_primary_10_1016_j_bspc_2024_106182 crossref_primary_10_3389_fnins_2022_913027 crossref_primary_10_1016_j_bspc_2020_101845 crossref_primary_10_1109_ACCESS_2023_3329678 crossref_primary_10_1007_s11571_024_10135_8 crossref_primary_10_3390_app14020534 crossref_primary_10_1016_j_jneumeth_2023_109953 crossref_primary_10_1016_j_eswa_2023_122777 crossref_primary_10_1109_ACCESS_2025_3540164 crossref_primary_10_1109_JSEN_2022_3171808 crossref_primary_10_1016_j_bspc_2024_107001 crossref_primary_10_1088_1741_2552_ac857c crossref_primary_10_1016_j_bspc_2024_107000 crossref_primary_10_1016_j_neunet_2024_106471 crossref_primary_10_1016_j_neunet_2024_106470 crossref_primary_10_1016_j_bspc_2024_106156 crossref_primary_10_1088_2632_2153_ad9135 crossref_primary_10_1007_s11571_024_10100_5 crossref_primary_10_1109_ACCESS_2023_3258969 crossref_primary_10_1016_j_bspc_2023_104924 crossref_primary_10_1109_TBCAS_2021_3137290 crossref_primary_10_1109_TCYB_2024_3415369 crossref_primary_10_1088_1741_2552_ac7257 crossref_primary_10_1109_TNSRE_2023_3237319 crossref_primary_10_1016_j_patrec_2021_01_036 crossref_primary_10_3390_brainsci11111525 crossref_primary_10_1109_TCDS_2023_3245042 crossref_primary_10_1109_TCDS_2023_3279262 crossref_primary_10_1109_JBHI_2024_3464550 crossref_primary_10_1016_j_bspc_2024_107019 crossref_primary_10_1109_ACCESS_2021_3089998 crossref_primary_10_1016_j_bspc_2024_107015 crossref_primary_10_1109_TCDS_2023_3245048 crossref_primary_10_1109_ACCESS_2023_3299497 crossref_primary_10_1049_ell2_13229 crossref_primary_10_1007_s12553_020_00458_x crossref_primary_10_1109_TNSRE_2023_3241846 crossref_primary_10_1109_TNSRE_2021_3083548 crossref_primary_10_1016_j_bspc_2021_103021 crossref_primary_10_1016_j_ynirp_2022_100118 crossref_primary_10_1145_3659589 crossref_primary_10_1016_j_bspc_2021_103023 crossref_primary_10_1088_1741_2552_acbb2c crossref_primary_10_1088_1741_2552_ab0ab5 crossref_primary_10_1016_j_ins_2022_12_088 crossref_primary_10_1109_TETCI_2023_3335943 crossref_primary_10_1016_j_compbiomed_2024_108075 crossref_primary_10_1109_JBHI_2021_3131104 crossref_primary_10_1088_1741_2552_ad171a crossref_primary_10_1016_j_engappai_2022_105349 crossref_primary_10_1016_j_neucom_2024_128902 crossref_primary_10_1088_1741_2552_ad6187 crossref_primary_10_1016_j_bspc_2021_103013 crossref_primary_10_1088_1741_2552_ad6189 crossref_primary_10_1016_j_cmpb_2023_107593 crossref_primary_10_1016_j_bbe_2024_11_003 crossref_primary_10_1109_JBHI_2024_3415163 crossref_primary_10_1016_j_ijhcs_2023_103009 crossref_primary_10_3390_s19235317 crossref_primary_10_1109_TNSRE_2022_3204540 crossref_primary_10_1109_ACCESS_2023_3294618 crossref_primary_10_3390_s20164485 crossref_primary_10_1016_j_neunet_2023_08_008 crossref_primary_10_3390_s24165428 crossref_primary_10_1016_j_compbiomed_2023_106857 crossref_primary_10_1109_ACCESS_2023_3325283 crossref_primary_10_1016_j_neucom_2024_128920 crossref_primary_10_1016_j_compbiomed_2022_105242 crossref_primary_10_1162_neco_a_01223 crossref_primary_10_1109_TNSRE_2024_3415364 crossref_primary_10_3389_frobt_2020_00038 crossref_primary_10_1016_j_bspc_2021_103026 crossref_primary_10_1080_0954898X_2025_2453620 crossref_primary_10_1080_10255842_2024_2448576 crossref_primary_10_1109_TNSRE_2021_3059429 crossref_primary_10_2139_ssrn_4000327 crossref_primary_10_3934_mbe_2022325 crossref_primary_10_1080_10255842_2025_2477801 crossref_primary_10_1002_int_22551 crossref_primary_10_1016_j_robot_2024_104899 crossref_primary_10_1038_s41597_021_00883_1 crossref_primary_10_1109_TIM_2024_3522413 crossref_primary_10_1109_TNNLS_2023_3243339 crossref_primary_10_1016_j_bspc_2021_103102 crossref_primary_10_1109_TNSRE_2024_3434983 crossref_primary_10_1016_j_bspc_2022_103855 crossref_primary_10_1109_TIM_2025_3527610 crossref_primary_10_1109_TBME_2024_3355215 crossref_primary_10_1109_TNSRE_2023_3330911 crossref_primary_10_1007_s42979_024_03419_7 crossref_primary_10_1016_j_bspc_2022_103857 crossref_primary_10_3390_s21196503 crossref_primary_10_1088_1741_2552_ad0859 crossref_primary_10_1016_j_knosys_2023_110383 crossref_primary_10_1109_TII_2022_3227736 crossref_primary_10_1016_j_neunet_2022_06_008 crossref_primary_10_1088_1741_2552_ad33b3 crossref_primary_10_1109_ACCESS_2024_3368384 crossref_primary_10_3390_electronics12122743 crossref_primary_10_1016_j_neucom_2024_127622 crossref_primary_10_3390_app9081526 crossref_primary_10_3389_fnhum_2024_1448584 crossref_primary_10_1109_TNSRE_2023_3330922 crossref_primary_10_1016_j_ins_2024_121585 crossref_primary_10_1038_s41598_023_43542_8 crossref_primary_10_1109_JBHI_2023_3240891 crossref_primary_10_1038_s41598_023_43871_8 crossref_primary_10_1109_ACCESS_2023_3285236 crossref_primary_10_3390_brainsci13030483 crossref_primary_10_1088_1741_2552_ac9861 crossref_primary_10_3390_app12136707 crossref_primary_10_1016_j_bspc_2023_105063 crossref_primary_10_1109_TNSRE_2021_3079505 crossref_primary_10_1093_pnasnexus_pgae076 crossref_primary_10_1109_TNSRE_2021_3111689 crossref_primary_10_1109_ACCESS_2023_3277634 crossref_primary_10_1109_TNNLS_2023_3269949 crossref_primary_10_1109_TSMC_2021_3113823 crossref_primary_10_1007_s11571_023_09946_y crossref_primary_10_1088_1741_2552_ac13c0 crossref_primary_10_1016_j_neucom_2024_127628 crossref_primary_10_1109_TSMC_2021_3051136 crossref_primary_10_1016_j_neucom_2024_128961 crossref_primary_10_1016_j_compbiomed_2022_105288 crossref_primary_10_1109_JBHI_2024_3377373 crossref_primary_10_1007_s00607_023_01193_7 crossref_primary_10_3389_fnins_2022_801818 crossref_primary_10_1109_LSP_2023_3263433 crossref_primary_10_3390_s25051471 crossref_primary_10_1016_j_artmed_2019_101711 crossref_primary_10_31083_j_jin2305106 crossref_primary_10_3389_fncom_2023_1232925 crossref_primary_10_1016_j_bspc_2024_106685 crossref_primary_10_1038_s41598_021_92805_9 crossref_primary_10_3390_biomimetics10030178 crossref_primary_10_3389_fnins_2024_1539580 crossref_primary_10_1109_JBHI_2024_3463737 crossref_primary_10_1016_j_softx_2021_100951 crossref_primary_10_1109_TNNLS_2022_3147208 crossref_primary_10_1109_ACCESS_2021_3052656 crossref_primary_10_1007_s11571_021_09721_x crossref_primary_10_1109_ACCESS_2022_3165197 crossref_primary_10_1016_j_neuroimage_2025_121123 crossref_primary_10_3389_fnins_2019_01275 crossref_primary_10_1145_3689037 crossref_primary_10_1088_1741_2552_acc613 crossref_primary_10_1155_2022_6331956 crossref_primary_10_1088_1741_2552_ad6593 crossref_primary_10_1007_s13534_023_00309_4 crossref_primary_10_1016_j_jneumeth_2024_110356 crossref_primary_10_1016_j_eswa_2022_117417 crossref_primary_10_1186_s12911_020_01310_y crossref_primary_10_3389_fncom_2022_882290 crossref_primary_10_3390_app12031695 crossref_primary_10_1109_TNSRE_2022_3207624 crossref_primary_10_1109_TVCG_2024_3372101 crossref_primary_10_1088_1741_2552_ad658e crossref_primary_10_1002_cpe_5111 crossref_primary_10_1016_j_bspc_2024_107112 crossref_primary_10_1016_j_compbiomed_2019_02_023 crossref_primary_10_1016_j_neucom_2020_05_085 crossref_primary_10_3390_electronics13122290 crossref_primary_10_3390_s24103168 crossref_primary_10_1109_ACCESS_2022_3214994 crossref_primary_10_1007_s11760_022_02293_1 crossref_primary_10_1109_ACCESS_2022_3204758 crossref_primary_10_1016_j_cmpb_2022_107324 crossref_primary_10_1109_TNSRE_2023_3323325 crossref_primary_10_3390_app13010302 crossref_primary_10_1016_j_dsp_2022_103816 crossref_primary_10_3389_fneur_2021_640526 crossref_primary_10_1109_TAFFC_2023_3329526 crossref_primary_10_3389_fnins_2023_1167125 crossref_primary_10_1080_2326263X_2021_2009654 crossref_primary_10_1016_j_neunet_2020_12_013 crossref_primary_10_3390_bioengineering10050609 crossref_primary_10_3390_s24217080 crossref_primary_10_1016_j_patcog_2024_110726 crossref_primary_10_1109_ACCESS_2024_3516198 crossref_primary_10_1016_j_knosys_2020_106243 crossref_primary_10_1109_TNSRE_2024_3451010 crossref_primary_10_3389_fnins_2021_760979 crossref_primary_10_1088_1741_2552_ad788e crossref_primary_10_3389_fnins_2023_1148855 crossref_primary_10_1109_JIOT_2024_3458976 crossref_primary_10_3389_fnins_2025_1506104 crossref_primary_10_3389_fpubh_2020_584387 crossref_primary_10_1088_1741_2552_ac6770 crossref_primary_10_1109_JBHI_2023_3285268 crossref_primary_10_1088_1741_2552_ad788c crossref_primary_10_1109_TNNLS_2022_3202569 crossref_primary_10_1109_TCDS_2024_3395443 crossref_primary_10_3390_brainsci13020268 crossref_primary_10_1016_j_bspc_2023_105488 crossref_primary_10_1007_s10548_025_01100_7 crossref_primary_10_1007_s13042_025_02556_6 crossref_primary_10_1007_s11042_024_20264_1 crossref_primary_10_1016_j_jneumeth_2023_110036 crossref_primary_10_3390_s24020362 crossref_primary_10_1088_1741_2552_ac17d6 crossref_primary_10_3390_app15010392 crossref_primary_10_4103_jmss_jmss_59_22 crossref_primary_10_1016_j_compbiomed_2023_107323 crossref_primary_10_1016_j_ifacol_2024_08_564 crossref_primary_10_1109_TETCI_2024_3425328 crossref_primary_10_1016_j_asoc_2023_111129 crossref_primary_10_1016_j_nicl_2023_103482 crossref_primary_10_1109_JETCAS_2023_3242767 crossref_primary_10_1016_j_neucom_2021_08_119 crossref_primary_10_1016_j_eswa_2024_124775 crossref_primary_10_1007_s11571_024_10196_9 crossref_primary_10_1115_1_4053806 crossref_primary_10_1109_JSEN_2024_3515252 crossref_primary_10_1016_j_bspc_2023_105475 crossref_primary_10_1016_j_jneumeth_2024_110323 crossref_primary_10_3390_signals4010004 crossref_primary_10_1007_s00521_020_05588_x crossref_primary_10_1371_journal_pone_0311942 crossref_primary_10_1007_s12652_021_03351_1 crossref_primary_10_1088_1741_2552_adb998 crossref_primary_10_1109_TNSRE_2023_3268979 crossref_primary_10_1155_2024_8742261 crossref_primary_10_1016_j_bspc_2023_105460 crossref_primary_10_1109_TITS_2023_3347075 crossref_primary_10_3390_brainsci14050469 crossref_primary_10_1016_j_jneumeth_2022_109580 crossref_primary_10_1209_0295_5075_ad602f crossref_primary_10_1016_j_bspc_2023_105464 crossref_primary_10_3390_ctn8010013 crossref_primary_10_26599_BSA_2023_9050012 crossref_primary_10_26599_BSA_2023_9050011 crossref_primary_10_1016_j_aei_2024_102697 crossref_primary_10_3390_signals5030034 crossref_primary_10_26599_BSA_2023_9050016 crossref_primary_10_26599_BSA_2023_9050013 crossref_primary_10_3390_brainsci14050478 crossref_primary_10_1016_j_compbiomed_2024_108973 crossref_primary_10_1109_TNSRE_2023_3330500 crossref_primary_10_1016_j_jneumeth_2022_109593 crossref_primary_10_1109_TNNLS_2023_3236635 crossref_primary_10_1109_TPAMI_2023_3257846 crossref_primary_10_1016_j_bspc_2022_103803 crossref_primary_10_1016_j_rcim_2023_102610 crossref_primary_10_1016_j_neucom_2024_128577 crossref_primary_10_3389_fnhum_2022_975410 crossref_primary_10_3389_fnins_2024_1402154 crossref_primary_10_3390_s21062173 crossref_primary_10_1016_j_neucom_2024_127243 crossref_primary_10_1109_TETCI_2022_3147225 crossref_primary_10_1109_TNNLS_2023_3307470 crossref_primary_10_1109_LSP_2024_3400037 crossref_primary_10_3390_jpm15010027 crossref_primary_10_3390_brainsci13020221 crossref_primary_10_1109_OJSP_2023_3340063 crossref_primary_10_1016_j_ynirp_2025_100242 crossref_primary_10_1109_TNSRE_2023_3294815 crossref_primary_10_1016_j_smhl_2022_100339 crossref_primary_10_1109_TNSRE_2022_3156076 crossref_primary_10_1109_TNSRE_2023_3327788 crossref_primary_10_3389_fnbot_2024_1343249 crossref_primary_10_1016_j_compbiomed_2024_108504 crossref_primary_10_1080_10447318_2023_2278926 crossref_primary_10_3390_life13020391 crossref_primary_10_3390_brainsci14050498 crossref_primary_10_1088_1741_2552_acb1d9 crossref_primary_10_1109_TBME_2023_3344295 crossref_primary_10_1007_s00521_018_3879_1 crossref_primary_10_1088_1741_2552_ad430d crossref_primary_10_1109_TSMC_2023_3340710 crossref_primary_10_1016_j_bspc_2023_105032 crossref_primary_10_1109_TNSRE_2023_3304660 crossref_primary_10_1109_TCDS_2021_3053455 crossref_primary_10_1109_TNSE_2022_3222362 crossref_primary_10_1007_s10527_024_10382_3 crossref_primary_10_1016_j_neucom_2023_03_071 crossref_primary_10_1038_s41597_024_04090_6 crossref_primary_10_1007_s12559_023_10188_7 crossref_primary_10_1016_j_neucom_2020_07_072 crossref_primary_10_3390_brainsci14121272 crossref_primary_10_1016_j_neucom_2022_08_024 crossref_primary_10_1088_1741_2552_ad3c28 crossref_primary_10_3389_fnins_2019_01215 crossref_primary_10_1007_s41870_024_02400_0 crossref_primary_10_3390_signals4010013 crossref_primary_10_1016_j_bspc_2021_102626 crossref_primary_10_1016_j_heliyon_2024_e37343 crossref_primary_10_1016_j_bspc_2024_106645 crossref_primary_10_1088_1741_2552_abf473 crossref_primary_10_1109_TPAMI_2024_3408684 crossref_primary_10_3389_fnagi_2022_909571 crossref_primary_10_1016_j_physa_2024_130191 crossref_primary_10_1016_j_neunet_2024_106844 crossref_primary_10_1109_ACCESS_2020_3002459 crossref_primary_10_1016_j_neunet_2024_106847 crossref_primary_10_3390_electronics13112084 crossref_primary_10_1088_1741_2552_acfe9c crossref_primary_10_1109_TNSRE_2022_3180155 crossref_primary_10_1016_j_dsp_2024_104720 crossref_primary_10_3390_s23041932 crossref_primary_10_1109_ACCESS_2022_3161489 crossref_primary_10_3390_app13063578 crossref_primary_10_1016_j_artmed_2023_102755 crossref_primary_10_1016_j_bspc_2022_104397 crossref_primary_10_1016_j_bspc_2023_105524 crossref_primary_10_1016_j_neunet_2020_06_018 crossref_primary_10_1088_1742_6596_2219_1_012057 crossref_primary_10_1016_j_neucom_2024_129239 crossref_primary_10_31083_j_jin2308153 crossref_primary_10_1186_s40708_024_00239_6 crossref_primary_10_1016_j_neucom_2025_129994 crossref_primary_10_1109_TCDS_2022_3193731 crossref_primary_10_1016_j_neunet_2024_107066 crossref_primary_10_1088_1741_2552_ada0e4 crossref_primary_10_1088_1741_2552_ada0e3 crossref_primary_10_3390_s24123755 crossref_primary_10_1016_j_bspc_2025_107492 crossref_primary_10_1109_ACCESS_2025_3528539 crossref_primary_10_3233_IDT_230715 crossref_primary_10_3389_fnhum_2024_1385360 crossref_primary_10_3390_app10165662 crossref_primary_10_1109_TBME_2024_3404131 crossref_primary_10_1109_RBME_2024_3449790 crossref_primary_10_1016_j_neunet_2025_107337 crossref_primary_10_1016_j_eswa_2024_125585 crossref_primary_10_1016_j_neuroimage_2023_120495 crossref_primary_10_3390_s23229049 crossref_primary_10_1016_j_neuroimage_2021_118809 crossref_primary_10_3389_fnins_2022_1003984 crossref_primary_10_1038_s41598_024_84534_6 crossref_primary_10_1088_1741_2552_ad4f18 crossref_primary_10_1007_s00521_022_07542_5 crossref_primary_10_1109_MCI_2022_3199622 crossref_primary_10_3390_electronics9030422 crossref_primary_10_1109_TNSRE_2024_3435016 crossref_primary_10_1016_j_knosys_2025_113315 crossref_primary_10_1007_s11517_023_02931_x crossref_primary_10_1109_JSEN_2024_3471894 crossref_primary_10_1016_j_fss_2022_10_003 crossref_primary_10_1016_j_neucom_2024_129255 crossref_primary_10_1109_ACCESS_2024_3474089 crossref_primary_10_1109_TSMC_2022_3156861 crossref_primary_10_3390_brainsci13071109 crossref_primary_10_1016_j_patcog_2023_109924 crossref_primary_10_1038_s41598_023_34487_z crossref_primary_10_1088_1741_2552_ac0584 crossref_primary_10_3389_fnhum_2021_645952 crossref_primary_10_3390_app10051609 crossref_primary_10_1088_1741_2552_ace380 crossref_primary_10_1088_1741_2552_abda0b crossref_primary_10_1109_TETCI_2023_3301385 crossref_primary_10_1016_j_asoc_2022_108889 crossref_primary_10_1109_TBME_2024_3474049 crossref_primary_10_1109_JBHI_2024_3441332 crossref_primary_10_1109_JSEN_2024_3387103 crossref_primary_10_1016_j_pedneo_2021_12_011 crossref_primary_10_1002_ima_22866 crossref_primary_10_1109_TSMC_2021_3062715 crossref_primary_10_1541_ieejeiss_140_737 crossref_primary_10_1088_1741_2552_ad4743 crossref_primary_10_3390_bioengineering11080781 crossref_primary_10_1038_s41598_025_87414_9 crossref_primary_10_1109_ACCESS_2024_3479308 crossref_primary_10_3389_fnins_2024_1320645 crossref_primary_10_1109_TNSRE_2022_3199363 crossref_primary_10_1016_j_bbe_2022_08_003 crossref_primary_10_1109_ACCESS_2023_3347336 crossref_primary_10_1016_j_eswa_2020_113202 crossref_primary_10_1007_s11571_024_10116_x crossref_primary_10_1088_2632_072X_ad1c68 crossref_primary_10_1016_j_artmed_2020_101852 crossref_primary_10_1016_j_knosys_2020_105932 crossref_primary_10_1109_JSEN_2023_3328615 crossref_primary_10_1016_j_neuroscience_2023_01_021 crossref_primary_10_1007_s11571_024_10214_w crossref_primary_10_1016_j_neucom_2023_126709 crossref_primary_10_1007_s11517_024_03103_1 crossref_primary_10_1007_s11760_022_02399_6 crossref_primary_10_1109_TNSRE_2022_3198041 crossref_primary_10_1016_j_neuroimage_2024_120781 crossref_primary_10_1142_S0218126625501075 crossref_primary_10_1016_j_bspc_2023_105556 crossref_primary_10_3390_electronics11234029 crossref_primary_10_3389_fninf_2025_1521805 crossref_primary_10_1109_TBCAS_2023_3238719 crossref_primary_10_1109_MDAT_2021_3069952 crossref_primary_10_1016_j_asoc_2021_108176 crossref_primary_10_1080_2326263X_2019_1568821 crossref_primary_10_1088_1742_6596_2644_1_012010 crossref_primary_10_1109_ACCESS_2025_3545094 crossref_primary_10_3389_fnhum_2022_1019279 crossref_primary_10_1109_ACCESS_2025_3541985 crossref_primary_10_1007_s10548_023_00991_8 crossref_primary_10_1088_1741_2552_abb7a7 crossref_primary_10_1002_hbm_26500 crossref_primary_10_1109_TNSRE_2024_3435460 crossref_primary_10_1109_TNSRE_2025_3530110 crossref_primary_10_1088_1741_2552_ac6a7d crossref_primary_10_1016_j_slast_2024_100142 crossref_primary_10_1016_j_asoc_2024_112631 crossref_primary_10_1016_j_bspc_2023_104689 crossref_primary_10_3390_bioengineering12020095 crossref_primary_10_1109_JBHI_2024_3472097 crossref_primary_10_3389_fnins_2025_1543508 crossref_primary_10_1109_ACCESS_2024_3458833 crossref_primary_10_1109_TNSRE_2024_3499998 crossref_primary_10_3390_computers12070145 crossref_primary_10_1016_j_bspc_2023_104684 crossref_primary_10_3390_neurosci3020017 crossref_primary_10_3389_fninf_2019_00074 crossref_primary_10_1007_s11432_024_4081_x crossref_primary_10_1007_s00521_024_09550_z crossref_primary_10_1038_s41598_024_70508_1 crossref_primary_10_3389_fnins_2023_1160040 crossref_primary_10_34133_cbsystems_0045 crossref_primary_10_1109_TNNLS_2022_3220551 crossref_primary_10_1109_ACCESS_2024_3410036 crossref_primary_10_1088_1741_2552_ac65b1 crossref_primary_10_3389_fnbot_2019_00076 crossref_primary_10_1109_TBME_2021_3137184 crossref_primary_10_1016_j_neucom_2025_129911 crossref_primary_10_1080_27706710_2024_2447576 crossref_primary_10_1016_j_eswa_2024_126047 crossref_primary_10_1016_j_compbiomed_2024_109483 crossref_primary_10_3390_make6010011 crossref_primary_10_1109_LSP_2021_3095761 crossref_primary_10_3390_app132312832 crossref_primary_10_1109_JSEN_2024_3461682 crossref_primary_10_1109_JSEN_2024_3445971 crossref_primary_10_1038_s41597_022_01509_w crossref_primary_10_1109_ACCESS_2020_3009665 crossref_primary_10_3390_s23177346 crossref_primary_10_1080_10447318_2025_2464097 crossref_primary_10_1109_TIM_2025_3550242 crossref_primary_10_1088_1741_2552_adbfc1 crossref_primary_10_3389_fnins_2023_1292724 crossref_primary_10_1002_hbm_24724 crossref_primary_10_1016_j_bspc_2024_107122 crossref_primary_10_1038_s41598_022_07517_5 crossref_primary_10_1371_journal_pone_0309706 crossref_primary_10_3390_s21051613 crossref_primary_10_1109_TBCAS_2022_3215962 crossref_primary_10_1088_1741_2552_ac1ade crossref_primary_10_1016_j_cmpb_2023_107641 crossref_primary_10_1109_JBHI_2024_3504604 crossref_primary_10_1109_TNNLS_2021_3100583 crossref_primary_10_1016_j_neunet_2024_106119 crossref_primary_10_3390_bioengineering8020021 crossref_primary_10_1109_TNSRE_2022_3191869 crossref_primary_10_1016_j_asoc_2023_110613 crossref_primary_10_1109_TBME_2024_3386219 crossref_primary_10_1109_TETCI_2023_3332549 crossref_primary_10_1016_j_bspc_2024_107132 crossref_primary_10_1088_1741_2552_ac5eb7 crossref_primary_10_1007_s11571_024_10134_9 crossref_primary_10_1109_ACCESS_2024_3383142 crossref_primary_10_1109_TNSRE_2019_2943362 crossref_primary_10_1016_j_jpsychires_2024_08_002 crossref_primary_10_1016_j_fmre_2024_04_011 crossref_primary_10_3389_fnhum_2021_643386 crossref_primary_10_1016_j_compeleceng_2025_110204 crossref_primary_10_1016_j_bspc_2024_107189 crossref_primary_10_1109_TNSRE_2023_3323509 crossref_primary_10_1016_j_compbiomed_2024_108188 crossref_primary_10_1109_TNSRE_2024_3415474 crossref_primary_10_3390_s19132854 crossref_primary_10_1109_ACCESS_2024_3404634 crossref_primary_10_1016_j_compbiomed_2023_107806 crossref_primary_10_1007_s11517_025_03340_y crossref_primary_10_1088_2057_1976_ad89c5 crossref_primary_10_3390_biomedicines13010213 crossref_primary_10_1016_j_eswa_2024_126081 crossref_primary_10_1016_j_bspc_2023_104627 crossref_primary_10_1109_TNSRE_2020_3038718 crossref_primary_10_3389_fnins_2025_1557287 crossref_primary_10_3390_brainsci15020098 crossref_primary_10_1016_j_procs_2018_11_062 crossref_primary_10_3389_fnins_2023_1173778 crossref_primary_10_1155_2021_6625141 crossref_primary_10_1007_s13246_024_01495_w crossref_primary_10_1016_j_bspc_2023_104620 crossref_primary_10_1038_s41598_024_73755_4 crossref_primary_10_3390_bios14050211 crossref_primary_10_1016_j_neuroimage_2021_118403 crossref_primary_10_31083_j_jin2312218 crossref_primary_10_1088_1741_2552_ace73f crossref_primary_10_3389_fnhum_2023_1240451 crossref_primary_10_1587_transinf_2021EDP7171 crossref_primary_10_1109_TNSRE_2019_2953121 crossref_primary_10_3390_s22176572 crossref_primary_10_1016_j_bspc_2024_107163 crossref_primary_10_3389_fnhum_2021_685173 crossref_primary_10_1109_ACCESS_2019_2917327 crossref_primary_10_1016_j_artmed_2023_102738 crossref_primary_10_1109_TITS_2023_3348517 crossref_primary_10_1016_j_eswa_2025_126381 crossref_primary_10_1016_j_jneumeth_2024_110057 crossref_primary_10_1109_TNSRE_2022_3145515 crossref_primary_10_3389_fnins_2022_926256 crossref_primary_10_1016_j_neunet_2024_107003 crossref_primary_10_3390_s24216815 crossref_primary_10_1109_TIM_2024_3352701 crossref_primary_10_3390_electronics8111208 crossref_primary_10_3389_fnins_2023_1125230 crossref_primary_10_1109_TIM_2024_3369143 crossref_primary_10_1109_TNSRE_2023_3252610 crossref_primary_10_1007_s10489_023_05134_x crossref_primary_10_1038_s41598_024_74366_9 crossref_primary_10_3390_diagnostics13172852 crossref_primary_10_1371_journal_pdig_0000282 crossref_primary_10_1109_ACCESS_2020_3011969 crossref_primary_10_1016_j_irbm_2021_07_001 crossref_primary_10_1109_JBHI_2024_3452410 crossref_primary_10_1093_comjnl_bxac080 crossref_primary_10_1109_TCDS_2024_3431224 crossref_primary_10_1109_JBHI_2024_3450753 crossref_primary_10_1109_TNSRE_2023_3259730 crossref_primary_10_1631_FITEE_2100489 crossref_primary_10_26599_BSA_2022_9050007 crossref_primary_10_1109_ACCESS_2020_3045225 crossref_primary_10_1007_s13534_024_00438_4 crossref_primary_10_26599_BSA_2022_9050001 crossref_primary_10_32604_cmc_2022_029073 crossref_primary_10_3389_fnhum_2022_1032724 crossref_primary_10_1109_TNSRE_2025_3529991 crossref_primary_10_3390_computation11110225 crossref_primary_10_1088_1741_2552_acfcda crossref_primary_10_24018_ejece_2024_8_3_617 crossref_primary_10_3390_s23146546 crossref_primary_10_3390_s19235302 crossref_primary_10_3389_fnins_2022_869522 crossref_primary_10_1109_JBHI_2023_3238421 crossref_primary_10_1109_JBHI_2024_3365051 crossref_primary_10_1109_JBHI_2024_3481005 crossref_primary_10_1016_j_neuroimage_2019_116361 crossref_primary_10_1016_j_compbiomed_2022_106220 crossref_primary_10_1109_TAFFC_2021_3126263 crossref_primary_10_1186_s40708_021_00133_5 crossref_primary_10_3390_e24030376 crossref_primary_10_1016_j_compbiomed_2024_109097 crossref_primary_10_1002_ecj_12280 crossref_primary_10_1016_j_neucom_2022_02_084 crossref_primary_10_1016_j_xpro_2025_103650 crossref_primary_10_3390_math12243915 crossref_primary_10_1109_JBHI_2022_3224506 crossref_primary_10_1109_TIM_2024_3451593 crossref_primary_10_1016_j_mejo_2023_105808 crossref_primary_10_1016_j_bspc_2024_106311 crossref_primary_10_1088_1741_2552_acfcd9 crossref_primary_10_1016_j_bspc_2024_106797 crossref_primary_10_1109_ACCESS_2025_3530091 crossref_primary_10_1109_TBME_2023_3303289 crossref_primary_10_1109_TCYB_2024_3390805 crossref_primary_10_1109_TNSRE_2022_3217344 crossref_primary_10_1088_1741_2552_aae5d8 crossref_primary_10_3389_fnhum_2024_1383956 crossref_primary_10_1063_5_0225972 crossref_primary_10_3389_fnins_2024_1507654 crossref_primary_10_3390_app9235078 crossref_primary_10_1016_j_bspc_2022_103531 crossref_primary_10_1109_TNSRE_2022_3229330 crossref_primary_10_1109_TDSC_2021_3060775 crossref_primary_10_3390_brainsci14050516 crossref_primary_10_1109_TNSRE_2024_3481886 crossref_primary_10_1038_s41598_021_99114_1 crossref_primary_10_1080_10255842_2024_2371036 crossref_primary_10_1088_1741_2552_ac38cf crossref_primary_10_3389_fnins_2024_1367212 crossref_primary_10_3390_bdcc8120169 crossref_primary_10_1088_1741_2552_aca798 crossref_primary_10_1109_ACCESS_2023_3328254 crossref_primary_10_1109_TNSRE_2022_3186442 crossref_primary_10_1109_TBME_2021_3130917 crossref_primary_10_3390_s23114993 crossref_primary_10_3390_bioengineering11090926 crossref_primary_10_3389_fnins_2025_1546559 crossref_primary_10_1088_1741_2552_ac1ed2 crossref_primary_10_1088_2516_1091_ad8530 crossref_primary_10_1093_pnasnexus_pgae145 crossref_primary_10_1109_TNSRE_2022_3175307 crossref_primary_10_3390_s20236730 crossref_primary_10_1109_ACCESS_2021_3064530 crossref_primary_10_1177_15500594241234836 crossref_primary_10_1016_j_neunet_2024_106108 crossref_primary_10_1109_JBHI_2020_2967128 crossref_primary_10_1016_j_compbiomed_2023_107893 crossref_primary_10_1088_2057_1976_ad90e8 crossref_primary_10_1088_1741_2552_ac1ed0 crossref_primary_10_1016_j_mejo_2024_106134 crossref_primary_10_1109_TNNLS_2022_3214225 crossref_primary_10_1109_TCDS_2019_2959055 crossref_primary_10_1016_j_bspc_2025_107526 crossref_primary_10_3390_math9243297 crossref_primary_10_1016_j_neucom_2024_128889 crossref_primary_10_1088_1741_2552_abc1b6 crossref_primary_10_1088_1741_2552_ac7976 crossref_primary_10_1142_S273748072441005X crossref_primary_10_1186_s12984_023_01169_w crossref_primary_10_1007_s11042_023_14659_9 crossref_primary_10_1109_TNSRE_2022_3150007 crossref_primary_10_3389_fnins_2021_663101 crossref_primary_10_1109_TNSRE_2022_3199713 crossref_primary_10_1109_TPAMI_2023_3292062 crossref_primary_10_24018_ejece_2024_8_3_632 crossref_primary_10_1109_TCDS_2022_3209801 crossref_primary_10_1016_j_bspc_2024_107213 crossref_primary_10_1016_j_neunet_2023_06_005 crossref_primary_10_1109_TIM_2022_3216409 crossref_primary_10_1109_TNSRE_2021_3139095 crossref_primary_10_1088_1741_2552_ad9956 crossref_primary_10_1088_1742_6596_2384_1_012043 crossref_primary_10_1007_s00521_023_09344_9 crossref_primary_10_1063_5_0243337 crossref_primary_10_1088_1741_2552_ad558a crossref_primary_10_1002_spe_3398 crossref_primary_10_1109_ACCESS_2024_3409843 crossref_primary_10_1088_1741_2552_ad49d7 crossref_primary_10_1371_journal_pone_0298867 crossref_primary_10_1016_j_bspc_2023_105125 crossref_primary_10_1109_TNSRE_2022_3174821 crossref_primary_10_1109_TPAMI_2023_3299568 crossref_primary_10_1109_TII_2019_2955447 crossref_primary_10_1088_1741_2552_ad7762 crossref_primary_10_1088_2057_1976_ad4f8e crossref_primary_10_1109_TCYB_2021_3068300 crossref_primary_10_1108_LHT_09_2020_0239 crossref_primary_10_11834_jig_230031 crossref_primary_10_1007_s10548_023_01016_0 crossref_primary_10_1109_TNSRE_2021_3137340 crossref_primary_10_1088_1741_2552_ad5109 crossref_primary_10_1038_s41746_024_01364_6 crossref_primary_10_1109_TCYB_2020_3010805 crossref_primary_10_1109_TNSRE_2022_3147673 crossref_primary_10_3390_electronics13112174 crossref_primary_10_1109_JBHI_2024_3419043 crossref_primary_10_3389_fnins_2024_1340164 crossref_primary_10_1016_j_aei_2020_101157 crossref_primary_10_3389_fnins_2020_00168 crossref_primary_10_1038_s41597_024_04114_1 crossref_primary_10_3390_s24185988 crossref_primary_10_3389_fnins_2021_642251 crossref_primary_10_2139_ssrn_4163287 crossref_primary_10_3390_s24134368 crossref_primary_10_1016_j_eswa_2024_123354 crossref_primary_10_3389_fnhum_2025_1542774 crossref_primary_10_1016_j_asoc_2022_108811 crossref_primary_10_3389_fnhum_2024_1430086 crossref_primary_10_1109_TNSRE_2020_3048106 crossref_primary_10_1007_s10470_023_02153_z crossref_primary_10_1016_j_aei_2022_101729 crossref_primary_10_1145_3524499 crossref_primary_10_1016_j_medengphy_2024_104154 crossref_primary_10_1007_s11227_025_06947_y crossref_primary_10_1007_s13755_024_00270_1 crossref_primary_10_1080_2326263X_2024_2409463 crossref_primary_10_1016_j_patcog_2022_108757 crossref_primary_10_3389_fneur_2023_1183810 crossref_primary_10_3390_s22207792 crossref_primary_10_1186_s40708_021_00151_3 crossref_primary_10_1109_TMRB_2024_3387092 crossref_primary_10_1109_ACCESS_2025_3525528 crossref_primary_10_1109_JIOT_2024_3402254 crossref_primary_10_1145_3654664 crossref_primary_10_1109_TASE_2020_3021456 crossref_primary_10_1016_j_compbiomed_2024_108619 crossref_primary_10_1007_s10489_024_05662_0 crossref_primary_10_1016_j_neunet_2023_06_040 crossref_primary_10_1109_ACCESS_2019_2936817 crossref_primary_10_1016_j_asoc_2021_107664 crossref_primary_10_3389_fnhum_2023_1111645 crossref_primary_10_1109_TBME_2019_2958641 crossref_primary_10_1109_ACCESS_2021_3085865 crossref_primary_10_3390_s24165086 crossref_primary_10_1016_j_cmpb_2024_108048 crossref_primary_10_1016_j_neunet_2023_04_045 crossref_primary_10_1016_j_neuroscience_2024_07_051 crossref_primary_10_1109_ACCESS_2020_3006907 crossref_primary_10_3390_s22186834 crossref_primary_10_1145_3478129 crossref_primary_10_1088_1742_6596_2891_11_112014 crossref_primary_10_1088_1741_2552_ad200e crossref_primary_10_1109_ACCESS_2024_3407690 crossref_primary_10_1109_JSEN_2022_3172133 crossref_primary_10_3390_s23187908 crossref_primary_10_1016_j_engappai_2024_109825 crossref_primary_10_1016_j_brainres_2023_148673 crossref_primary_10_1016_j_jneumeth_2021_109196 crossref_primary_10_3389_fnhum_2020_00103 crossref_primary_10_1109_JBHI_2024_3513038 crossref_primary_10_3389_fnins_2021_655599 crossref_primary_10_1109_ACCESS_2021_3056088 crossref_primary_10_1088_1741_2552_aca1e2 crossref_primary_10_1016_j_neuroimage_2022_119586 crossref_primary_10_1109_TBME_2022_3168570 crossref_primary_10_1080_27706710_2022_2075242 crossref_primary_10_3389_fnins_2024_1306283 crossref_primary_10_1088_1741_2552_ad2496 crossref_primary_10_1088_1741_2552_ad2494 crossref_primary_10_1088_1741_2552_ad2495 crossref_primary_10_1109_TCDS_2021_3099988 crossref_primary_10_1109_TMRB_2023_3315742 crossref_primary_10_1016_j_bspc_2021_102747 crossref_primary_10_1016_j_oceaneng_2022_112767 crossref_primary_10_1109_TNSRE_2023_3336356 crossref_primary_10_3389_fnhum_2023_1186594 crossref_primary_10_1016_j_aej_2024_09_053 crossref_primary_10_1186_s40708_020_00110_4 crossref_primary_10_3390_brainsci13020315 crossref_primary_10_1109_TBME_2023_3274231 crossref_primary_10_26599_BSA_2022_9050013 crossref_primary_10_1088_1741_2552_ac7908 crossref_primary_10_26599_BSA_2022_9050011 crossref_primary_10_3390_informatics9010026 crossref_primary_10_1016_j_displa_2023_102602 crossref_primary_10_1038_s41597_022_01647_1 crossref_primary_10_1109_JBHI_2023_3303494 crossref_primary_10_3390_jcm8071055 crossref_primary_10_1109_TNSRE_2023_3299355 crossref_primary_10_1145_3550334 crossref_primary_10_3389_fninf_2022_952474 crossref_primary_10_1007_s11571_024_10181_2 crossref_primary_10_1109_TNSRE_2023_3339179 crossref_primary_10_1109_ACCESS_2023_3270426 crossref_primary_10_3389_fnins_2023_1303648 crossref_primary_10_3390_s21051792 crossref_primary_10_3389_fncom_2023_1108889 crossref_primary_10_3390_mi13060927 crossref_primary_10_1007_s00521_021_06352_5 crossref_primary_10_1109_TSMC_2021_3114145 crossref_primary_10_1016_j_dscb_2024_100121 crossref_primary_10_1016_j_bspc_2023_105638 crossref_primary_10_1109_TNSRE_2023_3274563 crossref_primary_10_1109_TNSRE_2024_3450795 crossref_primary_10_1088_1741_2552_ad680b crossref_primary_10_1016_j_neunet_2021_08_019 crossref_primary_10_1038_s41597_024_03838_4 crossref_primary_10_1016_j_compbiomed_2024_109525 crossref_primary_10_1109_TETCI_2020_2997031 crossref_primary_10_1109_TNSRE_2023_3342331 crossref_primary_10_1109_ACCESS_2024_3502540 crossref_primary_10_3389_fninf_2024_1494970 crossref_primary_10_3389_fnins_2020_568104 crossref_primary_10_1088_1741_2552_ad09ff crossref_primary_10_1007_s00521_025_10979_z crossref_primary_10_1088_1741_2552_ac4852 crossref_primary_10_1109_TNSRE_2020_3023761 crossref_primary_10_1016_j_compbiomed_2024_108681 crossref_primary_10_1109_TAFFC_2023_3336531 crossref_primary_10_1109_TPAMI_2021_3121268 crossref_primary_10_1016_j_bspc_2023_105621 crossref_primary_10_3389_fnins_2020_00417 crossref_primary_10_1016_j_cmpb_2023_107365 crossref_primary_10_1088_1741_2552_abd10e crossref_primary_10_1109_TNSRE_2023_3273214 crossref_primary_10_1109_ACCESS_2022_3228164 crossref_primary_10_1109_TNSRE_2023_3300961 crossref_primary_10_1016_j_bspc_2021_102826 crossref_primary_10_3390_brainsci14080836 crossref_primary_10_1109_TIM_2025_3538086 crossref_primary_10_1109_TIM_2024_3400360 crossref_primary_10_1016_j_dajour_2023_100211 crossref_primary_10_1186_s12984_024_01330_z crossref_primary_10_1016_j_bspc_2022_104066 crossref_primary_10_3390_app13106283 crossref_primary_10_1109_JBHI_2024_3487012 crossref_primary_10_1007_s12264_024_01247_6 crossref_primary_10_1088_1741_2552_ac73b3 crossref_primary_10_3389_fnbot_2022_958052 crossref_primary_10_1109_TNSRE_2022_3192448 crossref_primary_10_1109_TNSRE_2023_3297654 crossref_primary_10_1038_s41598_024_77923_4 crossref_primary_10_1360_SSI_2021_0179 crossref_primary_10_3389_fninf_2022_872035 crossref_primary_10_3390_s20164629 crossref_primary_10_1109_TBME_2024_3432934 crossref_primary_10_3389_fnhum_2024_1272121 crossref_primary_10_1016_j_eswa_2022_119032 crossref_primary_10_1109_ACCESS_2021_3132024 crossref_primary_10_1088_1741_2552_ad905d crossref_primary_10_1109_TCBB_2020_3024228 crossref_primary_10_1016_j_eswa_2024_126362 crossref_primary_10_3788_LOP231464 crossref_primary_10_3389_fnins_2024_1361486 crossref_primary_10_1088_1741_2552_ad0a01 crossref_primary_10_1109_TCDS_2023_3260084 crossref_primary_10_3389_fncom_2022_942979 crossref_primary_10_1016_j_bspc_2022_104005 crossref_primary_10_1016_j_jmsy_2022_08_009 crossref_primary_10_1371_journal_pone_0270405 crossref_primary_10_3389_fpsyt_2023_1310323 crossref_primary_10_1109_TBME_2022_3201241 crossref_primary_10_3390_electronics14030447 crossref_primary_10_1007_s00371_021_02140_3 crossref_primary_10_1109_TNSRE_2022_3209155 crossref_primary_10_3390_bioengineering11060613 crossref_primary_10_1007_s11571_024_10115_y crossref_primary_10_1109_JBHI_2024_3446952 crossref_primary_10_1016_j_eswa_2023_121612 crossref_primary_10_1038_s41598_024_67853_6 crossref_primary_10_3389_fncom_2021_619508 crossref_primary_10_3390_app14198646 crossref_primary_10_1109_TNSRE_2024_3483294 crossref_primary_10_3390_s22239547 crossref_primary_10_1155_2021_6614191 crossref_primary_10_1111_ejn_14936 crossref_primary_10_1007_s00170_024_14098_2 crossref_primary_10_1007_s11571_024_10159_0 crossref_primary_10_1007_s00422_024_00984_1 crossref_primary_10_1109_THMS_2022_3189576 crossref_primary_10_1007_s11517_024_03246_1 crossref_primary_10_1109_TIM_2024_3418093 crossref_primary_10_3389_fnins_2023_1275065 crossref_primary_10_1007_s10586_024_04818_4 crossref_primary_10_3389_fnins_2025_1487175 crossref_primary_10_1088_1741_2552_ad152f crossref_primary_10_1016_j_bspc_2022_103582 crossref_primary_10_1109_TCDS_2020_2976112 crossref_primary_10_3390_s24165207 crossref_primary_10_1016_j_displa_2024_102657 crossref_primary_10_1016_j_eswa_2023_120348 crossref_primary_10_1109_TNSRE_2022_3166517 crossref_primary_10_3389_fnins_2023_1303242 crossref_primary_10_1088_1741_2552_ac20bc crossref_primary_10_3389_fnhum_2022_930291 crossref_primary_10_1109_TIM_2024_3420350 crossref_primary_10_1088_1741_2552_ac77be crossref_primary_10_1371_journal_pone_0308506 crossref_primary_10_1016_j_bspc_2022_104440 crossref_primary_10_1088_1742_6596_1962_1_012047 crossref_primary_10_1051_bioconf_20236101014 crossref_primary_10_1088_1741_2552_acee1f crossref_primary_10_1109_MCI_2021_3061875 crossref_primary_10_1016_j_asoc_2024_111635 crossref_primary_10_1007_s13755_023_00226_x crossref_primary_10_3390_a16090429 crossref_primary_10_1016_j_neunet_2024_106267 crossref_primary_10_1016_j_asoc_2022_109685 crossref_primary_10_1088_1361_6579_ad4e95 crossref_primary_10_1088_1741_2552_acee20 crossref_primary_10_1016_j_compbiomed_2024_109132 crossref_primary_10_1016_j_neucom_2023_126659 crossref_primary_10_3390_brainsci12091233 crossref_primary_10_1109_JSAC_2024_3399258 crossref_primary_10_1016_j_bspc_2022_104456 crossref_primary_10_1016_j_compbiomed_2023_107901 crossref_primary_10_1002_ima_22913 crossref_primary_10_3389_frobt_2024_1329270 crossref_primary_10_1038_s41598_024_59263_5 crossref_primary_10_1109_TNSRE_2023_3235390 crossref_primary_10_1016_j_eswa_2023_121658 crossref_primary_10_1109_TNSRE_2023_3337802 crossref_primary_10_1016_j_bbe_2024_05_001 crossref_primary_10_26599_BSA_2020_9050021 crossref_primary_10_1088_1741_2552_ab57c0 crossref_primary_10_4103_2773_2398_348253 crossref_primary_10_1016_j_bspc_2025_107552 crossref_primary_10_1109_ACCESS_2021_3054670 crossref_primary_10_1109_JSEN_2023_3270281 crossref_primary_10_3389_fnhum_2024_1346050 crossref_primary_10_1109_JIOT_2023_3323264 crossref_primary_10_1016_j_bspc_2025_107554 crossref_primary_10_1016_j_inffus_2023_03_022 crossref_primary_10_1016_j_compbiomed_2023_107910 crossref_primary_10_1016_j_neuroimage_2023_120396 crossref_primary_10_1002_pchj_688 crossref_primary_10_1016_j_ymeth_2022_04_009 crossref_primary_10_1038_s41598_020_70569_y crossref_primary_10_3390_s22155771 crossref_primary_10_3390_s24237611 crossref_primary_10_1007_s41870_024_02001_x crossref_primary_10_1109_ACCESS_2023_3339665 crossref_primary_10_1088_1741_2552_ac6d7f crossref_primary_10_1088_1741_2552_ac6d7d crossref_primary_10_1109_ACCESS_2024_3459866 crossref_primary_10_1088_1741_2552_ad88a3 crossref_primary_10_1088_1741_2552_ad88a2 crossref_primary_10_3390_s24186110 crossref_primary_10_1080_1206212X_2025_2450247 crossref_primary_10_1109_TNSRE_2023_3251420 crossref_primary_10_3390_app14020726 crossref_primary_10_1109_JSAC_2024_3399203 crossref_primary_10_1016_j_bspc_2022_103546 crossref_primary_10_1109_JBHI_2022_3225019 crossref_primary_10_1109_ACCESS_2020_3012918 crossref_primary_10_1109_JBHI_2023_3264521 crossref_primary_10_1088_1741_2552_ad44d7 crossref_primary_10_1007_s11571_020_09649_8 crossref_primary_10_3390_math13050729 crossref_primary_10_1016_j_eswa_2022_119096 crossref_primary_10_1109_TSMC_2024_3355101 crossref_primary_10_1007_s11042_019_08130_x crossref_primary_10_1109_JSEN_2023_3279904 crossref_primary_10_1145_3427471 crossref_primary_10_1109_TNSRE_2020_3035786 crossref_primary_10_1109_TII_2020_3044310 crossref_primary_10_1016_j_jneumeth_2021_109426 crossref_primary_10_3389_fnins_2021_684547 crossref_primary_10_1088_1741_2552_acfbf9 crossref_primary_10_1109_TNSRE_2021_3083755 crossref_primary_10_1093_cercor_bhae505 crossref_primary_10_1016_j_heliyon_2024_e31485 crossref_primary_10_1109_ACCESS_2024_3406909 crossref_primary_10_3390_s24061889 crossref_primary_10_1016_j_heliyon_2023_e23948 crossref_primary_10_1109_TNSRE_2023_3314679 crossref_primary_10_1109_TNSRE_2022_3219418 crossref_primary_10_1016_j_bspc_2021_103342 crossref_primary_10_1007_s00521_023_08927_w crossref_primary_10_1016_j_bspc_2022_103612 crossref_primary_10_1109_TBME_2023_3298957 crossref_primary_10_1016_j_bspc_2021_103338 crossref_primary_10_1038_s41597_025_04826_y crossref_primary_10_1016_j_bspc_2022_103618 crossref_primary_10_1109_TNSRE_2022_3220884 crossref_primary_10_1016_j_neunet_2024_106655 crossref_primary_10_1016_j_mejo_2021_105356 crossref_primary_10_3390_brainsci14070688 crossref_primary_10_1109_COMST_2024_3396847 crossref_primary_10_1109_TII_2023_3297323 crossref_primary_10_1016_j_bspc_2024_106465 crossref_primary_10_1109_TCYB_2025_3533088 crossref_primary_10_1016_j_compeleceng_2024_110005 crossref_primary_10_1007_s11571_024_10132_x crossref_primary_10_1109_TMRB_2021_3098108 crossref_primary_10_1186_s40779_025_00598_z crossref_primary_10_1016_j_jneumeth_2022_109736 crossref_primary_10_3389_fnins_2024_1366294 crossref_primary_10_1016_j_medengphy_2021_08_006 crossref_primary_10_1016_j_neunet_2024_106665 crossref_primary_10_1007_s12264_024_01319_7 crossref_primary_10_1093_brain_awac340 crossref_primary_10_1016_j_foodchem_2024_139816 crossref_primary_10_1088_1674_1056_ac9cbc crossref_primary_10_1155_2021_8897105 crossref_primary_10_1088_1741_2552_ad8d0a crossref_primary_10_1109_JBHI_2023_3318419 crossref_primary_10_1007_s11571_022_09851_w crossref_primary_10_1088_1741_2552_ad5048 crossref_primary_10_1007_s00521_022_07748_7 crossref_primary_10_1016_j_jneumeth_2022_109747 crossref_primary_10_1109_JBHI_2024_3467090 crossref_primary_10_1109_TII_2023_3262248 crossref_primary_10_1109_IOTM_001_2300262 crossref_primary_10_1016_j_neucom_2023_126262 crossref_primary_10_1109_TPAMI_2020_2995909 crossref_primary_10_1016_j_vrih_2021_10_002 crossref_primary_10_1109_LSP_2021_3049683 crossref_primary_10_1080_27706710_2024_2400063 crossref_primary_10_1093_cercor_bhad173 crossref_primary_10_1109_TIM_2024_3384559 crossref_primary_10_1016_j_heliyon_2024_e26028 crossref_primary_10_1038_s41598_024_71118_7 crossref_primary_10_1109_LSENS_2024_3417453 crossref_primary_10_1109_TCSII_2020_2983389 crossref_primary_10_1007_s11432_022_3548_2 crossref_primary_10_1109_TNNLS_2023_3287181 crossref_primary_10_1109_TNSRE_2019_2908955 crossref_primary_10_1109_TSMC_2023_3282635 crossref_primary_10_1016_j_eswa_2024_125832 crossref_primary_10_3389_fnins_2020_00918 crossref_primary_10_1016_j_neuroimage_2022_118994 crossref_primary_10_1016_j_brainres_2024_149085 crossref_primary_10_1016_j_jneumeth_2024_110108 crossref_primary_10_1016_j_bspc_2024_107345 crossref_primary_10_1016_j_eswa_2021_116443 crossref_primary_10_1016_j_engappai_2024_108473 crossref_primary_10_1109_TNSRE_2022_3143836 crossref_primary_10_1016_j_bspc_2020_102172 crossref_primary_10_1109_TCSS_2023_3298324 crossref_primary_10_1109_TNSRE_2023_3336897 crossref_primary_10_1109_TNSRE_2022_3208710 crossref_primary_10_1109_TII_2024_3450010 crossref_primary_10_3389_fnins_2023_1204385 crossref_primary_10_1016_j_bspc_2025_107610 crossref_primary_10_1142_S0219519422400024 crossref_primary_10_3390_biomimetics10020118 crossref_primary_10_3389_fnins_2023_1203059 crossref_primary_10_1109_TCDS_2024_3386364 crossref_primary_10_3389_fnhum_2023_1205881 crossref_primary_10_1007_s11517_024_03032_z crossref_primary_10_31083_j_jin2004083 crossref_primary_10_1109_OJEMB_2025_3537760 crossref_primary_10_1038_s41598_024_79202_8 crossref_primary_10_1038_s41598_024_79139_y crossref_primary_10_1109_TNSRE_2022_3198970 crossref_primary_10_1016_j_clinph_2019_09_021 crossref_primary_10_1109_TNSRE_2025_3527629 crossref_primary_10_1016_j_bspc_2024_107324 crossref_primary_10_1016_j_jneumeth_2025_110413 crossref_primary_10_1016_j_engappai_2024_108011 crossref_primary_10_1038_s41598_024_66228_1 crossref_primary_10_1007_s11571_024_10141_w crossref_primary_10_1016_j_neuri_2021_100029 crossref_primary_10_1109_TBME_2022_3218116 crossref_primary_10_1109_ACCESS_2023_3266306 crossref_primary_10_1109_TCSVT_2021_3061719 crossref_primary_10_1016_j_future_2019_06_027 crossref_primary_10_1016_j_bspc_2024_107331 crossref_primary_10_1515_bmt_2021_0232 crossref_primary_10_3390_s22155802 crossref_primary_10_1016_j_medntd_2023_100215 crossref_primary_10_1109_ACCESS_2024_3370041 crossref_primary_10_1016_j_brainres_2024_149092 crossref_primary_10_1109_TIM_2023_3280529 crossref_primary_10_1007_s12652_022_04443_2 crossref_primary_10_1371_journal_pone_0272167 crossref_primary_10_1016_j_bspc_2025_107635 crossref_primary_10_1016_j_bspc_2024_106003 crossref_primary_10_1142_S0129065722500101 crossref_primary_10_1088_1741_2552_ad48ba crossref_primary_10_1016_j_cose_2020_101788 crossref_primary_10_1088_1741_2552_ad48bc crossref_primary_10_1038_s41598_022_07992_w crossref_primary_10_1016_j_patter_2025_101182 crossref_primary_10_1088_1741_2552_acb96e crossref_primary_10_3390_computers9030072 crossref_primary_10_3390_technologies10040079 crossref_primary_10_1088_1741_2552_acb96f crossref_primary_10_1038_s41746_023_00983_9 crossref_primary_10_1088_1741_2552_acd1b6 crossref_primary_10_1109_TNSRE_2023_3235804 crossref_primary_10_3389_fnrgo_2024_1341790 crossref_primary_10_3389_fmolb_2022_931688 crossref_primary_10_1088_1741_2552_ad48b9 crossref_primary_10_1016_j_cmpb_2024_108123 crossref_primary_10_1016_j_compbiomed_2024_108705 crossref_primary_10_1088_1741_2552_ad6793 crossref_primary_10_1186_s13040_023_00336_y crossref_primary_10_1016_j_patcog_2024_110934 crossref_primary_10_1016_j_jad_2023_06_007 crossref_primary_10_1109_TNSRE_2023_3241241 crossref_primary_10_1088_1741_2552_acae07 crossref_primary_10_3389_fnhum_2022_927567 crossref_primary_10_3390_brainsci14030282 crossref_primary_10_1016_j_neucom_2025_129594 crossref_primary_10_1109_TCDS_2020_3007453 crossref_primary_10_3390_a17110477 crossref_primary_10_1109_ACCESS_2020_3011185 crossref_primary_10_1088_1741_2552_ad8964 crossref_primary_10_3390_brainsci12040447 crossref_primary_10_1007_s11571_023_10062_0 crossref_primary_10_1109_TII_2021_3133307 crossref_primary_10_3389_fncom_2022_1010770 crossref_primary_10_1007_s11571_020_09577_7 crossref_primary_10_1088_1741_2552_acf7f4 crossref_primary_10_1007_s00330_020_07585_z crossref_primary_10_1088_1741_2552_acf7f5 crossref_primary_10_3390_s23084164 crossref_primary_10_1109_TNSRE_2022_3184725 crossref_primary_10_1002_ima_22593 crossref_primary_10_1007_s13042_021_01414_5 crossref_primary_10_1016_j_eswa_2024_123239 crossref_primary_10_1088_1741_2552_ad4593 crossref_primary_10_1109_TBME_2024_3361716 crossref_primary_10_1016_j_compbiomed_2024_108727 crossref_primary_10_1109_JSEN_2022_3159475 crossref_primary_10_3389_fnhum_2024_1358809 crossref_primary_10_3389_fnins_2022_1062889 crossref_primary_10_1109_TIM_2023_3341121 crossref_primary_10_1109_ACCESS_2021_3132128 crossref_primary_10_1109_TIM_2020_3047502 crossref_primary_10_1109_TPAMI_2024_3426296 crossref_primary_10_1016_j_bspc_2023_105690 crossref_primary_10_1016_j_csbj_2023_12_006 crossref_primary_10_1088_1741_2552_ad17f2 crossref_primary_10_1016_j_knosys_2024_112668 crossref_primary_10_1016_j_bspc_2023_105214 crossref_primary_10_1109_LSP_2024_3410044 crossref_primary_10_1016_j_eswa_2022_118511 crossref_primary_10_3389_fnins_2021_619591 crossref_primary_10_1109_TNSRE_2023_3245617 crossref_primary_10_1109_TIM_2023_3284926 crossref_primary_10_1016_j_knosys_2022_108819 crossref_primary_10_3390_bioengineering10020186 crossref_primary_10_1109_TNSRE_2022_3230250 crossref_primary_10_1109_JBHI_2024_3489221 crossref_primary_10_1038_s41598_024_68978_4 crossref_primary_10_1016_j_bspc_2022_104076 crossref_primary_10_3389_fnhum_2022_874199 crossref_primary_10_1155_2022_8187009 crossref_primary_10_1016_j_ins_2023_119160 crossref_primary_10_1038_s41597_024_03501_y crossref_primary_10_1109_ACCESS_2020_3011140 crossref_primary_10_1109_JBHI_2022_3174771 crossref_primary_10_1109_TCDS_2023_3314351 crossref_primary_10_1109_TIM_2022_3177747 crossref_primary_10_3390_robotics13010014 crossref_primary_10_3390_biomedicines11092370 crossref_primary_10_3390_bios12010022 crossref_primary_10_1016_j_compbiomed_2024_109608 crossref_primary_10_3390_brainsci9120348 crossref_primary_10_1109_ACCESS_2022_3206782 crossref_primary_10_1109_TFUZZ_2021_3092824 crossref_primary_10_1016_j_inffus_2024_102316 crossref_primary_10_3390_app15042176 crossref_primary_10_1016_j_jobe_2023_107305 crossref_primary_10_1007_s12559_023_10120_z crossref_primary_10_1109_TIM_2024_3522618 crossref_primary_10_1142_S0129065719500254 crossref_primary_10_1109_TNSRE_2022_3207494 crossref_primary_10_1088_1741_2552_ad5405 crossref_primary_10_1088_1741_2552_ac4f07 crossref_primary_10_1016_j_brainresbull_2023_110826 crossref_primary_10_1109_TIM_2024_3370813 crossref_primary_10_3389_fnins_2023_1234162 crossref_primary_10_1016_j_neunet_2022_03_025 crossref_primary_10_1016_j_eswa_2024_125452 crossref_primary_10_3389_fnins_2023_1129049 crossref_primary_10_1016_j_neunet_2023_11_037 crossref_primary_10_1016_j_bspc_2024_106402 crossref_primary_10_1016_j_neucom_2020_10_104 crossref_primary_10_1016_j_engappai_2024_108879 crossref_primary_10_1016_j_bspc_2024_106401 crossref_primary_10_1016_j_compbiomed_2025_109928 crossref_primary_10_1109_TIM_2024_3406836 crossref_primary_10_1016_j_compbiomed_2023_107159 crossref_primary_10_1109_TNSRE_2023_3268751 crossref_primary_10_1080_10255842_2023_2275244 crossref_primary_10_1109_JBHI_2024_3454158 crossref_primary_10_1109_JTEHM_2025_3542408 crossref_primary_10_1088_1741_2552_ac8dc5 crossref_primary_10_1088_1741_2552_ad83f4 crossref_primary_10_1109_TNSRE_2023_3246989 crossref_primary_10_1109_ACCESS_2024_3509275 |
Cites_doi | 10.1111/j.1467-9868.2005.00503.x 10.1002/hbm.23730 10.1109/MC.2016.294 10.1016/0013-4694(93)90110-H 10.1109/TNSRE.2006.875637 10.1016/0013-4694(91)90062-9 10.1016/j.jneumeth.2015.08.019 10.1109/ICHI.2016.27 10.1016/j.jneumeth.2003.10.009 10.1109/NER.2011.5910558 10.3389/fnins.2010.00161 10.1007/978-3-319-10590-1_53 10.1109/TBME.2009.2012869 10.1109/JPROC.2009.2038406 10.1088/1741-2560/10/5/056014 10.1155/2012/107046 10.1109/TNSRE.2016.2601240 10.1109/MLSP.2016.7738824 10.1117/12.2224172 10.1016/S1388-2457(02)00057-3 10.1162/jocn.1997.9.6.788 10.3389/fnins.2012.00039 10.1109/TNNLS.2014.2302898 10.1109/JPROC.2015.2404941 10.1109/TBME.2011.2172210 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2 10.1088/1741-2560/4/2/R01 10.1088/1741-2560/14/1/016003 10.1145/1015330.1015435 10.1016/j.jneumeth.2016.10.008 10.3389/fncom.2015.00146 10.1007/978-3-642-21852-1_60 10.3389/fnhum.2014.01033 10.1016/j.jneumeth.2007.07.017 10.1109/EUSIPCO.2015.7362882 10.1007/978-3-642-02812-0_86 10.3389/fnins.2012.00055 10.1016/j.bspc.2016.11.013 10.1007/BF02343543 10.1109/5.939829 10.1109/TNSRE.2015.2502323 10.1109/TPAMI.2010.125 10.1016/j.clinph.2011.11.082 10.3389/fninf.2015.00016 10.1109/JPROC.2012.2184830 10.3390/s120201211 10.1016/S1388-2457(99)00141-8 10.1016/j.neucom.2012.12.039 10.1088/1741-2560/4/2/R03 10.1088/1741-2560/8/3/036015 10.1145/3038439.3038444 10.1016/j.clinph.2007.04.019 10.1038/nature14539 10.1109/ICCV.2015.173 10.1016/j.jneumeth.2012.05.017 10.1016/j.cogbrainres.2004.12.013 10.3389/fneng.2012.00014 10.1111/j.1467-9280.1993.tb00586.x 10.1016/j.clinph.2009.09.002 10.1109/MSP.2012.2205597 10.1016/S0047-259X(03)00096-4 10.1145/2939672.2939778 10.3389/fnins.2016.00430 10.3389/fnins.2010.00198 10.1007/BF00235441 10.1371/journal.pone.0085192 10.1007/978-3-319-09330-7_25 10.1016/j.jneumeth.2016.11.002 10.3389/fnins.2017.00356 10.1016/0168-5597(94)90126-0 10.1016/0013-4694(77)90235-8 10.1155/2012/578295 10.1109/ISCAS.2016.7527433 10.1016/j.neuron.2006.09.019 10.1227/01.NEU.0000221506.06947.AC 10.1016/j.dsp.2017.10.011 10.1109/MC.2012.107 10.1016/0013-4694(86)90017-9 |
ContentType | Journal Article |
Copyright | Not subject to copyright in the USA. Contribution of U.S. Army Research Laboratory |
Copyright_xml | – notice: Not subject to copyright in the USA. Contribution of U.S. Army Research Laboratory |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1088/1741-2552/aace8c |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
DocumentTitleAlternate | EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces |
EISSN | 1741-2552 |
ExternalDocumentID | 29932424 10_1088_1741_2552_aace8c jneaace8c |
Genre | Journal Article |
GrantInformation_xml | – fundername: U.S. Army Research Laboratory grantid: CAST 076910227001; ARL-74A-HRCYB; ARL-H70-HR52; W911NF-10-2-0022 |
GroupedDBID | --- 02O 1JI 1WK 4.4 53G 5B3 5GY 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AALHV AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AHSEE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN BBWZM CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN F5P FEDTE HAK HVGLF IHE IJHAN IOP IZVLO JCGBZ KOT LAP M45 N5L N9A NT- NT. P2P PJBAE Q02 RIN RNS RO9 ROL RPA S3P SY9 W28 XPP AAYXX ADEQX CITATION AERVB ARNYC NPM 7X8 AEINN |
ID | FETCH-LOGICAL-c368t-f78e0aee6d6645adc96b9e2d42a1f338255393f3add15822ab53035358013f4a3 |
IEDL.DBID | IOP |
ISSN | 1741-2560 1741-2552 |
IngestDate | Sun Aug 24 03:45:23 EDT 2025 Wed Feb 19 02:43:20 EST 2025 Tue Jul 01 01:58:38 EDT 2025 Thu Apr 24 22:54:17 EDT 2025 Fri Jan 08 09:41:24 EST 2021 Wed Aug 21 03:33:55 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c368t-f78e0aee6d6645adc96b9e2d42a1f338255393f3add15822ab53035358013f4a3 |
Notes | JNE-102416.R1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3921-8723 |
PMID | 29932424 |
PQID | 2058505860 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | iop_journals_10_1088_1741_2552_aace8c crossref_primary_10_1088_1741_2552_aace8c proquest_miscellaneous_2058505860 pubmed_primary_29932424 crossref_citationtrail_10_1088_1741_2552_aace8c |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-10-01 |
PublicationDateYYYYMMDD | 2018-10-01 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of neural engineering |
PublicationTitleAbbrev | JNE |
PublicationTitleAlternate | J. Neural Eng |
PublicationYear | 2018 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | 88 89 Congedo M (87) 2013 Springenberg J T (83) 2014 90 91 92 95 He K (18) 2015 97 11 12 13 14 Chollet F (43) 2016 Dyrholm M (79) 2007; 8 1 2 3 4 5 Bashashati A (7) 2007; 4 6 8 Thodoroff P (25) 2016 21 22 23 Barachant A (86) 2014 24 28 Simonyan K (16) 2014 29 Abadi M (76) 2016 Szegedy C (17) 2014 Huang G (19) 2016 30 31 Wulsin D F (35) 2011; 8 32 33 34 Stober S (27) 2015 36 39 Zander T O (10) 2011; 8 Tabar Y R (38) 2017; 14 Baehrens D (94) 2010; 11 40 41 42 44 45 46 Chollet F (77) 2015 47 48 Clevert D (81) 2015 49 Stober S (26) 2014 Nguyen A M (96) 2014 Schmidhuber J (20) 2014 50 51 52 53 54 55 56 57 Lotte F (9) 2007; 4 58 59 Ioffe S (80) 2015 Krizhevsky A (15) 2012 60 61 62 63 64 65 66 67 68 69 Kothe C A (93) 2013; 10 70 71 72 73 74 78 Ancona M (99) 2018 Shrikumar A (98) 2017 100 Srivastava N (82) 2014; 15 101 Bashivan P (37) 2015 102 103 104 Kingma D P (75) 2014 84 85 |
References_xml | – ident: 92 doi: 10.1111/j.1467-9868.2005.00503.x – ident: 32 doi: 10.1002/hbm.23730 – ident: 4 doi: 10.1109/MC.2016.294 – ident: 48 doi: 10.1016/0013-4694(93)90110-H – ident: 8 doi: 10.1109/TNSRE.2006.875637 – ident: 56 doi: 10.1016/0013-4694(91)90062-9 – ident: 72 doi: 10.1016/j.jneumeth.2015.08.019 – ident: 22 doi: 10.1109/ICHI.2016.27 – ident: 53 doi: 10.1016/j.jneumeth.2003.10.009 – ident: 88 doi: 10.1109/NER.2011.5910558 – ident: 59 doi: 10.3389/fnins.2010.00161 – ident: 95 doi: 10.1007/978-3-319-10590-1_53 – year: 2016 ident: 25 publication-title: CoRR – ident: 84 doi: 10.1109/TBME.2009.2012869 – ident: 50 doi: 10.1109/JPROC.2009.2038406 – volume: 8 issn: 1741-2552 year: 2011 ident: 10 publication-title: J. Neural Eng. – start-page: 265 year: 2016 ident: 76 publication-title: Proc. 12th USENIX Conf. on Operating Systems Design and Implementation – volume: 10 issn: 1741-2552 year: 2013 ident: 93 publication-title: J. Neural Eng. doi: 10.1088/1741-2560/10/5/056014 – ident: 34 doi: 10.1155/2012/107046 – ident: 41 doi: 10.1109/TNSRE.2016.2601240 – ident: 21 doi: 10.1109/MLSP.2016.7738824 – year: 2015 ident: 37 publication-title: CoRR – ident: 30 doi: 10.1117/12.2224172 – ident: 1 doi: 10.1016/S1388-2457(02)00057-3 – year: 2014 ident: 17 publication-title: CoRR – ident: 54 doi: 10.1162/jocn.1997.9.6.788 – ident: 78 doi: 10.3389/fnins.2012.00039 – ident: 31 doi: 10.1109/TNNLS.2014.2302898 – year: 2018 ident: 99 publication-title: Int. Conf. on Learning Representations – ident: 45 doi: 10.1109/JPROC.2015.2404941 – ident: 85 doi: 10.1109/TBME.2011.2172210 – ident: 101 doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2 – volume: 4 start-page: R1 issn: 1741-2552 year: 2007 ident: 9 publication-title: J. Neural Eng. doi: 10.1088/1741-2560/4/2/R01 – volume: 14 issn: 1741-2552 year: 2017 ident: 38 publication-title: J. Neural Eng. doi: 10.1088/1741-2560/14/1/016003 – ident: 90 doi: 10.1145/1015330.1015435 – volume: 11 start-page: 1803 year: 2010 ident: 94 publication-title: J. Mach. Learn. Res. – ident: 33 doi: 10.1016/j.jneumeth.2016.10.008 – ident: 29 doi: 10.3389/fncom.2015.00146 – year: 2015 ident: 81 publication-title: CoRR – ident: 103 doi: 10.1007/978-3-642-21852-1_60 – ident: 67 doi: 10.3389/fnhum.2014.01033 – ident: 61 doi: 10.1016/j.jneumeth.2007.07.017 – ident: 40 doi: 10.1109/EUSIPCO.2015.7362882 – ident: 58 doi: 10.1007/978-3-642-02812-0_86 – ident: 74 doi: 10.3389/fnins.2012.00055 – ident: 42 doi: 10.1016/j.bspc.2016.11.013 – ident: 70 doi: 10.1007/BF02343543 – year: 2013 ident: 87 publication-title: CoRR – ident: 47 doi: 10.1109/5.939829 – ident: 51 doi: 10.1109/TNSRE.2015.2502323 – ident: 28 doi: 10.1109/TPAMI.2010.125 – ident: 60 doi: 10.1016/j.clinph.2011.11.082 – year: 2015 ident: 80 – ident: 73 doi: 10.3389/fninf.2015.00016 – ident: 5 doi: 10.1109/JPROC.2012.2184830 – volume: 15 start-page: 1929 year: 2014 ident: 82 publication-title: J. Mach. Learn. Res. – ident: 6 doi: 10.3390/s120201211 – ident: 64 doi: 10.1016/S1388-2457(99)00141-8 – year: 2014 ident: 75 – ident: 89 doi: 10.1016/j.neucom.2012.12.039 – volume: 4 start-page: R32 issn: 1741-2552 year: 2007 ident: 7 publication-title: J. Neural Eng. doi: 10.1088/1741-2560/4/2/R03 – volume: 8 issn: 1741-2552 year: 2011 ident: 35 publication-title: J. Neural Eng. doi: 10.1088/1741-2560/8/3/036015 – ident: 12 doi: 10.1145/3038439.3038444 – year: 2017 ident: 98 publication-title: CoRR – ident: 49 doi: 10.1016/j.clinph.2007.04.019 – ident: 14 doi: 10.1038/nature14539 – year: 2015 ident: 18 publication-title: CoRR – ident: 44 doi: 10.1109/ICCV.2015.173 – ident: 104 doi: 10.1016/j.jneumeth.2012.05.017 – ident: 102 doi: 10.1016/j.cogbrainres.2004.12.013 – ident: 46 doi: 10.3389/fneng.2012.00014 – ident: 55 doi: 10.1111/j.1467-9280.1993.tb00586.x – ident: 24 doi: 10.1016/j.clinph.2009.09.002 – year: 2015 ident: 27 publication-title: CoRR – year: 2016 ident: 43 publication-title: CoRR – year: 2014 ident: 86 – ident: 13 doi: 10.1109/MSP.2012.2205597 – ident: 91 doi: 10.1016/S0047-259X(03)00096-4 – ident: 97 doi: 10.1145/2939672.2939778 – ident: 52 doi: 10.3389/fnins.2016.00430 – ident: 11 doi: 10.3389/fnins.2010.00198 – ident: 68 doi: 10.1007/BF00235441 – year: 2016 ident: 19 publication-title: CoRR – ident: 65 doi: 10.1371/journal.pone.0085192 – year: 2014 ident: 83 – ident: 39 doi: 10.1007/978-3-319-09330-7_25 – start-page: 1449 year: 2014 ident: 26 publication-title: Advances in Neural Information Processing Systems 27 – ident: 36 doi: 10.1016/j.jneumeth.2016.11.002 – volume: 8 start-page: 1097 year: 2007 ident: 79 publication-title: J. Mach. Learn. Res. – ident: 71 doi: 10.3389/fnins.2017.00356 – year: 2014 ident: 16 publication-title: CoRR – ident: 62 doi: 10.1016/0168-5597(94)90126-0 – ident: 63 doi: 10.1016/0013-4694(77)90235-8 – year: 2014 ident: 96 publication-title: CoRR – year: 2015 ident: 77 – start-page: 1097 issn: 1049-5258 year: 2012 ident: 15 publication-title: Advances in Neural Information Processing Systems – year: 2014 ident: 20 – ident: 57 doi: 10.1155/2012/578295 – ident: 23 doi: 10.1109/ISCAS.2016.7527433 – ident: 2 doi: 10.1016/j.neuron.2006.09.019 – ident: 69 doi: 10.1227/01.NEU.0000221506.06947.AC – ident: 100 doi: 10.1016/j.dsp.2017.10.011 – ident: 3 doi: 10.1109/MC.2012.107 – ident: 66 doi: 10.1016/0013-4694(86)90017-9 |
SSID | ssj0031790 |
Score | 2.6961586 |
Snippet | Objective. Brain-computer interfaces (BCI) enable direct communication with a computer, using neural activity as the control signal. This neural signal is... Brain-computer interfaces (BCI) enable direct communication with a computer, using neural activity as the control signal. This neural signal is generally... |
SourceID | proquest pubmed crossref iop |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 56013 |
SubjectTerms | brain-computer interface convolutional neural network deep learning EEG event-related potential sensory motor rhythm |
Title | EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces |
URI | https://iopscience.iop.org/article/10.1088/1741-2552/aace8c https://www.ncbi.nlm.nih.gov/pubmed/29932424 https://www.proquest.com/docview/2058505860 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB615cKFV4EuLxkJkDh4N44d14FThbYUJAoHinpAsvzKgUd21WYP8OuZib0rFUGFOETJYZzY47H9TeYF8ES3XqjgE9_3dSQzY-LOeM-Vls4EgRDVUXDyu2N9dKLenjanW_ByEwuzWJatf4qPOVFwZmFxiDMzxNCCIxKuZ86FZMI2XJFGa6rb8Ob9h_U2LCn1VI6GJGpdFRvln95w4Uzaxu_-HW6Ox87hdfi87nD2Nvk6XQ1-Gn7-lsvxP0d0A64VOMoOMulN2Er9Ldg96FEV__6DPWOjg-j4530XPs3nr4_T8II5Nnquh4GRz3qRXXwL5cYcb6NnOUM4zLAJp4MyMk-1KHgoRSQYpak468gf7DacHM4_vjripSwDD1KbgXf7JlUuJR21Vo2LodW-TXVUtRMdarw4ENnKTuLOKRrEH843eE42ZG8VslNO3oGdftGnPWCuboJDFTPGaFRrOudVEF44im9FXJEmMFtPjA0lZzmVzvhmR9u5MZZYZ4l1NrNuAs83LZY5X8cltE9xRmxZtOeX0LELdF_6ZEVjG1uROivtMnYTeLwWGIvrk4wurk-L1bmtK1TI8NLVBO5mSdp0DKEA4Vl17x87ch-uIl7L6XjFA9gZzlbpIWKiwT8aZf8XBiUEWA |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFLZokRAXtrIMq5EAiUNm4nipw62CGVqWoQeKejPecmghM2ozB_j1vGd7KhVBhcQhSg7Pif28vO_lbYQ8U61jwrtYbbsmoJkxVlY7VwnFrfYMIKrF4OSPc7V7IN4dysNS5zTFwiyW5egfw2NOFJxZWBzi9AQwNKsACTcTa33UfrIM3Qa5LLniWMJg79P--ijmmH4qR0RiC1UXO-Wf3nJOLm3At_8OOZPomV0nX9edzh4nx-PV4Mb-52_5HP9jVDfItQJL6U4mv0kuxf4W2drpQSX__oO-oMlRNP2B3yJfptO38zi8opYmD3Y_UPRdL2sY3oI5MtMteZhTgMUUmlQoMAN1WJOi8qWYBMV0FScd-oXdJgez6efXu1Upz1B5rvRQdds61jZGFZQS0gbfKtfGJojGsg40XxgMb3nH4QRlEnCIdRLkpUS7K-OdsPwO2ewXfbxHqG2kt6BqhhC0aHVnnfDMMYtxroAv4ohM1pNjfMldjiU0vplkQ9faIPsMss9k9o3Iy7MWy5y34wLa5zArpmze0wvo6Dm6oz4aJo00Naq13MCMjcjT9aIxsE_R-GL7uFidmqYGxQwuVY_I3byazjoGkABxrbj_jx15Qq7sv5mZD3vz9w_IVYBwOUMve0g2h5NVfAQwaXCP01b4Bcx4Cbw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EEGNet%3A+a+compact+convolutional+neural+network+for+EEG-based+brain-computer+interfaces&rft.jtitle=Journal+of+neural+engineering&rft.au=Lawhern%2C+Vernon+J&rft.au=Solon%2C+Amelia+J&rft.au=Waytowich%2C+Nicholas+R&rft.au=Gordon%2C+Stephen+M&rft.date=2018-10-01&rft.pub=IOP+Publishing&rft.issn=1741-2560&rft.eissn=1741-2552&rft.volume=15&rft.issue=5&rft_id=info:doi/10.1088%2F1741-2552%2Faace8c&rft.externalDocID=jneaace8c |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2560&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2560&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2560&client=summon |