Large eddy simulation of the tip-leakage cavitating flow with an insight on how cavitation influences vorticity and turbulence

•The tip-leakage cavitating flow is simulated by LES with Cartesian cut-cell mesh.•Three types of cavitating vortical flows, including TLV, TSV and IV, are analyzed from Euler/Lagrangian viewpoints.•Three stages for the spatial–temporal evolution of tip-leakage cavitating flow are discussed.•The phy...

Full description

Saved in:
Bibliographic Details
Published inApplied Mathematical Modelling Vol. 77; pp. 788 - 809
Main Authors Cheng, H.Y., Bai, X.R., Long, X.P., Ji, B., Peng, X.X., Farhat, M.
Format Journal Article
LanguageEnglish
Published New York Elsevier Inc 01.01.2020
Elsevier BV
Subjects
Online AccessGet full text
ISSN0307-904X
1088-8691
0307-904X
DOI10.1016/j.apm.2019.08.005

Cover

Loading…
Abstract •The tip-leakage cavitating flow is simulated by LES with Cartesian cut-cell mesh.•Three types of cavitating vortical flows, including TLV, TSV and IV, are analyzed from Euler/Lagrangian viewpoints.•Three stages for the spatial–temporal evolution of tip-leakage cavitating flow are discussed.•The physical mechanism for cavitation-turbulence interaction is clarified. Cavitation within a tip leakage flow remains a challenging issue in a variety of axial hydraulic machines. It is still not possible nowadays to predict cavitation occurrence in such a flow with acceptable accuracy. In the present study, we have carried out numerical simulations of a tip leakage cavitating flow, generated by a straight NACA0009 hydrofoil. We have used the LES method combined with the Schnerr–Sauer cavitation model. The numerical results agree well with experimental data. The evolution of the tip leakage cavitating flow, involving tip-leakage vortex (TLV), tip-separation vortex (TSV) and induced vortex (IV), is analyzed from Eulerian and Lagrangian viewpoints. The results show that the spatial evolution of the tip leakage cavitating flow can be divided into three stages: Stage Ⅰ, Independent development of the TLV and TSV; Stage Ⅱ, Fusion of the TLV and TSV; and Stage Ⅲ, Development of the IV and dissipation of the TLV. The Lagrangian coherent structures (LCSs) obtained from the numerical results indicate that the TLV cavitation significantly influence the local flow patterns. The vorticity transport equation was then used to further analyze the influence of the cavitation on the vortices. The results demonstrate that the stretching term dominates the TLV evolution and the dilatation term is responsible for the vorticity reduction inside the TLV cavity. The results also show how the cavitation influences the local turbulence and that the transport term in the turbulent kinetic energy equation influences the turbulence distribution near the TLV cavity.
AbstractList •The tip-leakage cavitating flow is simulated by LES with Cartesian cut-cell mesh.•Three types of cavitating vortical flows, including TLV, TSV and IV, are analyzed from Euler/Lagrangian viewpoints.•Three stages for the spatial–temporal evolution of tip-leakage cavitating flow are discussed.•The physical mechanism for cavitation-turbulence interaction is clarified. Cavitation within a tip leakage flow remains a challenging issue in a variety of axial hydraulic machines. It is still not possible nowadays to predict cavitation occurrence in such a flow with acceptable accuracy. In the present study, we have carried out numerical simulations of a tip leakage cavitating flow, generated by a straight NACA0009 hydrofoil. We have used the LES method combined with the Schnerr–Sauer cavitation model. The numerical results agree well with experimental data. The evolution of the tip leakage cavitating flow, involving tip-leakage vortex (TLV), tip-separation vortex (TSV) and induced vortex (IV), is analyzed from Eulerian and Lagrangian viewpoints. The results show that the spatial evolution of the tip leakage cavitating flow can be divided into three stages: Stage Ⅰ, Independent development of the TLV and TSV; Stage Ⅱ, Fusion of the TLV and TSV; and Stage Ⅲ, Development of the IV and dissipation of the TLV. The Lagrangian coherent structures (LCSs) obtained from the numerical results indicate that the TLV cavitation significantly influence the local flow patterns. The vorticity transport equation was then used to further analyze the influence of the cavitation on the vortices. The results demonstrate that the stretching term dominates the TLV evolution and the dilatation term is responsible for the vorticity reduction inside the TLV cavity. The results also show how the cavitation influences the local turbulence and that the transport term in the turbulent kinetic energy equation influences the turbulence distribution near the TLV cavity.
Cavitation within a tip leakage flow remains a challenging issue in a variety of axial hydraulic machines. It is still not possible nowadays to predict cavitation occurrence in such a flow with acceptable accuracy. In the present study, we have carried out numerical simulations of a tip leakage cavitating flow, generated by a straight NACA0009 hydrofoil. We have used the LES method combined with the Schnerr–Sauer cavitation model. The numerical results agree well with experimental data. The evolution of the tip leakage cavitating flow, involving tip-leakage vortex (TLV), tip-separation vortex (TSV) and induced vortex (IV), is analyzed from Eulerian and Lagrangian viewpoints. The results show that the spatial evolution of the tip leakage cavitating flow can be divided into three stages: Stage Ⅰ, Independent development of the TLV and TSV; Stage Ⅱ, Fusion of the TLV and TSV; and Stage Ⅲ, Development of the IV and dissipation of the TLV. The Lagrangian coherent structures (LCSs) obtained from the numerical results indicate that the TLV cavitation significantly influence the local flow patterns. The vorticity transport equation was then used to further analyze the influence of the cavitation on the vortices. The results demonstrate that the stretching term dominates the TLV evolution and the dilatation term is responsible for the vorticity reduction inside the TLV cavity. The results also show how the cavitation influences the local turbulence and that the transport term in the turbulent kinetic energy equation influences the turbulence distribution near the TLV cavity.
Author Long, X.P.
Peng, X.X.
Cheng, H.Y.
Bai, X.R.
Ji, B.
Farhat, M.
Author_xml – sequence: 1
  givenname: H.Y.
  surname: Cheng
  fullname: Cheng, H.Y.
  email: chengiu@whu.edu.cn
  organization: State Key Lab of Water Resources and Hydropower Engineering Science, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
– sequence: 2
  givenname: X.R.
  surname: Bai
  fullname: Bai, X.R.
  organization: State Key Lab of Water Resources and Hydropower Engineering Science, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
– sequence: 3
  givenname: X.P.
  surname: Long
  fullname: Long, X.P.
  organization: State Key Lab of Water Resources and Hydropower Engineering Science, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
– sequence: 4
  givenname: B.
  orcidid: 0000-0002-5282-7224
  surname: Ji
  fullname: Ji, B.
  email: jibin@whu.edu.cn, jibin@mail.tsinghua.edu.cn
  organization: State Key Lab of Water Resources and Hydropower Engineering Science, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
– sequence: 5
  givenname: X.X.
  surname: Peng
  fullname: Peng, X.X.
  organization: National Key Lab on Ship Vibration and Noise, China Ship Scientific Research Center, Wuxi 214082, China
– sequence: 6
  givenname: M.
  surname: Farhat
  fullname: Farhat, M.
  organization: Ecole Polytechnique Federale de Lausanne (EPFL), Laboratory for Hydraulic Machines, Lausanne, Switzerland
BookMark eNp9kM1LwzAchoMouE3_AG8Bz61JU9MWTzL8goEXBW8hS3_ZUrtmJunGLv7tpmyCeNgpH-_zJPzeMTrtbAcIXVGSUkL5TZPK9SrNCK1SUqaE3J6gEWGkSCqSf5z-2Z-jsfcNiUQ8jdD3TLoFYKjrHfZm1bcyGNthq3FYAg5mnbQgP2VElNyYENNugXVrt3hrwhLLDpvOm8Uy4Ggt4_UvZodEtz10CjzeWBeMMmEXjRqH3s37dkgu0JmWrYfLwzpB748Pb9PnZPb69DK9nyWK8TIkmhVZpajmRUFKzViWFbyoFa-A6fkctOJKZnwOStMqJ3mlKXDNFYOcZ4RJySboev_u2tmvHnwQje1dF78UGWOMk4rlRaTonlLOeu9Ai7UzK-l2ghIx1CwaEWsWQ82ClCKWGJ3in6MO8wcnTXvUvNubEAffGHDCKzOUUhsHKojamiP2D23anJg
CitedBy_id crossref_primary_10_1007_s10409_021_09026_x
crossref_primary_10_1063_5_0159233
crossref_primary_10_1016_j_renene_2020_11_123
crossref_primary_10_1007_s40868_021_00097_5
crossref_primary_10_1016_j_oceaneng_2023_114499
crossref_primary_10_1063_5_0216114
crossref_primary_10_1007_s12206_020_0818_8
crossref_primary_10_1007_s42241_021_0022_z
crossref_primary_10_1063_5_0174198
crossref_primary_10_1016_j_oceaneng_2021_108811
crossref_primary_10_32604_fdmp_2023_024259
crossref_primary_10_1007_s42241_024_0086_7
crossref_primary_10_1007_s42241_023_0006_2
crossref_primary_10_1016_j_oceaneng_2024_117599
crossref_primary_10_1016_j_fuel_2023_128386
crossref_primary_10_1063_5_0061139
crossref_primary_10_1063_5_0245462
crossref_primary_10_1088_1742_6596_2217_1_012018
crossref_primary_10_1063_5_0082899
crossref_primary_10_1007_s13344_021_0033_0
crossref_primary_10_3390_pr7090625
crossref_primary_10_1007_s42241_024_0014_x
crossref_primary_10_3390_jmse9070775
crossref_primary_10_1016_j_apm_2020_08_011
crossref_primary_10_1115_1_4050135
crossref_primary_10_1016_j_applthermaleng_2021_116870
crossref_primary_10_1016_j_oceaneng_2024_117948
crossref_primary_10_3390_su142315902
crossref_primary_10_1016_j_euromechflu_2023_08_005
crossref_primary_10_1016_j_oceaneng_2022_113304
crossref_primary_10_1016_j_oceaneng_2024_117943
crossref_primary_10_1063_5_0244004
crossref_primary_10_1063_5_0187241
crossref_primary_10_1016_j_ijmultiphaseflow_2024_105108
crossref_primary_10_3390_e25030545
crossref_primary_10_1007_s40997_023_00735_w
crossref_primary_10_1016_j_heliyon_2022_e12636
crossref_primary_10_1016_j_oceaneng_2020_107349
crossref_primary_10_1063_5_0259785
crossref_primary_10_1063_5_0197532
crossref_primary_10_1088_1755_1315_668_1_012043
crossref_primary_10_3390_en15176330
crossref_primary_10_1016_j_ijmultiphaseflow_2024_104818
crossref_primary_10_1016_j_renene_2020_11_143
crossref_primary_10_1177_16878132241293622
crossref_primary_10_1063_5_0070312
crossref_primary_10_3390_en16186592
crossref_primary_10_1080_00221686_2023_2236981
crossref_primary_10_1016_j_oceaneng_2022_112442
crossref_primary_10_1016_j_oceaneng_2023_116547
crossref_primary_10_1016_j_energy_2024_130261
crossref_primary_10_1016_j_anucene_2023_109935
crossref_primary_10_3390_machines11040489
crossref_primary_10_1063_5_0251821
crossref_primary_10_1007_s42241_024_0063_1
crossref_primary_10_1016_j_ijmultiphaseflow_2022_104066
crossref_primary_10_1080_14685248_2024_2350070
crossref_primary_10_1016_j_energy_2020_119005
crossref_primary_10_1016_j_ijmultiphaseflow_2024_104820
crossref_primary_10_1063_5_0099070
crossref_primary_10_1016_j_ijnaoe_2021_10_004
crossref_primary_10_1016_j_oceaneng_2020_107218
crossref_primary_10_1063_5_0124388
crossref_primary_10_1016_j_ijheatmasstransfer_2022_122707
crossref_primary_10_1063_5_0067266
crossref_primary_10_1063_5_0204002
crossref_primary_10_1016_j_oceaneng_2020_107450
crossref_primary_10_1007_s42241_023_0011_5
crossref_primary_10_1007_s00348_020_02996_6
crossref_primary_10_1142_S0217984920501845
crossref_primary_10_1007_s42241_024_0030_x
crossref_primary_10_1007_s42241_022_0073_9
crossref_primary_10_1063_5_0169930
crossref_primary_10_1016_j_oceaneng_2022_113125
crossref_primary_10_1177_09544062211032989
crossref_primary_10_1108_EC_04_2020_0227
crossref_primary_10_1016_j_ijmultiphaseflow_2023_104633
crossref_primary_10_1063_5_0131813
crossref_primary_10_1007_s42241_022_0047_y
crossref_primary_10_1063_5_0154932
crossref_primary_10_1007_s42241_021_0004_1
crossref_primary_10_1016_j_oceaneng_2024_119597
crossref_primary_10_1063_5_0164191
crossref_primary_10_2478_pomr_2020_0063
crossref_primary_10_1016_j_oceaneng_2022_111734
crossref_primary_10_1063_5_0145676
crossref_primary_10_1007_s42241_023_0023_1
crossref_primary_10_1016_j_energy_2023_129778
crossref_primary_10_1007_s42241_023_0046_7
crossref_primary_10_1007_s10409_020_01008_4
crossref_primary_10_1007_s42241_022_0062_z
crossref_primary_10_1063_5_0128892
crossref_primary_10_1016_j_oceaneng_2022_112704
crossref_primary_10_3390_pr9091481
crossref_primary_10_1007_s42241_022_0060_1
crossref_primary_10_1016_j_apm_2022_01_017
crossref_primary_10_1063_5_0248934
crossref_primary_10_1080_14685248_2022_2046762
crossref_primary_10_1142_S0217984921500329
crossref_primary_10_1016_j_renene_2020_09_002
crossref_primary_10_1016_j_renene_2020_09_001
crossref_primary_10_1007_s42241_022_0057_9
crossref_primary_10_1155_2020_8409231
crossref_primary_10_1007_s42241_023_0012_4
crossref_primary_10_1016_j_apm_2021_03_018
crossref_primary_10_1016_j_oceaneng_2024_118836
crossref_primary_10_1063_5_0252143
crossref_primary_10_1016_j_ultsonch_2020_105225
crossref_primary_10_1063_5_0130192
crossref_primary_10_1155_2021_5577517
crossref_primary_10_1016_j_ijmultiphaseflow_2021_103834
crossref_primary_10_1016_j_renene_2020_11_108
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119835
crossref_primary_10_1016_j_oceaneng_2020_107305
crossref_primary_10_1016_j_renene_2020_01_023
crossref_primary_10_1007_s42241_022_0045_0
crossref_primary_10_1016_j_oceaneng_2020_107661
crossref_primary_10_1007_s42241_023_0086_z
crossref_primary_10_3390_mi11080728
crossref_primary_10_1007_s42241_020_0009_1
crossref_primary_10_1063_5_0248918
crossref_primary_10_1016_j_apm_2021_08_001
crossref_primary_10_1063_1_5121380
crossref_primary_10_1051_e3sconf_202123304036
crossref_primary_10_1016_j_oceaneng_2025_120868
crossref_primary_10_3390_machines10010041
crossref_primary_10_1016_j_oceaneng_2023_115010
crossref_primary_10_1016_j_powtec_2020_03_047
crossref_primary_10_1063_5_0032818
crossref_primary_10_1063_5_0240077
crossref_primary_10_1115_1_4049687
crossref_primary_10_1016_j_apor_2020_102285
crossref_primary_10_1016_j_apor_2020_102167
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120808
crossref_primary_10_1115_1_4062648
crossref_primary_10_1016_j_ijmultiphaseflow_2025_105183
crossref_primary_10_1108_EC_07_2020_0414
crossref_primary_10_1007_s42241_022_0079_3
crossref_primary_10_1016_j_energy_2020_118084
crossref_primary_10_1080_17445302_2024_2393788
crossref_primary_10_1016_j_oceaneng_2022_111661
crossref_primary_10_3390_w17010042
crossref_primary_10_1063_5_0061549
crossref_primary_10_3390_en15196916
crossref_primary_10_1016_j_ijmultiphaseflow_2020_103215
crossref_primary_10_1016_j_rser_2022_112786
crossref_primary_10_1007_s40544_021_0529_x
crossref_primary_10_1142_S0217984920500207
crossref_primary_10_1049_rpg2_12096
crossref_primary_10_1063_5_0252173
crossref_primary_10_1016_j_oceaneng_2021_109193
crossref_primary_10_3390_app10238721
crossref_primary_10_1063_5_0177292
crossref_primary_10_1016_j_oceaneng_2023_114544
crossref_primary_10_1016_j_energy_2022_123490
crossref_primary_10_1103_PhysRevFluids_9_104304
crossref_primary_10_3390_en12214162
crossref_primary_10_3390_ijtpp8020017
crossref_primary_10_1016_j_apor_2024_103993
crossref_primary_10_1016_j_ijmultiphaseflow_2020_103441
crossref_primary_10_1177_16878140211015879
crossref_primary_10_1016_j_oceaneng_2022_111888
crossref_primary_10_1063_5_0234292
crossref_primary_10_1007_s42241_020_0070_9
crossref_primary_10_1007_s42241_024_0078_7
crossref_primary_10_1140_epjp_s13360_021_01793_2
crossref_primary_10_1016_j_renene_2020_11_095
crossref_primary_10_1063_5_0073634
crossref_primary_10_1016_j_oceaneng_2022_111407
crossref_primary_10_1115_1_4055542
crossref_primary_10_1016_j_oceaneng_2019_106831
crossref_primary_10_1016_j_ultsonch_2023_106715
crossref_primary_10_1016_j_fuel_2020_119535
crossref_primary_10_1115_1_4064296
crossref_primary_10_1007_s42241_023_0090_3
crossref_primary_10_1063_5_0064717
crossref_primary_10_1007_s42241_024_0010_1
crossref_primary_10_3390_pr8080997
crossref_primary_10_3390_pr9081385
crossref_primary_10_1016_j_ijhydene_2020_01_192
crossref_primary_10_1016_j_ijmultiphaseflow_2024_104899
crossref_primary_10_1063_5_0131758
crossref_primary_10_1016_j_renene_2020_03_182
crossref_primary_10_1016_j_oceaneng_2021_109647
crossref_primary_10_1016_j_oceaneng_2021_108798
crossref_primary_10_1063_5_0254379
crossref_primary_10_1063_1_5132591
crossref_primary_10_1016_j_oceaneng_2024_119936
crossref_primary_10_1016_j_flowmeasinst_2020_101779
crossref_primary_10_1016_j_icheatmasstransfer_2024_108144
crossref_primary_10_1016_j_expthermflusci_2022_110648
crossref_primary_10_1016_j_oceaneng_2021_110087
crossref_primary_10_1002_ese3_608
crossref_primary_10_1016_j_ijmultiphaseflow_2023_104484
crossref_primary_10_3390_fluids5040218
crossref_primary_10_1063_5_0252632
crossref_primary_10_1063_5_0232526
crossref_primary_10_3390_en15020502
crossref_primary_10_1007_s12206_019_1135_y
crossref_primary_10_3390_en12214066
crossref_primary_10_1016_j_ijmultiphaseflow_2021_103880
crossref_primary_10_1063_5_0060590
crossref_primary_10_1016_j_renene_2020_08_101
crossref_primary_10_1016_j_enconman_2021_115193
crossref_primary_10_1016_j_flowmeasinst_2025_102811
crossref_primary_10_1016_j_oceaneng_2021_109650
crossref_primary_10_1115_1_4065962
crossref_primary_10_1016_j_powtec_2020_01_022
crossref_primary_10_1007_s42241_022_0053_0
crossref_primary_10_3390_jmse9101045
crossref_primary_10_1063_5_0215864
crossref_primary_10_3389_fenrg_2023_1235277
crossref_primary_10_1063_5_0195923
crossref_primary_10_1063_5_0235109
crossref_primary_10_1016_j_wear_2021_203917
crossref_primary_10_1016_j_oceaneng_2021_110005
crossref_primary_10_3390_app10175897
crossref_primary_10_1007_s42241_022_0065_9
crossref_primary_10_1080_19942060_2022_2122570
crossref_primary_10_1016_j_scitotenv_2022_154856
crossref_primary_10_1080_17445302_2021_1893458
crossref_primary_10_1016_j_oceaneng_2019_106547
crossref_primary_10_1016_j_oceaneng_2023_114588
crossref_primary_10_1016_j_oceaneng_2022_111333
crossref_primary_10_1007_s42241_020_0041_1
crossref_primary_10_1016_j_oceaneng_2024_119081
crossref_primary_10_1016_j_renene_2019_10_175
crossref_primary_10_1007_s42241_025_0101_7
crossref_primary_10_1016_j_renene_2020_08_163
crossref_primary_10_1016_j_oceaneng_2025_120693
crossref_primary_10_1016_j_expthermflusci_2019_110016
crossref_primary_10_1080_17445302_2022_2093505
crossref_primary_10_1063_5_0187325
crossref_primary_10_1007_s40430_023_04259_x
crossref_primary_10_1016_j_oceaneng_2022_113069
crossref_primary_10_1063_5_0054795
crossref_primary_10_1016_j_apm_2019_10_050
crossref_primary_10_1016_j_ijmultiphaseflow_2022_104251
crossref_primary_10_3390_jmse9111193
crossref_primary_10_1063_5_0189068
crossref_primary_10_1016_j_ijmultiphaseflow_2024_105020
crossref_primary_10_1063_5_0122844
crossref_primary_10_1016_j_ijmultiphaseflow_2022_104252
crossref_primary_10_1016_j_oceaneng_2022_111685
crossref_primary_10_1016_j_ijmultiphaseflow_2022_104254
crossref_primary_10_1016_j_oceaneng_2023_116176
crossref_primary_10_1016_j_biosystemseng_2019_12_014
crossref_primary_10_1063_5_0152580
crossref_primary_10_1063_5_0117492
crossref_primary_10_1063_5_0030907
crossref_primary_10_1063_5_0232189
crossref_primary_10_2139_ssrn_4189303
crossref_primary_10_3390_jmse8050341
crossref_primary_10_3390_jmse10020136
crossref_primary_10_1016_j_ijmultiphaseflow_2020_103276
crossref_primary_10_1016_j_ijmultiphaseflow_2021_103671
crossref_primary_10_1007_s42241_020_0081_6
crossref_primary_10_1007_s42241_024_0001_2
crossref_primary_10_1080_17445302_2024_2309433
crossref_primary_10_1088_1742_6596_2752_1_012195
crossref_primary_10_1063_5_0123381
crossref_primary_10_1007_s42241_020_0005_5
crossref_primary_10_1186_s10033_023_00842_4
crossref_primary_10_1016_j_apm_2020_04_004
crossref_primary_10_1007_s11804_024_00480_9
crossref_primary_10_1016_j_oceaneng_2022_111313
crossref_primary_10_1007_s42241_024_0061_3
crossref_primary_10_1063_5_0085388
crossref_primary_10_1016_j_ijmultiphaseflow_2023_104445
crossref_primary_10_1063_5_0210957
crossref_primary_10_1016_j_oceaneng_2025_120349
crossref_primary_10_1016_j_apor_2020_102449
crossref_primary_10_1007_s42241_022_0014_7
crossref_primary_10_1016_j_fuel_2022_126843
crossref_primary_10_1007_s42241_023_0018_y
crossref_primary_10_1007_s42241_024_0059_x
crossref_primary_10_1016_j_apor_2020_102322
crossref_primary_10_1016_j_renene_2020_05_081
crossref_primary_10_1016_j_oceaneng_2020_107373
crossref_primary_10_1063_5_0253531
crossref_primary_10_1016_j_oceaneng_2021_109058
crossref_primary_10_1007_s10409_022_22158_x
crossref_primary_10_1007_s42241_023_0055_6
crossref_primary_10_1016_j_ijnaoe_2023_100565
Cites_doi 10.1016/j.ijmultiphaseflow.2019.03.026
10.2514/1.2626
10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
10.1016/j.apm.2015.11.014
10.1115/1.3425036
10.1016/j.ijmultiphaseflow.2017.08.013
10.1016/j.oceaneng.2015.12.010
10.1016/S1270-9638(97)90051-1
10.1007/s11431-015-5969-y
10.1007/s00348-019-2762-x
10.1016/j.apm.2015.06.002
10.1007/s42241-018-0038-1
10.1016/S0167-2789(00)00142-1
10.1103/PhysRevFluids.2.084303
10.1080/10618560701733657
10.1007/s00348-014-1849-7
10.1063/1.1403336
10.1146/annurev-fluid-122414-034558
10.1115/1.4003065
10.1016/j.oceaneng.2017.03.054
10.1016/S1001-6058(16)60715-1
10.2514/1.J053619
10.1115/1.3239889
10.1175/2010JAMC2508.1
10.1016/j.oceaneng.2017.12.057
10.1002/(SICI)1097-0363(19991230)31:8<1195::AID-FLD914>3.0.CO;2-H
10.1016/j.ijmultiphaseflow.2017.12.002
10.1080/14685248.2014.984068
10.1016/j.energy.2018.04.174
10.1080/10618562.2016.1156095
10.1007/s42241-018-0068-8
10.2514/3.24021
10.1016/j.mcm.2011.10.050
10.1007/s10409-015-0484-8
10.1016/j.jfluidstructs.2019.05.006
10.1016/j.ijmultiphaseflow.2017.08.014
10.1007/s12206-019-0223-3
10.1063/1.857955
10.2514/1.5270
10.3390/en11092202
10.1016/j.apm.2014.04.059
10.1017/S0022112064001446
10.1007/BF00042759
10.1016/j.apm.2012.09.002
10.1115/1.2929192
10.1016/j.compfluid.2018.12.011
10.1023/A:1009995426001
10.1016/j.renene.2016.06.064
10.1016/j.oceaneng.2019.106115
10.1115/1.2929098
10.1016/0167-6105(93)90130-G
10.1017/S0022112007006842
10.1016/j.ijmultiphaseflow.2018.11.014
10.1007/s10409-015-0455-0
10.1016/j.compfluid.2015.01.010
10.1016/j.jcp.2019.05.001
10.1016/j.ijmultiphaseflow.2017.10.006
10.1016/j.enconman.2013.11.038
10.1002/aic.690430628
10.1016/j.euromechflu.2017.09.004
10.1017/S002211209900525X
10.1016/j.oceaneng.2014.09.042
10.1016/j.apm.2017.01.035
10.1063/1.858280
10.1016/j.apm.2016.05.017
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright Elsevier BV Jan 2020
Copyright_xml – notice: 2019 Elsevier Inc.
– notice: Copyright Elsevier BV Jan 2020
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.apm.2019.08.005
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Psychology
EISSN 0307-904X
EndPage 809
ExternalDocumentID 10_1016_j_apm_2019_08_005
S0307904X19304937
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HZ~
IHE
IXB
J1W
JJJVA
KOM
LG9
LY7
M26
M41
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSW
SSZ
T5K
TN5
WH7
WUQ
XJT
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
-W8
.7I
.GO
.QK
0BK
2DF
53G
6J9
7SC
8FD
8VB
AAGDL
AAGZJ
AAHIA
AAHSB
AAMFJ
AAMIU
AAPUL
AATTQ
AAZMC
ABCCY
ABDBF
ABFIM
ABIVO
ABLIJ
ABPEM
ABRYG
ABTAI
ABXUL
ABXYU
ABZLS
ACGOD
ACHQT
ACTIO
ACTOA
ACUHS
ADAHI
ADCVX
ADKVQ
ADYSH
AECIN
AEFOU
AEGXH
AEISY
AEKEX
AEMOZ
AEMXT
AEOZL
AEPSL
AEYOC
AEZRU
AFHDM
AFRVT
AGDLA
AGMYJ
AGRBW
AHDZW
AHQJS
AIJEM
AIYEW
AJWEG
AKBVH
AKVCP
ALQZU
AVBZW
AWYRJ
BEJHT
BLEHA
BMOTO
BOHLJ
CCCUG
CQ1
DGFLZ
DKSSO
EAP
EBR
EBU
EDJ
EMK
EPL
EPS
EST
ESX
E~B
E~C
FEDTE
G-F
GTTXZ
H13
HF~
HVGLF
IPNFZ
J.O
JQ2
K1G
KYCEM
L7M
LJTGL
L~C
L~D
M4Z
NA5
PQQKQ
QWB
RNANH
ROSJB
RSYQP
S-F
STATR
TASJS
TBQAZ
TDBHL
TEH
TFH
TFL
TFW
TH9
TNTFI
TRJHH
TUROJ
TUS
TWZ
UPT
UT5
UT9
VAE
ZL0
~01
~S~
ID FETCH-LOGICAL-c368t-f3729c1f67708f3322767dc69e3fbbefc6ca26becf194049f1e6f6c3e46203aa3
IEDL.DBID IXB
ISSN 0307-904X
1088-8691
IngestDate Fri Jul 25 07:28:22 EDT 2025
Tue Jul 01 04:23:59 EDT 2025
Thu Apr 24 22:58:34 EDT 2025
Fri Feb 23 02:28:54 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Turbulence kinetic energy
Tip leakage vortex (TLV)
Lagrangian coherent structures (LCSs)
Cavitation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c368t-f3729c1f67708f3322767dc69e3fbbefc6ca26becf194049f1e6f6c3e46203aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5282-7224
OpenAccessLink https://infoscience.epfl.ch/handle/20.500.14299/166742
PQID 2333609347
PQPubID 2045280
PageCount 22
ParticipantIDs proquest_journals_2333609347
crossref_primary_10_1016_j_apm_2019_08_005
crossref_citationtrail_10_1016_j_apm_2019_08_005
elsevier_sciencedirect_doi_10_1016_j_apm_2019_08_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2020
2020-01-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: January 2020
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Applied Mathematical Modelling
PublicationYear 2020
Publisher Elsevier Inc
Elsevier BV
Publisher_xml – name: Elsevier Inc
– name: Elsevier BV
References Ji, Long, Long, Qian, Zhou (bib0064) 2017; 29
Cheng, Long, Liang, Long, Ji (bib0027) 2018; 30
Wu, Huang, Wang, Cao (bib0036) 2018; 99
Decaix, Balarac, Dreyer, Farhat, Munch (bib0017) 2015; 16
Dreyer, Decaix, Munch-Alligne, Farhat (bib0012) 2014; 55
Passandideh-Fard, Roohi (bib0007) 2008; 22
Muthanna, Devenport (bib0010) 2004; 42
Lilly (bib0056) 1992; 4
Li, Li (bib0032) 2016; 30
Wu, Huang, Wang (bib0041) 2016; 32
Guo, Zhou, Wang, Liu, Cheng (bib0030) 2018; 151
Pendar, Roohi (bib0049) 2018; 98
Chen, Greitzer, Tan, Marble (bib0016) 1991; 113
Tang, Chan, Haller (bib0042) 2011; 50
Wang, Han, Su (bib0004) 2016; 40
Moore, Saffman (bib0015) 1973; 333
Sagaut, Grohens (bib0058) 1999; 31
Ferziger (bib0057) 1993; 46-47
Zeng, Yao, Zhou, Wang, Hong (bib0019) 2019; 88
Long, Long, Ji, Xing (bib0020) 2019; 115
Yu, Goldsworthy, Brandner, Garaniya (bib0003) 2017; 45
Cheng, Long, Ji, Peng, Farhat (bib0034) 2019; 186
Zhang, Shi, van Esch, Shi, Dubuisson (bib0024) 2015; 112
Gaggero, Tani, Viviani, Conti (bib0028) 2014; 92
Haller (bib0046) 2001; 13
Liu, Tan, Wang (bib0002) 2018; 11
Bai, Cheng, Ji, Long (bib0033) 2018; 30
Zhao, Wang, Huang (bib0029) 2016; 32
Vreman, Geurts, Kuerten (bib0053) 1995; 29
Goto (bib0038) 1992; 114
Amini, Reclari, Sano, Iino, Dreyer, Farhat (bib0001) 2019; 60
Batchelor (bib0063) 2006; 20
Liu, Tan (bib0006) 2018; 155
Decaix, Dreyer, Balarac, Farhat, Münch (bib0031) 2018; 67
Wang, Xu, Wu, Huang, Wu (bib0021) 2017; 2
Valdes, Rodríguez, Monge, Peña, Pütz (bib0060) 2014; 78
Germano, Piomelli, Moin, Cabot (bib0055) 1991; 3
Smagorinsky (bib0054) 1963; 91
Long, Cheng, Ji, Arndt, Peng (bib0043) 2018; 100
Dai, Younis, Sun (bib0047) 2014; 38
Zierke, Straka (bib0008) 1996; 12
Guo, Zhou, Wang (bib0026) 2016; 99
Anvari, Taghavifar, Khalilarya, Jafarmadar, Shervani-Tabar (bib0048) 2016; 40
Tseng, Hu (bib0044) 2015; 54
Inoue, Kuroumaru, Fukuhara (bib0009) 1986; 108
You, Mittal, Wang, Moin (bib0025) 2004; 42
Roohi, Zahiri, Passandideh-Fard (bib0005) 2013; 37
Pendar, Roohi (bib0051) 2016; 112
Li, Li, Yu, Ren, Chen (bib0037) 2019; 33
Zahiri, Roohi (bib0052) 2019; 180
Moholkar, Pandit (bib0066) 1997; 43
Rains (bib0013) 1954
Lakshminarayana (bib0014) 1970; 92
Salvador, Martinez-Lopez, Romero, Rosello (bib0067) 2013; 57
You, Wang, Moin, Mittal (bib0039) 2007; 586
Nicoud, Ducros (bib0059) 1999; 62
Boulon, Callenaere, Franc, Michel (bib0011) 1999; 390
Miorini, Wu, Katz (bib0040) 2012; 134
Roohi, Pendar, Rahimi (bib0050) 2016; 40
Li, Zhang, Han, Ma (bib0018) 2019; 392
Spalart, Shur (bib0061) 1997; 1
Sun, Ma, Wei, Wang (bib0022) 2016; 59
Sun, Wei, Zou, Jiang, Xu, Zong (bib0023) 2019; 111
Leweke, Le Dizès, Williamson (bib0062) 2016; 48
Wang, Huang, Zhang, Wang, Zhao (bib0035) 2018; 98
Haller, Yuan (bib0045) 2000; 147
Long, Cheng, Ji, Arndt (bib0065) 2017; 137
Zhang (10.1016/j.apm.2019.08.005_bib0024) 2015; 112
Roohi (10.1016/j.apm.2019.08.005_bib0005) 2013; 37
Wang (10.1016/j.apm.2019.08.005_bib0035) 2018; 98
Li (10.1016/j.apm.2019.08.005_bib0037) 2019; 33
Decaix (10.1016/j.apm.2019.08.005_bib0017) 2015; 16
Haller (10.1016/j.apm.2019.08.005_bib0046) 2001; 13
Cheng (10.1016/j.apm.2019.08.005_bib0034) 2019; 186
Tang (10.1016/j.apm.2019.08.005_bib0042) 2011; 50
Roohi (10.1016/j.apm.2019.08.005_bib0050) 2016; 40
Long (10.1016/j.apm.2019.08.005_bib0065) 2017; 137
Zahiri (10.1016/j.apm.2019.08.005_bib0052) 2019; 180
Smagorinsky (10.1016/j.apm.2019.08.005_bib0054) 1963; 91
Dreyer (10.1016/j.apm.2019.08.005_bib0012) 2014; 55
Guo (10.1016/j.apm.2019.08.005_bib0030) 2018; 151
Ji (10.1016/j.apm.2019.08.005_bib0064) 2017; 29
Zierke (10.1016/j.apm.2019.08.005_bib0008) 1996; 12
Lilly (10.1016/j.apm.2019.08.005_bib0056) 1992; 4
Wang (10.1016/j.apm.2019.08.005_bib0004) 2016; 40
Wu (10.1016/j.apm.2019.08.005_bib0041) 2016; 32
Rains (10.1016/j.apm.2019.08.005_bib0013) 1954
Valdes (10.1016/j.apm.2019.08.005_bib0060) 2014; 78
Liu (10.1016/j.apm.2019.08.005_bib0002) 2018; 11
You (10.1016/j.apm.2019.08.005_bib0039) 2007; 586
Bai (10.1016/j.apm.2019.08.005_bib0033) 2018; 30
Pendar (10.1016/j.apm.2019.08.005_bib0049) 2018; 98
Passandideh-Fard (10.1016/j.apm.2019.08.005_bib0007) 2008; 22
Batchelor (10.1016/j.apm.2019.08.005_bib0063) 2006; 20
Moore (10.1016/j.apm.2019.08.005_bib0015) 1973; 333
Inoue (10.1016/j.apm.2019.08.005_bib0009) 1986; 108
Gaggero (10.1016/j.apm.2019.08.005_bib0028) 2014; 92
Vreman (10.1016/j.apm.2019.08.005_bib0053) 1995; 29
Lakshminarayana (10.1016/j.apm.2019.08.005_bib0014) 1970; 92
Long (10.1016/j.apm.2019.08.005_bib0020) 2019; 115
Wang (10.1016/j.apm.2019.08.005_bib0021) 2017; 2
Guo (10.1016/j.apm.2019.08.005_bib0026) 2016; 99
Boulon (10.1016/j.apm.2019.08.005_bib0011) 1999; 390
Cheng (10.1016/j.apm.2019.08.005_bib0027) 2018; 30
Yu (10.1016/j.apm.2019.08.005_bib0003) 2017; 45
Haller (10.1016/j.apm.2019.08.005_bib0045) 2000; 147
Moholkar (10.1016/j.apm.2019.08.005_bib0066) 1997; 43
Sun (10.1016/j.apm.2019.08.005_bib0023) 2019; 111
Zhao (10.1016/j.apm.2019.08.005_bib0029) 2016; 32
Anvari (10.1016/j.apm.2019.08.005_bib0048) 2016; 40
Li (10.1016/j.apm.2019.08.005_bib0032) 2016; 30
Tseng (10.1016/j.apm.2019.08.005_bib0044) 2015; 54
Pendar (10.1016/j.apm.2019.08.005_bib0051) 2016; 112
Leweke (10.1016/j.apm.2019.08.005_bib0062) 2016; 48
Liu (10.1016/j.apm.2019.08.005_bib0006) 2018; 155
Decaix (10.1016/j.apm.2019.08.005_bib0031) 2018; 67
Zeng (10.1016/j.apm.2019.08.005_bib0019) 2019; 88
Germano (10.1016/j.apm.2019.08.005_bib0055) 1991; 3
Li (10.1016/j.apm.2019.08.005_bib0018) 2019; 392
Wu (10.1016/j.apm.2019.08.005_bib0036) 2018; 99
Miorini (10.1016/j.apm.2019.08.005_bib0040) 2012; 134
Goto (10.1016/j.apm.2019.08.005_bib0038) 1992; 114
Salvador (10.1016/j.apm.2019.08.005_bib0067) 2013; 57
Ferziger (10.1016/j.apm.2019.08.005_bib0057) 1993; 46-47
Amini (10.1016/j.apm.2019.08.005_bib0001) 2019; 60
Chen (10.1016/j.apm.2019.08.005_bib0016) 1991; 113
You (10.1016/j.apm.2019.08.005_bib0025) 2004; 42
Dai (10.1016/j.apm.2019.08.005_bib0047) 2014; 38
Muthanna (10.1016/j.apm.2019.08.005_bib0010) 2004; 42
Sun (10.1016/j.apm.2019.08.005_bib0022) 2016; 59
Long (10.1016/j.apm.2019.08.005_bib0043) 2018; 100
Sagaut (10.1016/j.apm.2019.08.005_bib0058) 1999; 31
Nicoud (10.1016/j.apm.2019.08.005_bib0059) 1999; 62
Spalart (10.1016/j.apm.2019.08.005_bib0061) 1997; 1
References_xml – volume: 59
  start-page: 337
  year: 2016
  end-page: 346
  ident: bib0022
  article-title: Computational modeling of cavitating flows in liquid nitrogen by an extended transport-based cavitation model
  publication-title: Sci. China Technol. Sci.
– volume: 32
  start-page: 273
  year: 2016
  end-page: 283
  ident: bib0029
  article-title: A cavitation model for computations of unsteady cavitating flows
  publication-title: Acta Mech. Sin.
– volume: 12
  start-page: 250
  year: 1996
  end-page: 259
  ident: bib0008
  article-title: Flow visualization and the three-dimensional flow in an axial-flow pump
  publication-title: J. Propuls. Power
– volume: 392
  start-page: 713
  year: 2019
  end-page: 731
  ident: bib0018
  article-title: 3D full coupling model for strong interaction between a pulsating bubble and a movable sphere
  publication-title: J. Comput. Phys.
– volume: 60
  start-page: 118
  year: 2019
  ident: bib0001
  article-title: On the physical mechanism of tip vortex cavitation hysteresis
  publication-title: Exp. Fluids
– volume: 42
  start-page: 2320
  year: 2004
  end-page: 2331
  ident: bib0010
  article-title: Wake of a compressor cascade with tip gap. Part 1: mean flow and turbulence structure
  publication-title: AIAA J.
– volume: 134
  year: 2012
  ident: bib0040
  article-title: The internal structure of the tip leakage vortex within the rotor of an axial waterjet pump
  publication-title: J. Turbomach. – Trans. ASME
– volume: 29
  start-page: 27
  year: 2017
  end-page: 39
  ident: bib0064
  article-title: Large eddy simulation of turbulent attached cavitating flow with special emphasis on large scale structures of the hydrofoil wake and turbulence-cavitation interactions
  publication-title: J. Hydrodyn.
– volume: 114
  start-page: 675
  year: 1992
  end-page: 685
  ident: bib0038
  article-title: Three-Dimensional flow and mixing in an axial-flow compressor with different rotor tip clearances
  publication-title: J. Turbomach. – Trans. ASME
– volume: 30
  start-page: 69
  year: 2016
  end-page: 78
  ident: bib0032
  article-title: All-speed Roe scheme for the large eddy simulation of homogeneous decaying turbulence
  publication-title: Int. J. Comput. Fluid D
– volume: 31
  start-page: 1195
  year: 1999
  end-page: 1220
  ident: bib0058
  article-title: Discrete filters for large eddy simulation
  publication-title: Int. J. Numer. Methods Fluids
– volume: 57
  start-page: 1656
  year: 2013
  end-page: 1662
  ident: bib0067
  article-title: Computational study of the cavitation phenomenon and its interaction with the turbulence developed in diesel injector nozzles by large eddy simulation (LES)
  publication-title: Math. Comput. Model.
– volume: 54
  start-page: 712
  year: 2015
  end-page: 727
  ident: bib0044
  article-title: Flow dynamics of a pitching foil by Eulerian and Lagrangian viewpoints
  publication-title: AIAA J.
– volume: 100
  start-page: 41
  year: 2018
  end-page: 56
  ident: bib0043
  article-title: Large eddy simulation and Euler–Lagrangian coupling investigation of the transient cavitating turbulent flow around a twisted hydrofoil
  publication-title: Int. J. Multiph. Flow
– volume: 390
  start-page: 1
  year: 1999
  end-page: 23
  ident: bib0011
  article-title: An experimental insight into the effect of confinement on tip vortex cavitation of an elliptical hydrofoil
  publication-title: J. Fluid Mech.
– volume: 92
  start-page: 467
  year: 1970
  end-page: 480
  ident: bib0014
  article-title: Methods of predicting the tip clearance effects in axial flow turbomachinery
  publication-title: J. Basic Eng.
– volume: 38
  start-page: 5665
  year: 2014
  end-page: 5683
  ident: bib0047
  article-title: Large-eddy simulations of cavitation in a square surface cavity
  publication-title: Appl. Math. Model.
– volume: 3
  start-page: 1760
  year: 1991
  end-page: 1765
  ident: bib0055
  article-title: A dynamic subgrid‐scale eddy viscosity model
  publication-title: Phys. Fluids A: Fluid Dyn.
– volume: 50
  start-page: 325
  year: 2011
  end-page: 338
  ident: bib0042
  article-title: Lagrangian coherent structure analysis of terminal winds detected by lidar. Part I: turbulence structures
  publication-title: J. Appl. Meteorol. Climatol.
– volume: 62
  start-page: 183
  year: 1999
  end-page: 200
  ident: bib0059
  article-title: Subgrid-scale stress modelling based on the square of the velocity gradient tensor
  publication-title: Flow Turbul. Combust.
– volume: 13
  start-page: 3365
  year: 2001
  end-page: 3385
  ident: bib0046
  article-title: Lagrangian structures and the rate of strain in a partition of two-dimensional turbulence
  publication-title: Phys. Fluids
– volume: 40
  start-page: 542
  year: 2016
  end-page: 564
  ident: bib0050
  article-title: Simulation of three-dimensional cavitation behind a disk using various turbulence and mass transfer models
  publication-title: Appl. Math. Model.
– volume: 1
  start-page: 297
  year: 1997
  end-page: 302
  ident: bib0061
  article-title: On the sensitization of turbulence models to rotation and curvature
  publication-title: Aerosp. Sci. Technol.
– volume: 40
  start-page: 8617
  year: 2016
  end-page: 8629
  ident: bib0048
  article-title: Numerical simulation of diesel injector nozzle flow and in-cylinder spray evolution
  publication-title: Appl. Math. Model.
– volume: 11
  start-page: 2202
  year: 2018
  ident: bib0002
  article-title: A review of tip clearance in propeller, pump and turbine
  publication-title: Energies
– volume: 88
  start-page: 167
  year: 2019
  end-page: 184
  ident: bib0019
  article-title: Numerical investigation into the effect of the trailing edge shape on added mass and hydrodynamic damping for a hydrofoil
  publication-title: J. Fluids Struct.
– volume: 155
  start-page: 448
  year: 2018
  end-page: 461
  ident: bib0006
  article-title: Method of C groove on vortex suppression and energy performance improvement for a NACA0009 hydrofoil with tip clearance in tidal energy
  publication-title: Energy
– volume: 112
  start-page: 61
  year: 2015
  end-page: 71
  ident: bib0024
  article-title: Numerical and experimental investigation of tip leakage vortex trajectory and dynamics in an axial flow pump
  publication-title: Comput. Fluids
– volume: 78
  start-page: 776
  year: 2014
  end-page: 786
  ident: bib0060
  article-title: Numerical simulation and experimental validation of the cavitating flow through a ball check valve
  publication-title: Energy Convers. Manag.
– volume: 586
  start-page: 177
  year: 2007
  end-page: 204
  ident: bib0039
  article-title: Large-eddy simulation analysis of mechanisms for viscous losses in a turbomachinery tip-clearance flow
  publication-title: J. Fluid Mech.
– volume: 333
  start-page: 491
  year: 1973
  end-page: 508
  ident: bib0015
  article-title: Axial flow in laminar trailing vortices
  publication-title: Proc. R. Soc. A
– volume: 113
  start-page: 260
  year: 1991
  end-page: 269
  ident: bib0016
  article-title: Similarity analysis of compressor tip clearance flow structure
  publication-title: J. Turbomach.
– volume: 99
  start-page: 390
  year: 2016
  end-page: 397
  ident: bib0026
  article-title: Numerical evaluation of the clearance geometries effect on the flow field and performance of a hydrofoil
  publication-title: Renew. Energy
– volume: 180
  start-page: 190
  year: 2019
  end-page: 205
  ident: bib0052
  article-title: Anisotropic minimum-dissipation (AMD) subgrid-scale model implemented in OpenFOAM: verification and assessment in single-phase and multi-phase flows
  publication-title: Comput. Fluids
– volume: 91
  start-page: 99
  year: 1963
  end-page: 164
  ident: bib0054
  article-title: General circulation experiments with the primitive equations
  publication-title: Mon. Weather Rev.
– volume: 20
  start-page: 645
  year: 2006
  end-page: 658
  ident: bib0063
  article-title: Axial flow in trailing line vortices
  publication-title: J. Fluid Mech.
– volume: 137
  start-page: 247
  year: 2017
  end-page: 261
  ident: bib0065
  article-title: Numerical investigation of attached cavitation shedding dynamics around the Clark-Y hydrofoil with the FBDCM and an integral method
  publication-title: Ocean Eng.
– volume: 186
  year: 2019
  ident: bib0034
  article-title: LES investigation of the influence of cavitation on flow patterns in a confined tip-leakage flow
  publication-title: Ocean Eng.
– volume: 147
  start-page: 352
  year: 2000
  end-page: 370
  ident: bib0045
  article-title: Lagrangian coherent structures and mixing in two-dimensional turbulence
  publication-title: Physica D
– volume: 48
  start-page: 507
  year: 2016
  end-page: 541
  ident: bib0062
  article-title: Dynamics and instabilities of vortex pairs
  publication-title: Annu. Rev. Fluid Mech.
– volume: 40
  start-page: 4032
  year: 2016
  end-page: 4043
  ident: bib0004
  article-title: A numerical study of the effects of pressure fluctuations inside injection nozzle on high-pressure and evaporating diesel spray characteristics
  publication-title: Appl. Math. Model.
– volume: 22
  start-page: 97
  year: 2008
  end-page: 114
  ident: bib0007
  article-title: Transient simulations of cavitating flows using a modified volume-of-fluid (VOF) technique
  publication-title: Int. J. Comput. Fluid D
– volume: 4
  start-page: 633
  year: 1992
  end-page: 635
  ident: bib0056
  article-title: A proposed modification of the Germano subgrid‐scale closure method
  publication-title: Phys. Fluids A: Fluid Dyn.
– volume: 151
  start-page: 71
  year: 2018
  end-page: 81
  ident: bib0030
  article-title: Numerical simulation for the tip leakage vortex cavitation
  publication-title: Ocean Eng.
– volume: 37
  start-page: 6469
  year: 2013
  end-page: 6488
  ident: bib0005
  article-title: Numerical simulation of cavitation around a two-dimensional hydrofoil using VOF method and LES turbulence model
  publication-title: Appl. Math. Model.
– volume: 42
  start-page: 271
  year: 2004
  end-page: 279
  ident: bib0025
  article-title: Computational methodology for large-eddy simulation of tip-clearance flows
  publication-title: AIAA J.
– volume: 108
  start-page: 7
  year: 1986
  end-page: 14
  ident: bib0009
  article-title: Behavior of tip leakage flow behind an axial compressor rotor
  publication-title: J. Eng. Gas. Turbines Power – Trans. ASME
– volume: 111
  start-page: 82
  year: 2019
  end-page: 100
  ident: bib0023
  article-title: Numerical investigation on the unsteady cavitation shedding dynamics over a hydrofoil in thermo-sensitive fluid
  publication-title: Int. J. Multiph. Flow
– volume: 99
  start-page: 162
  year: 2018
  end-page: 173
  ident: bib0036
  article-title: The transient characteristics of cloud cavitating flow over a flexible hydrofoil
  publication-title: Int. J. Multiph. Flow
– volume: 16
  start-page: 309
  year: 2015
  end-page: 341
  ident: bib0017
  article-title: RANS and LES computations of the tip-leakage vortex for different gap widths
  publication-title: J. Turbul.
– volume: 98
  start-page: 1
  year: 2018
  end-page: 23
  ident: bib0049
  article-title: Cavitation characteristics around a sphere: an LES investigation
  publication-title: Int. J. Multiph. Flow
– volume: 46-47
  start-page: 195
  year: 1993
  end-page: 212
  ident: bib0057
  article-title: Simulation of complex turbulent flows: recent advances and prospects in wind engineering
  publication-title: J. Wind Eng. Ind. Aerodyn.
– volume: 30
  start-page: 531
  year: 2018
  end-page: 534
  ident: bib0027
  article-title: URANS simulations of the tip-leakage cavitating flow with verification and validation procedures
  publication-title: J. Hydrodyn.
– volume: 112
  start-page: 287
  year: 2016
  end-page: 306
  ident: bib0051
  article-title: Investigation of cavitation around 3D hemispherical head-form body and conical cavitators using different turbulence and cavitation models
  publication-title: Ocean Eng.
– volume: 67
  start-page: 198
  year: 2018
  end-page: 210
  ident: bib0031
  article-title: RANS computations of a confined cavitating tip-leakage vortex
  publication-title: Eur. J. Mech.
– volume: 43
  start-page: 1641
  year: 1997
  end-page: 1648
  ident: bib0066
  article-title: Bubble behavior in hydrodynamic cavitation: effect of turbulence
  publication-title: AIChE J.
– volume: 115
  start-page: 93
  year: 2019
  end-page: 107
  ident: bib0020
  article-title: Verification and validation of large eddy simulation of attached cavitating flow around a Clark-Y hydrofoil
  publication-title: Int. J. Multiph. Flow
– volume: 98
  start-page: 79
  year: 2018
  end-page: 95
  ident: bib0035
  article-title: Experimental and numerical investigation of ventilated cavitating flow structures with special emphasis on vortex shedding dynamics
  publication-title: Int. J. Multiph. Flow
– volume: 45
  start-page: 705
  year: 2017
  end-page: 727
  ident: bib0003
  article-title: Development of a compressible multiphase cavitation approach for diesel spray modelling
  publication-title: Appl. Math. Model.
– volume: 2
  year: 2017
  ident: bib0021
  article-title: Ventilated cloud cavitating flow around a blunt body close to the free surface
  publication-title: Phys. Rev. Fluids
– volume: 32
  start-page: 64
  year: 2016
  end-page: 74
  ident: bib0041
  article-title: Lagrangian-based investigation of the transient flow structures around a pitching hydrofoil
  publication-title: Acta Mech. Sin.
– year: 1954
  ident: bib0013
  article-title: Tip Clearance Flows in Axial Flow Compressors and Pumps
– volume: 92
  start-page: 137
  year: 2014
  end-page: 161
  ident: bib0028
  article-title: A study on the numerical prediction of propellers cavitating tip vortex
  publication-title: Ocean Eng.
– volume: 29
  start-page: 299
  year: 1995
  end-page: 327
  ident: bib0053
  article-title: A priori tests of large eddy simulation of the compressible plane mixing layer
  publication-title: J. Eng. Math.
– volume: 55
  start-page: 1894
  year: 2014
  ident: bib0012
  article-title: Mind the gap: a new insight into the tip leakage vortex using stereo-PIV
  publication-title: Exp. Fluids
– volume: 33
  start-page: 1231
  year: 2019
  end-page: 1241
  ident: bib0037
  article-title: Calculation of cavitation evolution and associated turbulent kinetic energy transport around a NACA66 hydrofoil
  publication-title: J. Mech. Sci. Technol.
– volume: 30
  start-page: 750
  year: 2018
  end-page: 753
  ident: bib0033
  article-title: Large eddy simulation of tip leakage cavitating flow focusing on cavitation-vortex interaction with Cartesian cut-cell mesh method
  publication-title: J. Hydrodyn.
– volume: 115
  start-page: 93
  year: 2019
  ident: 10.1016/j.apm.2019.08.005_bib0020
  article-title: Verification and validation of large eddy simulation of attached cavitating flow around a Clark-Y hydrofoil
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/j.ijmultiphaseflow.2019.03.026
– volume: 42
  start-page: 271
  year: 2004
  ident: 10.1016/j.apm.2019.08.005_bib0025
  article-title: Computational methodology for large-eddy simulation of tip-clearance flows
  publication-title: AIAA J.
  doi: 10.2514/1.2626
– volume: 91
  start-page: 99
  year: 1963
  ident: 10.1016/j.apm.2019.08.005_bib0054
  article-title: General circulation experiments with the primitive equations
  publication-title: Mon. Weather Rev.
  doi: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
– volume: 40
  start-page: 4032
  year: 2016
  ident: 10.1016/j.apm.2019.08.005_bib0004
  article-title: A numerical study of the effects of pressure fluctuations inside injection nozzle on high-pressure and evaporating diesel spray characteristics
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2015.11.014
– volume: 92
  start-page: 467
  year: 1970
  ident: 10.1016/j.apm.2019.08.005_bib0014
  article-title: Methods of predicting the tip clearance effects in axial flow turbomachinery
  publication-title: J. Basic Eng.
  doi: 10.1115/1.3425036
– volume: 98
  start-page: 1
  year: 2018
  ident: 10.1016/j.apm.2019.08.005_bib0049
  article-title: Cavitation characteristics around a sphere: an LES investigation
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/j.ijmultiphaseflow.2017.08.013
– volume: 112
  start-page: 287
  year: 2016
  ident: 10.1016/j.apm.2019.08.005_bib0051
  article-title: Investigation of cavitation around 3D hemispherical head-form body and conical cavitators using different turbulence and cavitation models
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2015.12.010
– volume: 1
  start-page: 297
  year: 1997
  ident: 10.1016/j.apm.2019.08.005_bib0061
  article-title: On the sensitization of turbulence models to rotation and curvature
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/S1270-9638(97)90051-1
– volume: 59
  start-page: 337
  year: 2016
  ident: 10.1016/j.apm.2019.08.005_bib0022
  article-title: Computational modeling of cavitating flows in liquid nitrogen by an extended transport-based cavitation model
  publication-title: Sci. China Technol. Sci.
  doi: 10.1007/s11431-015-5969-y
– volume: 60
  start-page: 118
  year: 2019
  ident: 10.1016/j.apm.2019.08.005_bib0001
  article-title: On the physical mechanism of tip vortex cavitation hysteresis
  publication-title: Exp. Fluids
  doi: 10.1007/s00348-019-2762-x
– volume: 40
  start-page: 542
  year: 2016
  ident: 10.1016/j.apm.2019.08.005_bib0050
  article-title: Simulation of three-dimensional cavitation behind a disk using various turbulence and mass transfer models
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2015.06.002
– volume: 30
  start-page: 531
  year: 2018
  ident: 10.1016/j.apm.2019.08.005_bib0027
  article-title: URANS simulations of the tip-leakage cavitating flow with verification and validation procedures
  publication-title: J. Hydrodyn.
  doi: 10.1007/s42241-018-0038-1
– volume: 147
  start-page: 352
  year: 2000
  ident: 10.1016/j.apm.2019.08.005_bib0045
  article-title: Lagrangian coherent structures and mixing in two-dimensional turbulence
  publication-title: Physica D
  doi: 10.1016/S0167-2789(00)00142-1
– volume: 2
  year: 2017
  ident: 10.1016/j.apm.2019.08.005_bib0021
  article-title: Ventilated cloud cavitating flow around a blunt body close to the free surface
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/PhysRevFluids.2.084303
– volume: 22
  start-page: 97
  year: 2008
  ident: 10.1016/j.apm.2019.08.005_bib0007
  article-title: Transient simulations of cavitating flows using a modified volume-of-fluid (VOF) technique
  publication-title: Int. J. Comput. Fluid D
  doi: 10.1080/10618560701733657
– volume: 55
  start-page: 1894
  year: 2014
  ident: 10.1016/j.apm.2019.08.005_bib0012
  article-title: Mind the gap: a new insight into the tip leakage vortex using stereo-PIV
  publication-title: Exp. Fluids
  doi: 10.1007/s00348-014-1849-7
– volume: 13
  start-page: 3365
  year: 2001
  ident: 10.1016/j.apm.2019.08.005_bib0046
  article-title: Lagrangian structures and the rate of strain in a partition of two-dimensional turbulence
  publication-title: Phys. Fluids
  doi: 10.1063/1.1403336
– volume: 48
  start-page: 507
  year: 2016
  ident: 10.1016/j.apm.2019.08.005_bib0062
  article-title: Dynamics and instabilities of vortex pairs
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-122414-034558
– volume: 134
  year: 2012
  ident: 10.1016/j.apm.2019.08.005_bib0040
  article-title: The internal structure of the tip leakage vortex within the rotor of an axial waterjet pump
  publication-title: J. Turbomach. – Trans. ASME
  doi: 10.1115/1.4003065
– volume: 137
  start-page: 247
  year: 2017
  ident: 10.1016/j.apm.2019.08.005_bib0065
  article-title: Numerical investigation of attached cavitation shedding dynamics around the Clark-Y hydrofoil with the FBDCM and an integral method
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2017.03.054
– volume: 29
  start-page: 27
  year: 2017
  ident: 10.1016/j.apm.2019.08.005_bib0064
  article-title: Large eddy simulation of turbulent attached cavitating flow with special emphasis on large scale structures of the hydrofoil wake and turbulence-cavitation interactions
  publication-title: J. Hydrodyn.
  doi: 10.1016/S1001-6058(16)60715-1
– volume: 54
  start-page: 712
  year: 2015
  ident: 10.1016/j.apm.2019.08.005_bib0044
  article-title: Flow dynamics of a pitching foil by Eulerian and Lagrangian viewpoints
  publication-title: AIAA J.
  doi: 10.2514/1.J053619
– volume: 108
  start-page: 7
  year: 1986
  ident: 10.1016/j.apm.2019.08.005_bib0009
  article-title: Behavior of tip leakage flow behind an axial compressor rotor
  publication-title: J. Eng. Gas. Turbines Power – Trans. ASME
  doi: 10.1115/1.3239889
– volume: 50
  start-page: 325
  year: 2011
  ident: 10.1016/j.apm.2019.08.005_bib0042
  article-title: Lagrangian coherent structure analysis of terminal winds detected by lidar. Part I: turbulence structures
  publication-title: J. Appl. Meteorol. Climatol.
  doi: 10.1175/2010JAMC2508.1
– volume: 151
  start-page: 71
  year: 2018
  ident: 10.1016/j.apm.2019.08.005_bib0030
  article-title: Numerical simulation for the tip leakage vortex cavitation
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2017.12.057
– volume: 31
  start-page: 1195
  year: 1999
  ident: 10.1016/j.apm.2019.08.005_bib0058
  article-title: Discrete filters for large eddy simulation
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/(SICI)1097-0363(19991230)31:8<1195::AID-FLD914>3.0.CO;2-H
– volume: 100
  start-page: 41
  year: 2018
  ident: 10.1016/j.apm.2019.08.005_bib0043
  article-title: Large eddy simulation and Euler–Lagrangian coupling investigation of the transient cavitating turbulent flow around a twisted hydrofoil
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/j.ijmultiphaseflow.2017.12.002
– volume: 16
  start-page: 309
  year: 2015
  ident: 10.1016/j.apm.2019.08.005_bib0017
  article-title: RANS and LES computations of the tip-leakage vortex for different gap widths
  publication-title: J. Turbul.
  doi: 10.1080/14685248.2014.984068
– volume: 155
  start-page: 448
  year: 2018
  ident: 10.1016/j.apm.2019.08.005_bib0006
  article-title: Method of C groove on vortex suppression and energy performance improvement for a NACA0009 hydrofoil with tip clearance in tidal energy
  publication-title: Energy
  doi: 10.1016/j.energy.2018.04.174
– volume: 30
  start-page: 69
  year: 2016
  ident: 10.1016/j.apm.2019.08.005_bib0032
  article-title: All-speed Roe scheme for the large eddy simulation of homogeneous decaying turbulence
  publication-title: Int. J. Comput. Fluid D
  doi: 10.1080/10618562.2016.1156095
– volume: 30
  start-page: 750
  year: 2018
  ident: 10.1016/j.apm.2019.08.005_bib0033
  article-title: Large eddy simulation of tip leakage cavitating flow focusing on cavitation-vortex interaction with Cartesian cut-cell mesh method
  publication-title: J. Hydrodyn.
  doi: 10.1007/s42241-018-0068-8
– volume: 12
  start-page: 250
  year: 1996
  ident: 10.1016/j.apm.2019.08.005_bib0008
  article-title: Flow visualization and the three-dimensional flow in an axial-flow pump
  publication-title: J. Propuls. Power
  doi: 10.2514/3.24021
– volume: 57
  start-page: 1656
  year: 2013
  ident: 10.1016/j.apm.2019.08.005_bib0067
  article-title: Computational study of the cavitation phenomenon and its interaction with the turbulence developed in diesel injector nozzles by large eddy simulation (LES)
  publication-title: Math. Comput. Model.
  doi: 10.1016/j.mcm.2011.10.050
– volume: 32
  start-page: 64
  year: 2016
  ident: 10.1016/j.apm.2019.08.005_bib0041
  article-title: Lagrangian-based investigation of the transient flow structures around a pitching hydrofoil
  publication-title: Acta Mech. Sin.
  doi: 10.1007/s10409-015-0484-8
– volume: 88
  start-page: 167
  year: 2019
  ident: 10.1016/j.apm.2019.08.005_bib0019
  article-title: Numerical investigation into the effect of the trailing edge shape on added mass and hydrodynamic damping for a hydrofoil
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2019.05.006
– volume: 98
  start-page: 79
  year: 2018
  ident: 10.1016/j.apm.2019.08.005_bib0035
  article-title: Experimental and numerical investigation of ventilated cavitating flow structures with special emphasis on vortex shedding dynamics
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/j.ijmultiphaseflow.2017.08.014
– volume: 33
  start-page: 1231
  year: 2019
  ident: 10.1016/j.apm.2019.08.005_bib0037
  article-title: Calculation of cavitation evolution and associated turbulent kinetic energy transport around a NACA66 hydrofoil
  publication-title: J. Mech. Sci. Technol.
  doi: 10.1007/s12206-019-0223-3
– volume: 3
  start-page: 1760
  year: 1991
  ident: 10.1016/j.apm.2019.08.005_bib0055
  article-title: A dynamic subgrid‐scale eddy viscosity model
  publication-title: Phys. Fluids A: Fluid Dyn.
  doi: 10.1063/1.857955
– volume: 42
  start-page: 2320
  year: 2004
  ident: 10.1016/j.apm.2019.08.005_bib0010
  article-title: Wake of a compressor cascade with tip gap. Part 1: mean flow and turbulence structure
  publication-title: AIAA J.
  doi: 10.2514/1.5270
– volume: 11
  start-page: 2202
  year: 2018
  ident: 10.1016/j.apm.2019.08.005_bib0002
  article-title: A review of tip clearance in propeller, pump and turbine
  publication-title: Energies
  doi: 10.3390/en11092202
– volume: 38
  start-page: 5665
  year: 2014
  ident: 10.1016/j.apm.2019.08.005_bib0047
  article-title: Large-eddy simulations of cavitation in a square surface cavity
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2014.04.059
– volume: 20
  start-page: 645
  year: 2006
  ident: 10.1016/j.apm.2019.08.005_bib0063
  article-title: Axial flow in trailing line vortices
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112064001446
– volume: 29
  start-page: 299
  year: 1995
  ident: 10.1016/j.apm.2019.08.005_bib0053
  article-title: A priori tests of large eddy simulation of the compressible plane mixing layer
  publication-title: J. Eng. Math.
  doi: 10.1007/BF00042759
– volume: 37
  start-page: 6469
  year: 2013
  ident: 10.1016/j.apm.2019.08.005_bib0005
  article-title: Numerical simulation of cavitation around a two-dimensional hydrofoil using VOF method and LES turbulence model
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2012.09.002
– volume: 114
  start-page: 675
  year: 1992
  ident: 10.1016/j.apm.2019.08.005_bib0038
  article-title: Three-Dimensional flow and mixing in an axial-flow compressor with different rotor tip clearances
  publication-title: J. Turbomach. – Trans. ASME
  doi: 10.1115/1.2929192
– volume: 180
  start-page: 190
  year: 2019
  ident: 10.1016/j.apm.2019.08.005_bib0052
  article-title: Anisotropic minimum-dissipation (AMD) subgrid-scale model implemented in OpenFOAM: verification and assessment in single-phase and multi-phase flows
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2018.12.011
– volume: 62
  start-page: 183
  year: 1999
  ident: 10.1016/j.apm.2019.08.005_bib0059
  article-title: Subgrid-scale stress modelling based on the square of the velocity gradient tensor
  publication-title: Flow Turbul. Combust.
  doi: 10.1023/A:1009995426001
– volume: 99
  start-page: 390
  year: 2016
  ident: 10.1016/j.apm.2019.08.005_bib0026
  article-title: Numerical evaluation of the clearance geometries effect on the flow field and performance of a hydrofoil
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2016.06.064
– volume: 186
  year: 2019
  ident: 10.1016/j.apm.2019.08.005_bib0034
  article-title: LES investigation of the influence of cavitation on flow patterns in a confined tip-leakage flow
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2019.106115
– volume: 113
  start-page: 260
  year: 1991
  ident: 10.1016/j.apm.2019.08.005_bib0016
  article-title: Similarity analysis of compressor tip clearance flow structure
  publication-title: J. Turbomach.
  doi: 10.1115/1.2929098
– year: 1954
  ident: 10.1016/j.apm.2019.08.005_bib0013
– volume: 46-47
  start-page: 195
  year: 1993
  ident: 10.1016/j.apm.2019.08.005_bib0057
  article-title: Simulation of complex turbulent flows: recent advances and prospects in wind engineering
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/0167-6105(93)90130-G
– volume: 333
  start-page: 491
  year: 1973
  ident: 10.1016/j.apm.2019.08.005_bib0015
  article-title: Axial flow in laminar trailing vortices
  publication-title: Proc. R. Soc. A
– volume: 586
  start-page: 177
  year: 2007
  ident: 10.1016/j.apm.2019.08.005_bib0039
  article-title: Large-eddy simulation analysis of mechanisms for viscous losses in a turbomachinery tip-clearance flow
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112007006842
– volume: 111
  start-page: 82
  year: 2019
  ident: 10.1016/j.apm.2019.08.005_bib0023
  article-title: Numerical investigation on the unsteady cavitation shedding dynamics over a hydrofoil in thermo-sensitive fluid
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/j.ijmultiphaseflow.2018.11.014
– volume: 32
  start-page: 273
  year: 2016
  ident: 10.1016/j.apm.2019.08.005_bib0029
  article-title: A cavitation model for computations of unsteady cavitating flows
  publication-title: Acta Mech. Sin.
  doi: 10.1007/s10409-015-0455-0
– volume: 112
  start-page: 61
  year: 2015
  ident: 10.1016/j.apm.2019.08.005_bib0024
  article-title: Numerical and experimental investigation of tip leakage vortex trajectory and dynamics in an axial flow pump
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2015.01.010
– volume: 392
  start-page: 713
  year: 2019
  ident: 10.1016/j.apm.2019.08.005_bib0018
  article-title: 3D full coupling model for strong interaction between a pulsating bubble and a movable sphere
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.05.001
– volume: 99
  start-page: 162
  year: 2018
  ident: 10.1016/j.apm.2019.08.005_bib0036
  article-title: The transient characteristics of cloud cavitating flow over a flexible hydrofoil
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/j.ijmultiphaseflow.2017.10.006
– volume: 78
  start-page: 776
  year: 2014
  ident: 10.1016/j.apm.2019.08.005_bib0060
  article-title: Numerical simulation and experimental validation of the cavitating flow through a ball check valve
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2013.11.038
– volume: 43
  start-page: 1641
  year: 1997
  ident: 10.1016/j.apm.2019.08.005_bib0066
  article-title: Bubble behavior in hydrodynamic cavitation: effect of turbulence
  publication-title: AIChE J.
  doi: 10.1002/aic.690430628
– volume: 67
  start-page: 198
  year: 2018
  ident: 10.1016/j.apm.2019.08.005_bib0031
  article-title: RANS computations of a confined cavitating tip-leakage vortex
  publication-title: Eur. J. Mech.
  doi: 10.1016/j.euromechflu.2017.09.004
– volume: 390
  start-page: 1
  year: 1999
  ident: 10.1016/j.apm.2019.08.005_bib0011
  article-title: An experimental insight into the effect of confinement on tip vortex cavitation of an elliptical hydrofoil
  publication-title: J. Fluid Mech.
  doi: 10.1017/S002211209900525X
– volume: 92
  start-page: 137
  year: 2014
  ident: 10.1016/j.apm.2019.08.005_bib0028
  article-title: A study on the numerical prediction of propellers cavitating tip vortex
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2014.09.042
– volume: 45
  start-page: 705
  year: 2017
  ident: 10.1016/j.apm.2019.08.005_bib0003
  article-title: Development of a compressible multiphase cavitation approach for diesel spray modelling
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2017.01.035
– volume: 4
  start-page: 633
  year: 1992
  ident: 10.1016/j.apm.2019.08.005_bib0056
  article-title: A proposed modification of the Germano subgrid‐scale closure method
  publication-title: Phys. Fluids A: Fluid Dyn.
  doi: 10.1063/1.858280
– volume: 40
  start-page: 8617
  year: 2016
  ident: 10.1016/j.apm.2019.08.005_bib0048
  article-title: Numerical simulation of diesel injector nozzle flow and in-cylinder spray evolution
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2016.05.017
SSID ssj0005904
ssj0012860
Score 2.6483536
Snippet •The tip-leakage cavitating flow is simulated by LES with Cartesian cut-cell mesh.•Three types of cavitating vortical flows, including TLV, TSV and IV, are...
Cavitation within a tip leakage flow remains a challenging issue in a variety of axial hydraulic machines. It is still not possible nowadays to predict...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 788
SubjectTerms Cavitation
Computational fluid dynamics
Computer simulation
Energy dissipation
Evolution
Fluid flow
Hydrofoils
Kinetic energy
Lagrangian coherent structures (LCSs)
Large eddy simulation
Leakage
Local flow
Mathematical models
Stretching
Tip leakage vortex (TLV)
Transport equations
Turbulence
Turbulence kinetic energy
Vortices
Vorticity
Title Large eddy simulation of the tip-leakage cavitating flow with an insight on how cavitation influences vorticity and turbulence
URI https://dx.doi.org/10.1016/j.apm.2019.08.005
https://www.proquest.com/docview/2333609347
Volume 77
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKucCh4ilaysoHTkhhnbXXSY6lahUK7QFaaW-WnxDYJqsmLeqlv70zXqcIhHrgGGfGsjz2zGd7HoS8BZ1vzbx0WS6szhAyZEazMpOlY8BgjNAYjXx8IuszcbSYLzbI_hgLg26VSfevdXrU1qllmmZzumqa6VdcnhUTC4AgAHM5RpRzUcYgvsWH324eFRNjMkSkHl82o4-XXmEwel7FLJ5Ywe7ftukvLR1Nz-ETspUwI91bD-sp2fDtM_L4-C7hav-c3HxGj27qnbumfXOeanLRLlAgokOzypZe_wTdQa2-imm52280LLtfFC9iqW5p0_Z4TqfA9R2aR7IO_6Q6Jj296qIX9nANHI6CtTKXMWjpBTk7PDjdr7NUWiGzXJZDFvC1zuZBFgUrA4ddXcjCWVl5HozxwUqrZxLkG_JKwOyG3MsgLfdCzhjXmr8km23X-leE5nMPEINVzBkpHCJ2pwGzlKVmEpRF2CZsnFRl08ix_MVSjQ5mPxTIQaEcFJbEZPNt8u6OZbVOunEfsRglpf5YOQqMwn1su6NUVdq2vZpxziWruCh2_q_X1-TRDA_k8Y5ml2wOF5f-DaCWwUzIg_c3-YQ83Pv4qT6ZxEUKX6dfjur6Fgji8J4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoPbQ9INpSsYW2PvSEFK2z9jrJEVDR0u5yKUh7s_xsA0uyagIVF347M1kHBKo49OrMJNaMPfM5ngchX8HmWzPOXZIKqxOEDInRLE9k7hgwGCM0ZiPPTuTkTHyfj-dr5LDPhcGwymj7Vza9s9ZxZBilOVyW5fAnLs-CiTlAEIC5PHtBXsK3MuzfcDw_eIjzKJjoqyEieX-12QV56SVmo6dFV8YTW9j92zk9MdOd7znaJBsRNNL91bzekjVfvSNvZvcVV5v35HaKId3UO3dDm_IyNuWidaBARNtymSy8vgDjQa2-7upyV79oWNR_Kf6JpbqiZdXgQZ0C128Y7slqfBIbmTT0uu7CsNsb4HAU3JW56rKWtsjZ0bfTw0kSeysklsu8TQJe19k0yCxjeeCwrTOZOSsLz4MxPlhp9UiCgkNaCBBvSL0M0nIv5IhxrfkHsl7Vld8mNB17wBisYM5I4RCyOw2gJc81k2AtwoCwXqjKxplj_4uF6iPMzhXoQaEeFPbEZOMB2btnWa6qbjxHLHpNqUdLR4FXeI5tt9eqivu2USPOuWQFF9nH_3vrF_JqcjqbqunxyY8d8nqEp3OMf2G7ZL39c-U_AYRpzeduid4BdCPvjg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large+eddy+simulation+of+the+tip-leakage+cavitating+flow+with+an+insight+on+how+cavitation+influences+vorticity+and+turbulence&rft.jtitle=Applied+mathematical+modelling&rft.au=Cheng%2C+H.Y.&rft.au=Bai%2C+X.R.&rft.au=Long%2C+X.P.&rft.au=Ji%2C+B.&rft.date=2020-01-01&rft.issn=0307-904X&rft.volume=77&rft.spage=788&rft.epage=809&rft_id=info:doi/10.1016%2Fj.apm.2019.08.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apm_2019_08_005
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0307-904X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0307-904X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0307-904X&client=summon