EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces

Objective. Brain-computer interfaces (BCI) enable direct communication with a computer, using neural activity as the control signal. This neural signal is generally chosen from a variety of well-studied electroencephalogram (EEG) signals. For a given BCI paradigm, feature extractors and classifiers...

Full description

Saved in:
Bibliographic Details
Published inJournal of neural engineering Vol. 15; no. 5; pp. 56013 - 56029
Main Authors Lawhern, Vernon J, Solon, Amelia J, Waytowich, Nicholas R, Gordon, Stephen M, Hung, Chou P, Lance, Brent J
Format Journal Article
LanguageEnglish
Published England IOP Publishing 01.10.2018
Subjects
Online AccessGet full text
ISSN1741-2560
1741-2552
1741-2552
DOI10.1088/1741-2552/aace8c

Cover

Loading…
Abstract Objective. Brain-computer interfaces (BCI) enable direct communication with a computer, using neural activity as the control signal. This neural signal is generally chosen from a variety of well-studied electroencephalogram (EEG) signals. For a given BCI paradigm, feature extractors and classifiers are tailored to the distinct characteristics of its expected EEG control signal, limiting its application to that specific signal. Convolutional neural networks (CNNs), which have been used in computer vision and speech recognition to perform automatic feature extraction and classification, have successfully been applied to EEG-based BCIs; however, they have mainly been applied to single BCI paradigms and thus it remains unclear how these architectures generalize to other paradigms. Here, we ask if we can design a single CNN architecture to accurately classify EEG signals from different BCI paradigms, while simultaneously being as compact as possible. Approach. In this work we introduce EEGNet, a compact convolutional neural network for EEG-based BCIs. We introduce the use of depthwise and separable convolutions to construct an EEG-specific model which encapsulates well-known EEG feature extraction concepts for BCI. We compare EEGNet, both for within-subject and cross-subject classification, to current state-of-the-art approaches across four BCI paradigms: P300 visual-evoked potentials, error-related negativity responses (ERN), movement-related cortical potentials (MRCP), and sensory motor rhythms (SMR). Main results. We show that EEGNet generalizes across paradigms better than, and achieves comparably high performance to, the reference algorithms when only limited training data is available across all tested paradigms. In addition, we demonstrate three different approaches to visualize the contents of a trained EEGNet model to enable interpretation of the learned features. Significance. Our results suggest that EEGNet is robust enough to learn a wide variety of interpretable features over a range of BCI tasks. Our models can be found at: https://github.com/vlawhern/arl-eegmodels.
AbstractList Brain-computer interfaces (BCI) enable direct communication with a computer, using neural activity as the control signal. This neural signal is generally chosen from a variety of well-studied electroencephalogram (EEG) signals. For a given BCI paradigm, feature extractors and classifiers are tailored to the distinct characteristics of its expected EEG control signal, limiting its application to that specific signal. Convolutional neural networks (CNNs), which have been used in computer vision and speech recognition to perform automatic feature extraction and classification, have successfully been applied to EEG-based BCIs; however, they have mainly been applied to single BCI paradigms and thus it remains unclear how these architectures generalize to other paradigms. Here, we ask if we can design a single CNN architecture to accurately classify EEG signals from different BCI paradigms, while simultaneously being as compact as possible.OBJECTIVEBrain-computer interfaces (BCI) enable direct communication with a computer, using neural activity as the control signal. This neural signal is generally chosen from a variety of well-studied electroencephalogram (EEG) signals. For a given BCI paradigm, feature extractors and classifiers are tailored to the distinct characteristics of its expected EEG control signal, limiting its application to that specific signal. Convolutional neural networks (CNNs), which have been used in computer vision and speech recognition to perform automatic feature extraction and classification, have successfully been applied to EEG-based BCIs; however, they have mainly been applied to single BCI paradigms and thus it remains unclear how these architectures generalize to other paradigms. Here, we ask if we can design a single CNN architecture to accurately classify EEG signals from different BCI paradigms, while simultaneously being as compact as possible.In this work we introduce EEGNet, a compact convolutional neural network for EEG-based BCIs. We introduce the use of depthwise and separable convolutions to construct an EEG-specific model which encapsulates well-known EEG feature extraction concepts for BCI. We compare EEGNet, both for within-subject and cross-subject classification, to current state-of-the-art approaches across four BCI paradigms: P300 visual-evoked potentials, error-related negativity responses (ERN), movement-related cortical potentials (MRCP), and sensory motor rhythms (SMR).APPROACHIn this work we introduce EEGNet, a compact convolutional neural network for EEG-based BCIs. We introduce the use of depthwise and separable convolutions to construct an EEG-specific model which encapsulates well-known EEG feature extraction concepts for BCI. We compare EEGNet, both for within-subject and cross-subject classification, to current state-of-the-art approaches across four BCI paradigms: P300 visual-evoked potentials, error-related negativity responses (ERN), movement-related cortical potentials (MRCP), and sensory motor rhythms (SMR).We show that EEGNet generalizes across paradigms better than, and achieves comparably high performance to, the reference algorithms when only limited training data is available across all tested paradigms. In addition, we demonstrate three different approaches to visualize the contents of a trained EEGNet model to enable interpretation of the learned features.MAIN RESULTSWe show that EEGNet generalizes across paradigms better than, and achieves comparably high performance to, the reference algorithms when only limited training data is available across all tested paradigms. In addition, we demonstrate three different approaches to visualize the contents of a trained EEGNet model to enable interpretation of the learned features.Our results suggest that EEGNet is robust enough to learn a wide variety of interpretable features over a range of BCI tasks. Our models can be found at: https://github.com/vlawhern/arl-eegmodels.SIGNIFICANCEOur results suggest that EEGNet is robust enough to learn a wide variety of interpretable features over a range of BCI tasks. Our models can be found at: https://github.com/vlawhern/arl-eegmodels.
Objective. Brain-computer interfaces (BCI) enable direct communication with a computer, using neural activity as the control signal. This neural signal is generally chosen from a variety of well-studied electroencephalogram (EEG) signals. For a given BCI paradigm, feature extractors and classifiers are tailored to the distinct characteristics of its expected EEG control signal, limiting its application to that specific signal. Convolutional neural networks (CNNs), which have been used in computer vision and speech recognition to perform automatic feature extraction and classification, have successfully been applied to EEG-based BCIs; however, they have mainly been applied to single BCI paradigms and thus it remains unclear how these architectures generalize to other paradigms. Here, we ask if we can design a single CNN architecture to accurately classify EEG signals from different BCI paradigms, while simultaneously being as compact as possible. Approach. In this work we introduce EEGNet, a compact convolutional neural network for EEG-based BCIs. We introduce the use of depthwise and separable convolutions to construct an EEG-specific model which encapsulates well-known EEG feature extraction concepts for BCI. We compare EEGNet, both for within-subject and cross-subject classification, to current state-of-the-art approaches across four BCI paradigms: P300 visual-evoked potentials, error-related negativity responses (ERN), movement-related cortical potentials (MRCP), and sensory motor rhythms (SMR). Main results. We show that EEGNet generalizes across paradigms better than, and achieves comparably high performance to, the reference algorithms when only limited training data is available across all tested paradigms. In addition, we demonstrate three different approaches to visualize the contents of a trained EEGNet model to enable interpretation of the learned features. Significance. Our results suggest that EEGNet is robust enough to learn a wide variety of interpretable features over a range of BCI tasks. Our models can be found at: https://github.com/vlawhern/arl-eegmodels.
Brain-computer interfaces (BCI) enable direct communication with a computer, using neural activity as the control signal. This neural signal is generally chosen from a variety of well-studied electroencephalogram (EEG) signals. For a given BCI paradigm, feature extractors and classifiers are tailored to the distinct characteristics of its expected EEG control signal, limiting its application to that specific signal. Convolutional neural networks (CNNs), which have been used in computer vision and speech recognition to perform automatic feature extraction and classification, have successfully been applied to EEG-based BCIs; however, they have mainly been applied to single BCI paradigms and thus it remains unclear how these architectures generalize to other paradigms. Here, we ask if we can design a single CNN architecture to accurately classify EEG signals from different BCI paradigms, while simultaneously being as compact as possible. In this work we introduce EEGNet, a compact convolutional neural network for EEG-based BCIs. We introduce the use of depthwise and separable convolutions to construct an EEG-specific model which encapsulates well-known EEG feature extraction concepts for BCI. We compare EEGNet, both for within-subject and cross-subject classification, to current state-of-the-art approaches across four BCI paradigms: P300 visual-evoked potentials, error-related negativity responses (ERN), movement-related cortical potentials (MRCP), and sensory motor rhythms (SMR). We show that EEGNet generalizes across paradigms better than, and achieves comparably high performance to, the reference algorithms when only limited training data is available across all tested paradigms. In addition, we demonstrate three different approaches to visualize the contents of a trained EEGNet model to enable interpretation of the learned features. Our results suggest that EEGNet is robust enough to learn a wide variety of interpretable features over a range of BCI tasks. Our models can be found at: https://github.com/vlawhern/arl-eegmodels.
Author Lance, Brent J
Hung, Chou P
Lawhern, Vernon J
Waytowich, Nicholas R
Solon, Amelia J
Gordon, Stephen M
Author_xml – sequence: 1
  givenname: Vernon J
  orcidid: 0000-0002-3921-8723
  surname: Lawhern
  fullname: Lawhern, Vernon J
  email: vernon.j.lawhern.civ@mail.mil
  organization: U.S. Army Research Laboratory Human Research and Engineering Directorate, Aberdeen Proving Ground, MD, United States of America
– sequence: 2
  givenname: Amelia J
  surname: Solon
  fullname: Solon, Amelia J
  organization: DCS Corporation , Alexandria, VA, United States of America
– sequence: 3
  givenname: Nicholas R
  surname: Waytowich
  fullname: Waytowich, Nicholas R
  organization: Columbia University Department of Biomedical Engineering, New York, NY, United States of America
– sequence: 4
  givenname: Stephen M
  surname: Gordon
  fullname: Gordon, Stephen M
  organization: DCS Corporation , Alexandria, VA, United States of America
– sequence: 5
  givenname: Chou P
  surname: Hung
  fullname: Hung, Chou P
  organization: Georgetown University Department of Neuroscience, Washington, DC, United States of America
– sequence: 6
  givenname: Brent J
  surname: Lance
  fullname: Lance, Brent J
  organization: U.S. Army Research Laboratory Human Research and Engineering Directorate, Aberdeen Proving Ground, MD, United States of America
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29932424$$D View this record in MEDLINE/PubMed
BookMark eNp9kb9P3DAYhq0KVDjo3glla4cG_CPOOd0qdKWVTrAAq_XF-SzlyNnBdqj63-Nw9AZUMdivZT2vZT9ekAPnHRLymdFzRpW6YMuKlVxKfgFgUJkP5Hi_dbBf1_SILGLcUCrYsqEfyRFvGsErXh2T-9Xq6hrT9wIK47cjmJTTPflhSr13MBQOp_AS6Y8PD4X1ociVsoWIXdEG6F05F6eEoehdnm2-STwlhxaGiJ9e84Tc_VzdXv4q1zdXvy9_rEsjapVKu1RIAbHu6rqS0JmmbhvkXcWBWSFUfodohBXQdUwqzqGVggoppKJM2ArECfm6O3cM_nHCmPS2jwaHARz6KWpOpZJ51DSjZ6_o1G6x02PotxD-6n8uMkB3gAk-xoB2jzCqZ9169qlnt3qnO1fqNxXTJ5jNpWxmeK_4bVfs_ag3fgpZdXwP__IffONQM6mlpvmLmdBjZ8Uz0nGfZQ
CODEN JNEIEZ
CitedBy_id crossref_primary_10_1088_1741_2552_abe357
crossref_primary_10_1109_ACCESS_2025_3540436
crossref_primary_10_1007_s13042_024_02158_8
crossref_primary_10_1016_j_asoc_2021_108359
crossref_primary_10_1186_s12984_024_01342_9
crossref_primary_10_1016_j_bspc_2022_104153
crossref_primary_10_1016_j_compbiomed_2024_108788
crossref_primary_10_1016_j_displa_2023_102415
crossref_primary_10_3389_fnins_2023_1276067
crossref_primary_10_1109_JBHI_2023_3242262
crossref_primary_10_1142_S0129065723500557
crossref_primary_10_1038_s41598_024_58889_9
crossref_primary_10_1089_big_2021_0204
crossref_primary_10_1109_ACCESS_2023_3268233
crossref_primary_10_1088_1741_2552_acacca
crossref_primary_10_1109_ACCESS_2020_2983182
crossref_primary_10_1016_j_bea_2025_100156
crossref_primary_10_1109_TBME_2021_3064794
crossref_primary_10_1007_s11760_023_02986_1
crossref_primary_10_1007_s40815_022_01307_x
crossref_primary_10_1109_TNSRE_2025_3547616
crossref_primary_10_1109_TII_2022_3197419
crossref_primary_10_3390_s21165436
crossref_primary_10_3390_systems10060236
crossref_primary_10_1007_s11269_024_03962_1
crossref_primary_10_1088_1741_2552_abb5bd
crossref_primary_10_1088_1741_2552_ac63ec
crossref_primary_10_1109_TNSRE_2021_3106897
crossref_primary_10_1109_TNSRE_2023_3288835
crossref_primary_10_1109_ACCESS_2019_2895688
crossref_primary_10_1007_s11571_021_09717_7
crossref_primary_10_1088_1741_2552_ab1876
crossref_primary_10_1109_TIM_2024_3500057
crossref_primary_10_1109_TNSRE_2023_3310883
crossref_primary_10_1016_j_neunet_2025_107124
crossref_primary_10_1109_JSEN_2025_3527015
crossref_primary_10_1016_j_neunet_2025_107127
crossref_primary_10_3389_fnins_2025_1469244
crossref_primary_10_3389_fnins_2023_1153568
crossref_primary_10_1007_s10115_019_01404_8
crossref_primary_10_1016_j_engappai_2023_106237
crossref_primary_10_1016_j_ymeth_2021_04_017
crossref_primary_10_1016_j_bspc_2022_104183
crossref_primary_10_1007_s11571_021_09676_z
crossref_primary_10_1016_j_physrep_2021_03_002
crossref_primary_10_1007_s11571_024_10127_8
crossref_primary_10_1016_j_bspc_2023_104885
crossref_primary_10_1109_JSEN_2024_3510059
crossref_primary_10_1109_TBCAS_2020_3018465
crossref_primary_10_1186_s42234_020_0040_0
crossref_primary_10_3389_fnins_2023_1167719
crossref_primary_10_1016_j_bandl_2021_104968
crossref_primary_10_1002_hbm_26767
crossref_primary_10_1109_TII_2023_3280560
crossref_primary_10_1016_j_displa_2024_102704
crossref_primary_10_1088_1741_2552_acbfdf
crossref_primary_10_1016_j_eswa_2024_125364
crossref_primary_10_1109_ACCESS_2024_3434675
crossref_primary_10_1016_j_ymeth_2021_04_009
crossref_primary_10_1016_j_bspc_2024_106930
crossref_primary_10_1016_j_bspc_2023_105325
crossref_primary_10_1007_s13042_023_01964_w
crossref_primary_10_1109_TBME_2023_3333327
crossref_primary_10_1016_j_bspc_2023_105317
crossref_primary_10_1093_bib_bbaa355
crossref_primary_10_1088_1741_2552_acbfe0
crossref_primary_10_3390_s25020494
crossref_primary_10_3389_fmolb_2023_1146606
crossref_primary_10_1360_nso_20220023
crossref_primary_10_3390_app142311208
crossref_primary_10_1016_j_bspc_2023_105312
crossref_primary_10_1109_TAFFC_2024_3392904
crossref_primary_10_1109_TCDS_2023_3289845
crossref_primary_10_1016_j_cmpb_2024_108213
crossref_primary_10_1016_j_bspc_2022_104119
crossref_primary_10_3390_s20195474
crossref_primary_10_1016_j_cmpb_2024_108218
crossref_primary_10_1109_RBME_2024_3492381
crossref_primary_10_1088_1741_2552_acb089
crossref_primary_10_1109_TNSRE_2023_3265304
crossref_primary_10_1016_j_neunet_2025_107133
crossref_primary_10_1049_ell2_12275
crossref_primary_10_1038_s41598_021_02798_8
crossref_primary_10_1109_JBHI_2023_3304646
crossref_primary_10_1109_JSEN_2024_3353146
crossref_primary_10_1016_j_brainresbull_2025_111206
crossref_primary_10_3390_s23115275
crossref_primary_10_1016_j_compbiomed_2024_109217
crossref_primary_10_1038_s41598_022_26882_9
crossref_primary_10_1109_TNSRE_2024_3465515
crossref_primary_10_1109_TBME_2024_3492506
crossref_primary_10_3390_s24030877
crossref_primary_10_1109_TIM_2023_3307724
crossref_primary_10_1145_3699732
crossref_primary_10_1016_j_bspc_2024_106905
crossref_primary_10_3389_fnins_2024_1434444
crossref_primary_10_3389_fninf_2024_1345425
crossref_primary_10_1371_journal_pcbi_1012376
crossref_primary_10_1186_s12911_019_0967_9
crossref_primary_10_1088_2057_1976_ad3647
crossref_primary_10_1109_TIM_2024_3366285
crossref_primary_10_1109_JETCAS_2020_3031698
crossref_primary_10_1007_s11517_023_02857_4
crossref_primary_10_1016_j_neucom_2019_11_106
crossref_primary_10_1016_j_neuroimage_2023_120209
crossref_primary_10_1007_s13534_021_00190_z
crossref_primary_10_1142_S0129065721500477
crossref_primary_10_1088_1741_2552_ac0f4c
crossref_primary_10_1016_j_compbiomed_2022_105519
crossref_primary_10_3389_fnins_2021_715855
crossref_primary_10_1109_JSEN_2023_3295407
crossref_primary_10_1109_TIM_2025_3548181
crossref_primary_10_1109_OJSP_2024_3378604
crossref_primary_10_1007_s11571_022_09821_2
crossref_primary_10_1088_2057_1976_ad2f58
crossref_primary_10_1088_1741_2552_ab6a67
crossref_primary_10_1145_3699744
crossref_primary_10_1109_TNSRE_2023_3243992
crossref_primary_10_1016_j_eswa_2023_121986
crossref_primary_10_1088_1741_2552_ac41ac
crossref_primary_10_3390_life12030374
crossref_primary_10_1016_j_neucom_2021_04_009
crossref_primary_10_1016_j_knosys_2024_111904
crossref_primary_10_1088_1741_2552_ac1610
crossref_primary_10_1088_1741_2552_aced22
crossref_primary_10_1088_1741_2552_adba8c
crossref_primary_10_1007_s10489_024_05374_5
crossref_primary_10_1109_TIM_2023_3276515
crossref_primary_10_1088_1741_2552_adaef0
crossref_primary_10_1088_1741_2552_ab094a
crossref_primary_10_1088_1741_2552_ac823e
crossref_primary_10_1088_1741_2552_adba8a
crossref_primary_10_2139_ssrn_4068456
crossref_primary_10_1109_LSP_2023_3337727
crossref_primary_10_1109_JIOT_2022_3180215
crossref_primary_10_3389_fncel_2022_845832
crossref_primary_10_3389_fnins_2022_971039
crossref_primary_10_1016_j_bspc_2024_106063
crossref_primary_10_1109_ACCESS_2020_3040286
crossref_primary_10_3389_fbioe_2023_917328
crossref_primary_10_3389_fnins_2023_1288433
crossref_primary_10_1109_TNSRE_2022_3168829
crossref_primary_10_3389_fnins_2018_00843
crossref_primary_10_1109_TNSRE_2022_3201158
crossref_primary_10_1109_ACCESS_2024_3467154
crossref_primary_10_1109_TCYB_2021_3122969
crossref_primary_10_1016_j_knosys_2023_110756
crossref_primary_10_3389_fnbot_2022_995552
crossref_primary_10_1109_TCSS_2022_3158585
crossref_primary_10_3389_fnins_2022_1097660
crossref_primary_10_1109_LSP_2019_2906826
crossref_primary_10_1109_LSP_2019_2906824
crossref_primary_10_1016_j_eswa_2023_120205
crossref_primary_10_1109_TCSS_2023_3291950
crossref_primary_10_1109_ACCESS_2020_2994226
crossref_primary_10_1109_LSP_2024_3419424
crossref_primary_10_1016_j_neunet_2020_05_032
crossref_primary_10_1016_j_neunet_2024_106351
crossref_primary_10_1109_JIOT_2023_3281911
crossref_primary_10_1088_1741_2552_ab405f
crossref_primary_10_1016_j_compbiomed_2024_109260
crossref_primary_10_1016_j_bspc_2025_107674
crossref_primary_10_1177_23312165241282872
crossref_primary_10_1016_j_bspc_2024_106046
crossref_primary_10_1007_s11831_023_09920_1
crossref_primary_10_3389_fnbot_2024_1502560
crossref_primary_10_3390_electronics13214310
crossref_primary_10_1007_s11517_023_02840_z
crossref_primary_10_3390_brainsci13091326
crossref_primary_10_1016_j_celrep_2024_114924
crossref_primary_10_3389_fnins_2022_1044631
crossref_primary_10_1109_JSEN_2023_3309260
crossref_primary_10_1109_TNSRE_2023_3329059
crossref_primary_10_1016_j_neuroimage_2019_04_068
crossref_primary_10_1088_1741_2552_ad2710
crossref_primary_10_1109_LSP_2024_3465348
crossref_primary_10_1109_TSMC_2024_3382828
crossref_primary_10_1016_j_compbiomed_2022_106431
crossref_primary_10_3390_electronics11172706
crossref_primary_10_1109_TCDS_2023_3343469
crossref_primary_10_1016_j_neuroimage_2020_117021
crossref_primary_10_1109_TBME_2022_3193277
crossref_primary_10_3390_s24082534
crossref_primary_10_1016_j_bspc_2024_106092
crossref_primary_10_3390_s20247103
crossref_primary_10_1109_TNSRE_2023_3285309
crossref_primary_10_1016_j_bspc_2021_103370
crossref_primary_10_1109_JBHI_2023_3311338
crossref_primary_10_1186_s12911_020_01309_5
crossref_primary_10_1109_ACCESS_2020_2976866
crossref_primary_10_1016_j_compbiomed_2022_106420
crossref_primary_10_1038_s41598_022_08490_9
crossref_primary_10_1016_j_eswa_2023_120279
crossref_primary_10_1093_cercor_bhad511
crossref_primary_10_1016_j_celrep_2023_112449
crossref_primary_10_1007_s11571_020_09626_1
crossref_primary_10_1109_TNSRE_2023_3320693
crossref_primary_10_1088_1741_2552_abd82b
crossref_primary_10_1016_j_future_2023_01_028
crossref_primary_10_1109_TBME_2024_3439820
crossref_primary_10_1080_10447318_2023_2275088
crossref_primary_10_1145_3648106
crossref_primary_10_1155_2024_4459867
crossref_primary_10_1016_j_ipm_2022_103001
crossref_primary_10_3390_brainsci15010050
crossref_primary_10_3389_fnhum_2023_1194751
crossref_primary_10_3390_e25030464
crossref_primary_10_1016_j_jnrt_2024_100122
crossref_primary_10_1016_j_bspc_2024_106081
crossref_primary_10_1007_s00521_020_05393_6
crossref_primary_10_1109_TCYB_2024_3410844
crossref_primary_10_1109_TNNLS_2022_3159573
crossref_primary_10_1016_j_eswa_2024_123972
crossref_primary_10_1016_j_eswa_2024_123975
crossref_primary_10_1109_ACCESS_2020_3032153
crossref_primary_10_1016_j_jneumeth_2020_109037
crossref_primary_10_1109_TNSRE_2023_3257319
crossref_primary_10_1007_s11571_023_09947_x
crossref_primary_10_3389_fnins_2022_796290
crossref_primary_10_1109_TCDS_2023_3257428
crossref_primary_10_1016_j_heliyon_2024_e30406
crossref_primary_10_1109_TNSRE_2024_3457502
crossref_primary_10_1080_2326263X_2023_2254463
crossref_primary_10_1016_j_knosys_2025_113096
crossref_primary_10_1109_TNSRE_2024_3457504
crossref_primary_10_3389_fncom_2024_1379368
crossref_primary_10_1109_JBHI_2023_3337072
crossref_primary_10_3389_fnins_2024_1493264
crossref_primary_10_1016_j_bspc_2024_106583
crossref_primary_10_1109_JBHI_2024_3452701
crossref_primary_10_1016_j_ifacol_2023_10_1458
crossref_primary_10_1088_1402_4896_ad5237
crossref_primary_10_1016_j_cmpb_2025_108594
crossref_primary_10_1088_1741_2552_ad9778
crossref_primary_10_3389_fncom_2022_803384
crossref_primary_10_3390_math13010166
crossref_primary_10_1016_j_cmpb_2025_108595
crossref_primary_10_1016_j_aei_2024_102522
crossref_primary_10_1016_j_aej_2024_06_058
crossref_primary_10_1109_JSEN_2023_3265688
crossref_primary_10_3389_fninf_2022_811756
crossref_primary_10_1007_s11042_024_18698_8
crossref_primary_10_1109_ACCESS_2020_2971656
crossref_primary_10_1109_JBHI_2024_3498916
crossref_primary_10_1088_1741_2552_ac7f5d
crossref_primary_10_1145_3344258
crossref_primary_10_3389_fnrgo_2023_1274730
crossref_primary_10_1016_j_eswa_2024_123993
crossref_primary_10_3389_fnhum_2023_1033420
crossref_primary_10_1016_j_neuroimage_2022_119783
crossref_primary_10_1109_JBHI_2024_3392564
crossref_primary_10_3389_fnins_2024_1309594
crossref_primary_10_1016_j_mlwa_2024_100542
crossref_primary_10_3390_s20072027
crossref_primary_10_1109_ACCESS_2019_2934018
crossref_primary_10_1016_j_aei_2024_102971
crossref_primary_10_1016_j_jneumeth_2021_109346
crossref_primary_10_1016_j_compbiolchem_2023_107863
crossref_primary_10_1016_j_inffus_2024_102447
crossref_primary_10_3390_electronics10233020
crossref_primary_10_1002_jdn_10166
crossref_primary_10_1109_ACCESS_2023_3262025
crossref_primary_10_1109_TCSII_2022_3169004
crossref_primary_10_3389_fnins_2024_1508747
crossref_primary_10_1109_TIM_2024_3375980
crossref_primary_10_3390_brainsci13111583
crossref_primary_10_1109_TNSRE_2025_3528409
crossref_primary_10_1007_s11831_021_09684_6
crossref_primary_10_1109_ACCESS_2020_2988057
crossref_primary_10_1109_THMS_2023_3332209
crossref_primary_10_1142_S0129065723500090
crossref_primary_10_1016_j_bspc_2025_107706
crossref_primary_10_1088_1741_2552_ac5d69
crossref_primary_10_1016_j_engappai_2024_109256
crossref_primary_10_1016_j_compbiomed_2023_106782
crossref_primary_10_1145_3666002
crossref_primary_10_1016_j_eswa_2023_122356
crossref_primary_10_1109_TNSRE_2023_3299156
crossref_primary_10_1088_1741_2552_acf2c9
crossref_primary_10_1109_JBHI_2024_3496757
crossref_primary_10_1016_j_bspc_2024_106131
crossref_primary_10_1109_TITS_2024_3522308
crossref_primary_10_3389_fnins_2023_1219988
crossref_primary_10_1016_j_irbm_2021_04_004
crossref_primary_10_1016_j_brainres_2025_149484
crossref_primary_10_1016_j_compbiomed_2023_107649
crossref_primary_10_1016_j_neucom_2024_128624
crossref_primary_10_1016_j_neunet_2024_106338
crossref_primary_10_1109_TBME_2021_3062502
crossref_primary_10_1016_j_jneumeth_2021_109367
crossref_primary_10_3389_fnhum_2019_00201
crossref_primary_10_1063_5_0232481
crossref_primary_10_1016_j_neunet_2023_01_009
crossref_primary_10_1007_s11571_025_10239_9
crossref_primary_10_3390_app122010273
crossref_primary_10_1109_JSEN_2024_3468951
crossref_primary_10_1038_s41467_022_28451_0
crossref_primary_10_1109_TIM_2024_3476618
crossref_primary_10_1109_TNSRE_2022_3228216
crossref_primary_10_12677_CSA_2024_143052
crossref_primary_10_3390_s21196672
crossref_primary_10_14789_jmj_JMJ23_0011_R
crossref_primary_10_1007_s00521_021_06202_4
crossref_primary_10_3389_fnhum_2023_1126938
crossref_primary_10_1080_27706710_2024_2366193
crossref_primary_10_1109_ACCESS_2022_3195513
crossref_primary_10_1109_TNSRE_2023_3259991
crossref_primary_10_1109_TBME_2021_3095848
crossref_primary_10_1109_TNSRE_2023_3236434
crossref_primary_10_1109_ACCESS_2021_3088757
crossref_primary_10_3389_fphys_2023_1188678
crossref_primary_10_1109_THMS_2022_3168421
crossref_primary_10_1016_j_neuroscience_2025_01_049
crossref_primary_10_1109_MSMC_2021_3090569
crossref_primary_10_1088_1741_2552_abc902
crossref_primary_10_1088_1741_2552_abc903
crossref_primary_10_1080_27706710_2024_2438050
crossref_primary_10_1016_j_eswa_2024_123550
crossref_primary_10_1016_j_neunet_2024_106313
crossref_primary_10_1109_ACCESS_2024_3522996
crossref_primary_10_1109_ACCESS_2023_3320561
crossref_primary_10_1109_JBHI_2024_3404664
crossref_primary_10_1016_j_bspc_2024_107458
crossref_primary_10_1109_LSENS_2023_3320066
crossref_primary_10_1007_s11571_022_09906_y
crossref_primary_10_1016_j_bspc_2025_107756
crossref_primary_10_1109_ACCESS_2024_3405652
crossref_primary_10_1109_JSEN_2024_3363754
crossref_primary_10_1186_s40708_023_00201_y
crossref_primary_10_1109_JBHI_2023_3292909
crossref_primary_10_1109_TNSRE_2021_3095298
crossref_primary_10_1088_1741_2552_ada30b
crossref_primary_10_1007_s11571_024_10162_5
crossref_primary_10_3390_diagnostics12040995
crossref_primary_10_1109_TAI_2024_3385390
crossref_primary_10_3390_s23239588
crossref_primary_10_1109_TCDS_2024_3370261
crossref_primary_10_1186_s12938_023_01129_4
crossref_primary_10_1016_j_engappai_2024_109642
crossref_primary_10_3390_s21175765
crossref_primary_10_1080_2326263X_2024_2347790
crossref_primary_10_3390_math12203286
crossref_primary_10_1080_27706710_2023_2181102
crossref_primary_10_1109_TNSRE_2024_3445115
crossref_primary_10_3389_fnhum_2024_1334721
crossref_primary_10_1016_j_bspc_2024_106985
crossref_primary_10_1109_MSMC_2021_3069145
crossref_primary_10_1134_S1064226924700359
crossref_primary_10_1109_TII_2021_3132340
crossref_primary_10_1088_1741_2552_adaf58
crossref_primary_10_1016_j_aej_2021_10_034
crossref_primary_10_1109_TNSRE_2022_3173724
crossref_primary_10_2139_ssrn_3986909
crossref_primary_10_1109_JSTSP_2024_3408100
crossref_primary_10_1109_TNSRE_2023_3339698
crossref_primary_10_1016_j_medntd_2021_100100
crossref_primary_10_3389_fnhum_2021_765525
crossref_primary_10_1016_j_neuri_2023_100154
crossref_primary_10_1016_j_bspc_2020_102227
crossref_primary_10_1109_ACCESS_2022_3176367
crossref_primary_10_1016_j_aei_2024_102575
crossref_primary_10_3390_s21175746
crossref_primary_10_32604_cmc_2024_049898
crossref_primary_10_3390_s21175740
crossref_primary_10_1016_j_dsp_2023_104278
crossref_primary_10_1109_TNSRE_2022_3211881
crossref_primary_10_1371_journal_pone_0234178
crossref_primary_10_1088_1741_2552_ac115d
crossref_primary_10_1007_s10489_023_04561_0
crossref_primary_10_1016_j_neucom_2022_09_124
crossref_primary_10_1016_j_compbiomed_2023_107235
crossref_primary_10_1016_j_imu_2023_101352
crossref_primary_10_1155_2024_6091523
crossref_primary_10_1109_TCDS_2021_3079712
crossref_primary_10_1109_TNNLS_2022_3172108
crossref_primary_10_1088_1741_2552_ac463a
crossref_primary_10_1016_j_neunet_2024_106734
crossref_primary_10_1016_j_eswa_2023_121915
crossref_primary_10_3389_fnhum_2023_1153413
crossref_primary_10_1109_TETCI_2024_3359097
crossref_primary_10_1098_rsos_230022
crossref_primary_10_1109_ACCESS_2020_2971600
crossref_primary_10_1109_TAFFC_2022_3169001
crossref_primary_10_1038_s42003_020_0846_z
crossref_primary_10_1109_TMRB_2020_3025364
crossref_primary_10_3390_fi13050103
crossref_primary_10_1016_j_eswa_2024_125303
crossref_primary_10_1016_j_device_2024_100425
crossref_primary_10_1016_j_energy_2024_133476
crossref_primary_10_1088_1741_2552_ac028b
crossref_primary_10_1109_ACCESS_2020_3047678
crossref_primary_10_3389_fnins_2020_587520
crossref_primary_10_1088_1741_2552_ac93b4
crossref_primary_10_3390_electronics13091646
crossref_primary_10_3390_s22218250
crossref_primary_10_1007_s11571_024_10073_5
crossref_primary_10_1016_j_compbiomed_2023_107254
crossref_primary_10_1016_j_jad_2024_09_006
crossref_primary_10_1109_TMC_2024_3446829
crossref_primary_10_1038_s42256_023_00714_5
crossref_primary_10_1109_TAFFC_2022_3210958
crossref_primary_10_3390_s24134167
crossref_primary_10_1002_eng2_12827
crossref_primary_10_1016_j_neucom_2021_08_067
crossref_primary_10_1109_JBHI_2024_3386565
crossref_primary_10_3390_brainsci11111397
crossref_primary_10_1016_j_bspc_2024_106996
crossref_primary_10_1088_1741_2552_acabe9
crossref_primary_10_1088_1741_2552_ad29d6
crossref_primary_10_1109_TNSRE_2023_3242280
crossref_primary_10_1038_s41598_024_59469_7
crossref_primary_10_1109_ACCESS_2022_3178100
crossref_primary_10_1088_1741_2552_ad5761
crossref_primary_10_1162_jocn_a_02279
crossref_primary_10_1007_s11432_022_3440_5
crossref_primary_10_1007_s11760_023_02965_6
crossref_primary_10_1007_s00521_022_07518_5
crossref_primary_10_1016_j_bspc_2021_102507
crossref_primary_10_3390_bioengineering9070323
crossref_primary_10_1109_TNSRE_2024_3502135
crossref_primary_10_1155_2020_6631400
crossref_primary_10_3390_technologies12120261
crossref_primary_10_1016_j_bbe_2022_05_002
crossref_primary_10_1080_27706710_2023_2285052
crossref_primary_10_1088_1361_6501_ad1157
crossref_primary_10_1107_S1600576724001390
crossref_primary_10_1109_TBME_2020_3004548
crossref_primary_10_15622_ia_2021_20_1_4
crossref_primary_10_1016_j_bbe_2021_10_001
crossref_primary_10_1016_j_ipm_2024_104012
crossref_primary_10_1109_TNSRE_2023_3324148
crossref_primary_10_1016_j_prime_2024_100451
crossref_primary_10_3389_fnins_2022_792318
crossref_primary_10_3390_s21062096
crossref_primary_10_1109_TOH_2024_3428308
crossref_primary_10_3390_app112210906
crossref_primary_10_1088_1741_2552_ab260c
crossref_primary_10_3390_brainsci14090860
crossref_primary_10_1109_TNSRE_2023_3321640
crossref_primary_10_1016_j_bspc_2023_105885
crossref_primary_10_1016_j_future_2025_107782
crossref_primary_10_1016_j_ijmedinf_2025_105859
crossref_primary_10_1109_ACCESS_2021_3105917
crossref_primary_10_1109_JIOT_2024_3367690
crossref_primary_10_3390_brainsci14121211
crossref_primary_10_1088_1741_2552_ac1d36
crossref_primary_10_1080_10255842_2024_2355490
crossref_primary_10_1088_1741_2552_ac1d32
crossref_primary_10_1088_1741_2552_ac84a9
crossref_primary_10_1186_s12984_023_01181_0
crossref_primary_10_1088_1741_2552_ac9050
crossref_primary_10_1088_1741_2552_ad8efc
crossref_primary_10_1007_s11571_024_10215_9
crossref_primary_10_3389_fninf_2024_1459970
crossref_primary_10_1016_j_neuroscience_2024_02_011
crossref_primary_10_1109_JSEN_2025_3528009
crossref_primary_10_1109_TCE_2023_3330423
crossref_primary_10_1016_j_medengphy_2023_104069
crossref_primary_10_1109_JBHI_2024_3443651
crossref_primary_10_3390_math10132302
crossref_primary_10_1109_TNSRE_2024_3460348
crossref_primary_10_1088_1741_2552_adbcda
crossref_primary_10_1016_j_bspc_2023_105867
crossref_primary_10_1016_j_neucom_2023_01_087
crossref_primary_10_1109_TCYB_2022_3211694
crossref_primary_10_3389_fnhum_2021_646915
crossref_primary_10_3389_fnbot_2024_1485640
crossref_primary_10_3390_math12131989
crossref_primary_10_1109_TMM_2024_3385676
crossref_primary_10_3389_fnins_2024_1480871
crossref_primary_10_1109_TIM_2024_3480232
crossref_primary_10_1109_ACCESS_2020_2984383
crossref_primary_10_1109_ACCESS_2021_3078470
crossref_primary_10_1016_j_jneumeth_2020_108886
crossref_primary_10_3389_fpsyg_2022_924793
crossref_primary_10_1088_1741_2552_ad7904
crossref_primary_10_3390_electronics11223674
crossref_primary_10_3389_fnhum_2022_986928
crossref_primary_10_1109_TNSRE_2022_3154369
crossref_primary_10_1016_j_neuroimage_2023_120142
crossref_primary_10_1016_j_dsp_2024_104856
crossref_primary_10_1016_j_patrec_2023_10_011
crossref_primary_10_1007_s11571_024_10192_z
crossref_primary_10_1016_j_bspc_2023_105854
crossref_primary_10_1088_1741_2552_ac9c94
crossref_primary_10_1109_TIM_2024_3381720
crossref_primary_10_1088_1741_2552_abe20f
crossref_primary_10_1088_1741_2552_ad6cf5
crossref_primary_10_1088_1741_2552_ac9c98
crossref_primary_10_1109_TIFS_2021_3067998
crossref_primary_10_1016_j_bspc_2023_104999
crossref_primary_10_1016_j_bspc_2023_104998
crossref_primary_10_1109_ACCESS_2020_2997681
crossref_primary_10_1016_j_engappai_2023_106122
crossref_primary_10_1016_j_neuroscience_2023_07_020
crossref_primary_10_1162_imag_a_00511
crossref_primary_10_1088_2631_8695_adb00d
crossref_primary_10_1109_TCYB_2021_3052813
crossref_primary_10_1007_s11517_024_03137_5
crossref_primary_10_1002_sdtp_13086
crossref_primary_10_1109_ACCESS_2022_3167703
crossref_primary_10_1016_j_eswa_2024_126127
crossref_primary_10_1080_2326263X_2022_2134623
crossref_primary_10_3390_brainsci15020129
crossref_primary_10_3390_diagnostics13040640
crossref_primary_10_1186_s12859_024_06024_w
crossref_primary_10_1109_TNSRE_2021_3087506
crossref_primary_10_1109_TBME_2018_2889512
crossref_primary_10_1038_s41598_019_53751_9
crossref_primary_10_1109_TIM_2024_3481538
crossref_primary_10_1088_1741_2552_ad0c61
crossref_primary_10_3389_fnins_2023_1124089
crossref_primary_10_1109_TNSRE_2021_3096874
crossref_primary_10_1088_1741_2552_acf78a
crossref_primary_10_1038_s41386_023_01658_5
crossref_primary_10_1186_s40708_023_00198_4
crossref_primary_10_3389_fnhum_2024_1442398
crossref_primary_10_1111_nyas_15288
crossref_primary_10_1016_j_jiixd_2024_06_003
crossref_primary_10_1109_ACCESS_2024_3371904
crossref_primary_10_1109_TNSRE_2020_3006180
crossref_primary_10_1016_j_bspc_2023_104579
crossref_primary_10_1109_JBHI_2024_3411646
crossref_primary_10_1109_ACCESS_2024_3501013
crossref_primary_10_1109_MCI_2021_3129956
crossref_primary_10_3389_fnhum_2021_653659
crossref_primary_10_1109_TNSRE_2020_2981659
crossref_primary_10_3390_diagnostics13061122
crossref_primary_10_3390_s23010498
crossref_primary_10_1109_TCSII_2022_3177616
crossref_primary_10_1007_s11517_023_02967_z
crossref_primary_10_1088_1741_2552_ad3986
crossref_primary_10_1109_ACCESS_2021_3072731
crossref_primary_10_1016_j_displa_2024_102879
crossref_primary_10_3390_s25020397
crossref_primary_10_1088_1741_2552_ad3987
crossref_primary_10_1109_JBHI_2022_3185587
crossref_primary_10_3389_fnbot_2025_1540033
crossref_primary_10_3390_s24248127
crossref_primary_10_1016_j_foodchem_2024_141533
crossref_primary_10_1109_TMC_2023_3283022
crossref_primary_10_1088_1741_2552_acec14
crossref_primary_10_1109_JSEN_2023_3313236
crossref_primary_10_1088_1741_2552_ab3bb4
crossref_primary_10_3389_fnhum_2021_655840
crossref_primary_10_3390_s25010120
crossref_primary_10_1109_JSEN_2024_3389685
crossref_primary_10_1109_TCBB_2021_3052811
crossref_primary_10_3390_brainsci14121201
crossref_primary_10_1186_s12911_020_01306_8
crossref_primary_10_1109_TNSRE_2024_3454088
crossref_primary_10_3390_brainsci15020124
crossref_primary_10_3390_bioengineering11040347
crossref_primary_10_1109_TNNLS_2023_3305621
crossref_primary_10_1038_s41598_022_27332_2
crossref_primary_10_1007_s10055_023_00818_8
crossref_primary_10_1016_j_engappai_2025_110340
crossref_primary_10_1016_j_neunet_2024_106497
crossref_primary_10_1038_s41597_023_02787_8
crossref_primary_10_1007_s10489_023_05258_0
crossref_primary_10_1016_j_jneumeth_2023_109969
crossref_primary_10_1016_j_patcog_2024_111114
crossref_primary_10_1016_j_bspc_2024_106182
crossref_primary_10_3389_fnins_2022_913027
crossref_primary_10_1016_j_bspc_2020_101845
crossref_primary_10_1109_ACCESS_2023_3329678
crossref_primary_10_1007_s11571_024_10135_8
crossref_primary_10_3390_app14020534
crossref_primary_10_1016_j_jneumeth_2023_109953
crossref_primary_10_1016_j_eswa_2023_122777
crossref_primary_10_1109_ACCESS_2025_3540164
crossref_primary_10_1109_JSEN_2022_3171808
crossref_primary_10_1016_j_bspc_2024_107001
crossref_primary_10_1088_1741_2552_ac857c
crossref_primary_10_1016_j_bspc_2024_107000
crossref_primary_10_1016_j_neunet_2024_106471
crossref_primary_10_1016_j_neunet_2024_106470
crossref_primary_10_1016_j_bspc_2024_106156
crossref_primary_10_1088_2632_2153_ad9135
crossref_primary_10_1007_s11571_024_10100_5
crossref_primary_10_1109_ACCESS_2023_3258969
crossref_primary_10_1016_j_bspc_2023_104924
crossref_primary_10_1109_TBCAS_2021_3137290
crossref_primary_10_1109_TCYB_2024_3415369
crossref_primary_10_1088_1741_2552_ac7257
crossref_primary_10_1109_TNSRE_2023_3237319
crossref_primary_10_1016_j_patrec_2021_01_036
crossref_primary_10_3390_brainsci11111525
crossref_primary_10_1109_TCDS_2023_3245042
crossref_primary_10_1109_TCDS_2023_3279262
crossref_primary_10_1109_JBHI_2024_3464550
crossref_primary_10_1016_j_bspc_2024_107019
crossref_primary_10_1109_ACCESS_2021_3089998
crossref_primary_10_1016_j_bspc_2024_107015
crossref_primary_10_1109_TCDS_2023_3245048
crossref_primary_10_1109_ACCESS_2023_3299497
crossref_primary_10_1049_ell2_13229
crossref_primary_10_1007_s12553_020_00458_x
crossref_primary_10_1109_TNSRE_2023_3241846
crossref_primary_10_1109_TNSRE_2021_3083548
crossref_primary_10_1016_j_bspc_2021_103021
crossref_primary_10_1016_j_ynirp_2022_100118
crossref_primary_10_1145_3659589
crossref_primary_10_1016_j_bspc_2021_103023
crossref_primary_10_1088_1741_2552_acbb2c
crossref_primary_10_1088_1741_2552_ab0ab5
crossref_primary_10_1016_j_ins_2022_12_088
crossref_primary_10_1109_TETCI_2023_3335943
crossref_primary_10_1016_j_compbiomed_2024_108075
crossref_primary_10_1109_JBHI_2021_3131104
crossref_primary_10_1088_1741_2552_ad171a
crossref_primary_10_1016_j_engappai_2022_105349
crossref_primary_10_1016_j_neucom_2024_128902
crossref_primary_10_1088_1741_2552_ad6187
crossref_primary_10_1016_j_bspc_2021_103013
crossref_primary_10_1088_1741_2552_ad6189
crossref_primary_10_1016_j_cmpb_2023_107593
crossref_primary_10_1016_j_bbe_2024_11_003
crossref_primary_10_1109_JBHI_2024_3415163
crossref_primary_10_1016_j_ijhcs_2023_103009
crossref_primary_10_3390_s19235317
crossref_primary_10_1109_TNSRE_2022_3204540
crossref_primary_10_1109_ACCESS_2023_3294618
crossref_primary_10_3390_s20164485
crossref_primary_10_1016_j_neunet_2023_08_008
crossref_primary_10_3390_s24165428
crossref_primary_10_1016_j_compbiomed_2023_106857
crossref_primary_10_1109_ACCESS_2023_3325283
crossref_primary_10_1016_j_neucom_2024_128920
crossref_primary_10_1016_j_compbiomed_2022_105242
crossref_primary_10_1162_neco_a_01223
crossref_primary_10_1109_TNSRE_2024_3415364
crossref_primary_10_3389_frobt_2020_00038
crossref_primary_10_1016_j_bspc_2021_103026
crossref_primary_10_1080_0954898X_2025_2453620
crossref_primary_10_1080_10255842_2024_2448576
crossref_primary_10_1109_TNSRE_2021_3059429
crossref_primary_10_2139_ssrn_4000327
crossref_primary_10_3934_mbe_2022325
crossref_primary_10_1080_10255842_2025_2477801
crossref_primary_10_1002_int_22551
crossref_primary_10_1016_j_robot_2024_104899
crossref_primary_10_1038_s41597_021_00883_1
crossref_primary_10_1109_TIM_2024_3522413
crossref_primary_10_1109_TNNLS_2023_3243339
crossref_primary_10_1016_j_bspc_2021_103102
crossref_primary_10_1109_TNSRE_2024_3434983
crossref_primary_10_1016_j_bspc_2022_103855
crossref_primary_10_1109_TIM_2025_3527610
crossref_primary_10_1109_TBME_2024_3355215
crossref_primary_10_1109_TNSRE_2023_3330911
crossref_primary_10_1007_s42979_024_03419_7
crossref_primary_10_1016_j_bspc_2022_103857
crossref_primary_10_3390_s21196503
crossref_primary_10_1088_1741_2552_ad0859
crossref_primary_10_1016_j_knosys_2023_110383
crossref_primary_10_1109_TII_2022_3227736
crossref_primary_10_1016_j_neunet_2022_06_008
crossref_primary_10_1088_1741_2552_ad33b3
crossref_primary_10_1109_ACCESS_2024_3368384
crossref_primary_10_3390_electronics12122743
crossref_primary_10_1016_j_neucom_2024_127622
crossref_primary_10_3390_app9081526
crossref_primary_10_3389_fnhum_2024_1448584
crossref_primary_10_1109_TNSRE_2023_3330922
crossref_primary_10_1016_j_ins_2024_121585
crossref_primary_10_1038_s41598_023_43542_8
crossref_primary_10_1109_JBHI_2023_3240891
crossref_primary_10_1038_s41598_023_43871_8
crossref_primary_10_1109_ACCESS_2023_3285236
crossref_primary_10_3390_brainsci13030483
crossref_primary_10_1088_1741_2552_ac9861
crossref_primary_10_3390_app12136707
crossref_primary_10_1016_j_bspc_2023_105063
crossref_primary_10_1109_TNSRE_2021_3079505
crossref_primary_10_1093_pnasnexus_pgae076
crossref_primary_10_1109_TNSRE_2021_3111689
crossref_primary_10_1109_ACCESS_2023_3277634
crossref_primary_10_1109_TNNLS_2023_3269949
crossref_primary_10_1109_TSMC_2021_3113823
crossref_primary_10_1007_s11571_023_09946_y
crossref_primary_10_1088_1741_2552_ac13c0
crossref_primary_10_1016_j_neucom_2024_127628
crossref_primary_10_1109_TSMC_2021_3051136
crossref_primary_10_1016_j_neucom_2024_128961
crossref_primary_10_1016_j_compbiomed_2022_105288
crossref_primary_10_1109_JBHI_2024_3377373
crossref_primary_10_1007_s00607_023_01193_7
crossref_primary_10_3389_fnins_2022_801818
crossref_primary_10_1109_LSP_2023_3263433
crossref_primary_10_3390_s25051471
crossref_primary_10_1016_j_artmed_2019_101711
crossref_primary_10_31083_j_jin2305106
crossref_primary_10_3389_fncom_2023_1232925
crossref_primary_10_1016_j_bspc_2024_106685
crossref_primary_10_1038_s41598_021_92805_9
crossref_primary_10_3390_biomimetics10030178
crossref_primary_10_3389_fnins_2024_1539580
crossref_primary_10_1109_JBHI_2024_3463737
crossref_primary_10_1016_j_softx_2021_100951
crossref_primary_10_1109_TNNLS_2022_3147208
crossref_primary_10_1109_ACCESS_2021_3052656
crossref_primary_10_1007_s11571_021_09721_x
crossref_primary_10_1109_ACCESS_2022_3165197
crossref_primary_10_1016_j_neuroimage_2025_121123
crossref_primary_10_3389_fnins_2019_01275
crossref_primary_10_1145_3689037
crossref_primary_10_1088_1741_2552_acc613
crossref_primary_10_1155_2022_6331956
crossref_primary_10_1088_1741_2552_ad6593
crossref_primary_10_1007_s13534_023_00309_4
crossref_primary_10_1016_j_jneumeth_2024_110356
crossref_primary_10_1016_j_eswa_2022_117417
crossref_primary_10_1186_s12911_020_01310_y
crossref_primary_10_3389_fncom_2022_882290
crossref_primary_10_3390_app12031695
crossref_primary_10_1109_TNSRE_2022_3207624
crossref_primary_10_1109_TVCG_2024_3372101
crossref_primary_10_1088_1741_2552_ad658e
crossref_primary_10_1002_cpe_5111
crossref_primary_10_1016_j_bspc_2024_107112
crossref_primary_10_1016_j_compbiomed_2019_02_023
crossref_primary_10_1016_j_neucom_2020_05_085
crossref_primary_10_3390_electronics13122290
crossref_primary_10_3390_s24103168
crossref_primary_10_1109_ACCESS_2022_3214994
crossref_primary_10_1007_s11760_022_02293_1
crossref_primary_10_1109_ACCESS_2022_3204758
crossref_primary_10_1016_j_cmpb_2022_107324
crossref_primary_10_1109_TNSRE_2023_3323325
crossref_primary_10_3390_app13010302
crossref_primary_10_1016_j_dsp_2022_103816
crossref_primary_10_3389_fneur_2021_640526
crossref_primary_10_1109_TAFFC_2023_3329526
crossref_primary_10_3389_fnins_2023_1167125
crossref_primary_10_1080_2326263X_2021_2009654
crossref_primary_10_1016_j_neunet_2020_12_013
crossref_primary_10_3390_bioengineering10050609
crossref_primary_10_3390_s24217080
crossref_primary_10_1016_j_patcog_2024_110726
crossref_primary_10_1109_ACCESS_2024_3516198
crossref_primary_10_1016_j_knosys_2020_106243
crossref_primary_10_1109_TNSRE_2024_3451010
crossref_primary_10_3389_fnins_2021_760979
crossref_primary_10_1088_1741_2552_ad788e
crossref_primary_10_3389_fnins_2023_1148855
crossref_primary_10_1109_JIOT_2024_3458976
crossref_primary_10_3389_fnins_2025_1506104
crossref_primary_10_3389_fpubh_2020_584387
crossref_primary_10_1088_1741_2552_ac6770
crossref_primary_10_1109_JBHI_2023_3285268
crossref_primary_10_1088_1741_2552_ad788c
crossref_primary_10_1109_TNNLS_2022_3202569
crossref_primary_10_1109_TCDS_2024_3395443
crossref_primary_10_3390_brainsci13020268
crossref_primary_10_1016_j_bspc_2023_105488
crossref_primary_10_1007_s10548_025_01100_7
crossref_primary_10_1007_s13042_025_02556_6
crossref_primary_10_1007_s11042_024_20264_1
crossref_primary_10_1016_j_jneumeth_2023_110036
crossref_primary_10_3390_s24020362
crossref_primary_10_1088_1741_2552_ac17d6
crossref_primary_10_3390_app15010392
crossref_primary_10_4103_jmss_jmss_59_22
crossref_primary_10_1016_j_compbiomed_2023_107323
crossref_primary_10_1016_j_ifacol_2024_08_564
crossref_primary_10_1109_TETCI_2024_3425328
crossref_primary_10_1016_j_asoc_2023_111129
crossref_primary_10_1016_j_nicl_2023_103482
crossref_primary_10_1109_JETCAS_2023_3242767
crossref_primary_10_1016_j_neucom_2021_08_119
crossref_primary_10_1016_j_eswa_2024_124775
crossref_primary_10_1007_s11571_024_10196_9
crossref_primary_10_1115_1_4053806
crossref_primary_10_1109_JSEN_2024_3515252
crossref_primary_10_1016_j_bspc_2023_105475
crossref_primary_10_1016_j_jneumeth_2024_110323
crossref_primary_10_3390_signals4010004
crossref_primary_10_1007_s00521_020_05588_x
crossref_primary_10_1371_journal_pone_0311942
crossref_primary_10_1007_s12652_021_03351_1
crossref_primary_10_1088_1741_2552_adb998
crossref_primary_10_1109_TNSRE_2023_3268979
crossref_primary_10_1155_2024_8742261
crossref_primary_10_1016_j_bspc_2023_105460
crossref_primary_10_1109_TITS_2023_3347075
crossref_primary_10_3390_brainsci14050469
crossref_primary_10_1016_j_jneumeth_2022_109580
crossref_primary_10_1209_0295_5075_ad602f
crossref_primary_10_1016_j_bspc_2023_105464
crossref_primary_10_3390_ctn8010013
crossref_primary_10_26599_BSA_2023_9050012
crossref_primary_10_26599_BSA_2023_9050011
crossref_primary_10_1016_j_aei_2024_102697
crossref_primary_10_3390_signals5030034
crossref_primary_10_26599_BSA_2023_9050016
crossref_primary_10_26599_BSA_2023_9050013
crossref_primary_10_3390_brainsci14050478
crossref_primary_10_1016_j_compbiomed_2024_108973
crossref_primary_10_1109_TNSRE_2023_3330500
crossref_primary_10_1016_j_jneumeth_2022_109593
crossref_primary_10_1109_TNNLS_2023_3236635
crossref_primary_10_1109_TPAMI_2023_3257846
crossref_primary_10_1016_j_bspc_2022_103803
crossref_primary_10_1016_j_rcim_2023_102610
crossref_primary_10_1016_j_neucom_2024_128577
crossref_primary_10_3389_fnhum_2022_975410
crossref_primary_10_3389_fnins_2024_1402154
crossref_primary_10_3390_s21062173
crossref_primary_10_1016_j_neucom_2024_127243
crossref_primary_10_1109_TETCI_2022_3147225
crossref_primary_10_1109_TNNLS_2023_3307470
crossref_primary_10_1109_LSP_2024_3400037
crossref_primary_10_3390_jpm15010027
crossref_primary_10_3390_brainsci13020221
crossref_primary_10_1109_OJSP_2023_3340063
crossref_primary_10_1016_j_ynirp_2025_100242
crossref_primary_10_1109_TNSRE_2023_3294815
crossref_primary_10_1016_j_smhl_2022_100339
crossref_primary_10_1109_TNSRE_2022_3156076
crossref_primary_10_1109_TNSRE_2023_3327788
crossref_primary_10_3389_fnbot_2024_1343249
crossref_primary_10_1016_j_compbiomed_2024_108504
crossref_primary_10_1080_10447318_2023_2278926
crossref_primary_10_3390_life13020391
crossref_primary_10_3390_brainsci14050498
crossref_primary_10_1088_1741_2552_acb1d9
crossref_primary_10_1109_TBME_2023_3344295
crossref_primary_10_1007_s00521_018_3879_1
crossref_primary_10_1088_1741_2552_ad430d
crossref_primary_10_1109_TSMC_2023_3340710
crossref_primary_10_1016_j_bspc_2023_105032
crossref_primary_10_1109_TNSRE_2023_3304660
crossref_primary_10_1109_TCDS_2021_3053455
crossref_primary_10_1109_TNSE_2022_3222362
crossref_primary_10_1007_s10527_024_10382_3
crossref_primary_10_1016_j_neucom_2023_03_071
crossref_primary_10_1038_s41597_024_04090_6
crossref_primary_10_1007_s12559_023_10188_7
crossref_primary_10_1016_j_neucom_2020_07_072
crossref_primary_10_3390_brainsci14121272
crossref_primary_10_1016_j_neucom_2022_08_024
crossref_primary_10_1088_1741_2552_ad3c28
crossref_primary_10_3389_fnins_2019_01215
crossref_primary_10_1007_s41870_024_02400_0
crossref_primary_10_3390_signals4010013
crossref_primary_10_1016_j_bspc_2021_102626
crossref_primary_10_1016_j_heliyon_2024_e37343
crossref_primary_10_1016_j_bspc_2024_106645
crossref_primary_10_1088_1741_2552_abf473
crossref_primary_10_1109_TPAMI_2024_3408684
crossref_primary_10_3389_fnagi_2022_909571
crossref_primary_10_1016_j_physa_2024_130191
crossref_primary_10_1016_j_neunet_2024_106844
crossref_primary_10_1109_ACCESS_2020_3002459
crossref_primary_10_1016_j_neunet_2024_106847
crossref_primary_10_3390_electronics13112084
crossref_primary_10_1088_1741_2552_acfe9c
crossref_primary_10_1109_TNSRE_2022_3180155
crossref_primary_10_1016_j_dsp_2024_104720
crossref_primary_10_3390_s23041932
crossref_primary_10_1109_ACCESS_2022_3161489
crossref_primary_10_3390_app13063578
crossref_primary_10_1016_j_artmed_2023_102755
crossref_primary_10_1016_j_bspc_2022_104397
crossref_primary_10_1016_j_bspc_2023_105524
crossref_primary_10_1016_j_neunet_2020_06_018
crossref_primary_10_1088_1742_6596_2219_1_012057
crossref_primary_10_1016_j_neucom_2024_129239
crossref_primary_10_31083_j_jin2308153
crossref_primary_10_1186_s40708_024_00239_6
crossref_primary_10_1016_j_neucom_2025_129994
crossref_primary_10_1109_TCDS_2022_3193731
crossref_primary_10_1016_j_neunet_2024_107066
crossref_primary_10_1088_1741_2552_ada0e4
crossref_primary_10_1088_1741_2552_ada0e3
crossref_primary_10_3390_s24123755
crossref_primary_10_1016_j_bspc_2025_107492
crossref_primary_10_1109_ACCESS_2025_3528539
crossref_primary_10_3233_IDT_230715
crossref_primary_10_3389_fnhum_2024_1385360
crossref_primary_10_3390_app10165662
crossref_primary_10_1109_TBME_2024_3404131
crossref_primary_10_1109_RBME_2024_3449790
crossref_primary_10_1016_j_neunet_2025_107337
crossref_primary_10_1016_j_eswa_2024_125585
crossref_primary_10_1016_j_neuroimage_2023_120495
crossref_primary_10_3390_s23229049
crossref_primary_10_1016_j_neuroimage_2021_118809
crossref_primary_10_3389_fnins_2022_1003984
crossref_primary_10_1038_s41598_024_84534_6
crossref_primary_10_1088_1741_2552_ad4f18
crossref_primary_10_1007_s00521_022_07542_5
crossref_primary_10_1109_MCI_2022_3199622
crossref_primary_10_3390_electronics9030422
crossref_primary_10_1109_TNSRE_2024_3435016
crossref_primary_10_1016_j_knosys_2025_113315
crossref_primary_10_1007_s11517_023_02931_x
crossref_primary_10_1109_JSEN_2024_3471894
crossref_primary_10_1016_j_fss_2022_10_003
crossref_primary_10_1016_j_neucom_2024_129255
crossref_primary_10_1109_ACCESS_2024_3474089
crossref_primary_10_1109_TSMC_2022_3156861
crossref_primary_10_3390_brainsci13071109
crossref_primary_10_1016_j_patcog_2023_109924
crossref_primary_10_1038_s41598_023_34487_z
crossref_primary_10_1088_1741_2552_ac0584
crossref_primary_10_3389_fnhum_2021_645952
crossref_primary_10_3390_app10051609
crossref_primary_10_1088_1741_2552_ace380
crossref_primary_10_1088_1741_2552_abda0b
crossref_primary_10_1109_TETCI_2023_3301385
crossref_primary_10_1016_j_asoc_2022_108889
crossref_primary_10_1109_TBME_2024_3474049
crossref_primary_10_1109_JBHI_2024_3441332
crossref_primary_10_1109_JSEN_2024_3387103
crossref_primary_10_1016_j_pedneo_2021_12_011
crossref_primary_10_1002_ima_22866
crossref_primary_10_1109_TSMC_2021_3062715
crossref_primary_10_1541_ieejeiss_140_737
crossref_primary_10_1088_1741_2552_ad4743
crossref_primary_10_3390_bioengineering11080781
crossref_primary_10_1038_s41598_025_87414_9
crossref_primary_10_1109_ACCESS_2024_3479308
crossref_primary_10_3389_fnins_2024_1320645
crossref_primary_10_1109_TNSRE_2022_3199363
crossref_primary_10_1016_j_bbe_2022_08_003
crossref_primary_10_1109_ACCESS_2023_3347336
crossref_primary_10_1016_j_eswa_2020_113202
crossref_primary_10_1007_s11571_024_10116_x
crossref_primary_10_1088_2632_072X_ad1c68
crossref_primary_10_1016_j_artmed_2020_101852
crossref_primary_10_1016_j_knosys_2020_105932
crossref_primary_10_1109_JSEN_2023_3328615
crossref_primary_10_1016_j_neuroscience_2023_01_021
crossref_primary_10_1007_s11571_024_10214_w
crossref_primary_10_1016_j_neucom_2023_126709
crossref_primary_10_1007_s11517_024_03103_1
crossref_primary_10_1007_s11760_022_02399_6
crossref_primary_10_1109_TNSRE_2022_3198041
crossref_primary_10_1016_j_neuroimage_2024_120781
crossref_primary_10_1142_S0218126625501075
crossref_primary_10_1016_j_bspc_2023_105556
crossref_primary_10_3390_electronics11234029
crossref_primary_10_3389_fninf_2025_1521805
crossref_primary_10_1109_TBCAS_2023_3238719
crossref_primary_10_1109_MDAT_2021_3069952
crossref_primary_10_1016_j_asoc_2021_108176
crossref_primary_10_1080_2326263X_2019_1568821
crossref_primary_10_1088_1742_6596_2644_1_012010
crossref_primary_10_1109_ACCESS_2025_3545094
crossref_primary_10_3389_fnhum_2022_1019279
crossref_primary_10_1109_ACCESS_2025_3541985
crossref_primary_10_1007_s10548_023_00991_8
crossref_primary_10_1088_1741_2552_abb7a7
crossref_primary_10_1002_hbm_26500
crossref_primary_10_1109_TNSRE_2024_3435460
crossref_primary_10_1109_TNSRE_2025_3530110
crossref_primary_10_1088_1741_2552_ac6a7d
crossref_primary_10_1016_j_slast_2024_100142
crossref_primary_10_1016_j_asoc_2024_112631
crossref_primary_10_1016_j_bspc_2023_104689
crossref_primary_10_3390_bioengineering12020095
crossref_primary_10_1109_JBHI_2024_3472097
crossref_primary_10_3389_fnins_2025_1543508
crossref_primary_10_1109_ACCESS_2024_3458833
crossref_primary_10_1109_TNSRE_2024_3499998
crossref_primary_10_3390_computers12070145
crossref_primary_10_1016_j_bspc_2023_104684
crossref_primary_10_3390_neurosci3020017
crossref_primary_10_3389_fninf_2019_00074
crossref_primary_10_1007_s11432_024_4081_x
crossref_primary_10_1007_s00521_024_09550_z
crossref_primary_10_1038_s41598_024_70508_1
crossref_primary_10_3389_fnins_2023_1160040
crossref_primary_10_34133_cbsystems_0045
crossref_primary_10_1109_TNNLS_2022_3220551
crossref_primary_10_1109_ACCESS_2024_3410036
crossref_primary_10_1088_1741_2552_ac65b1
crossref_primary_10_3389_fnbot_2019_00076
crossref_primary_10_1109_TBME_2021_3137184
crossref_primary_10_1016_j_neucom_2025_129911
crossref_primary_10_1080_27706710_2024_2447576
crossref_primary_10_1016_j_eswa_2024_126047
crossref_primary_10_1016_j_compbiomed_2024_109483
crossref_primary_10_3390_make6010011
crossref_primary_10_1109_LSP_2021_3095761
crossref_primary_10_3390_app132312832
crossref_primary_10_1109_JSEN_2024_3461682
crossref_primary_10_1109_JSEN_2024_3445971
crossref_primary_10_1038_s41597_022_01509_w
crossref_primary_10_1109_ACCESS_2020_3009665
crossref_primary_10_3390_s23177346
crossref_primary_10_1080_10447318_2025_2464097
crossref_primary_10_1109_TIM_2025_3550242
crossref_primary_10_1088_1741_2552_adbfc1
crossref_primary_10_3389_fnins_2023_1292724
crossref_primary_10_1002_hbm_24724
crossref_primary_10_1016_j_bspc_2024_107122
crossref_primary_10_1038_s41598_022_07517_5
crossref_primary_10_1371_journal_pone_0309706
crossref_primary_10_3390_s21051613
crossref_primary_10_1109_TBCAS_2022_3215962
crossref_primary_10_1088_1741_2552_ac1ade
crossref_primary_10_1016_j_cmpb_2023_107641
crossref_primary_10_1109_JBHI_2024_3504604
crossref_primary_10_1109_TNNLS_2021_3100583
crossref_primary_10_1016_j_neunet_2024_106119
crossref_primary_10_3390_bioengineering8020021
crossref_primary_10_1109_TNSRE_2022_3191869
crossref_primary_10_1016_j_asoc_2023_110613
crossref_primary_10_1109_TBME_2024_3386219
crossref_primary_10_1109_TETCI_2023_3332549
crossref_primary_10_1016_j_bspc_2024_107132
crossref_primary_10_1088_1741_2552_ac5eb7
crossref_primary_10_1007_s11571_024_10134_9
crossref_primary_10_1109_ACCESS_2024_3383142
crossref_primary_10_1109_TNSRE_2019_2943362
crossref_primary_10_1016_j_jpsychires_2024_08_002
crossref_primary_10_1016_j_fmre_2024_04_011
crossref_primary_10_3389_fnhum_2021_643386
crossref_primary_10_1016_j_compeleceng_2025_110204
crossref_primary_10_1016_j_bspc_2024_107189
crossref_primary_10_1109_TNSRE_2023_3323509
crossref_primary_10_1016_j_compbiomed_2024_108188
crossref_primary_10_1109_TNSRE_2024_3415474
crossref_primary_10_3390_s19132854
crossref_primary_10_1109_ACCESS_2024_3404634
crossref_primary_10_1016_j_compbiomed_2023_107806
crossref_primary_10_1007_s11517_025_03340_y
crossref_primary_10_1088_2057_1976_ad89c5
crossref_primary_10_3390_biomedicines13010213
crossref_primary_10_1016_j_eswa_2024_126081
crossref_primary_10_1016_j_bspc_2023_104627
crossref_primary_10_1109_TNSRE_2020_3038718
crossref_primary_10_3389_fnins_2025_1557287
crossref_primary_10_3390_brainsci15020098
crossref_primary_10_1016_j_procs_2018_11_062
crossref_primary_10_3389_fnins_2023_1173778
crossref_primary_10_1155_2021_6625141
crossref_primary_10_1007_s13246_024_01495_w
crossref_primary_10_1016_j_bspc_2023_104620
crossref_primary_10_1038_s41598_024_73755_4
crossref_primary_10_3390_bios14050211
crossref_primary_10_1016_j_neuroimage_2021_118403
crossref_primary_10_31083_j_jin2312218
crossref_primary_10_1088_1741_2552_ace73f
crossref_primary_10_3389_fnhum_2023_1240451
crossref_primary_10_1587_transinf_2021EDP7171
crossref_primary_10_1109_TNSRE_2019_2953121
crossref_primary_10_3390_s22176572
crossref_primary_10_1016_j_bspc_2024_107163
crossref_primary_10_3389_fnhum_2021_685173
crossref_primary_10_1109_ACCESS_2019_2917327
crossref_primary_10_1016_j_artmed_2023_102738
crossref_primary_10_1109_TITS_2023_3348517
crossref_primary_10_1016_j_eswa_2025_126381
crossref_primary_10_1016_j_jneumeth_2024_110057
crossref_primary_10_1109_TNSRE_2022_3145515
crossref_primary_10_3389_fnins_2022_926256
crossref_primary_10_1016_j_neunet_2024_107003
crossref_primary_10_3390_s24216815
crossref_primary_10_1109_TIM_2024_3352701
crossref_primary_10_3390_electronics8111208
crossref_primary_10_3389_fnins_2023_1125230
crossref_primary_10_1109_TIM_2024_3369143
crossref_primary_10_1109_TNSRE_2023_3252610
crossref_primary_10_1007_s10489_023_05134_x
crossref_primary_10_1038_s41598_024_74366_9
crossref_primary_10_3390_diagnostics13172852
crossref_primary_10_1371_journal_pdig_0000282
crossref_primary_10_1109_ACCESS_2020_3011969
crossref_primary_10_1016_j_irbm_2021_07_001
crossref_primary_10_1109_JBHI_2024_3452410
crossref_primary_10_1093_comjnl_bxac080
crossref_primary_10_1109_TCDS_2024_3431224
crossref_primary_10_1109_JBHI_2024_3450753
crossref_primary_10_1109_TNSRE_2023_3259730
crossref_primary_10_1631_FITEE_2100489
crossref_primary_10_26599_BSA_2022_9050007
crossref_primary_10_1109_ACCESS_2020_3045225
crossref_primary_10_1007_s13534_024_00438_4
crossref_primary_10_26599_BSA_2022_9050001
crossref_primary_10_32604_cmc_2022_029073
crossref_primary_10_3389_fnhum_2022_1032724
crossref_primary_10_1109_TNSRE_2025_3529991
crossref_primary_10_3390_computation11110225
crossref_primary_10_1088_1741_2552_acfcda
crossref_primary_10_24018_ejece_2024_8_3_617
crossref_primary_10_3390_s23146546
crossref_primary_10_3390_s19235302
crossref_primary_10_3389_fnins_2022_869522
crossref_primary_10_1109_JBHI_2023_3238421
crossref_primary_10_1109_JBHI_2024_3365051
crossref_primary_10_1109_JBHI_2024_3481005
crossref_primary_10_1016_j_neuroimage_2019_116361
crossref_primary_10_1016_j_compbiomed_2022_106220
crossref_primary_10_1109_TAFFC_2021_3126263
crossref_primary_10_1186_s40708_021_00133_5
crossref_primary_10_3390_e24030376
crossref_primary_10_1016_j_compbiomed_2024_109097
crossref_primary_10_1002_ecj_12280
crossref_primary_10_1016_j_neucom_2022_02_084
crossref_primary_10_1016_j_xpro_2025_103650
crossref_primary_10_3390_math12243915
crossref_primary_10_1109_JBHI_2022_3224506
crossref_primary_10_1109_TIM_2024_3451593
crossref_primary_10_1016_j_mejo_2023_105808
crossref_primary_10_1016_j_bspc_2024_106311
crossref_primary_10_1088_1741_2552_acfcd9
crossref_primary_10_1016_j_bspc_2024_106797
crossref_primary_10_1109_ACCESS_2025_3530091
crossref_primary_10_1109_TBME_2023_3303289
crossref_primary_10_1109_TCYB_2024_3390805
crossref_primary_10_1109_TNSRE_2022_3217344
crossref_primary_10_1088_1741_2552_aae5d8
crossref_primary_10_3389_fnhum_2024_1383956
crossref_primary_10_1063_5_0225972
crossref_primary_10_3389_fnins_2024_1507654
crossref_primary_10_3390_app9235078
crossref_primary_10_1016_j_bspc_2022_103531
crossref_primary_10_1109_TNSRE_2022_3229330
crossref_primary_10_1109_TDSC_2021_3060775
crossref_primary_10_3390_brainsci14050516
crossref_primary_10_1109_TNSRE_2024_3481886
crossref_primary_10_1038_s41598_021_99114_1
crossref_primary_10_1080_10255842_2024_2371036
crossref_primary_10_1088_1741_2552_ac38cf
crossref_primary_10_3389_fnins_2024_1367212
crossref_primary_10_3390_bdcc8120169
crossref_primary_10_1088_1741_2552_aca798
crossref_primary_10_1109_ACCESS_2023_3328254
crossref_primary_10_1109_TNSRE_2022_3186442
crossref_primary_10_1109_TBME_2021_3130917
crossref_primary_10_3390_s23114993
crossref_primary_10_3390_bioengineering11090926
crossref_primary_10_3389_fnins_2025_1546559
crossref_primary_10_1088_1741_2552_ac1ed2
crossref_primary_10_1088_2516_1091_ad8530
crossref_primary_10_1093_pnasnexus_pgae145
crossref_primary_10_1109_TNSRE_2022_3175307
crossref_primary_10_3390_s20236730
crossref_primary_10_1109_ACCESS_2021_3064530
crossref_primary_10_1177_15500594241234836
crossref_primary_10_1016_j_neunet_2024_106108
crossref_primary_10_1109_JBHI_2020_2967128
crossref_primary_10_1016_j_compbiomed_2023_107893
crossref_primary_10_1088_2057_1976_ad90e8
crossref_primary_10_1088_1741_2552_ac1ed0
crossref_primary_10_1016_j_mejo_2024_106134
crossref_primary_10_1109_TNNLS_2022_3214225
crossref_primary_10_1109_TCDS_2019_2959055
crossref_primary_10_1016_j_bspc_2025_107526
crossref_primary_10_3390_math9243297
crossref_primary_10_1016_j_neucom_2024_128889
crossref_primary_10_1088_1741_2552_abc1b6
crossref_primary_10_1088_1741_2552_ac7976
crossref_primary_10_1142_S273748072441005X
crossref_primary_10_1186_s12984_023_01169_w
crossref_primary_10_1007_s11042_023_14659_9
crossref_primary_10_1109_TNSRE_2022_3150007
crossref_primary_10_3389_fnins_2021_663101
crossref_primary_10_1109_TNSRE_2022_3199713
crossref_primary_10_1109_TPAMI_2023_3292062
crossref_primary_10_24018_ejece_2024_8_3_632
crossref_primary_10_1109_TCDS_2022_3209801
crossref_primary_10_1016_j_bspc_2024_107213
crossref_primary_10_1016_j_neunet_2023_06_005
crossref_primary_10_1109_TIM_2022_3216409
crossref_primary_10_1109_TNSRE_2021_3139095
crossref_primary_10_1088_1741_2552_ad9956
crossref_primary_10_1088_1742_6596_2384_1_012043
crossref_primary_10_1007_s00521_023_09344_9
crossref_primary_10_1063_5_0243337
crossref_primary_10_1088_1741_2552_ad558a
crossref_primary_10_1002_spe_3398
crossref_primary_10_1109_ACCESS_2024_3409843
crossref_primary_10_1088_1741_2552_ad49d7
crossref_primary_10_1371_journal_pone_0298867
crossref_primary_10_1016_j_bspc_2023_105125
crossref_primary_10_1109_TNSRE_2022_3174821
crossref_primary_10_1109_TPAMI_2023_3299568
crossref_primary_10_1109_TII_2019_2955447
crossref_primary_10_1088_1741_2552_ad7762
crossref_primary_10_1088_2057_1976_ad4f8e
crossref_primary_10_1109_TCYB_2021_3068300
crossref_primary_10_1108_LHT_09_2020_0239
crossref_primary_10_11834_jig_230031
crossref_primary_10_1007_s10548_023_01016_0
crossref_primary_10_1109_TNSRE_2021_3137340
crossref_primary_10_1088_1741_2552_ad5109
crossref_primary_10_1038_s41746_024_01364_6
crossref_primary_10_1109_TCYB_2020_3010805
crossref_primary_10_1109_TNSRE_2022_3147673
crossref_primary_10_3390_electronics13112174
crossref_primary_10_1109_JBHI_2024_3419043
crossref_primary_10_3389_fnins_2024_1340164
crossref_primary_10_1016_j_aei_2020_101157
crossref_primary_10_3389_fnins_2020_00168
crossref_primary_10_1038_s41597_024_04114_1
crossref_primary_10_3390_s24185988
crossref_primary_10_3389_fnins_2021_642251
crossref_primary_10_2139_ssrn_4163287
crossref_primary_10_3390_s24134368
crossref_primary_10_1016_j_eswa_2024_123354
crossref_primary_10_3389_fnhum_2025_1542774
crossref_primary_10_1016_j_asoc_2022_108811
crossref_primary_10_3389_fnhum_2024_1430086
crossref_primary_10_1109_TNSRE_2020_3048106
crossref_primary_10_1007_s10470_023_02153_z
crossref_primary_10_1016_j_aei_2022_101729
crossref_primary_10_1145_3524499
crossref_primary_10_1016_j_medengphy_2024_104154
crossref_primary_10_1007_s11227_025_06947_y
crossref_primary_10_1007_s13755_024_00270_1
crossref_primary_10_1080_2326263X_2024_2409463
crossref_primary_10_1016_j_patcog_2022_108757
crossref_primary_10_3389_fneur_2023_1183810
crossref_primary_10_3390_s22207792
crossref_primary_10_1186_s40708_021_00151_3
crossref_primary_10_1109_TMRB_2024_3387092
crossref_primary_10_1109_ACCESS_2025_3525528
crossref_primary_10_1109_JIOT_2024_3402254
crossref_primary_10_1145_3654664
crossref_primary_10_1109_TASE_2020_3021456
crossref_primary_10_1016_j_compbiomed_2024_108619
crossref_primary_10_1007_s10489_024_05662_0
crossref_primary_10_1016_j_neunet_2023_06_040
crossref_primary_10_1109_ACCESS_2019_2936817
crossref_primary_10_1016_j_asoc_2021_107664
crossref_primary_10_3389_fnhum_2023_1111645
crossref_primary_10_1109_TBME_2019_2958641
crossref_primary_10_1109_ACCESS_2021_3085865
crossref_primary_10_3390_s24165086
crossref_primary_10_1016_j_cmpb_2024_108048
crossref_primary_10_1016_j_neunet_2023_04_045
crossref_primary_10_1016_j_neuroscience_2024_07_051
crossref_primary_10_1109_ACCESS_2020_3006907
crossref_primary_10_3390_s22186834
crossref_primary_10_1145_3478129
crossref_primary_10_1088_1742_6596_2891_11_112014
crossref_primary_10_1088_1741_2552_ad200e
crossref_primary_10_1109_ACCESS_2024_3407690
crossref_primary_10_1109_JSEN_2022_3172133
crossref_primary_10_3390_s23187908
crossref_primary_10_1016_j_engappai_2024_109825
crossref_primary_10_1016_j_brainres_2023_148673
crossref_primary_10_1016_j_jneumeth_2021_109196
crossref_primary_10_3389_fnhum_2020_00103
crossref_primary_10_1109_JBHI_2024_3513038
crossref_primary_10_3389_fnins_2021_655599
crossref_primary_10_1109_ACCESS_2021_3056088
crossref_primary_10_1088_1741_2552_aca1e2
crossref_primary_10_1016_j_neuroimage_2022_119586
crossref_primary_10_1109_TBME_2022_3168570
crossref_primary_10_1080_27706710_2022_2075242
crossref_primary_10_3389_fnins_2024_1306283
crossref_primary_10_1088_1741_2552_ad2496
crossref_primary_10_1088_1741_2552_ad2494
crossref_primary_10_1088_1741_2552_ad2495
crossref_primary_10_1109_TCDS_2021_3099988
crossref_primary_10_1109_TMRB_2023_3315742
crossref_primary_10_1016_j_bspc_2021_102747
crossref_primary_10_1016_j_oceaneng_2022_112767
crossref_primary_10_1109_TNSRE_2023_3336356
crossref_primary_10_3389_fnhum_2023_1186594
crossref_primary_10_1016_j_aej_2024_09_053
crossref_primary_10_1186_s40708_020_00110_4
crossref_primary_10_3390_brainsci13020315
crossref_primary_10_1109_TBME_2023_3274231
crossref_primary_10_26599_BSA_2022_9050013
crossref_primary_10_1088_1741_2552_ac7908
crossref_primary_10_26599_BSA_2022_9050011
crossref_primary_10_3390_informatics9010026
crossref_primary_10_1016_j_displa_2023_102602
crossref_primary_10_1038_s41597_022_01647_1
crossref_primary_10_1109_JBHI_2023_3303494
crossref_primary_10_3390_jcm8071055
crossref_primary_10_1109_TNSRE_2023_3299355
crossref_primary_10_1145_3550334
crossref_primary_10_3389_fninf_2022_952474
crossref_primary_10_1007_s11571_024_10181_2
crossref_primary_10_1109_TNSRE_2023_3339179
crossref_primary_10_1109_ACCESS_2023_3270426
crossref_primary_10_3389_fnins_2023_1303648
crossref_primary_10_3390_s21051792
crossref_primary_10_3389_fncom_2023_1108889
crossref_primary_10_3390_mi13060927
crossref_primary_10_1007_s00521_021_06352_5
crossref_primary_10_1109_TSMC_2021_3114145
crossref_primary_10_1016_j_dscb_2024_100121
crossref_primary_10_1016_j_bspc_2023_105638
crossref_primary_10_1109_TNSRE_2023_3274563
crossref_primary_10_1109_TNSRE_2024_3450795
crossref_primary_10_1088_1741_2552_ad680b
crossref_primary_10_1016_j_neunet_2021_08_019
crossref_primary_10_1038_s41597_024_03838_4
crossref_primary_10_1016_j_compbiomed_2024_109525
crossref_primary_10_1109_TETCI_2020_2997031
crossref_primary_10_1109_TNSRE_2023_3342331
crossref_primary_10_1109_ACCESS_2024_3502540
crossref_primary_10_3389_fninf_2024_1494970
crossref_primary_10_3389_fnins_2020_568104
crossref_primary_10_1088_1741_2552_ad09ff
crossref_primary_10_1007_s00521_025_10979_z
crossref_primary_10_1088_1741_2552_ac4852
crossref_primary_10_1109_TNSRE_2020_3023761
crossref_primary_10_1016_j_compbiomed_2024_108681
crossref_primary_10_1109_TAFFC_2023_3336531
crossref_primary_10_1109_TPAMI_2021_3121268
crossref_primary_10_1016_j_bspc_2023_105621
crossref_primary_10_3389_fnins_2020_00417
crossref_primary_10_1016_j_cmpb_2023_107365
crossref_primary_10_1088_1741_2552_abd10e
crossref_primary_10_1109_TNSRE_2023_3273214
crossref_primary_10_1109_ACCESS_2022_3228164
crossref_primary_10_1109_TNSRE_2023_3300961
crossref_primary_10_1016_j_bspc_2021_102826
crossref_primary_10_3390_brainsci14080836
crossref_primary_10_1109_TIM_2025_3538086
crossref_primary_10_1109_TIM_2024_3400360
crossref_primary_10_1016_j_dajour_2023_100211
crossref_primary_10_1186_s12984_024_01330_z
crossref_primary_10_1016_j_bspc_2022_104066
crossref_primary_10_3390_app13106283
crossref_primary_10_1109_JBHI_2024_3487012
crossref_primary_10_1007_s12264_024_01247_6
crossref_primary_10_1088_1741_2552_ac73b3
crossref_primary_10_3389_fnbot_2022_958052
crossref_primary_10_1109_TNSRE_2022_3192448
crossref_primary_10_1109_TNSRE_2023_3297654
crossref_primary_10_1038_s41598_024_77923_4
crossref_primary_10_1360_SSI_2021_0179
crossref_primary_10_3389_fninf_2022_872035
crossref_primary_10_3390_s20164629
crossref_primary_10_1109_TBME_2024_3432934
crossref_primary_10_3389_fnhum_2024_1272121
crossref_primary_10_1016_j_eswa_2022_119032
crossref_primary_10_1109_ACCESS_2021_3132024
crossref_primary_10_1088_1741_2552_ad905d
crossref_primary_10_1109_TCBB_2020_3024228
crossref_primary_10_1016_j_eswa_2024_126362
crossref_primary_10_3788_LOP231464
crossref_primary_10_3389_fnins_2024_1361486
crossref_primary_10_1088_1741_2552_ad0a01
crossref_primary_10_1109_TCDS_2023_3260084
crossref_primary_10_3389_fncom_2022_942979
crossref_primary_10_1016_j_bspc_2022_104005
crossref_primary_10_1016_j_jmsy_2022_08_009
crossref_primary_10_1371_journal_pone_0270405
crossref_primary_10_3389_fpsyt_2023_1310323
crossref_primary_10_1109_TBME_2022_3201241
crossref_primary_10_3390_electronics14030447
crossref_primary_10_1007_s00371_021_02140_3
crossref_primary_10_1109_TNSRE_2022_3209155
crossref_primary_10_3390_bioengineering11060613
crossref_primary_10_1007_s11571_024_10115_y
crossref_primary_10_1109_JBHI_2024_3446952
crossref_primary_10_1016_j_eswa_2023_121612
crossref_primary_10_1038_s41598_024_67853_6
crossref_primary_10_3389_fncom_2021_619508
crossref_primary_10_3390_app14198646
crossref_primary_10_1109_TNSRE_2024_3483294
crossref_primary_10_3390_s22239547
crossref_primary_10_1155_2021_6614191
crossref_primary_10_1111_ejn_14936
crossref_primary_10_1007_s00170_024_14098_2
crossref_primary_10_1007_s11571_024_10159_0
crossref_primary_10_1007_s00422_024_00984_1
crossref_primary_10_1109_THMS_2022_3189576
crossref_primary_10_1007_s11517_024_03246_1
crossref_primary_10_1109_TIM_2024_3418093
crossref_primary_10_3389_fnins_2023_1275065
crossref_primary_10_1007_s10586_024_04818_4
crossref_primary_10_3389_fnins_2025_1487175
crossref_primary_10_1088_1741_2552_ad152f
crossref_primary_10_1016_j_bspc_2022_103582
crossref_primary_10_1109_TCDS_2020_2976112
crossref_primary_10_3390_s24165207
crossref_primary_10_1016_j_displa_2024_102657
crossref_primary_10_1016_j_eswa_2023_120348
crossref_primary_10_1109_TNSRE_2022_3166517
crossref_primary_10_3389_fnins_2023_1303242
crossref_primary_10_1088_1741_2552_ac20bc
crossref_primary_10_3389_fnhum_2022_930291
crossref_primary_10_1109_TIM_2024_3420350
crossref_primary_10_1088_1741_2552_ac77be
crossref_primary_10_1371_journal_pone_0308506
crossref_primary_10_1016_j_bspc_2022_104440
crossref_primary_10_1088_1742_6596_1962_1_012047
crossref_primary_10_1051_bioconf_20236101014
crossref_primary_10_1088_1741_2552_acee1f
crossref_primary_10_1109_MCI_2021_3061875
crossref_primary_10_1016_j_asoc_2024_111635
crossref_primary_10_1007_s13755_023_00226_x
crossref_primary_10_3390_a16090429
crossref_primary_10_1016_j_neunet_2024_106267
crossref_primary_10_1016_j_asoc_2022_109685
crossref_primary_10_1088_1361_6579_ad4e95
crossref_primary_10_1088_1741_2552_acee20
crossref_primary_10_1016_j_compbiomed_2024_109132
crossref_primary_10_1016_j_neucom_2023_126659
crossref_primary_10_3390_brainsci12091233
crossref_primary_10_1109_JSAC_2024_3399258
crossref_primary_10_1016_j_bspc_2022_104456
crossref_primary_10_1016_j_compbiomed_2023_107901
crossref_primary_10_1002_ima_22913
crossref_primary_10_3389_frobt_2024_1329270
crossref_primary_10_1038_s41598_024_59263_5
crossref_primary_10_1109_TNSRE_2023_3235390
crossref_primary_10_1016_j_eswa_2023_121658
crossref_primary_10_1109_TNSRE_2023_3337802
crossref_primary_10_1016_j_bbe_2024_05_001
crossref_primary_10_26599_BSA_2020_9050021
crossref_primary_10_1088_1741_2552_ab57c0
crossref_primary_10_4103_2773_2398_348253
crossref_primary_10_1016_j_bspc_2025_107552
crossref_primary_10_1109_ACCESS_2021_3054670
crossref_primary_10_1109_JSEN_2023_3270281
crossref_primary_10_3389_fnhum_2024_1346050
crossref_primary_10_1109_JIOT_2023_3323264
crossref_primary_10_1016_j_bspc_2025_107554
crossref_primary_10_1016_j_inffus_2023_03_022
crossref_primary_10_1016_j_compbiomed_2023_107910
crossref_primary_10_1016_j_neuroimage_2023_120396
crossref_primary_10_1002_pchj_688
crossref_primary_10_1016_j_ymeth_2022_04_009
crossref_primary_10_1038_s41598_020_70569_y
crossref_primary_10_3390_s22155771
crossref_primary_10_3390_s24237611
crossref_primary_10_1007_s41870_024_02001_x
crossref_primary_10_1109_ACCESS_2023_3339665
crossref_primary_10_1088_1741_2552_ac6d7f
crossref_primary_10_1088_1741_2552_ac6d7d
crossref_primary_10_1109_ACCESS_2024_3459866
crossref_primary_10_1088_1741_2552_ad88a3
crossref_primary_10_1088_1741_2552_ad88a2
crossref_primary_10_3390_s24186110
crossref_primary_10_1080_1206212X_2025_2450247
crossref_primary_10_1109_TNSRE_2023_3251420
crossref_primary_10_3390_app14020726
crossref_primary_10_1109_JSAC_2024_3399203
crossref_primary_10_1016_j_bspc_2022_103546
crossref_primary_10_1109_JBHI_2022_3225019
crossref_primary_10_1109_ACCESS_2020_3012918
crossref_primary_10_1109_JBHI_2023_3264521
crossref_primary_10_1088_1741_2552_ad44d7
crossref_primary_10_1007_s11571_020_09649_8
crossref_primary_10_3390_math13050729
crossref_primary_10_1016_j_eswa_2022_119096
crossref_primary_10_1109_TSMC_2024_3355101
crossref_primary_10_1007_s11042_019_08130_x
crossref_primary_10_1109_JSEN_2023_3279904
crossref_primary_10_1145_3427471
crossref_primary_10_1109_TNSRE_2020_3035786
crossref_primary_10_1109_TII_2020_3044310
crossref_primary_10_1016_j_jneumeth_2021_109426
crossref_primary_10_3389_fnins_2021_684547
crossref_primary_10_1088_1741_2552_acfbf9
crossref_primary_10_1109_TNSRE_2021_3083755
crossref_primary_10_1093_cercor_bhae505
crossref_primary_10_1016_j_heliyon_2024_e31485
crossref_primary_10_1109_ACCESS_2024_3406909
crossref_primary_10_3390_s24061889
crossref_primary_10_1016_j_heliyon_2023_e23948
crossref_primary_10_1109_TNSRE_2023_3314679
crossref_primary_10_1109_TNSRE_2022_3219418
crossref_primary_10_1016_j_bspc_2021_103342
crossref_primary_10_1007_s00521_023_08927_w
crossref_primary_10_1016_j_bspc_2022_103612
crossref_primary_10_1109_TBME_2023_3298957
crossref_primary_10_1016_j_bspc_2021_103338
crossref_primary_10_1038_s41597_025_04826_y
crossref_primary_10_1016_j_bspc_2022_103618
crossref_primary_10_1109_TNSRE_2022_3220884
crossref_primary_10_1016_j_neunet_2024_106655
crossref_primary_10_1016_j_mejo_2021_105356
crossref_primary_10_3390_brainsci14070688
crossref_primary_10_1109_COMST_2024_3396847
crossref_primary_10_1109_TII_2023_3297323
crossref_primary_10_1016_j_bspc_2024_106465
crossref_primary_10_1109_TCYB_2025_3533088
crossref_primary_10_1016_j_compeleceng_2024_110005
crossref_primary_10_1007_s11571_024_10132_x
crossref_primary_10_1109_TMRB_2021_3098108
crossref_primary_10_1186_s40779_025_00598_z
crossref_primary_10_1016_j_jneumeth_2022_109736
crossref_primary_10_3389_fnins_2024_1366294
crossref_primary_10_1016_j_medengphy_2021_08_006
crossref_primary_10_1016_j_neunet_2024_106665
crossref_primary_10_1007_s12264_024_01319_7
crossref_primary_10_1093_brain_awac340
crossref_primary_10_1016_j_foodchem_2024_139816
crossref_primary_10_1088_1674_1056_ac9cbc
crossref_primary_10_1155_2021_8897105
crossref_primary_10_1088_1741_2552_ad8d0a
crossref_primary_10_1109_JBHI_2023_3318419
crossref_primary_10_1007_s11571_022_09851_w
crossref_primary_10_1088_1741_2552_ad5048
crossref_primary_10_1007_s00521_022_07748_7
crossref_primary_10_1016_j_jneumeth_2022_109747
crossref_primary_10_1109_JBHI_2024_3467090
crossref_primary_10_1109_TII_2023_3262248
crossref_primary_10_1109_IOTM_001_2300262
crossref_primary_10_1016_j_neucom_2023_126262
crossref_primary_10_1109_TPAMI_2020_2995909
crossref_primary_10_1016_j_vrih_2021_10_002
crossref_primary_10_1109_LSP_2021_3049683
crossref_primary_10_1080_27706710_2024_2400063
crossref_primary_10_1093_cercor_bhad173
crossref_primary_10_1109_TIM_2024_3384559
crossref_primary_10_1016_j_heliyon_2024_e26028
crossref_primary_10_1038_s41598_024_71118_7
crossref_primary_10_1109_LSENS_2024_3417453
crossref_primary_10_1109_TCSII_2020_2983389
crossref_primary_10_1007_s11432_022_3548_2
crossref_primary_10_1109_TNNLS_2023_3287181
crossref_primary_10_1109_TNSRE_2019_2908955
crossref_primary_10_1109_TSMC_2023_3282635
crossref_primary_10_1016_j_eswa_2024_125832
crossref_primary_10_3389_fnins_2020_00918
crossref_primary_10_1016_j_neuroimage_2022_118994
crossref_primary_10_1016_j_brainres_2024_149085
crossref_primary_10_1016_j_jneumeth_2024_110108
crossref_primary_10_1016_j_bspc_2024_107345
crossref_primary_10_1016_j_eswa_2021_116443
crossref_primary_10_1016_j_engappai_2024_108473
crossref_primary_10_1109_TNSRE_2022_3143836
crossref_primary_10_1016_j_bspc_2020_102172
crossref_primary_10_1109_TCSS_2023_3298324
crossref_primary_10_1109_TNSRE_2023_3336897
crossref_primary_10_1109_TNSRE_2022_3208710
crossref_primary_10_1109_TII_2024_3450010
crossref_primary_10_3389_fnins_2023_1204385
crossref_primary_10_1016_j_bspc_2025_107610
crossref_primary_10_1142_S0219519422400024
crossref_primary_10_3390_biomimetics10020118
crossref_primary_10_3389_fnins_2023_1203059
crossref_primary_10_1109_TCDS_2024_3386364
crossref_primary_10_3389_fnhum_2023_1205881
crossref_primary_10_1007_s11517_024_03032_z
crossref_primary_10_31083_j_jin2004083
crossref_primary_10_1109_OJEMB_2025_3537760
crossref_primary_10_1038_s41598_024_79202_8
crossref_primary_10_1038_s41598_024_79139_y
crossref_primary_10_1109_TNSRE_2022_3198970
crossref_primary_10_1016_j_clinph_2019_09_021
crossref_primary_10_1109_TNSRE_2025_3527629
crossref_primary_10_1016_j_bspc_2024_107324
crossref_primary_10_1016_j_jneumeth_2025_110413
crossref_primary_10_1016_j_engappai_2024_108011
crossref_primary_10_1038_s41598_024_66228_1
crossref_primary_10_1007_s11571_024_10141_w
crossref_primary_10_1016_j_neuri_2021_100029
crossref_primary_10_1109_TBME_2022_3218116
crossref_primary_10_1109_ACCESS_2023_3266306
crossref_primary_10_1109_TCSVT_2021_3061719
crossref_primary_10_1016_j_future_2019_06_027
crossref_primary_10_1016_j_bspc_2024_107331
crossref_primary_10_1515_bmt_2021_0232
crossref_primary_10_3390_s22155802
crossref_primary_10_1016_j_medntd_2023_100215
crossref_primary_10_1109_ACCESS_2024_3370041
crossref_primary_10_1016_j_brainres_2024_149092
crossref_primary_10_1109_TIM_2023_3280529
crossref_primary_10_1007_s12652_022_04443_2
crossref_primary_10_1371_journal_pone_0272167
crossref_primary_10_1016_j_bspc_2025_107635
crossref_primary_10_1016_j_bspc_2024_106003
crossref_primary_10_1142_S0129065722500101
crossref_primary_10_1088_1741_2552_ad48ba
crossref_primary_10_1016_j_cose_2020_101788
crossref_primary_10_1088_1741_2552_ad48bc
crossref_primary_10_1038_s41598_022_07992_w
crossref_primary_10_1016_j_patter_2025_101182
crossref_primary_10_1088_1741_2552_acb96e
crossref_primary_10_3390_computers9030072
crossref_primary_10_3390_technologies10040079
crossref_primary_10_1088_1741_2552_acb96f
crossref_primary_10_1038_s41746_023_00983_9
crossref_primary_10_1088_1741_2552_acd1b6
crossref_primary_10_1109_TNSRE_2023_3235804
crossref_primary_10_3389_fnrgo_2024_1341790
crossref_primary_10_3389_fmolb_2022_931688
crossref_primary_10_1088_1741_2552_ad48b9
crossref_primary_10_1016_j_cmpb_2024_108123
crossref_primary_10_1016_j_compbiomed_2024_108705
crossref_primary_10_1088_1741_2552_ad6793
crossref_primary_10_1186_s13040_023_00336_y
crossref_primary_10_1016_j_patcog_2024_110934
crossref_primary_10_1016_j_jad_2023_06_007
crossref_primary_10_1109_TNSRE_2023_3241241
crossref_primary_10_1088_1741_2552_acae07
crossref_primary_10_3389_fnhum_2022_927567
crossref_primary_10_3390_brainsci14030282
crossref_primary_10_1016_j_neucom_2025_129594
crossref_primary_10_1109_TCDS_2020_3007453
crossref_primary_10_3390_a17110477
crossref_primary_10_1109_ACCESS_2020_3011185
crossref_primary_10_1088_1741_2552_ad8964
crossref_primary_10_3390_brainsci12040447
crossref_primary_10_1007_s11571_023_10062_0
crossref_primary_10_1109_TII_2021_3133307
crossref_primary_10_3389_fncom_2022_1010770
crossref_primary_10_1007_s11571_020_09577_7
crossref_primary_10_1088_1741_2552_acf7f4
crossref_primary_10_1007_s00330_020_07585_z
crossref_primary_10_1088_1741_2552_acf7f5
crossref_primary_10_3390_s23084164
crossref_primary_10_1109_TNSRE_2022_3184725
crossref_primary_10_1002_ima_22593
crossref_primary_10_1007_s13042_021_01414_5
crossref_primary_10_1016_j_eswa_2024_123239
crossref_primary_10_1088_1741_2552_ad4593
crossref_primary_10_1109_TBME_2024_3361716
crossref_primary_10_1016_j_compbiomed_2024_108727
crossref_primary_10_1109_JSEN_2022_3159475
crossref_primary_10_3389_fnhum_2024_1358809
crossref_primary_10_3389_fnins_2022_1062889
crossref_primary_10_1109_TIM_2023_3341121
crossref_primary_10_1109_ACCESS_2021_3132128
crossref_primary_10_1109_TIM_2020_3047502
crossref_primary_10_1109_TPAMI_2024_3426296
crossref_primary_10_1016_j_bspc_2023_105690
crossref_primary_10_1016_j_csbj_2023_12_006
crossref_primary_10_1088_1741_2552_ad17f2
crossref_primary_10_1016_j_knosys_2024_112668
crossref_primary_10_1016_j_bspc_2023_105214
crossref_primary_10_1109_LSP_2024_3410044
crossref_primary_10_1016_j_eswa_2022_118511
crossref_primary_10_3389_fnins_2021_619591
crossref_primary_10_1109_TNSRE_2023_3245617
crossref_primary_10_1109_TIM_2023_3284926
crossref_primary_10_1016_j_knosys_2022_108819
crossref_primary_10_3390_bioengineering10020186
crossref_primary_10_1109_TNSRE_2022_3230250
crossref_primary_10_1109_JBHI_2024_3489221
crossref_primary_10_1038_s41598_024_68978_4
crossref_primary_10_1016_j_bspc_2022_104076
crossref_primary_10_3389_fnhum_2022_874199
crossref_primary_10_1155_2022_8187009
crossref_primary_10_1016_j_ins_2023_119160
crossref_primary_10_1038_s41597_024_03501_y
crossref_primary_10_1109_ACCESS_2020_3011140
crossref_primary_10_1109_JBHI_2022_3174771
crossref_primary_10_1109_TCDS_2023_3314351
crossref_primary_10_1109_TIM_2022_3177747
crossref_primary_10_3390_robotics13010014
crossref_primary_10_3390_biomedicines11092370
crossref_primary_10_3390_bios12010022
crossref_primary_10_1016_j_compbiomed_2024_109608
crossref_primary_10_3390_brainsci9120348
crossref_primary_10_1109_ACCESS_2022_3206782
crossref_primary_10_1109_TFUZZ_2021_3092824
crossref_primary_10_1016_j_inffus_2024_102316
crossref_primary_10_3390_app15042176
crossref_primary_10_1016_j_jobe_2023_107305
crossref_primary_10_1007_s12559_023_10120_z
crossref_primary_10_1109_TIM_2024_3522618
crossref_primary_10_1142_S0129065719500254
crossref_primary_10_1109_TNSRE_2022_3207494
crossref_primary_10_1088_1741_2552_ad5405
crossref_primary_10_1088_1741_2552_ac4f07
crossref_primary_10_1016_j_brainresbull_2023_110826
crossref_primary_10_1109_TIM_2024_3370813
crossref_primary_10_3389_fnins_2023_1234162
crossref_primary_10_1016_j_neunet_2022_03_025
crossref_primary_10_1016_j_eswa_2024_125452
crossref_primary_10_3389_fnins_2023_1129049
crossref_primary_10_1016_j_neunet_2023_11_037
crossref_primary_10_1016_j_bspc_2024_106402
crossref_primary_10_1016_j_neucom_2020_10_104
crossref_primary_10_1016_j_engappai_2024_108879
crossref_primary_10_1016_j_bspc_2024_106401
crossref_primary_10_1016_j_compbiomed_2025_109928
crossref_primary_10_1109_TIM_2024_3406836
crossref_primary_10_1016_j_compbiomed_2023_107159
crossref_primary_10_1109_TNSRE_2023_3268751
crossref_primary_10_1080_10255842_2023_2275244
crossref_primary_10_1109_JBHI_2024_3454158
crossref_primary_10_1109_JTEHM_2025_3542408
crossref_primary_10_1088_1741_2552_ac8dc5
crossref_primary_10_1088_1741_2552_ad83f4
crossref_primary_10_1109_TNSRE_2023_3246989
crossref_primary_10_1109_ACCESS_2024_3509275
Cites_doi 10.1111/j.1467-9868.2005.00503.x
10.1002/hbm.23730
10.1109/MC.2016.294
10.1016/0013-4694(93)90110-H
10.1109/TNSRE.2006.875637
10.1016/0013-4694(91)90062-9
10.1016/j.jneumeth.2015.08.019
10.1109/ICHI.2016.27
10.1016/j.jneumeth.2003.10.009
10.1109/NER.2011.5910558
10.3389/fnins.2010.00161
10.1007/978-3-319-10590-1_53
10.1109/TBME.2009.2012869
10.1109/JPROC.2009.2038406
10.1088/1741-2560/10/5/056014
10.1155/2012/107046
10.1109/TNSRE.2016.2601240
10.1109/MLSP.2016.7738824
10.1117/12.2224172
10.1016/S1388-2457(02)00057-3
10.1162/jocn.1997.9.6.788
10.3389/fnins.2012.00039
10.1109/TNNLS.2014.2302898
10.1109/JPROC.2015.2404941
10.1109/TBME.2011.2172210
10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
10.1088/1741-2560/4/2/R01
10.1088/1741-2560/14/1/016003
10.1145/1015330.1015435
10.1016/j.jneumeth.2016.10.008
10.3389/fncom.2015.00146
10.1007/978-3-642-21852-1_60
10.3389/fnhum.2014.01033
10.1016/j.jneumeth.2007.07.017
10.1109/EUSIPCO.2015.7362882
10.1007/978-3-642-02812-0_86
10.3389/fnins.2012.00055
10.1016/j.bspc.2016.11.013
10.1007/BF02343543
10.1109/5.939829
10.1109/TNSRE.2015.2502323
10.1109/TPAMI.2010.125
10.1016/j.clinph.2011.11.082
10.3389/fninf.2015.00016
10.1109/JPROC.2012.2184830
10.3390/s120201211
10.1016/S1388-2457(99)00141-8
10.1016/j.neucom.2012.12.039
10.1088/1741-2560/4/2/R03
10.1088/1741-2560/8/3/036015
10.1145/3038439.3038444
10.1016/j.clinph.2007.04.019
10.1038/nature14539
10.1109/ICCV.2015.173
10.1016/j.jneumeth.2012.05.017
10.1016/j.cogbrainres.2004.12.013
10.3389/fneng.2012.00014
10.1111/j.1467-9280.1993.tb00586.x
10.1016/j.clinph.2009.09.002
10.1109/MSP.2012.2205597
10.1016/S0047-259X(03)00096-4
10.1145/2939672.2939778
10.3389/fnins.2016.00430
10.3389/fnins.2010.00198
10.1007/BF00235441
10.1371/journal.pone.0085192
10.1007/978-3-319-09330-7_25
10.1016/j.jneumeth.2016.11.002
10.3389/fnins.2017.00356
10.1016/0168-5597(94)90126-0
10.1016/0013-4694(77)90235-8
10.1155/2012/578295
10.1109/ISCAS.2016.7527433
10.1016/j.neuron.2006.09.019
10.1227/01.NEU.0000221506.06947.AC
10.1016/j.dsp.2017.10.011
10.1109/MC.2012.107
10.1016/0013-4694(86)90017-9
ContentType Journal Article
Copyright Not subject to copyright in the USA. Contribution of U.S. Army Research Laboratory
Copyright_xml – notice: Not subject to copyright in the USA. Contribution of U.S. Army Research Laboratory
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1088/1741-2552/aace8c
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
DocumentTitleAlternate EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces
EISSN 1741-2552
ExternalDocumentID 29932424
10_1088_1741_2552_aace8c
jneaace8c
Genre Journal Article
GrantInformation_xml – fundername: U.S. Army Research Laboratory
  grantid: CAST 076910227001; ARL-74A-HRCYB; ARL-H70-HR52; W911NF-10-2-0022
GroupedDBID ---
02O
1JI
1WK
4.4
53G
5B3
5GY
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AHSEE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
FEDTE
HAK
HVGLF
IHE
IJHAN
IOP
IZVLO
JCGBZ
KOT
LAP
M45
N5L
N9A
NT-
NT.
P2P
PJBAE
Q02
RIN
RNS
RO9
ROL
RPA
S3P
SY9
W28
XPP
AAYXX
ADEQX
CITATION
AERVB
ARNYC
NPM
7X8
AEINN
ID FETCH-LOGICAL-c368t-f78e0aee6d6645adc96b9e2d42a1f338255393f3add15822ab53035358013f4a3
IEDL.DBID IOP
ISSN 1741-2560
1741-2552
IngestDate Sun Aug 24 03:45:23 EDT 2025
Wed Feb 19 02:43:20 EST 2025
Tue Jul 01 01:58:38 EDT 2025
Thu Apr 24 22:54:17 EDT 2025
Fri Jan 08 09:41:24 EST 2021
Wed Aug 21 03:33:55 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c368t-f78e0aee6d6645adc96b9e2d42a1f338255393f3add15822ab53035358013f4a3
Notes JNE-102416.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3921-8723
PMID 29932424
PQID 2058505860
PQPubID 23479
PageCount 17
ParticipantIDs iop_journals_10_1088_1741_2552_aace8c
crossref_primary_10_1088_1741_2552_aace8c
proquest_miscellaneous_2058505860
pubmed_primary_29932424
crossref_citationtrail_10_1088_1741_2552_aace8c
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-10-01
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of neural engineering
PublicationTitleAbbrev JNE
PublicationTitleAlternate J. Neural Eng
PublicationYear 2018
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 88
89
Congedo M (87) 2013
Springenberg J T (83) 2014
90
91
92
95
He K (18) 2015
97
11
12
13
14
Chollet F (43) 2016
Dyrholm M (79) 2007; 8
1
2
3
4
5
Bashashati A (7) 2007; 4
6
8
Thodoroff P (25) 2016
21
22
23
Barachant A (86) 2014
24
28
Simonyan K (16) 2014
29
Abadi M (76) 2016
Szegedy C (17) 2014
Huang G (19) 2016
30
31
Wulsin D F (35) 2011; 8
32
33
34
Stober S (27) 2015
36
39
Zander T O (10) 2011; 8
Tabar Y R (38) 2017; 14
Baehrens D (94) 2010; 11
40
41
42
44
45
46
Chollet F (77) 2015
47
48
Clevert D (81) 2015
49
Stober S (26) 2014
Nguyen A M (96) 2014
Schmidhuber J (20) 2014
50
51
52
53
54
55
56
57
Lotte F (9) 2007; 4
58
59
Ioffe S (80) 2015
Krizhevsky A (15) 2012
60
61
62
63
64
65
66
67
68
69
Kothe C A (93) 2013; 10
70
71
72
73
74
78
Ancona M (99) 2018
Shrikumar A (98) 2017
100
Srivastava N (82) 2014; 15
101
Bashivan P (37) 2015
102
103
104
Kingma D P (75) 2014
84
85
References_xml – ident: 92
  doi: 10.1111/j.1467-9868.2005.00503.x
– ident: 32
  doi: 10.1002/hbm.23730
– ident: 4
  doi: 10.1109/MC.2016.294
– ident: 48
  doi: 10.1016/0013-4694(93)90110-H
– ident: 8
  doi: 10.1109/TNSRE.2006.875637
– ident: 56
  doi: 10.1016/0013-4694(91)90062-9
– ident: 72
  doi: 10.1016/j.jneumeth.2015.08.019
– ident: 22
  doi: 10.1109/ICHI.2016.27
– ident: 53
  doi: 10.1016/j.jneumeth.2003.10.009
– ident: 88
  doi: 10.1109/NER.2011.5910558
– ident: 59
  doi: 10.3389/fnins.2010.00161
– ident: 95
  doi: 10.1007/978-3-319-10590-1_53
– year: 2016
  ident: 25
  publication-title: CoRR
– ident: 84
  doi: 10.1109/TBME.2009.2012869
– ident: 50
  doi: 10.1109/JPROC.2009.2038406
– volume: 8
  issn: 1741-2552
  year: 2011
  ident: 10
  publication-title: J. Neural Eng.
– start-page: 265
  year: 2016
  ident: 76
  publication-title: Proc. 12th USENIX Conf. on Operating Systems Design and Implementation
– volume: 10
  issn: 1741-2552
  year: 2013
  ident: 93
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/10/5/056014
– ident: 34
  doi: 10.1155/2012/107046
– ident: 41
  doi: 10.1109/TNSRE.2016.2601240
– ident: 21
  doi: 10.1109/MLSP.2016.7738824
– year: 2015
  ident: 37
  publication-title: CoRR
– ident: 30
  doi: 10.1117/12.2224172
– ident: 1
  doi: 10.1016/S1388-2457(02)00057-3
– year: 2014
  ident: 17
  publication-title: CoRR
– ident: 54
  doi: 10.1162/jocn.1997.9.6.788
– ident: 78
  doi: 10.3389/fnins.2012.00039
– ident: 31
  doi: 10.1109/TNNLS.2014.2302898
– year: 2018
  ident: 99
  publication-title: Int. Conf. on Learning Representations
– ident: 45
  doi: 10.1109/JPROC.2015.2404941
– ident: 85
  doi: 10.1109/TBME.2011.2172210
– ident: 101
  doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
– volume: 4
  start-page: R1
  issn: 1741-2552
  year: 2007
  ident: 9
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/4/2/R01
– volume: 14
  issn: 1741-2552
  year: 2017
  ident: 38
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/14/1/016003
– ident: 90
  doi: 10.1145/1015330.1015435
– volume: 11
  start-page: 1803
  year: 2010
  ident: 94
  publication-title: J. Mach. Learn. Res.
– ident: 33
  doi: 10.1016/j.jneumeth.2016.10.008
– ident: 29
  doi: 10.3389/fncom.2015.00146
– year: 2015
  ident: 81
  publication-title: CoRR
– ident: 103
  doi: 10.1007/978-3-642-21852-1_60
– ident: 67
  doi: 10.3389/fnhum.2014.01033
– ident: 61
  doi: 10.1016/j.jneumeth.2007.07.017
– ident: 40
  doi: 10.1109/EUSIPCO.2015.7362882
– ident: 58
  doi: 10.1007/978-3-642-02812-0_86
– ident: 74
  doi: 10.3389/fnins.2012.00055
– ident: 42
  doi: 10.1016/j.bspc.2016.11.013
– ident: 70
  doi: 10.1007/BF02343543
– year: 2013
  ident: 87
  publication-title: CoRR
– ident: 47
  doi: 10.1109/5.939829
– ident: 51
  doi: 10.1109/TNSRE.2015.2502323
– ident: 28
  doi: 10.1109/TPAMI.2010.125
– ident: 60
  doi: 10.1016/j.clinph.2011.11.082
– year: 2015
  ident: 80
– ident: 73
  doi: 10.3389/fninf.2015.00016
– ident: 5
  doi: 10.1109/JPROC.2012.2184830
– volume: 15
  start-page: 1929
  year: 2014
  ident: 82
  publication-title: J. Mach. Learn. Res.
– ident: 6
  doi: 10.3390/s120201211
– ident: 64
  doi: 10.1016/S1388-2457(99)00141-8
– year: 2014
  ident: 75
– ident: 89
  doi: 10.1016/j.neucom.2012.12.039
– volume: 4
  start-page: R32
  issn: 1741-2552
  year: 2007
  ident: 7
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/4/2/R03
– volume: 8
  issn: 1741-2552
  year: 2011
  ident: 35
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/8/3/036015
– ident: 12
  doi: 10.1145/3038439.3038444
– year: 2017
  ident: 98
  publication-title: CoRR
– ident: 49
  doi: 10.1016/j.clinph.2007.04.019
– ident: 14
  doi: 10.1038/nature14539
– year: 2015
  ident: 18
  publication-title: CoRR
– ident: 44
  doi: 10.1109/ICCV.2015.173
– ident: 104
  doi: 10.1016/j.jneumeth.2012.05.017
– ident: 102
  doi: 10.1016/j.cogbrainres.2004.12.013
– ident: 46
  doi: 10.3389/fneng.2012.00014
– ident: 55
  doi: 10.1111/j.1467-9280.1993.tb00586.x
– ident: 24
  doi: 10.1016/j.clinph.2009.09.002
– year: 2015
  ident: 27
  publication-title: CoRR
– year: 2016
  ident: 43
  publication-title: CoRR
– year: 2014
  ident: 86
– ident: 13
  doi: 10.1109/MSP.2012.2205597
– ident: 91
  doi: 10.1016/S0047-259X(03)00096-4
– ident: 97
  doi: 10.1145/2939672.2939778
– ident: 52
  doi: 10.3389/fnins.2016.00430
– ident: 11
  doi: 10.3389/fnins.2010.00198
– ident: 68
  doi: 10.1007/BF00235441
– year: 2016
  ident: 19
  publication-title: CoRR
– ident: 65
  doi: 10.1371/journal.pone.0085192
– year: 2014
  ident: 83
– ident: 39
  doi: 10.1007/978-3-319-09330-7_25
– start-page: 1449
  year: 2014
  ident: 26
  publication-title: Advances in Neural Information Processing Systems 27
– ident: 36
  doi: 10.1016/j.jneumeth.2016.11.002
– volume: 8
  start-page: 1097
  year: 2007
  ident: 79
  publication-title: J. Mach. Learn. Res.
– ident: 71
  doi: 10.3389/fnins.2017.00356
– year: 2014
  ident: 16
  publication-title: CoRR
– ident: 62
  doi: 10.1016/0168-5597(94)90126-0
– ident: 63
  doi: 10.1016/0013-4694(77)90235-8
– year: 2014
  ident: 96
  publication-title: CoRR
– year: 2015
  ident: 77
– start-page: 1097
  issn: 1049-5258
  year: 2012
  ident: 15
  publication-title: Advances in Neural Information Processing Systems
– year: 2014
  ident: 20
– ident: 57
  doi: 10.1155/2012/578295
– ident: 23
  doi: 10.1109/ISCAS.2016.7527433
– ident: 2
  doi: 10.1016/j.neuron.2006.09.019
– ident: 69
  doi: 10.1227/01.NEU.0000221506.06947.AC
– ident: 100
  doi: 10.1016/j.dsp.2017.10.011
– ident: 3
  doi: 10.1109/MC.2012.107
– ident: 66
  doi: 10.1016/0013-4694(86)90017-9
SSID ssj0031790
Score 2.6961586
Snippet Objective. Brain-computer interfaces (BCI) enable direct communication with a computer, using neural activity as the control signal. This neural signal is...
Brain-computer interfaces (BCI) enable direct communication with a computer, using neural activity as the control signal. This neural signal is generally...
SourceID proquest
pubmed
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 56013
SubjectTerms brain-computer interface
convolutional neural network
deep learning
EEG
event-related potential
sensory motor rhythm
Title EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces
URI https://iopscience.iop.org/article/10.1088/1741-2552/aace8c
https://www.ncbi.nlm.nih.gov/pubmed/29932424
https://www.proquest.com/docview/2058505860
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB615cKFV4EuLxkJkDh4N44d14FThbYUJAoHinpAsvzKgUd21WYP8OuZib0rFUGFOETJYZzY47H9TeYF8ES3XqjgE9_3dSQzY-LOeM-Vls4EgRDVUXDyu2N9dKLenjanW_ByEwuzWJatf4qPOVFwZmFxiDMzxNCCIxKuZ86FZMI2XJFGa6rb8Ob9h_U2LCn1VI6GJGpdFRvln95w4Uzaxu_-HW6Ox87hdfi87nD2Nvk6XQ1-Gn7-lsvxP0d0A64VOMoOMulN2Er9Ldg96FEV__6DPWOjg-j4530XPs3nr4_T8II5Nnquh4GRz3qRXXwL5cYcb6NnOUM4zLAJp4MyMk-1KHgoRSQYpak468gf7DacHM4_vjripSwDD1KbgXf7JlUuJR21Vo2LodW-TXVUtRMdarw4ENnKTuLOKRrEH843eE42ZG8VslNO3oGdftGnPWCuboJDFTPGaFRrOudVEF44im9FXJEmMFtPjA0lZzmVzvhmR9u5MZZYZ4l1NrNuAs83LZY5X8cltE9xRmxZtOeX0LELdF_6ZEVjG1uROivtMnYTeLwWGIvrk4wurk-L1bmtK1TI8NLVBO5mSdp0DKEA4Vl17x87ch-uIl7L6XjFA9gZzlbpIWKiwT8aZf8XBiUEWA
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFLZokRAXtrIMq5EAiUNm4nipw62CGVqWoQeKejPecmghM2ozB_j1vGd7KhVBhcQhSg7Pif28vO_lbYQ8U61jwrtYbbsmoJkxVlY7VwnFrfYMIKrF4OSPc7V7IN4dysNS5zTFwiyW5egfw2NOFJxZWBzi9AQwNKsACTcTa33UfrIM3Qa5LLniWMJg79P--ijmmH4qR0RiC1UXO-Wf3nJOLm3At_8OOZPomV0nX9edzh4nx-PV4Mb-52_5HP9jVDfItQJL6U4mv0kuxf4W2drpQSX__oO-oMlRNP2B3yJfptO38zi8opYmD3Y_UPRdL2sY3oI5MtMteZhTgMUUmlQoMAN1WJOi8qWYBMV0FScd-oXdJgez6efXu1Upz1B5rvRQdds61jZGFZQS0gbfKtfGJojGsg40XxgMb3nH4QRlEnCIdRLkpUS7K-OdsPwO2ewXfbxHqG2kt6BqhhC0aHVnnfDMMYtxroAv4ohM1pNjfMldjiU0vplkQ9faIPsMss9k9o3Iy7MWy5y34wLa5zArpmze0wvo6Dm6oz4aJo00Naq13MCMjcjT9aIxsE_R-GL7uFidmqYGxQwuVY_I3byazjoGkABxrbj_jx15Qq7sv5mZD3vz9w_IVYBwOUMve0g2h5NVfAQwaXCP01b4Bcx4Cbw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EEGNet%3A+a+compact+convolutional+neural+network+for+EEG-based+brain-computer+interfaces&rft.jtitle=Journal+of+neural+engineering&rft.au=Lawhern%2C+Vernon+J&rft.au=Solon%2C+Amelia+J&rft.au=Waytowich%2C+Nicholas+R&rft.au=Gordon%2C+Stephen+M&rft.date=2018-10-01&rft.pub=IOP+Publishing&rft.issn=1741-2560&rft.eissn=1741-2552&rft.volume=15&rft.issue=5&rft_id=info:doi/10.1088%2F1741-2552%2Faace8c&rft.externalDocID=jneaace8c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2560&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2560&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2560&client=summon