Large eddy simulation of the tip-leakage cavitating flow with an insight on how cavitation influences vorticity and turbulence
•The tip-leakage cavitating flow is simulated by LES with Cartesian cut-cell mesh.•Three types of cavitating vortical flows, including TLV, TSV and IV, are analyzed from Euler/Lagrangian viewpoints.•Three stages for the spatial–temporal evolution of tip-leakage cavitating flow are discussed.•The phy...
Saved in:
Published in | Applied Mathematical Modelling Vol. 77; pp. 788 - 809 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Inc
01.01.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0307-904X 1088-8691 0307-904X |
DOI | 10.1016/j.apm.2019.08.005 |
Cover
Loading…
Abstract | •The tip-leakage cavitating flow is simulated by LES with Cartesian cut-cell mesh.•Three types of cavitating vortical flows, including TLV, TSV and IV, are analyzed from Euler/Lagrangian viewpoints.•Three stages for the spatial–temporal evolution of tip-leakage cavitating flow are discussed.•The physical mechanism for cavitation-turbulence interaction is clarified.
Cavitation within a tip leakage flow remains a challenging issue in a variety of axial hydraulic machines. It is still not possible nowadays to predict cavitation occurrence in such a flow with acceptable accuracy. In the present study, we have carried out numerical simulations of a tip leakage cavitating flow, generated by a straight NACA0009 hydrofoil. We have used the LES method combined with the Schnerr–Sauer cavitation model. The numerical results agree well with experimental data. The evolution of the tip leakage cavitating flow, involving tip-leakage vortex (TLV), tip-separation vortex (TSV) and induced vortex (IV), is analyzed from Eulerian and Lagrangian viewpoints. The results show that the spatial evolution of the tip leakage cavitating flow can be divided into three stages: Stage Ⅰ, Independent development of the TLV and TSV; Stage Ⅱ, Fusion of the TLV and TSV; and Stage Ⅲ, Development of the IV and dissipation of the TLV. The Lagrangian coherent structures (LCSs) obtained from the numerical results indicate that the TLV cavitation significantly influence the local flow patterns. The vorticity transport equation was then used to further analyze the influence of the cavitation on the vortices. The results demonstrate that the stretching term dominates the TLV evolution and the dilatation term is responsible for the vorticity reduction inside the TLV cavity. The results also show how the cavitation influences the local turbulence and that the transport term in the turbulent kinetic energy equation influences the turbulence distribution near the TLV cavity. |
---|---|
AbstractList | •The tip-leakage cavitating flow is simulated by LES with Cartesian cut-cell mesh.•Three types of cavitating vortical flows, including TLV, TSV and IV, are analyzed from Euler/Lagrangian viewpoints.•Three stages for the spatial–temporal evolution of tip-leakage cavitating flow are discussed.•The physical mechanism for cavitation-turbulence interaction is clarified.
Cavitation within a tip leakage flow remains a challenging issue in a variety of axial hydraulic machines. It is still not possible nowadays to predict cavitation occurrence in such a flow with acceptable accuracy. In the present study, we have carried out numerical simulations of a tip leakage cavitating flow, generated by a straight NACA0009 hydrofoil. We have used the LES method combined with the Schnerr–Sauer cavitation model. The numerical results agree well with experimental data. The evolution of the tip leakage cavitating flow, involving tip-leakage vortex (TLV), tip-separation vortex (TSV) and induced vortex (IV), is analyzed from Eulerian and Lagrangian viewpoints. The results show that the spatial evolution of the tip leakage cavitating flow can be divided into three stages: Stage Ⅰ, Independent development of the TLV and TSV; Stage Ⅱ, Fusion of the TLV and TSV; and Stage Ⅲ, Development of the IV and dissipation of the TLV. The Lagrangian coherent structures (LCSs) obtained from the numerical results indicate that the TLV cavitation significantly influence the local flow patterns. The vorticity transport equation was then used to further analyze the influence of the cavitation on the vortices. The results demonstrate that the stretching term dominates the TLV evolution and the dilatation term is responsible for the vorticity reduction inside the TLV cavity. The results also show how the cavitation influences the local turbulence and that the transport term in the turbulent kinetic energy equation influences the turbulence distribution near the TLV cavity. Cavitation within a tip leakage flow remains a challenging issue in a variety of axial hydraulic machines. It is still not possible nowadays to predict cavitation occurrence in such a flow with acceptable accuracy. In the present study, we have carried out numerical simulations of a tip leakage cavitating flow, generated by a straight NACA0009 hydrofoil. We have used the LES method combined with the Schnerr–Sauer cavitation model. The numerical results agree well with experimental data. The evolution of the tip leakage cavitating flow, involving tip-leakage vortex (TLV), tip-separation vortex (TSV) and induced vortex (IV), is analyzed from Eulerian and Lagrangian viewpoints. The results show that the spatial evolution of the tip leakage cavitating flow can be divided into three stages: Stage Ⅰ, Independent development of the TLV and TSV; Stage Ⅱ, Fusion of the TLV and TSV; and Stage Ⅲ, Development of the IV and dissipation of the TLV. The Lagrangian coherent structures (LCSs) obtained from the numerical results indicate that the TLV cavitation significantly influence the local flow patterns. The vorticity transport equation was then used to further analyze the influence of the cavitation on the vortices. The results demonstrate that the stretching term dominates the TLV evolution and the dilatation term is responsible for the vorticity reduction inside the TLV cavity. The results also show how the cavitation influences the local turbulence and that the transport term in the turbulent kinetic energy equation influences the turbulence distribution near the TLV cavity. |
Author | Long, X.P. Peng, X.X. Cheng, H.Y. Bai, X.R. Ji, B. Farhat, M. |
Author_xml | – sequence: 1 givenname: H.Y. surname: Cheng fullname: Cheng, H.Y. email: chengiu@whu.edu.cn organization: State Key Lab of Water Resources and Hydropower Engineering Science, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China – sequence: 2 givenname: X.R. surname: Bai fullname: Bai, X.R. organization: State Key Lab of Water Resources and Hydropower Engineering Science, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China – sequence: 3 givenname: X.P. surname: Long fullname: Long, X.P. organization: State Key Lab of Water Resources and Hydropower Engineering Science, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China – sequence: 4 givenname: B. orcidid: 0000-0002-5282-7224 surname: Ji fullname: Ji, B. email: jibin@whu.edu.cn, jibin@mail.tsinghua.edu.cn organization: State Key Lab of Water Resources and Hydropower Engineering Science, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China – sequence: 5 givenname: X.X. surname: Peng fullname: Peng, X.X. organization: National Key Lab on Ship Vibration and Noise, China Ship Scientific Research Center, Wuxi 214082, China – sequence: 6 givenname: M. surname: Farhat fullname: Farhat, M. organization: Ecole Polytechnique Federale de Lausanne (EPFL), Laboratory for Hydraulic Machines, Lausanne, Switzerland |
BookMark | eNp9kM1LwzAchoMouE3_AG8Bz61JU9MWTzL8goEXBW8hS3_ZUrtmJunGLv7tpmyCeNgpH-_zJPzeMTrtbAcIXVGSUkL5TZPK9SrNCK1SUqaE3J6gEWGkSCqSf5z-2Z-jsfcNiUQ8jdD3TLoFYKjrHfZm1bcyGNthq3FYAg5mnbQgP2VElNyYENNugXVrt3hrwhLLDpvOm8Uy4Ggt4_UvZodEtz10CjzeWBeMMmEXjRqH3s37dkgu0JmWrYfLwzpB748Pb9PnZPb69DK9nyWK8TIkmhVZpajmRUFKzViWFbyoFa-A6fkctOJKZnwOStMqJ3mlKXDNFYOcZ4RJySboev_u2tmvHnwQje1dF78UGWOMk4rlRaTonlLOeu9Ai7UzK-l2ghIx1CwaEWsWQ82ClCKWGJ3in6MO8wcnTXvUvNubEAffGHDCKzOUUhsHKojamiP2D23anJg |
CitedBy_id | crossref_primary_10_1007_s10409_021_09026_x crossref_primary_10_1063_5_0159233 crossref_primary_10_1016_j_renene_2020_11_123 crossref_primary_10_1007_s40868_021_00097_5 crossref_primary_10_1016_j_oceaneng_2023_114499 crossref_primary_10_1063_5_0216114 crossref_primary_10_1007_s12206_020_0818_8 crossref_primary_10_1007_s42241_021_0022_z crossref_primary_10_1063_5_0174198 crossref_primary_10_1016_j_oceaneng_2021_108811 crossref_primary_10_32604_fdmp_2023_024259 crossref_primary_10_1007_s42241_024_0086_7 crossref_primary_10_1007_s42241_023_0006_2 crossref_primary_10_1016_j_oceaneng_2024_117599 crossref_primary_10_1016_j_fuel_2023_128386 crossref_primary_10_1063_5_0061139 crossref_primary_10_1063_5_0245462 crossref_primary_10_1088_1742_6596_2217_1_012018 crossref_primary_10_1063_5_0082899 crossref_primary_10_1007_s13344_021_0033_0 crossref_primary_10_3390_pr7090625 crossref_primary_10_1007_s42241_024_0014_x crossref_primary_10_3390_jmse9070775 crossref_primary_10_1016_j_apm_2020_08_011 crossref_primary_10_1115_1_4050135 crossref_primary_10_1016_j_applthermaleng_2021_116870 crossref_primary_10_1016_j_oceaneng_2024_117948 crossref_primary_10_3390_su142315902 crossref_primary_10_1016_j_euromechflu_2023_08_005 crossref_primary_10_1016_j_oceaneng_2022_113304 crossref_primary_10_1016_j_oceaneng_2024_117943 crossref_primary_10_1063_5_0244004 crossref_primary_10_1063_5_0187241 crossref_primary_10_1016_j_ijmultiphaseflow_2024_105108 crossref_primary_10_3390_e25030545 crossref_primary_10_1007_s40997_023_00735_w crossref_primary_10_1016_j_heliyon_2022_e12636 crossref_primary_10_1016_j_oceaneng_2020_107349 crossref_primary_10_1063_5_0259785 crossref_primary_10_1063_5_0197532 crossref_primary_10_1088_1755_1315_668_1_012043 crossref_primary_10_3390_en15176330 crossref_primary_10_1016_j_ijmultiphaseflow_2024_104818 crossref_primary_10_1016_j_renene_2020_11_143 crossref_primary_10_1177_16878132241293622 crossref_primary_10_1063_5_0070312 crossref_primary_10_3390_en16186592 crossref_primary_10_1080_00221686_2023_2236981 crossref_primary_10_1016_j_oceaneng_2022_112442 crossref_primary_10_1016_j_oceaneng_2023_116547 crossref_primary_10_1016_j_energy_2024_130261 crossref_primary_10_1016_j_anucene_2023_109935 crossref_primary_10_3390_machines11040489 crossref_primary_10_1063_5_0251821 crossref_primary_10_1007_s42241_024_0063_1 crossref_primary_10_1016_j_ijmultiphaseflow_2022_104066 crossref_primary_10_1080_14685248_2024_2350070 crossref_primary_10_1016_j_energy_2020_119005 crossref_primary_10_1016_j_ijmultiphaseflow_2024_104820 crossref_primary_10_1063_5_0099070 crossref_primary_10_1016_j_ijnaoe_2021_10_004 crossref_primary_10_1016_j_oceaneng_2020_107218 crossref_primary_10_1063_5_0124388 crossref_primary_10_1016_j_ijheatmasstransfer_2022_122707 crossref_primary_10_1063_5_0067266 crossref_primary_10_1063_5_0204002 crossref_primary_10_1016_j_oceaneng_2020_107450 crossref_primary_10_1007_s42241_023_0011_5 crossref_primary_10_1007_s00348_020_02996_6 crossref_primary_10_1142_S0217984920501845 crossref_primary_10_1007_s42241_024_0030_x crossref_primary_10_1007_s42241_022_0073_9 crossref_primary_10_1063_5_0169930 crossref_primary_10_1016_j_oceaneng_2022_113125 crossref_primary_10_1177_09544062211032989 crossref_primary_10_1108_EC_04_2020_0227 crossref_primary_10_1016_j_ijmultiphaseflow_2023_104633 crossref_primary_10_1063_5_0131813 crossref_primary_10_1007_s42241_022_0047_y crossref_primary_10_1063_5_0154932 crossref_primary_10_1007_s42241_021_0004_1 crossref_primary_10_1016_j_oceaneng_2024_119597 crossref_primary_10_1063_5_0164191 crossref_primary_10_2478_pomr_2020_0063 crossref_primary_10_1016_j_oceaneng_2022_111734 crossref_primary_10_1063_5_0145676 crossref_primary_10_1007_s42241_023_0023_1 crossref_primary_10_1016_j_energy_2023_129778 crossref_primary_10_1007_s42241_023_0046_7 crossref_primary_10_1007_s10409_020_01008_4 crossref_primary_10_1007_s42241_022_0062_z crossref_primary_10_1063_5_0128892 crossref_primary_10_1016_j_oceaneng_2022_112704 crossref_primary_10_3390_pr9091481 crossref_primary_10_1007_s42241_022_0060_1 crossref_primary_10_1016_j_apm_2022_01_017 crossref_primary_10_1063_5_0248934 crossref_primary_10_1080_14685248_2022_2046762 crossref_primary_10_1142_S0217984921500329 crossref_primary_10_1016_j_renene_2020_09_002 crossref_primary_10_1016_j_renene_2020_09_001 crossref_primary_10_1007_s42241_022_0057_9 crossref_primary_10_1155_2020_8409231 crossref_primary_10_1007_s42241_023_0012_4 crossref_primary_10_1016_j_apm_2021_03_018 crossref_primary_10_1016_j_oceaneng_2024_118836 crossref_primary_10_1063_5_0252143 crossref_primary_10_1016_j_ultsonch_2020_105225 crossref_primary_10_1063_5_0130192 crossref_primary_10_1155_2021_5577517 crossref_primary_10_1016_j_ijmultiphaseflow_2021_103834 crossref_primary_10_1016_j_renene_2020_11_108 crossref_primary_10_1016_j_ijheatmasstransfer_2020_119835 crossref_primary_10_1016_j_oceaneng_2020_107305 crossref_primary_10_1016_j_renene_2020_01_023 crossref_primary_10_1007_s42241_022_0045_0 crossref_primary_10_1016_j_oceaneng_2020_107661 crossref_primary_10_1007_s42241_023_0086_z crossref_primary_10_3390_mi11080728 crossref_primary_10_1007_s42241_020_0009_1 crossref_primary_10_1063_5_0248918 crossref_primary_10_1016_j_apm_2021_08_001 crossref_primary_10_1063_1_5121380 crossref_primary_10_1051_e3sconf_202123304036 crossref_primary_10_1016_j_oceaneng_2025_120868 crossref_primary_10_3390_machines10010041 crossref_primary_10_1016_j_oceaneng_2023_115010 crossref_primary_10_1016_j_powtec_2020_03_047 crossref_primary_10_1063_5_0032818 crossref_primary_10_1063_5_0240077 crossref_primary_10_1115_1_4049687 crossref_primary_10_1016_j_apor_2020_102285 crossref_primary_10_1016_j_apor_2020_102167 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120808 crossref_primary_10_1115_1_4062648 crossref_primary_10_1016_j_ijmultiphaseflow_2025_105183 crossref_primary_10_1108_EC_07_2020_0414 crossref_primary_10_1007_s42241_022_0079_3 crossref_primary_10_1016_j_energy_2020_118084 crossref_primary_10_1080_17445302_2024_2393788 crossref_primary_10_1016_j_oceaneng_2022_111661 crossref_primary_10_3390_w17010042 crossref_primary_10_1063_5_0061549 crossref_primary_10_3390_en15196916 crossref_primary_10_1016_j_ijmultiphaseflow_2020_103215 crossref_primary_10_1016_j_rser_2022_112786 crossref_primary_10_1007_s40544_021_0529_x crossref_primary_10_1142_S0217984920500207 crossref_primary_10_1049_rpg2_12096 crossref_primary_10_1063_5_0252173 crossref_primary_10_1016_j_oceaneng_2021_109193 crossref_primary_10_3390_app10238721 crossref_primary_10_1063_5_0177292 crossref_primary_10_1016_j_oceaneng_2023_114544 crossref_primary_10_1016_j_energy_2022_123490 crossref_primary_10_1103_PhysRevFluids_9_104304 crossref_primary_10_3390_en12214162 crossref_primary_10_3390_ijtpp8020017 crossref_primary_10_1016_j_apor_2024_103993 crossref_primary_10_1016_j_ijmultiphaseflow_2020_103441 crossref_primary_10_1177_16878140211015879 crossref_primary_10_1016_j_oceaneng_2022_111888 crossref_primary_10_1063_5_0234292 crossref_primary_10_1007_s42241_020_0070_9 crossref_primary_10_1007_s42241_024_0078_7 crossref_primary_10_1140_epjp_s13360_021_01793_2 crossref_primary_10_1016_j_renene_2020_11_095 crossref_primary_10_1063_5_0073634 crossref_primary_10_1016_j_oceaneng_2022_111407 crossref_primary_10_1115_1_4055542 crossref_primary_10_1016_j_oceaneng_2019_106831 crossref_primary_10_1016_j_ultsonch_2023_106715 crossref_primary_10_1016_j_fuel_2020_119535 crossref_primary_10_1115_1_4064296 crossref_primary_10_1007_s42241_023_0090_3 crossref_primary_10_1063_5_0064717 crossref_primary_10_1007_s42241_024_0010_1 crossref_primary_10_3390_pr8080997 crossref_primary_10_3390_pr9081385 crossref_primary_10_1016_j_ijhydene_2020_01_192 crossref_primary_10_1016_j_ijmultiphaseflow_2024_104899 crossref_primary_10_1063_5_0131758 crossref_primary_10_1016_j_renene_2020_03_182 crossref_primary_10_1016_j_oceaneng_2021_109647 crossref_primary_10_1016_j_oceaneng_2021_108798 crossref_primary_10_1063_5_0254379 crossref_primary_10_1063_1_5132591 crossref_primary_10_1016_j_oceaneng_2024_119936 crossref_primary_10_1016_j_flowmeasinst_2020_101779 crossref_primary_10_1016_j_icheatmasstransfer_2024_108144 crossref_primary_10_1016_j_expthermflusci_2022_110648 crossref_primary_10_1016_j_oceaneng_2021_110087 crossref_primary_10_1002_ese3_608 crossref_primary_10_1016_j_ijmultiphaseflow_2023_104484 crossref_primary_10_3390_fluids5040218 crossref_primary_10_1063_5_0252632 crossref_primary_10_1063_5_0232526 crossref_primary_10_3390_en15020502 crossref_primary_10_1007_s12206_019_1135_y crossref_primary_10_3390_en12214066 crossref_primary_10_1016_j_ijmultiphaseflow_2021_103880 crossref_primary_10_1063_5_0060590 crossref_primary_10_1016_j_renene_2020_08_101 crossref_primary_10_1016_j_enconman_2021_115193 crossref_primary_10_1016_j_flowmeasinst_2025_102811 crossref_primary_10_1016_j_oceaneng_2021_109650 crossref_primary_10_1115_1_4065962 crossref_primary_10_1016_j_powtec_2020_01_022 crossref_primary_10_1007_s42241_022_0053_0 crossref_primary_10_3390_jmse9101045 crossref_primary_10_1063_5_0215864 crossref_primary_10_3389_fenrg_2023_1235277 crossref_primary_10_1063_5_0195923 crossref_primary_10_1063_5_0235109 crossref_primary_10_1016_j_wear_2021_203917 crossref_primary_10_1016_j_oceaneng_2021_110005 crossref_primary_10_3390_app10175897 crossref_primary_10_1007_s42241_022_0065_9 crossref_primary_10_1080_19942060_2022_2122570 crossref_primary_10_1016_j_scitotenv_2022_154856 crossref_primary_10_1080_17445302_2021_1893458 crossref_primary_10_1016_j_oceaneng_2019_106547 crossref_primary_10_1016_j_oceaneng_2023_114588 crossref_primary_10_1016_j_oceaneng_2022_111333 crossref_primary_10_1007_s42241_020_0041_1 crossref_primary_10_1016_j_oceaneng_2024_119081 crossref_primary_10_1016_j_renene_2019_10_175 crossref_primary_10_1007_s42241_025_0101_7 crossref_primary_10_1016_j_renene_2020_08_163 crossref_primary_10_1016_j_oceaneng_2025_120693 crossref_primary_10_1016_j_expthermflusci_2019_110016 crossref_primary_10_1080_17445302_2022_2093505 crossref_primary_10_1063_5_0187325 crossref_primary_10_1007_s40430_023_04259_x crossref_primary_10_1016_j_oceaneng_2022_113069 crossref_primary_10_1063_5_0054795 crossref_primary_10_1016_j_apm_2019_10_050 crossref_primary_10_1016_j_ijmultiphaseflow_2022_104251 crossref_primary_10_3390_jmse9111193 crossref_primary_10_1063_5_0189068 crossref_primary_10_1016_j_ijmultiphaseflow_2024_105020 crossref_primary_10_1063_5_0122844 crossref_primary_10_1016_j_ijmultiphaseflow_2022_104252 crossref_primary_10_1016_j_oceaneng_2022_111685 crossref_primary_10_1016_j_ijmultiphaseflow_2022_104254 crossref_primary_10_1016_j_oceaneng_2023_116176 crossref_primary_10_1016_j_biosystemseng_2019_12_014 crossref_primary_10_1063_5_0152580 crossref_primary_10_1063_5_0117492 crossref_primary_10_1063_5_0030907 crossref_primary_10_1063_5_0232189 crossref_primary_10_2139_ssrn_4189303 crossref_primary_10_3390_jmse8050341 crossref_primary_10_3390_jmse10020136 crossref_primary_10_1016_j_ijmultiphaseflow_2020_103276 crossref_primary_10_1016_j_ijmultiphaseflow_2021_103671 crossref_primary_10_1007_s42241_020_0081_6 crossref_primary_10_1007_s42241_024_0001_2 crossref_primary_10_1080_17445302_2024_2309433 crossref_primary_10_1088_1742_6596_2752_1_012195 crossref_primary_10_1063_5_0123381 crossref_primary_10_1007_s42241_020_0005_5 crossref_primary_10_1186_s10033_023_00842_4 crossref_primary_10_1016_j_apm_2020_04_004 crossref_primary_10_1007_s11804_024_00480_9 crossref_primary_10_1016_j_oceaneng_2022_111313 crossref_primary_10_1007_s42241_024_0061_3 crossref_primary_10_1063_5_0085388 crossref_primary_10_1016_j_ijmultiphaseflow_2023_104445 crossref_primary_10_1063_5_0210957 crossref_primary_10_1016_j_oceaneng_2025_120349 crossref_primary_10_1016_j_apor_2020_102449 crossref_primary_10_1007_s42241_022_0014_7 crossref_primary_10_1016_j_fuel_2022_126843 crossref_primary_10_1007_s42241_023_0018_y crossref_primary_10_1007_s42241_024_0059_x crossref_primary_10_1016_j_apor_2020_102322 crossref_primary_10_1016_j_renene_2020_05_081 crossref_primary_10_1016_j_oceaneng_2020_107373 crossref_primary_10_1063_5_0253531 crossref_primary_10_1016_j_oceaneng_2021_109058 crossref_primary_10_1007_s10409_022_22158_x crossref_primary_10_1007_s42241_023_0055_6 crossref_primary_10_1016_j_ijnaoe_2023_100565 |
Cites_doi | 10.1016/j.ijmultiphaseflow.2019.03.026 10.2514/1.2626 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2 10.1016/j.apm.2015.11.014 10.1115/1.3425036 10.1016/j.ijmultiphaseflow.2017.08.013 10.1016/j.oceaneng.2015.12.010 10.1016/S1270-9638(97)90051-1 10.1007/s11431-015-5969-y 10.1007/s00348-019-2762-x 10.1016/j.apm.2015.06.002 10.1007/s42241-018-0038-1 10.1016/S0167-2789(00)00142-1 10.1103/PhysRevFluids.2.084303 10.1080/10618560701733657 10.1007/s00348-014-1849-7 10.1063/1.1403336 10.1146/annurev-fluid-122414-034558 10.1115/1.4003065 10.1016/j.oceaneng.2017.03.054 10.1016/S1001-6058(16)60715-1 10.2514/1.J053619 10.1115/1.3239889 10.1175/2010JAMC2508.1 10.1016/j.oceaneng.2017.12.057 10.1002/(SICI)1097-0363(19991230)31:8<1195::AID-FLD914>3.0.CO;2-H 10.1016/j.ijmultiphaseflow.2017.12.002 10.1080/14685248.2014.984068 10.1016/j.energy.2018.04.174 10.1080/10618562.2016.1156095 10.1007/s42241-018-0068-8 10.2514/3.24021 10.1016/j.mcm.2011.10.050 10.1007/s10409-015-0484-8 10.1016/j.jfluidstructs.2019.05.006 10.1016/j.ijmultiphaseflow.2017.08.014 10.1007/s12206-019-0223-3 10.1063/1.857955 10.2514/1.5270 10.3390/en11092202 10.1016/j.apm.2014.04.059 10.1017/S0022112064001446 10.1007/BF00042759 10.1016/j.apm.2012.09.002 10.1115/1.2929192 10.1016/j.compfluid.2018.12.011 10.1023/A:1009995426001 10.1016/j.renene.2016.06.064 10.1016/j.oceaneng.2019.106115 10.1115/1.2929098 10.1016/0167-6105(93)90130-G 10.1017/S0022112007006842 10.1016/j.ijmultiphaseflow.2018.11.014 10.1007/s10409-015-0455-0 10.1016/j.compfluid.2015.01.010 10.1016/j.jcp.2019.05.001 10.1016/j.ijmultiphaseflow.2017.10.006 10.1016/j.enconman.2013.11.038 10.1002/aic.690430628 10.1016/j.euromechflu.2017.09.004 10.1017/S002211209900525X 10.1016/j.oceaneng.2014.09.042 10.1016/j.apm.2017.01.035 10.1063/1.858280 10.1016/j.apm.2016.05.017 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Inc. Copyright Elsevier BV Jan 2020 |
Copyright_xml | – notice: 2019 Elsevier Inc. – notice: Copyright Elsevier BV Jan 2020 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.apm.2019.08.005 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Psychology |
EISSN | 0307-904X |
EndPage | 809 |
ExternalDocumentID | 10_1016_j_apm_2019_08_005 S0307904X19304937 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABFNM ABMAC ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AEXQZ AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HZ~ IHE IXB J1W JJJVA KOM LG9 LY7 M26 M41 MHUIS MO0 MVM N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSW SSZ T5K TN5 WH7 WUQ XJT XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH -W8 .7I .GO .QK 0BK 2DF 53G 6J9 7SC 8FD 8VB AAGDL AAGZJ AAHIA AAHSB AAMFJ AAMIU AAPUL AATTQ AAZMC ABCCY ABDBF ABFIM ABIVO ABLIJ ABPEM ABRYG ABTAI ABXUL ABXYU ABZLS ACGOD ACHQT ACTIO ACTOA ACUHS ADAHI ADCVX ADKVQ ADYSH AECIN AEFOU AEGXH AEISY AEKEX AEMOZ AEMXT AEOZL AEPSL AEYOC AEZRU AFHDM AFRVT AGDLA AGMYJ AGRBW AHDZW AHQJS AIJEM AIYEW AJWEG AKBVH AKVCP ALQZU AVBZW AWYRJ BEJHT BLEHA BMOTO BOHLJ CCCUG CQ1 DGFLZ DKSSO EAP EBR EBU EDJ EMK EPL EPS EST ESX E~B E~C FEDTE G-F GTTXZ H13 HF~ HVGLF IPNFZ J.O JQ2 K1G KYCEM L7M LJTGL L~C L~D M4Z NA5 PQQKQ QWB RNANH ROSJB RSYQP S-F STATR TASJS TBQAZ TDBHL TEH TFH TFL TFW TH9 TNTFI TRJHH TUROJ TUS TWZ UPT UT5 UT9 VAE ZL0 ~01 ~S~ |
ID | FETCH-LOGICAL-c368t-f3729c1f67708f3322767dc69e3fbbefc6ca26becf194049f1e6f6c3e46203aa3 |
IEDL.DBID | IXB |
ISSN | 0307-904X 1088-8691 |
IngestDate | Fri Jul 25 07:28:22 EDT 2025 Tue Jul 01 04:23:59 EDT 2025 Thu Apr 24 22:58:34 EDT 2025 Fri Feb 23 02:28:54 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Turbulence kinetic energy Tip leakage vortex (TLV) Lagrangian coherent structures (LCSs) Cavitation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c368t-f3729c1f67708f3322767dc69e3fbbefc6ca26becf194049f1e6f6c3e46203aa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5282-7224 |
OpenAccessLink | https://infoscience.epfl.ch/handle/20.500.14299/166742 |
PQID | 2333609347 |
PQPubID | 2045280 |
PageCount | 22 |
ParticipantIDs | proquest_journals_2333609347 crossref_primary_10_1016_j_apm_2019_08_005 crossref_citationtrail_10_1016_j_apm_2019_08_005 elsevier_sciencedirect_doi_10_1016_j_apm_2019_08_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2020 2020-01-00 20200101 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: January 2020 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Applied Mathematical Modelling |
PublicationYear | 2020 |
Publisher | Elsevier Inc Elsevier BV |
Publisher_xml | – name: Elsevier Inc – name: Elsevier BV |
References | Ji, Long, Long, Qian, Zhou (bib0064) 2017; 29 Cheng, Long, Liang, Long, Ji (bib0027) 2018; 30 Wu, Huang, Wang, Cao (bib0036) 2018; 99 Decaix, Balarac, Dreyer, Farhat, Munch (bib0017) 2015; 16 Dreyer, Decaix, Munch-Alligne, Farhat (bib0012) 2014; 55 Passandideh-Fard, Roohi (bib0007) 2008; 22 Muthanna, Devenport (bib0010) 2004; 42 Lilly (bib0056) 1992; 4 Li, Li (bib0032) 2016; 30 Wu, Huang, Wang (bib0041) 2016; 32 Guo, Zhou, Wang, Liu, Cheng (bib0030) 2018; 151 Pendar, Roohi (bib0049) 2018; 98 Chen, Greitzer, Tan, Marble (bib0016) 1991; 113 Tang, Chan, Haller (bib0042) 2011; 50 Wang, Han, Su (bib0004) 2016; 40 Moore, Saffman (bib0015) 1973; 333 Sagaut, Grohens (bib0058) 1999; 31 Ferziger (bib0057) 1993; 46-47 Zeng, Yao, Zhou, Wang, Hong (bib0019) 2019; 88 Long, Long, Ji, Xing (bib0020) 2019; 115 Yu, Goldsworthy, Brandner, Garaniya (bib0003) 2017; 45 Cheng, Long, Ji, Peng, Farhat (bib0034) 2019; 186 Zhang, Shi, van Esch, Shi, Dubuisson (bib0024) 2015; 112 Gaggero, Tani, Viviani, Conti (bib0028) 2014; 92 Haller (bib0046) 2001; 13 Liu, Tan, Wang (bib0002) 2018; 11 Bai, Cheng, Ji, Long (bib0033) 2018; 30 Zhao, Wang, Huang (bib0029) 2016; 32 Vreman, Geurts, Kuerten (bib0053) 1995; 29 Goto (bib0038) 1992; 114 Amini, Reclari, Sano, Iino, Dreyer, Farhat (bib0001) 2019; 60 Batchelor (bib0063) 2006; 20 Liu, Tan (bib0006) 2018; 155 Decaix, Dreyer, Balarac, Farhat, Münch (bib0031) 2018; 67 Wang, Xu, Wu, Huang, Wu (bib0021) 2017; 2 Valdes, Rodríguez, Monge, Peña, Pütz (bib0060) 2014; 78 Germano, Piomelli, Moin, Cabot (bib0055) 1991; 3 Smagorinsky (bib0054) 1963; 91 Long, Cheng, Ji, Arndt, Peng (bib0043) 2018; 100 Dai, Younis, Sun (bib0047) 2014; 38 Zierke, Straka (bib0008) 1996; 12 Guo, Zhou, Wang (bib0026) 2016; 99 Anvari, Taghavifar, Khalilarya, Jafarmadar, Shervani-Tabar (bib0048) 2016; 40 Tseng, Hu (bib0044) 2015; 54 Inoue, Kuroumaru, Fukuhara (bib0009) 1986; 108 You, Mittal, Wang, Moin (bib0025) 2004; 42 Roohi, Zahiri, Passandideh-Fard (bib0005) 2013; 37 Pendar, Roohi (bib0051) 2016; 112 Li, Li, Yu, Ren, Chen (bib0037) 2019; 33 Zahiri, Roohi (bib0052) 2019; 180 Moholkar, Pandit (bib0066) 1997; 43 Rains (bib0013) 1954 Lakshminarayana (bib0014) 1970; 92 Salvador, Martinez-Lopez, Romero, Rosello (bib0067) 2013; 57 You, Wang, Moin, Mittal (bib0039) 2007; 586 Nicoud, Ducros (bib0059) 1999; 62 Boulon, Callenaere, Franc, Michel (bib0011) 1999; 390 Miorini, Wu, Katz (bib0040) 2012; 134 Roohi, Pendar, Rahimi (bib0050) 2016; 40 Li, Zhang, Han, Ma (bib0018) 2019; 392 Spalart, Shur (bib0061) 1997; 1 Sun, Ma, Wei, Wang (bib0022) 2016; 59 Sun, Wei, Zou, Jiang, Xu, Zong (bib0023) 2019; 111 Leweke, Le Dizès, Williamson (bib0062) 2016; 48 Wang, Huang, Zhang, Wang, Zhao (bib0035) 2018; 98 Haller, Yuan (bib0045) 2000; 147 Long, Cheng, Ji, Arndt (bib0065) 2017; 137 Zhang (10.1016/j.apm.2019.08.005_bib0024) 2015; 112 Roohi (10.1016/j.apm.2019.08.005_bib0005) 2013; 37 Wang (10.1016/j.apm.2019.08.005_bib0035) 2018; 98 Li (10.1016/j.apm.2019.08.005_bib0037) 2019; 33 Decaix (10.1016/j.apm.2019.08.005_bib0017) 2015; 16 Haller (10.1016/j.apm.2019.08.005_bib0046) 2001; 13 Cheng (10.1016/j.apm.2019.08.005_bib0034) 2019; 186 Tang (10.1016/j.apm.2019.08.005_bib0042) 2011; 50 Roohi (10.1016/j.apm.2019.08.005_bib0050) 2016; 40 Long (10.1016/j.apm.2019.08.005_bib0065) 2017; 137 Zahiri (10.1016/j.apm.2019.08.005_bib0052) 2019; 180 Smagorinsky (10.1016/j.apm.2019.08.005_bib0054) 1963; 91 Dreyer (10.1016/j.apm.2019.08.005_bib0012) 2014; 55 Guo (10.1016/j.apm.2019.08.005_bib0030) 2018; 151 Ji (10.1016/j.apm.2019.08.005_bib0064) 2017; 29 Zierke (10.1016/j.apm.2019.08.005_bib0008) 1996; 12 Lilly (10.1016/j.apm.2019.08.005_bib0056) 1992; 4 Wang (10.1016/j.apm.2019.08.005_bib0004) 2016; 40 Wu (10.1016/j.apm.2019.08.005_bib0041) 2016; 32 Rains (10.1016/j.apm.2019.08.005_bib0013) 1954 Valdes (10.1016/j.apm.2019.08.005_bib0060) 2014; 78 Liu (10.1016/j.apm.2019.08.005_bib0002) 2018; 11 You (10.1016/j.apm.2019.08.005_bib0039) 2007; 586 Bai (10.1016/j.apm.2019.08.005_bib0033) 2018; 30 Pendar (10.1016/j.apm.2019.08.005_bib0049) 2018; 98 Passandideh-Fard (10.1016/j.apm.2019.08.005_bib0007) 2008; 22 Batchelor (10.1016/j.apm.2019.08.005_bib0063) 2006; 20 Moore (10.1016/j.apm.2019.08.005_bib0015) 1973; 333 Inoue (10.1016/j.apm.2019.08.005_bib0009) 1986; 108 Gaggero (10.1016/j.apm.2019.08.005_bib0028) 2014; 92 Vreman (10.1016/j.apm.2019.08.005_bib0053) 1995; 29 Lakshminarayana (10.1016/j.apm.2019.08.005_bib0014) 1970; 92 Long (10.1016/j.apm.2019.08.005_bib0020) 2019; 115 Wang (10.1016/j.apm.2019.08.005_bib0021) 2017; 2 Guo (10.1016/j.apm.2019.08.005_bib0026) 2016; 99 Boulon (10.1016/j.apm.2019.08.005_bib0011) 1999; 390 Cheng (10.1016/j.apm.2019.08.005_bib0027) 2018; 30 Yu (10.1016/j.apm.2019.08.005_bib0003) 2017; 45 Haller (10.1016/j.apm.2019.08.005_bib0045) 2000; 147 Moholkar (10.1016/j.apm.2019.08.005_bib0066) 1997; 43 Sun (10.1016/j.apm.2019.08.005_bib0023) 2019; 111 Zhao (10.1016/j.apm.2019.08.005_bib0029) 2016; 32 Anvari (10.1016/j.apm.2019.08.005_bib0048) 2016; 40 Li (10.1016/j.apm.2019.08.005_bib0032) 2016; 30 Tseng (10.1016/j.apm.2019.08.005_bib0044) 2015; 54 Pendar (10.1016/j.apm.2019.08.005_bib0051) 2016; 112 Leweke (10.1016/j.apm.2019.08.005_bib0062) 2016; 48 Liu (10.1016/j.apm.2019.08.005_bib0006) 2018; 155 Decaix (10.1016/j.apm.2019.08.005_bib0031) 2018; 67 Zeng (10.1016/j.apm.2019.08.005_bib0019) 2019; 88 Germano (10.1016/j.apm.2019.08.005_bib0055) 1991; 3 Li (10.1016/j.apm.2019.08.005_bib0018) 2019; 392 Wu (10.1016/j.apm.2019.08.005_bib0036) 2018; 99 Miorini (10.1016/j.apm.2019.08.005_bib0040) 2012; 134 Goto (10.1016/j.apm.2019.08.005_bib0038) 1992; 114 Salvador (10.1016/j.apm.2019.08.005_bib0067) 2013; 57 Ferziger (10.1016/j.apm.2019.08.005_bib0057) 1993; 46-47 Amini (10.1016/j.apm.2019.08.005_bib0001) 2019; 60 Chen (10.1016/j.apm.2019.08.005_bib0016) 1991; 113 You (10.1016/j.apm.2019.08.005_bib0025) 2004; 42 Dai (10.1016/j.apm.2019.08.005_bib0047) 2014; 38 Muthanna (10.1016/j.apm.2019.08.005_bib0010) 2004; 42 Sun (10.1016/j.apm.2019.08.005_bib0022) 2016; 59 Long (10.1016/j.apm.2019.08.005_bib0043) 2018; 100 Sagaut (10.1016/j.apm.2019.08.005_bib0058) 1999; 31 Nicoud (10.1016/j.apm.2019.08.005_bib0059) 1999; 62 Spalart (10.1016/j.apm.2019.08.005_bib0061) 1997; 1 |
References_xml | – volume: 59 start-page: 337 year: 2016 end-page: 346 ident: bib0022 article-title: Computational modeling of cavitating flows in liquid nitrogen by an extended transport-based cavitation model publication-title: Sci. China Technol. Sci. – volume: 32 start-page: 273 year: 2016 end-page: 283 ident: bib0029 article-title: A cavitation model for computations of unsteady cavitating flows publication-title: Acta Mech. Sin. – volume: 12 start-page: 250 year: 1996 end-page: 259 ident: bib0008 article-title: Flow visualization and the three-dimensional flow in an axial-flow pump publication-title: J. Propuls. Power – volume: 392 start-page: 713 year: 2019 end-page: 731 ident: bib0018 article-title: 3D full coupling model for strong interaction between a pulsating bubble and a movable sphere publication-title: J. Comput. Phys. – volume: 60 start-page: 118 year: 2019 ident: bib0001 article-title: On the physical mechanism of tip vortex cavitation hysteresis publication-title: Exp. Fluids – volume: 42 start-page: 2320 year: 2004 end-page: 2331 ident: bib0010 article-title: Wake of a compressor cascade with tip gap. Part 1: mean flow and turbulence structure publication-title: AIAA J. – volume: 134 year: 2012 ident: bib0040 article-title: The internal structure of the tip leakage vortex within the rotor of an axial waterjet pump publication-title: J. Turbomach. – Trans. ASME – volume: 29 start-page: 27 year: 2017 end-page: 39 ident: bib0064 article-title: Large eddy simulation of turbulent attached cavitating flow with special emphasis on large scale structures of the hydrofoil wake and turbulence-cavitation interactions publication-title: J. Hydrodyn. – volume: 114 start-page: 675 year: 1992 end-page: 685 ident: bib0038 article-title: Three-Dimensional flow and mixing in an axial-flow compressor with different rotor tip clearances publication-title: J. Turbomach. – Trans. ASME – volume: 30 start-page: 69 year: 2016 end-page: 78 ident: bib0032 article-title: All-speed Roe scheme for the large eddy simulation of homogeneous decaying turbulence publication-title: Int. J. Comput. Fluid D – volume: 31 start-page: 1195 year: 1999 end-page: 1220 ident: bib0058 article-title: Discrete filters for large eddy simulation publication-title: Int. J. Numer. Methods Fluids – volume: 57 start-page: 1656 year: 2013 end-page: 1662 ident: bib0067 article-title: Computational study of the cavitation phenomenon and its interaction with the turbulence developed in diesel injector nozzles by large eddy simulation (LES) publication-title: Math. Comput. Model. – volume: 54 start-page: 712 year: 2015 end-page: 727 ident: bib0044 article-title: Flow dynamics of a pitching foil by Eulerian and Lagrangian viewpoints publication-title: AIAA J. – volume: 100 start-page: 41 year: 2018 end-page: 56 ident: bib0043 article-title: Large eddy simulation and Euler–Lagrangian coupling investigation of the transient cavitating turbulent flow around a twisted hydrofoil publication-title: Int. J. Multiph. Flow – volume: 390 start-page: 1 year: 1999 end-page: 23 ident: bib0011 article-title: An experimental insight into the effect of confinement on tip vortex cavitation of an elliptical hydrofoil publication-title: J. Fluid Mech. – volume: 92 start-page: 467 year: 1970 end-page: 480 ident: bib0014 article-title: Methods of predicting the tip clearance effects in axial flow turbomachinery publication-title: J. Basic Eng. – volume: 38 start-page: 5665 year: 2014 end-page: 5683 ident: bib0047 article-title: Large-eddy simulations of cavitation in a square surface cavity publication-title: Appl. Math. Model. – volume: 3 start-page: 1760 year: 1991 end-page: 1765 ident: bib0055 article-title: A dynamic subgrid‐scale eddy viscosity model publication-title: Phys. Fluids A: Fluid Dyn. – volume: 50 start-page: 325 year: 2011 end-page: 338 ident: bib0042 article-title: Lagrangian coherent structure analysis of terminal winds detected by lidar. Part I: turbulence structures publication-title: J. Appl. Meteorol. Climatol. – volume: 62 start-page: 183 year: 1999 end-page: 200 ident: bib0059 article-title: Subgrid-scale stress modelling based on the square of the velocity gradient tensor publication-title: Flow Turbul. Combust. – volume: 13 start-page: 3365 year: 2001 end-page: 3385 ident: bib0046 article-title: Lagrangian structures and the rate of strain in a partition of two-dimensional turbulence publication-title: Phys. Fluids – volume: 40 start-page: 542 year: 2016 end-page: 564 ident: bib0050 article-title: Simulation of three-dimensional cavitation behind a disk using various turbulence and mass transfer models publication-title: Appl. Math. Model. – volume: 1 start-page: 297 year: 1997 end-page: 302 ident: bib0061 article-title: On the sensitization of turbulence models to rotation and curvature publication-title: Aerosp. Sci. Technol. – volume: 40 start-page: 8617 year: 2016 end-page: 8629 ident: bib0048 article-title: Numerical simulation of diesel injector nozzle flow and in-cylinder spray evolution publication-title: Appl. Math. Model. – volume: 11 start-page: 2202 year: 2018 ident: bib0002 article-title: A review of tip clearance in propeller, pump and turbine publication-title: Energies – volume: 88 start-page: 167 year: 2019 end-page: 184 ident: bib0019 article-title: Numerical investigation into the effect of the trailing edge shape on added mass and hydrodynamic damping for a hydrofoil publication-title: J. Fluids Struct. – volume: 155 start-page: 448 year: 2018 end-page: 461 ident: bib0006 article-title: Method of C groove on vortex suppression and energy performance improvement for a NACA0009 hydrofoil with tip clearance in tidal energy publication-title: Energy – volume: 112 start-page: 61 year: 2015 end-page: 71 ident: bib0024 article-title: Numerical and experimental investigation of tip leakage vortex trajectory and dynamics in an axial flow pump publication-title: Comput. Fluids – volume: 78 start-page: 776 year: 2014 end-page: 786 ident: bib0060 article-title: Numerical simulation and experimental validation of the cavitating flow through a ball check valve publication-title: Energy Convers. Manag. – volume: 586 start-page: 177 year: 2007 end-page: 204 ident: bib0039 article-title: Large-eddy simulation analysis of mechanisms for viscous losses in a turbomachinery tip-clearance flow publication-title: J. Fluid Mech. – volume: 333 start-page: 491 year: 1973 end-page: 508 ident: bib0015 article-title: Axial flow in laminar trailing vortices publication-title: Proc. R. Soc. A – volume: 113 start-page: 260 year: 1991 end-page: 269 ident: bib0016 article-title: Similarity analysis of compressor tip clearance flow structure publication-title: J. Turbomach. – volume: 99 start-page: 390 year: 2016 end-page: 397 ident: bib0026 article-title: Numerical evaluation of the clearance geometries effect on the flow field and performance of a hydrofoil publication-title: Renew. Energy – volume: 180 start-page: 190 year: 2019 end-page: 205 ident: bib0052 article-title: Anisotropic minimum-dissipation (AMD) subgrid-scale model implemented in OpenFOAM: verification and assessment in single-phase and multi-phase flows publication-title: Comput. Fluids – volume: 91 start-page: 99 year: 1963 end-page: 164 ident: bib0054 article-title: General circulation experiments with the primitive equations publication-title: Mon. Weather Rev. – volume: 20 start-page: 645 year: 2006 end-page: 658 ident: bib0063 article-title: Axial flow in trailing line vortices publication-title: J. Fluid Mech. – volume: 137 start-page: 247 year: 2017 end-page: 261 ident: bib0065 article-title: Numerical investigation of attached cavitation shedding dynamics around the Clark-Y hydrofoil with the FBDCM and an integral method publication-title: Ocean Eng. – volume: 186 year: 2019 ident: bib0034 article-title: LES investigation of the influence of cavitation on flow patterns in a confined tip-leakage flow publication-title: Ocean Eng. – volume: 147 start-page: 352 year: 2000 end-page: 370 ident: bib0045 article-title: Lagrangian coherent structures and mixing in two-dimensional turbulence publication-title: Physica D – volume: 48 start-page: 507 year: 2016 end-page: 541 ident: bib0062 article-title: Dynamics and instabilities of vortex pairs publication-title: Annu. Rev. Fluid Mech. – volume: 40 start-page: 4032 year: 2016 end-page: 4043 ident: bib0004 article-title: A numerical study of the effects of pressure fluctuations inside injection nozzle on high-pressure and evaporating diesel spray characteristics publication-title: Appl. Math. Model. – volume: 22 start-page: 97 year: 2008 end-page: 114 ident: bib0007 article-title: Transient simulations of cavitating flows using a modified volume-of-fluid (VOF) technique publication-title: Int. J. Comput. Fluid D – volume: 4 start-page: 633 year: 1992 end-page: 635 ident: bib0056 article-title: A proposed modification of the Germano subgrid‐scale closure method publication-title: Phys. Fluids A: Fluid Dyn. – volume: 151 start-page: 71 year: 2018 end-page: 81 ident: bib0030 article-title: Numerical simulation for the tip leakage vortex cavitation publication-title: Ocean Eng. – volume: 37 start-page: 6469 year: 2013 end-page: 6488 ident: bib0005 article-title: Numerical simulation of cavitation around a two-dimensional hydrofoil using VOF method and LES turbulence model publication-title: Appl. Math. Model. – volume: 42 start-page: 271 year: 2004 end-page: 279 ident: bib0025 article-title: Computational methodology for large-eddy simulation of tip-clearance flows publication-title: AIAA J. – volume: 108 start-page: 7 year: 1986 end-page: 14 ident: bib0009 article-title: Behavior of tip leakage flow behind an axial compressor rotor publication-title: J. Eng. Gas. Turbines Power – Trans. ASME – volume: 111 start-page: 82 year: 2019 end-page: 100 ident: bib0023 article-title: Numerical investigation on the unsteady cavitation shedding dynamics over a hydrofoil in thermo-sensitive fluid publication-title: Int. J. Multiph. Flow – volume: 99 start-page: 162 year: 2018 end-page: 173 ident: bib0036 article-title: The transient characteristics of cloud cavitating flow over a flexible hydrofoil publication-title: Int. J. Multiph. Flow – volume: 16 start-page: 309 year: 2015 end-page: 341 ident: bib0017 article-title: RANS and LES computations of the tip-leakage vortex for different gap widths publication-title: J. Turbul. – volume: 98 start-page: 1 year: 2018 end-page: 23 ident: bib0049 article-title: Cavitation characteristics around a sphere: an LES investigation publication-title: Int. J. Multiph. Flow – volume: 46-47 start-page: 195 year: 1993 end-page: 212 ident: bib0057 article-title: Simulation of complex turbulent flows: recent advances and prospects in wind engineering publication-title: J. Wind Eng. Ind. Aerodyn. – volume: 30 start-page: 531 year: 2018 end-page: 534 ident: bib0027 article-title: URANS simulations of the tip-leakage cavitating flow with verification and validation procedures publication-title: J. Hydrodyn. – volume: 112 start-page: 287 year: 2016 end-page: 306 ident: bib0051 article-title: Investigation of cavitation around 3D hemispherical head-form body and conical cavitators using different turbulence and cavitation models publication-title: Ocean Eng. – volume: 67 start-page: 198 year: 2018 end-page: 210 ident: bib0031 article-title: RANS computations of a confined cavitating tip-leakage vortex publication-title: Eur. J. Mech. – volume: 43 start-page: 1641 year: 1997 end-page: 1648 ident: bib0066 article-title: Bubble behavior in hydrodynamic cavitation: effect of turbulence publication-title: AIChE J. – volume: 115 start-page: 93 year: 2019 end-page: 107 ident: bib0020 article-title: Verification and validation of large eddy simulation of attached cavitating flow around a Clark-Y hydrofoil publication-title: Int. J. Multiph. Flow – volume: 98 start-page: 79 year: 2018 end-page: 95 ident: bib0035 article-title: Experimental and numerical investigation of ventilated cavitating flow structures with special emphasis on vortex shedding dynamics publication-title: Int. J. Multiph. Flow – volume: 45 start-page: 705 year: 2017 end-page: 727 ident: bib0003 article-title: Development of a compressible multiphase cavitation approach for diesel spray modelling publication-title: Appl. Math. Model. – volume: 2 year: 2017 ident: bib0021 article-title: Ventilated cloud cavitating flow around a blunt body close to the free surface publication-title: Phys. Rev. Fluids – volume: 32 start-page: 64 year: 2016 end-page: 74 ident: bib0041 article-title: Lagrangian-based investigation of the transient flow structures around a pitching hydrofoil publication-title: Acta Mech. Sin. – year: 1954 ident: bib0013 article-title: Tip Clearance Flows in Axial Flow Compressors and Pumps – volume: 92 start-page: 137 year: 2014 end-page: 161 ident: bib0028 article-title: A study on the numerical prediction of propellers cavitating tip vortex publication-title: Ocean Eng. – volume: 29 start-page: 299 year: 1995 end-page: 327 ident: bib0053 article-title: A priori tests of large eddy simulation of the compressible plane mixing layer publication-title: J. Eng. Math. – volume: 55 start-page: 1894 year: 2014 ident: bib0012 article-title: Mind the gap: a new insight into the tip leakage vortex using stereo-PIV publication-title: Exp. Fluids – volume: 33 start-page: 1231 year: 2019 end-page: 1241 ident: bib0037 article-title: Calculation of cavitation evolution and associated turbulent kinetic energy transport around a NACA66 hydrofoil publication-title: J. Mech. Sci. Technol. – volume: 30 start-page: 750 year: 2018 end-page: 753 ident: bib0033 article-title: Large eddy simulation of tip leakage cavitating flow focusing on cavitation-vortex interaction with Cartesian cut-cell mesh method publication-title: J. Hydrodyn. – volume: 115 start-page: 93 year: 2019 ident: 10.1016/j.apm.2019.08.005_bib0020 article-title: Verification and validation of large eddy simulation of attached cavitating flow around a Clark-Y hydrofoil publication-title: Int. J. Multiph. Flow doi: 10.1016/j.ijmultiphaseflow.2019.03.026 – volume: 42 start-page: 271 year: 2004 ident: 10.1016/j.apm.2019.08.005_bib0025 article-title: Computational methodology for large-eddy simulation of tip-clearance flows publication-title: AIAA J. doi: 10.2514/1.2626 – volume: 91 start-page: 99 year: 1963 ident: 10.1016/j.apm.2019.08.005_bib0054 article-title: General circulation experiments with the primitive equations publication-title: Mon. Weather Rev. doi: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2 – volume: 40 start-page: 4032 year: 2016 ident: 10.1016/j.apm.2019.08.005_bib0004 article-title: A numerical study of the effects of pressure fluctuations inside injection nozzle on high-pressure and evaporating diesel spray characteristics publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2015.11.014 – volume: 92 start-page: 467 year: 1970 ident: 10.1016/j.apm.2019.08.005_bib0014 article-title: Methods of predicting the tip clearance effects in axial flow turbomachinery publication-title: J. Basic Eng. doi: 10.1115/1.3425036 – volume: 98 start-page: 1 year: 2018 ident: 10.1016/j.apm.2019.08.005_bib0049 article-title: Cavitation characteristics around a sphere: an LES investigation publication-title: Int. J. Multiph. Flow doi: 10.1016/j.ijmultiphaseflow.2017.08.013 – volume: 112 start-page: 287 year: 2016 ident: 10.1016/j.apm.2019.08.005_bib0051 article-title: Investigation of cavitation around 3D hemispherical head-form body and conical cavitators using different turbulence and cavitation models publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2015.12.010 – volume: 1 start-page: 297 year: 1997 ident: 10.1016/j.apm.2019.08.005_bib0061 article-title: On the sensitization of turbulence models to rotation and curvature publication-title: Aerosp. Sci. Technol. doi: 10.1016/S1270-9638(97)90051-1 – volume: 59 start-page: 337 year: 2016 ident: 10.1016/j.apm.2019.08.005_bib0022 article-title: Computational modeling of cavitating flows in liquid nitrogen by an extended transport-based cavitation model publication-title: Sci. China Technol. Sci. doi: 10.1007/s11431-015-5969-y – volume: 60 start-page: 118 year: 2019 ident: 10.1016/j.apm.2019.08.005_bib0001 article-title: On the physical mechanism of tip vortex cavitation hysteresis publication-title: Exp. Fluids doi: 10.1007/s00348-019-2762-x – volume: 40 start-page: 542 year: 2016 ident: 10.1016/j.apm.2019.08.005_bib0050 article-title: Simulation of three-dimensional cavitation behind a disk using various turbulence and mass transfer models publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2015.06.002 – volume: 30 start-page: 531 year: 2018 ident: 10.1016/j.apm.2019.08.005_bib0027 article-title: URANS simulations of the tip-leakage cavitating flow with verification and validation procedures publication-title: J. Hydrodyn. doi: 10.1007/s42241-018-0038-1 – volume: 147 start-page: 352 year: 2000 ident: 10.1016/j.apm.2019.08.005_bib0045 article-title: Lagrangian coherent structures and mixing in two-dimensional turbulence publication-title: Physica D doi: 10.1016/S0167-2789(00)00142-1 – volume: 2 year: 2017 ident: 10.1016/j.apm.2019.08.005_bib0021 article-title: Ventilated cloud cavitating flow around a blunt body close to the free surface publication-title: Phys. Rev. Fluids doi: 10.1103/PhysRevFluids.2.084303 – volume: 22 start-page: 97 year: 2008 ident: 10.1016/j.apm.2019.08.005_bib0007 article-title: Transient simulations of cavitating flows using a modified volume-of-fluid (VOF) technique publication-title: Int. J. Comput. Fluid D doi: 10.1080/10618560701733657 – volume: 55 start-page: 1894 year: 2014 ident: 10.1016/j.apm.2019.08.005_bib0012 article-title: Mind the gap: a new insight into the tip leakage vortex using stereo-PIV publication-title: Exp. Fluids doi: 10.1007/s00348-014-1849-7 – volume: 13 start-page: 3365 year: 2001 ident: 10.1016/j.apm.2019.08.005_bib0046 article-title: Lagrangian structures and the rate of strain in a partition of two-dimensional turbulence publication-title: Phys. Fluids doi: 10.1063/1.1403336 – volume: 48 start-page: 507 year: 2016 ident: 10.1016/j.apm.2019.08.005_bib0062 article-title: Dynamics and instabilities of vortex pairs publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-122414-034558 – volume: 134 year: 2012 ident: 10.1016/j.apm.2019.08.005_bib0040 article-title: The internal structure of the tip leakage vortex within the rotor of an axial waterjet pump publication-title: J. Turbomach. – Trans. ASME doi: 10.1115/1.4003065 – volume: 137 start-page: 247 year: 2017 ident: 10.1016/j.apm.2019.08.005_bib0065 article-title: Numerical investigation of attached cavitation shedding dynamics around the Clark-Y hydrofoil with the FBDCM and an integral method publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2017.03.054 – volume: 29 start-page: 27 year: 2017 ident: 10.1016/j.apm.2019.08.005_bib0064 article-title: Large eddy simulation of turbulent attached cavitating flow with special emphasis on large scale structures of the hydrofoil wake and turbulence-cavitation interactions publication-title: J. Hydrodyn. doi: 10.1016/S1001-6058(16)60715-1 – volume: 54 start-page: 712 year: 2015 ident: 10.1016/j.apm.2019.08.005_bib0044 article-title: Flow dynamics of a pitching foil by Eulerian and Lagrangian viewpoints publication-title: AIAA J. doi: 10.2514/1.J053619 – volume: 108 start-page: 7 year: 1986 ident: 10.1016/j.apm.2019.08.005_bib0009 article-title: Behavior of tip leakage flow behind an axial compressor rotor publication-title: J. Eng. Gas. Turbines Power – Trans. ASME doi: 10.1115/1.3239889 – volume: 50 start-page: 325 year: 2011 ident: 10.1016/j.apm.2019.08.005_bib0042 article-title: Lagrangian coherent structure analysis of terminal winds detected by lidar. Part I: turbulence structures publication-title: J. Appl. Meteorol. Climatol. doi: 10.1175/2010JAMC2508.1 – volume: 151 start-page: 71 year: 2018 ident: 10.1016/j.apm.2019.08.005_bib0030 article-title: Numerical simulation for the tip leakage vortex cavitation publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2017.12.057 – volume: 31 start-page: 1195 year: 1999 ident: 10.1016/j.apm.2019.08.005_bib0058 article-title: Discrete filters for large eddy simulation publication-title: Int. J. Numer. Methods Fluids doi: 10.1002/(SICI)1097-0363(19991230)31:8<1195::AID-FLD914>3.0.CO;2-H – volume: 100 start-page: 41 year: 2018 ident: 10.1016/j.apm.2019.08.005_bib0043 article-title: Large eddy simulation and Euler–Lagrangian coupling investigation of the transient cavitating turbulent flow around a twisted hydrofoil publication-title: Int. J. Multiph. Flow doi: 10.1016/j.ijmultiphaseflow.2017.12.002 – volume: 16 start-page: 309 year: 2015 ident: 10.1016/j.apm.2019.08.005_bib0017 article-title: RANS and LES computations of the tip-leakage vortex for different gap widths publication-title: J. Turbul. doi: 10.1080/14685248.2014.984068 – volume: 155 start-page: 448 year: 2018 ident: 10.1016/j.apm.2019.08.005_bib0006 article-title: Method of C groove on vortex suppression and energy performance improvement for a NACA0009 hydrofoil with tip clearance in tidal energy publication-title: Energy doi: 10.1016/j.energy.2018.04.174 – volume: 30 start-page: 69 year: 2016 ident: 10.1016/j.apm.2019.08.005_bib0032 article-title: All-speed Roe scheme for the large eddy simulation of homogeneous decaying turbulence publication-title: Int. J. Comput. Fluid D doi: 10.1080/10618562.2016.1156095 – volume: 30 start-page: 750 year: 2018 ident: 10.1016/j.apm.2019.08.005_bib0033 article-title: Large eddy simulation of tip leakage cavitating flow focusing on cavitation-vortex interaction with Cartesian cut-cell mesh method publication-title: J. Hydrodyn. doi: 10.1007/s42241-018-0068-8 – volume: 12 start-page: 250 year: 1996 ident: 10.1016/j.apm.2019.08.005_bib0008 article-title: Flow visualization and the three-dimensional flow in an axial-flow pump publication-title: J. Propuls. Power doi: 10.2514/3.24021 – volume: 57 start-page: 1656 year: 2013 ident: 10.1016/j.apm.2019.08.005_bib0067 article-title: Computational study of the cavitation phenomenon and its interaction with the turbulence developed in diesel injector nozzles by large eddy simulation (LES) publication-title: Math. Comput. Model. doi: 10.1016/j.mcm.2011.10.050 – volume: 32 start-page: 64 year: 2016 ident: 10.1016/j.apm.2019.08.005_bib0041 article-title: Lagrangian-based investigation of the transient flow structures around a pitching hydrofoil publication-title: Acta Mech. Sin. doi: 10.1007/s10409-015-0484-8 – volume: 88 start-page: 167 year: 2019 ident: 10.1016/j.apm.2019.08.005_bib0019 article-title: Numerical investigation into the effect of the trailing edge shape on added mass and hydrodynamic damping for a hydrofoil publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2019.05.006 – volume: 98 start-page: 79 year: 2018 ident: 10.1016/j.apm.2019.08.005_bib0035 article-title: Experimental and numerical investigation of ventilated cavitating flow structures with special emphasis on vortex shedding dynamics publication-title: Int. J. Multiph. Flow doi: 10.1016/j.ijmultiphaseflow.2017.08.014 – volume: 33 start-page: 1231 year: 2019 ident: 10.1016/j.apm.2019.08.005_bib0037 article-title: Calculation of cavitation evolution and associated turbulent kinetic energy transport around a NACA66 hydrofoil publication-title: J. Mech. Sci. Technol. doi: 10.1007/s12206-019-0223-3 – volume: 3 start-page: 1760 year: 1991 ident: 10.1016/j.apm.2019.08.005_bib0055 article-title: A dynamic subgrid‐scale eddy viscosity model publication-title: Phys. Fluids A: Fluid Dyn. doi: 10.1063/1.857955 – volume: 42 start-page: 2320 year: 2004 ident: 10.1016/j.apm.2019.08.005_bib0010 article-title: Wake of a compressor cascade with tip gap. Part 1: mean flow and turbulence structure publication-title: AIAA J. doi: 10.2514/1.5270 – volume: 11 start-page: 2202 year: 2018 ident: 10.1016/j.apm.2019.08.005_bib0002 article-title: A review of tip clearance in propeller, pump and turbine publication-title: Energies doi: 10.3390/en11092202 – volume: 38 start-page: 5665 year: 2014 ident: 10.1016/j.apm.2019.08.005_bib0047 article-title: Large-eddy simulations of cavitation in a square surface cavity publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2014.04.059 – volume: 20 start-page: 645 year: 2006 ident: 10.1016/j.apm.2019.08.005_bib0063 article-title: Axial flow in trailing line vortices publication-title: J. Fluid Mech. doi: 10.1017/S0022112064001446 – volume: 29 start-page: 299 year: 1995 ident: 10.1016/j.apm.2019.08.005_bib0053 article-title: A priori tests of large eddy simulation of the compressible plane mixing layer publication-title: J. Eng. Math. doi: 10.1007/BF00042759 – volume: 37 start-page: 6469 year: 2013 ident: 10.1016/j.apm.2019.08.005_bib0005 article-title: Numerical simulation of cavitation around a two-dimensional hydrofoil using VOF method and LES turbulence model publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2012.09.002 – volume: 114 start-page: 675 year: 1992 ident: 10.1016/j.apm.2019.08.005_bib0038 article-title: Three-Dimensional flow and mixing in an axial-flow compressor with different rotor tip clearances publication-title: J. Turbomach. – Trans. ASME doi: 10.1115/1.2929192 – volume: 180 start-page: 190 year: 2019 ident: 10.1016/j.apm.2019.08.005_bib0052 article-title: Anisotropic minimum-dissipation (AMD) subgrid-scale model implemented in OpenFOAM: verification and assessment in single-phase and multi-phase flows publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2018.12.011 – volume: 62 start-page: 183 year: 1999 ident: 10.1016/j.apm.2019.08.005_bib0059 article-title: Subgrid-scale stress modelling based on the square of the velocity gradient tensor publication-title: Flow Turbul. Combust. doi: 10.1023/A:1009995426001 – volume: 99 start-page: 390 year: 2016 ident: 10.1016/j.apm.2019.08.005_bib0026 article-title: Numerical evaluation of the clearance geometries effect on the flow field and performance of a hydrofoil publication-title: Renew. Energy doi: 10.1016/j.renene.2016.06.064 – volume: 186 year: 2019 ident: 10.1016/j.apm.2019.08.005_bib0034 article-title: LES investigation of the influence of cavitation on flow patterns in a confined tip-leakage flow publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2019.106115 – volume: 113 start-page: 260 year: 1991 ident: 10.1016/j.apm.2019.08.005_bib0016 article-title: Similarity analysis of compressor tip clearance flow structure publication-title: J. Turbomach. doi: 10.1115/1.2929098 – year: 1954 ident: 10.1016/j.apm.2019.08.005_bib0013 – volume: 46-47 start-page: 195 year: 1993 ident: 10.1016/j.apm.2019.08.005_bib0057 article-title: Simulation of complex turbulent flows: recent advances and prospects in wind engineering publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/0167-6105(93)90130-G – volume: 333 start-page: 491 year: 1973 ident: 10.1016/j.apm.2019.08.005_bib0015 article-title: Axial flow in laminar trailing vortices publication-title: Proc. R. Soc. A – volume: 586 start-page: 177 year: 2007 ident: 10.1016/j.apm.2019.08.005_bib0039 article-title: Large-eddy simulation analysis of mechanisms for viscous losses in a turbomachinery tip-clearance flow publication-title: J. Fluid Mech. doi: 10.1017/S0022112007006842 – volume: 111 start-page: 82 year: 2019 ident: 10.1016/j.apm.2019.08.005_bib0023 article-title: Numerical investigation on the unsteady cavitation shedding dynamics over a hydrofoil in thermo-sensitive fluid publication-title: Int. J. Multiph. Flow doi: 10.1016/j.ijmultiphaseflow.2018.11.014 – volume: 32 start-page: 273 year: 2016 ident: 10.1016/j.apm.2019.08.005_bib0029 article-title: A cavitation model for computations of unsteady cavitating flows publication-title: Acta Mech. Sin. doi: 10.1007/s10409-015-0455-0 – volume: 112 start-page: 61 year: 2015 ident: 10.1016/j.apm.2019.08.005_bib0024 article-title: Numerical and experimental investigation of tip leakage vortex trajectory and dynamics in an axial flow pump publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2015.01.010 – volume: 392 start-page: 713 year: 2019 ident: 10.1016/j.apm.2019.08.005_bib0018 article-title: 3D full coupling model for strong interaction between a pulsating bubble and a movable sphere publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.05.001 – volume: 99 start-page: 162 year: 2018 ident: 10.1016/j.apm.2019.08.005_bib0036 article-title: The transient characteristics of cloud cavitating flow over a flexible hydrofoil publication-title: Int. J. Multiph. Flow doi: 10.1016/j.ijmultiphaseflow.2017.10.006 – volume: 78 start-page: 776 year: 2014 ident: 10.1016/j.apm.2019.08.005_bib0060 article-title: Numerical simulation and experimental validation of the cavitating flow through a ball check valve publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2013.11.038 – volume: 43 start-page: 1641 year: 1997 ident: 10.1016/j.apm.2019.08.005_bib0066 article-title: Bubble behavior in hydrodynamic cavitation: effect of turbulence publication-title: AIChE J. doi: 10.1002/aic.690430628 – volume: 67 start-page: 198 year: 2018 ident: 10.1016/j.apm.2019.08.005_bib0031 article-title: RANS computations of a confined cavitating tip-leakage vortex publication-title: Eur. J. Mech. doi: 10.1016/j.euromechflu.2017.09.004 – volume: 390 start-page: 1 year: 1999 ident: 10.1016/j.apm.2019.08.005_bib0011 article-title: An experimental insight into the effect of confinement on tip vortex cavitation of an elliptical hydrofoil publication-title: J. Fluid Mech. doi: 10.1017/S002211209900525X – volume: 92 start-page: 137 year: 2014 ident: 10.1016/j.apm.2019.08.005_bib0028 article-title: A study on the numerical prediction of propellers cavitating tip vortex publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2014.09.042 – volume: 45 start-page: 705 year: 2017 ident: 10.1016/j.apm.2019.08.005_bib0003 article-title: Development of a compressible multiphase cavitation approach for diesel spray modelling publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2017.01.035 – volume: 4 start-page: 633 year: 1992 ident: 10.1016/j.apm.2019.08.005_bib0056 article-title: A proposed modification of the Germano subgrid‐scale closure method publication-title: Phys. Fluids A: Fluid Dyn. doi: 10.1063/1.858280 – volume: 40 start-page: 8617 year: 2016 ident: 10.1016/j.apm.2019.08.005_bib0048 article-title: Numerical simulation of diesel injector nozzle flow and in-cylinder spray evolution publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2016.05.017 |
SSID | ssj0005904 ssj0012860 |
Score | 2.6483536 |
Snippet | •The tip-leakage cavitating flow is simulated by LES with Cartesian cut-cell mesh.•Three types of cavitating vortical flows, including TLV, TSV and IV, are... Cavitation within a tip leakage flow remains a challenging issue in a variety of axial hydraulic machines. It is still not possible nowadays to predict... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 788 |
SubjectTerms | Cavitation Computational fluid dynamics Computer simulation Energy dissipation Evolution Fluid flow Hydrofoils Kinetic energy Lagrangian coherent structures (LCSs) Large eddy simulation Leakage Local flow Mathematical models Stretching Tip leakage vortex (TLV) Transport equations Turbulence Turbulence kinetic energy Vortices Vorticity |
Title | Large eddy simulation of the tip-leakage cavitating flow with an insight on how cavitation influences vorticity and turbulence |
URI | https://dx.doi.org/10.1016/j.apm.2019.08.005 https://www.proquest.com/docview/2333609347 |
Volume | 77 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKucCh4ilaysoHTkhhnbXXSY6lahUK7QFaaW-WnxDYJqsmLeqlv70zXqcIhHrgGGfGsjz2zGd7HoS8BZ1vzbx0WS6szhAyZEazMpOlY8BgjNAYjXx8IuszcbSYLzbI_hgLg26VSfevdXrU1qllmmZzumqa6VdcnhUTC4AgAHM5RpRzUcYgvsWH324eFRNjMkSkHl82o4-XXmEwel7FLJ5Ywe7ftukvLR1Nz-ETspUwI91bD-sp2fDtM_L4-C7hav-c3HxGj27qnbumfXOeanLRLlAgokOzypZe_wTdQa2-imm52280LLtfFC9iqW5p0_Z4TqfA9R2aR7IO_6Q6Jj296qIX9nANHI6CtTKXMWjpBTk7PDjdr7NUWiGzXJZDFvC1zuZBFgUrA4ddXcjCWVl5HozxwUqrZxLkG_JKwOyG3MsgLfdCzhjXmr8km23X-leE5nMPEINVzBkpHCJ2pwGzlKVmEpRF2CZsnFRl08ix_MVSjQ5mPxTIQaEcFJbEZPNt8u6OZbVOunEfsRglpf5YOQqMwn1su6NUVdq2vZpxziWruCh2_q_X1-TRDA_k8Y5ml2wOF5f-DaCWwUzIg_c3-YQ83Pv4qT6ZxEUKX6dfjur6Fgji8J4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoPbQ9INpSsYW2PvSEFK2z9jrJEVDR0u5yKUh7s_xsA0uyagIVF347M1kHBKo49OrMJNaMPfM5ngchX8HmWzPOXZIKqxOEDInRLE9k7hgwGCM0ZiPPTuTkTHyfj-dr5LDPhcGwymj7Vza9s9ZxZBilOVyW5fAnLs-CiTlAEIC5PHtBXsK3MuzfcDw_eIjzKJjoqyEieX-12QV56SVmo6dFV8YTW9j92zk9MdOd7znaJBsRNNL91bzekjVfvSNvZvcVV5v35HaKId3UO3dDm_IyNuWidaBARNtymSy8vgDjQa2-7upyV79oWNR_Kf6JpbqiZdXgQZ0C128Y7slqfBIbmTT0uu7CsNsb4HAU3JW56rKWtsjZ0bfTw0kSeysklsu8TQJe19k0yCxjeeCwrTOZOSsLz4MxPlhp9UiCgkNaCBBvSL0M0nIv5IhxrfkHsl7Vld8mNB17wBisYM5I4RCyOw2gJc81k2AtwoCwXqjKxplj_4uF6iPMzhXoQaEeFPbEZOMB2btnWa6qbjxHLHpNqUdLR4FXeI5tt9eqivu2USPOuWQFF9nH_3vrF_JqcjqbqunxyY8d8nqEp3OMf2G7ZL39c-U_AYRpzeduid4BdCPvjg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large+eddy+simulation+of+the+tip-leakage+cavitating+flow+with+an+insight+on+how+cavitation+influences+vorticity+and+turbulence&rft.jtitle=Applied+mathematical+modelling&rft.au=Cheng%2C+H.Y.&rft.au=Bai%2C+X.R.&rft.au=Long%2C+X.P.&rft.au=Ji%2C+B.&rft.date=2020-01-01&rft.issn=0307-904X&rft.volume=77&rft.spage=788&rft.epage=809&rft_id=info:doi/10.1016%2Fj.apm.2019.08.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apm_2019_08_005 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0307-904X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0307-904X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0307-904X&client=summon |