A machine learning approach to identify stochastic resonance in human perceptual thresholds

Stochastic resonance (SR) is achieved when a faint signal is improved with the addition of the appropriate amount of white noise. Perceptual thresholds are expected to follow a characteristic performance improvement curve as a function of the white noise level added (i.e., thresholds are reduced wit...

Full description

Saved in:
Bibliographic Details
Published inJournal of neuroscience methods Vol. 374; p. 109559
Main Authors Voros, Jamie, Rise, Rachel, Sherman, Sage, Durell, Abigail, Anderson, Allison P., Clark, Torin K.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 15.05.2022
Subjects
Online AccessGet full text
ISSN0165-0270
1872-678X
1872-678X
DOI10.1016/j.jneumeth.2022.109559

Cover

Abstract Stochastic resonance (SR) is achieved when a faint signal is improved with the addition of the appropriate amount of white noise. Perceptual thresholds are expected to follow a characteristic performance improvement curve as a function of the white noise level added (i.e., thresholds are reduced with an optimal amount of added white noise, beyond which excessive white noise is no longer beneficial). Since SR exhibition in perceptual thresholds is defined by a shape rather than a statistical difference, the presence of SR is typically identified qualitatively. The current state-of-the-art is for blinded human judges to categorize the presence of SR by visually examining data. While categorizations are made with subject data intermixed within a balanced, simulated dataset, which accounts for false positives, this method is still subjective and prone to human error. We use a logistic regression (LR) trained on engineered features in order to quantitatively classify exhibition of SR. The LR was trained on datasets simulated from a model for SR performance enhancement. We implemented the algorithmic classification process in 6 perceptual threshold test cases, informed by the literature and parameters were defined by experimental subject data. Comparison to Existing Method(s): We report algorithmic classifications of SR exhibition, considering the 6 test cases, that outperform existing subjective methods in accuracy (p < 0.05). We demonstrate that algorithmic classification can effectively identify SR in perceptual thresholds, providing a rigorous, objective, and quantitative approach to identifying the presence of SR. •To identify stochastic resonance in noisy data, we proposed using machine learning.•Machine learning was applied to 6 representative cases, demonstrating robustness.•Machine learning outperformed current subjective methods in classification accuracy.•The machine learning rigorously and objectively identifies stochastic resonance.
AbstractList Stochastic resonance (SR) is achieved when a faint signal is improved with the addition of the appropriate amount of white noise. Perceptual thresholds are expected to follow a characteristic performance improvement curve as a function of the white noise level added (i.e., thresholds are reduced with an optimal amount of added white noise, beyond which excessive white noise is no longer beneficial). Since SR exhibition in perceptual thresholds is defined by a shape rather than a statistical difference, the presence of SR is typically identified qualitatively. The current state-of-the-art is for blinded human judges to categorize the presence of SR by visually examining data. While categorizations are made with subject data intermixed within a balanced, simulated dataset, which accounts for false positives, this method is still subjective and prone to human error.BACKGROUNDStochastic resonance (SR) is achieved when a faint signal is improved with the addition of the appropriate amount of white noise. Perceptual thresholds are expected to follow a characteristic performance improvement curve as a function of the white noise level added (i.e., thresholds are reduced with an optimal amount of added white noise, beyond which excessive white noise is no longer beneficial). Since SR exhibition in perceptual thresholds is defined by a shape rather than a statistical difference, the presence of SR is typically identified qualitatively. The current state-of-the-art is for blinded human judges to categorize the presence of SR by visually examining data. While categorizations are made with subject data intermixed within a balanced, simulated dataset, which accounts for false positives, this method is still subjective and prone to human error.We use a logistic regression (LR) trained on engineered features in order to quantitatively classify exhibition of SR. The LR was trained on datasets simulated from a model for SR performance enhancement.NEW METHODWe use a logistic regression (LR) trained on engineered features in order to quantitatively classify exhibition of SR. The LR was trained on datasets simulated from a model for SR performance enhancement.We implemented the algorithmic classification process in 6 perceptual threshold test cases, informed by the literature and parameters were defined by experimental subject data. Comparison to Existing Method(s): We report algorithmic classifications of SR exhibition, considering the 6 test cases, that outperform existing subjective methods in accuracy (p < 0.05).RESULTSWe implemented the algorithmic classification process in 6 perceptual threshold test cases, informed by the literature and parameters were defined by experimental subject data. Comparison to Existing Method(s): We report algorithmic classifications of SR exhibition, considering the 6 test cases, that outperform existing subjective methods in accuracy (p < 0.05).We demonstrate that algorithmic classification can effectively identify SR in perceptual thresholds, providing a rigorous, objective, and quantitative approach to identifying the presence of SR.CONCLUSIONSWe demonstrate that algorithmic classification can effectively identify SR in perceptual thresholds, providing a rigorous, objective, and quantitative approach to identifying the presence of SR.
Stochastic resonance (SR) is achieved when a faint signal is improved with the addition of the appropriate amount of white noise. Perceptual thresholds are expected to follow a characteristic performance improvement curve as a function of the white noise level added (i.e., thresholds are reduced with an optimal amount of added white noise, beyond which excessive white noise is no longer beneficial). Since SR exhibition in perceptual thresholds is defined by a shape rather than a statistical difference, the presence of SR is typically identified qualitatively. The current state-of-the-art is for blinded human judges to categorize the presence of SR by visually examining data. While categorizations are made with subject data intermixed within a balanced, simulated dataset, which accounts for false positives, this method is still subjective and prone to human error. We use a logistic regression (LR) trained on engineered features in order to quantitatively classify exhibition of SR. The LR was trained on datasets simulated from a model for SR performance enhancement. We implemented the algorithmic classification process in 6 perceptual threshold test cases, informed by the literature and parameters were defined by experimental subject data. Comparison to Existing Method(s): We report algorithmic classifications of SR exhibition, considering the 6 test cases, that outperform existing subjective methods in accuracy (p < 0.05). We demonstrate that algorithmic classification can effectively identify SR in perceptual thresholds, providing a rigorous, objective, and quantitative approach to identifying the presence of SR. •To identify stochastic resonance in noisy data, we proposed using machine learning.•Machine learning was applied to 6 representative cases, demonstrating robustness.•Machine learning outperformed current subjective methods in classification accuracy.•The machine learning rigorously and objectively identifies stochastic resonance.
Stochastic resonance (SR) is achieved when a faint signal is improved with the addition of the appropriate amount of white noise. Perceptual thresholds are expected to follow a characteristic performance improvement curve as a function of the white noise level added (i.e., thresholds are reduced with an optimal amount of added white noise, beyond which excessive white noise is no longer beneficial). Since SR exhibition in perceptual thresholds is defined by a shape rather than a statistical difference, the presence of SR is typically identified qualitatively. The current state-of-the-art is for blinded human judges to categorize the presence of SR by visually examining data. While categorizations are made with subject data intermixed within a balanced, simulated dataset, which accounts for false positives, this method is still subjective and prone to human error. We use a logistic regression (LR) trained on engineered features in order to quantitatively classify exhibition of SR. The LR was trained on datasets simulated from a model for SR performance enhancement. We implemented the algorithmic classification process in 6 perceptual threshold test cases, informed by the literature and parameters were defined by experimental subject data. Comparison to Existing Method(s): We report algorithmic classifications of SR exhibition, considering the 6 test cases, that outperform existing subjective methods in accuracy (p < 0.05). We demonstrate that algorithmic classification can effectively identify SR in perceptual thresholds, providing a rigorous, objective, and quantitative approach to identifying the presence of SR.
ArticleNumber 109559
Author Clark, Torin K.
Durell, Abigail
Anderson, Allison P.
Voros, Jamie
Rise, Rachel
Sherman, Sage
Author_xml – sequence: 1
  givenname: Jamie
  surname: Voros
  fullname: Voros, Jamie
– sequence: 2
  givenname: Rachel
  surname: Rise
  fullname: Rise, Rachel
– sequence: 3
  givenname: Sage
  surname: Sherman
  fullname: Sherman, Sage
– sequence: 4
  givenname: Abigail
  surname: Durell
  fullname: Durell, Abigail
– sequence: 5
  givenname: Allison P.
  surname: Anderson
  fullname: Anderson, Allison P.
– sequence: 6
  givenname: Torin K.
  surname: Clark
  fullname: Clark, Torin K.
  email: torin.clark@colorado.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35292308$$D View this record in MEDLINE/PubMed
BookMark eNqFkMFq3DAQhkVJSTZpXiHo2Is3Y8mSvdBDQ2jaQqCXFgo9iIk8rrXYkivJhbx9FDZ7ySUgEPz6_hnxnbMTHzwxdlXDtoZaX--3e0_rTHncChCihDuldu_Ypu5aUem2-33CNgVUFYgWzth5SnsAaHagT9mZVGInJHQb9ueGz2hH54lPhNE7_5fjssRQQp4Ddz357IZHnnKwI6bsLI-UgkdviTvPx3VGzxeKlpa84sTzWN7HMPXpA3s_4JTo8uW-YL_uvvy8_Vbd__j6_fbmvrJSd7kaQEvbEcLDAErWiE031EKXAyVum37QUrcNaNsraZWWpFFZaRs1oGxUKy_Yx8Pc8u1_K6VsZpcsTRN6CmsyQjcAClTdFPTqBV0fZurNEt2M8dEchRTg0wGwMaQUaTDWZcwu-BzRTaYG8-zf7M3Rv3n2bw7-S12_qh83vFn8fChSEfXfUTTJOiqOexfJZtMH99aIJ_2rpFE
CitedBy_id crossref_primary_10_1007_s00415_023_12085_3
crossref_primary_10_1007_s00415_024_12419_9
crossref_primary_10_1007_s00221_024_06984_8
crossref_primary_10_1016_j_physa_2023_129020
Cites_doi 10.1038/1597
10.1016/j.heares.2007.01.027
10.1007/s00221-015-4501-8
10.1103/PhysRevE.62.1104
10.1103/PhysRevLett.78.1186
10.3389/fnins.2018.00578
10.3758/BF03194543
10.1007/s00221-012-3217-2
10.1088/1741-2560/4/2/R01
10.1103/PhysRevLett.72.3120
10.1063/1.166341
10.1109/AERO47225.2020.9172477
10.1016/j.brs.2018.03.017
10.1016/j.neuroscience.2018.12.031
10.3389/fnins.2021.640984
10.1016/j.neulet.2007.01.030
10.1038/383770a0
10.1038/s41598-017-12906-2
10.1186/1743-0003-10-105
10.1016/S0925-2312(99)00042-9
10.1023/A:1009715923555
10.1371/journal.pone.0002860
10.1038/nm0896-928
10.1016/j.clinph.2003.09.014
10.1121/1.1910407
10.1023/A:1009778005914
10.3389/fneur.2018.00083
10.1038/s41598-021-91808-w
10.1038/373033a0
10.1109/34.824819
10.1214/aos/1024691079
10.1007/s00221-012-3354-7
10.1038/s41598-020-59374-9
10.1007/s00221-011-2557-7
10.1145/380995.380999
10.1016/S0006-8993(00)02475-6
10.1371/journal.pcbi.1000348
10.1103/PhysRevLett.62.349
10.1088/0305-4470/14/11/006
10.1103/PhysRevE.56.923
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright © 2022 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright © 2022 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.jneumeth.2022.109559
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1872-678X
ExternalDocumentID 35292308
10_1016_j_jneumeth_2022_109559
S0165027022000863
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5RE
7-5
71M
8P~
9JM
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXLA
AAXUO
ABCQJ
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
L7B
M2V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPCBC
SSN
SSZ
T5K
~G-
.55
.GJ
29L
53G
5VS
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMQ
HVGLF
HZ~
R2-
RIG
SEW
SNS
SSH
WUQ
X7M
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
ID FETCH-LOGICAL-c368t-f063c8ea0bf0531aa48f1261260c8e74df6367406cd53c563e6a5c3c45fa34573
IEDL.DBID AIKHN
ISSN 0165-0270
1872-678X
IngestDate Fri Sep 05 04:18:59 EDT 2025
Wed Feb 19 02:24:28 EST 2025
Thu Apr 24 23:11:15 EDT 2025
Tue Jul 01 02:57:16 EDT 2025
Fri Feb 23 02:41:09 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords False positives
White noise
Logistic regression
Perceptual thresholds
Stochastic resonance (SR)
Classification
Language English
License Copyright © 2022 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c368t-f063c8ea0bf0531aa48f1261260c8e74df6367406cd53c563e6a5c3c45fa34573
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 35292308
PQID 2640050514
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2640050514
pubmed_primary_35292308
crossref_citationtrail_10_1016_j_jneumeth_2022_109559
crossref_primary_10_1016_j_jneumeth_2022_109559
elsevier_sciencedirect_doi_10_1016_j_jneumeth_2022_109559
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-15
PublicationDateYYYYMMDD 2022-05-15
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-15
  day: 15
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of neuroscience methods
PublicationTitleAlternate J Neurosci Methods
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Burges (bib6) 1998; 2
Taylor, Douglas Creelman (bib39) 1967; 441
Keywan, Jahn, Wuehr (bib20) 2019; 399
Itzcovich, Massimo, Sannita (bib15) 2017; 7
Morse, Evans (bib30) 1996; 2
Voros (bib42) 2021; 15
Karmali, Shomesh, Yongwoo, Daniel M (bib18) 2016; 234
Breiman (bib5) 1998; 26
Sherman, Sage O.. 2019. Evaluating Enhanced Auditory Perception Augmentation via Stochastic Resonance. The University of Colorado, Boulder.
Voros, Jamie L. et al., 2020. Multi-Modal Stochastic Resonance to Enhance Astronaut Perceptual Performance: Experimental Design. In: Proceedings of the IEEE Aerospace Conference, Big Sky, MT.
Friedman (bib12) 1997; 1
McDonnell, Abbott (bib28) 2009; 5
Simonotto (bib38) 1997; 78
Xie, Junyuan, Ross Girshcik, Ali Farhadi, 2016. Unsupervised deep embedding for clustering analysis. In: Proceedings of the International Conference on Machine Learning, PMLR, 478–487.
Duda, Peter, Stork (bib10) 2001
Jaramillo, Wiesenfeld (bib17) 1998; 1
Ward (bib43) 2001; 46
Ries (bib35) 2007; 228
Riani, Simonotto (bib33) 1994; 72
Lim, Merfeld (bib24) 2012; 222
Zeng, Fu, Morse (bib46) 2000; 869
Simonotto (bib37) 1999; 26–27
Chaudhuri, Merfeld (bib7) 2013; 225
Piana, Canfora, Riani (bib32) 2000; 62
Wiesenfeld, Moss (bib44) 1995; 373
Bennett, Campbell (bib2) 2000; 2
Assländer (bib1) 2021; 11
Leek (bib23) 2001; 63
Manjarrez (bib27) 2007; 415
Voros, Jamie L. , 2020. Cross Modal Stochastic Resonance in Perceptual Thresholds with Galvanic Vestibular Stimulation, The University of Colorado, Boulder.
Benzi, Sutera, Vulpiani (bib3) 1981; 14
van Boxtel (bib4) 2019; 19
Keywan, Badarna, Jahn, Wuehr (bib19) 2020; 10
Moss, Ward, Sannita (bib31) 2004; 115
Krauss, Tziridis, Schilling, Schulze (bib22) 2018; 12
Gammaitoni, Marchesoni, Menichella-Saetta, Santucci (bib14) 1989; 62
Keywan, Wuehr, Pradhan, Jahn (bib21) 2018; 9
Lugo, Doti, Faubert (bib26) 2008; 3
Lotte (bib25) 2007; 4
Merfeld (bib29) 2011; 210
Jain, Duin, Jianchang Mao (bib16) 2000; 22
Richardson, Imhoff, Grigg, Collins (bib34) 1998; 8
Collins, Thomas, Grigg (bib9) 1997; 56
Enders, Pilwon, Michelle, Na (bib11) 2013; 10
Collins, Thomas, Grigg (bib8) 1996; 383
Galvan-Garza, Clark, Mulavara, Oman (bib13) 2018; 11
Lotte (10.1016/j.jneumeth.2022.109559_bib25) 2007; 4
Assländer (10.1016/j.jneumeth.2022.109559_bib1) 2021; 11
Jain (10.1016/j.jneumeth.2022.109559_bib16) 2000; 22
Taylor (10.1016/j.jneumeth.2022.109559_bib39) 1967; 441
McDonnell (10.1016/j.jneumeth.2022.109559_bib28) 2009; 5
Benzi (10.1016/j.jneumeth.2022.109559_bib3) 1981; 14
Duda (10.1016/j.jneumeth.2022.109559_bib10) 2001
Moss (10.1016/j.jneumeth.2022.109559_bib31) 2004; 115
Keywan (10.1016/j.jneumeth.2022.109559_bib21) 2018; 9
Simonotto (10.1016/j.jneumeth.2022.109559_bib38) 1997; 78
Richardson (10.1016/j.jneumeth.2022.109559_bib34) 1998; 8
Chaudhuri (10.1016/j.jneumeth.2022.109559_bib7) 2013; 225
Keywan (10.1016/j.jneumeth.2022.109559_bib19) 2020; 10
Wiesenfeld (10.1016/j.jneumeth.2022.109559_bib44) 1995; 373
Enders (10.1016/j.jneumeth.2022.109559_bib11) 2013; 10
Galvan-Garza (10.1016/j.jneumeth.2022.109559_bib13) 2018; 11
Krauss (10.1016/j.jneumeth.2022.109559_bib22) 2018; 12
Gammaitoni (10.1016/j.jneumeth.2022.109559_bib14) 1989; 62
10.1016/j.jneumeth.2022.109559_bib40
Piana (10.1016/j.jneumeth.2022.109559_bib32) 2000; 62
Morse (10.1016/j.jneumeth.2022.109559_bib30) 1996; 2
10.1016/j.jneumeth.2022.109559_bib41
Burges (10.1016/j.jneumeth.2022.109559_bib6) 1998; 2
Manjarrez (10.1016/j.jneumeth.2022.109559_bib27) 2007; 415
10.1016/j.jneumeth.2022.109559_bib45
Bennett (10.1016/j.jneumeth.2022.109559_bib2) 2000; 2
Itzcovich (10.1016/j.jneumeth.2022.109559_bib15) 2017; 7
Zeng (10.1016/j.jneumeth.2022.109559_bib46) 2000; 869
Collins (10.1016/j.jneumeth.2022.109559_bib9) 1997; 56
Keywan (10.1016/j.jneumeth.2022.109559_bib20) 2019; 399
Riani (10.1016/j.jneumeth.2022.109559_bib33) 1994; 72
Simonotto (10.1016/j.jneumeth.2022.109559_bib37) 1999; 26–27
Lugo (10.1016/j.jneumeth.2022.109559_bib26) 2008; 3
Leek (10.1016/j.jneumeth.2022.109559_bib23) 2001; 63
Ward (10.1016/j.jneumeth.2022.109559_bib43) 2001; 46
Merfeld (10.1016/j.jneumeth.2022.109559_bib29) 2011; 210
Voros (10.1016/j.jneumeth.2022.109559_bib42) 2021; 15
Karmali (10.1016/j.jneumeth.2022.109559_bib18) 2016; 234
10.1016/j.jneumeth.2022.109559_bib36
Friedman (10.1016/j.jneumeth.2022.109559_bib12) 1997; 1
Lim (10.1016/j.jneumeth.2022.109559_bib24) 2012; 222
Jaramillo (10.1016/j.jneumeth.2022.109559_bib17) 1998; 1
Collins (10.1016/j.jneumeth.2022.109559_bib8) 1996; 383
Ries (10.1016/j.jneumeth.2022.109559_bib35) 2007; 228
Breiman (10.1016/j.jneumeth.2022.109559_bib5) 1998; 26
van Boxtel (10.1016/j.jneumeth.2022.109559_bib4) 2019; 19
References_xml – volume: 5
  year: 2009
  ident: bib28
  article-title: What is stochastic resonance? definitions, misconceptions, debates, and its relevance to biology
  publication-title: PLoS Comput. Biol.
– volume: 46
  year: 2001
  ident: bib43
  article-title: Noise can help as well as hinder seeing and hearing
  publication-title: Bull. Am. Phys. Soc.
– volume: 2
  start-page: 121
  year: 1998
  end-page: 167
  ident: bib6
  article-title: A tutorial on support vector machines for pattern recognition
  publication-title: Data Min. Knowl. Discov.
– volume: 14
  year: 1981
  ident: bib3
  article-title: The mechanism of stochastic resonance
  publication-title: J. Phys. A Math. Gen.
– volume: 2
  start-page: 1
  year: 2000
  end-page: 13
  ident: bib2
  article-title: Support Vector Machines: Hype or Hallelujah?
  publication-title: ACM SIGKDD Explor. Newsl.
– volume: 383
  year: 1996
  ident: bib8
  article-title: Noise-enhanced tactile sensation
  publication-title: Nature
– volume: 11
  start-page: 12327
  year: 2021
  ident: bib1
  article-title: No evidence for stochastic resonance effects on standing balance when applying noisy galvanic vestibular stimulation in young healthy adults
  publication-title: Sci. Rep.
– volume: 373
  start-page: 33
  year: 1995
  end-page: 36
  ident: bib44
  article-title: Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs
  publication-title: Nature
– volume: 228
  start-page: 136
  year: 2007
  end-page: 143
  ident: bib35
  article-title: The influence of noise type and level upon stochastic resonance in human audition
  publication-title: Hear. Res.
– volume: 26
  start-page: 801
  year: 1998
  end-page: 849
  ident: bib5
  article-title: Arcing classifier (with discussion and a rejoinder by the author)
  publication-title: Ann. Stat.
– volume: 3
  year: 2008
  ident: bib26
  article-title: Ubiquitous crossmodal stochastic resonance in humans: auditory noise facilitates tactile, visual and proprioceptive sensations
  publication-title: PLoS One
– volume: 1
  start-page: 55
  year: 1997
  end-page: 77
  ident: bib12
  article-title: On bias, variance, 0/1-loss, and the curse-of-dimensionality data
  publication-title: Data Min. Knowl. Discov.
– volume: 22
  start-page: 4
  year: 2000
  end-page: 37
  ident: bib16
  article-title: Statistical pattern recognition: a review
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 1
  start-page: 384
  year: 1998
  end-page: 388
  ident: bib17
  article-title: Mechanoelectrical transduction assisted by brownian motion: a role for noise in the auditory system
  publication-title: Nat. Neurosci.
– volume: 15
  year: 2021
  ident: bib42
  article-title: Galvanic vestibular stimulation produces cross-modal improvements in visual thresholds
  publication-title: Front. Neurosci.
– volume: 415
  start-page: 231
  year: 2007
  end-page: 236
  ident: bib27
  article-title: Effects of auditory noise on the psychophysical detection of visual signals: cross-modal stochastic resonance
  publication-title: Neurosci. Lett.
– volume: 10
  start-page: 105
  year: 2013
  ident: bib11
  article-title: Remote vibrotactile noise improves light touch sensation in stroke survivors’ fingertips via stochastic resonance
  publication-title: J. Neuroeng. Rehabil.
– volume: 62
  start-page: 1104
  year: 2000
  end-page: 1109
  ident: bib32
  article-title: Role of noise in image processing by the human perceptive system
  publication-title: Phys. Rev. E
– volume: 26–27
  start-page: 511
  year: 1999
  end-page: 516
  ident: bib37
  article-title: FMRI studies of visual cortical activity during noise stimulation
  publication-title: Neurocomputing
– reference: Voros, Jamie L. , 2020. Cross Modal Stochastic Resonance in Perceptual Thresholds with Galvanic Vestibular Stimulation, The University of Colorado, Boulder.
– volume: 56
  start-page: 923
  year: 1997
  end-page: 926
  ident: bib9
  article-title: Noise-mediated enhancements and decrements in human tactile sensation
  publication-title: Phys. Rev. E
– volume: 441
  start-page: 782
  year: 1967
  end-page: 787
  ident: bib39
  article-title: PEST:Efficient Estimates on Probability Functions
  publication-title: J. Acoust.Soc. Am.
– volume: 78
  start-page: 1186
  year: 1997
  end-page: 1189
  ident: bib38
  article-title: Visual perception of stochastic resonance
  publication-title: Phys. Rev. Lett.
– reference: Voros, Jamie L. et al., 2020. Multi-Modal Stochastic Resonance to Enhance Astronaut Perceptual Performance: Experimental Design. In: Proceedings of the IEEE Aerospace Conference, Big Sky, MT.
– volume: 8
  start-page: 599
  year: 1998
  end-page: 603
  ident: bib34
  article-title: Using electrical noise to enhance the ability of humans to detect subthreshold mechanical cutaneous stimuli
  publication-title: Chaos Interdiscip. J. Nonlinear Sci.
– volume: 2
  start-page: 928
  year: 1996
  end-page: 932
  ident: bib30
  article-title: Enhancement of vowel coding for cochlear implants by addition of noise
  publication-title: Nat. Med.
– volume: 210
  start-page: 389
  year: 2011
  end-page: 405
  ident: bib29
  article-title: Signal detection theory and vestibular thresholds: i. basic theory and practical considerations
  publication-title: Exp. Brain Res.
– reference: Xie, Junyuan, Ross Girshcik, Ali Farhadi, 2016. Unsupervised deep embedding for clustering analysis. In: Proceedings of the International Conference on Machine Learning, PMLR, 478–487.
– reference: Sherman, Sage O.. 2019. Evaluating Enhanced Auditory Perception Augmentation via Stochastic Resonance. The University of Colorado, Boulder.
– volume: 234
  start-page: 773
  year: 2016
  end-page: 789
  ident: bib18
  article-title: Determining thresholds using adaptive procedures and psychometric fits: evaluating efficiency using theory, simulations, and human experiments
  publication-title: Exp. Brain Res.
– volume: 12
  start-page: 578
  year: 2018
  ident: bib22
  article-title: Cross-modal stochastic resonance as a universal principle to enhance sensory processing
  publication-title: Front. Neurosci.
– volume: 399
  start-page: 161
  year: 2019
  end-page: 166
  ident: bib20
  article-title: Noisy galvanic vestibular stimulation primarily affects otolith-mediated motion perception
  publication-title: Neuroscience
– volume: 115
  start-page: 267
  year: 2004
  end-page: 281
  ident: bib31
  article-title: Stochastic resonance and sensory information processing: a tutorial and review of application
  publication-title: Clin. Neurophysiol.
– volume: 72
  start-page: 3120
  year: 1994
  end-page: 3123
  ident: bib33
  article-title: Stochastic resonance in the perceptual interpretation of ambiguous figures: a neural network model
  publication-title: Phys. Rev. Lett.
– volume: 11
  start-page: 716
  year: 2018
  end-page: 722
  ident: bib13
  article-title: Exhibition of stochastic resonance in vestibular tilt motion perception
  publication-title: Brain Stimul.
– volume: 19
  start-page: 19
  year: 2019
  ident: bib4
  article-title: Modeling stochastic resonance in humans: the influence of lapse rate
  publication-title: J. Vis.
– volume: 9
  start-page: 83
  year: 2018
  ident: bib21
  article-title: Noisy galvanic stimulation improves roll-tilt vestibular perception in healthy subjects
  publication-title: Front. Neurol.
– volume: 62
  start-page: 349
  year: 1989
  end-page: 352
  ident: bib14
  article-title: Stochastic resonance in bistable systems
  publication-title: Phys. Rev. Lett.
– volume: 7
  start-page: 12840
  year: 2017
  ident: bib15
  article-title: Stochastic resonance improves vision in the severely impaired
  publication-title: Sci. Rep.
– volume: 225
  start-page: 133
  year: 2013
  end-page: 146
  ident: bib7
  article-title: Signal detection theory and vestibular perception: iii. estimating unbiased fit parameters for psychometric functions
  publication-title: Exp. Brain Res.
– year: 2001
  ident: bib10
  publication-title: Pattern Classification
– volume: 4
  year: 2007
  ident: bib25
  article-title: A review of classification algorithms for eeg-based brain–computer interfaces
  publication-title: J. Neural Eng.
– volume: 869
  start-page: 251
  year: 2000
  end-page: 255
  ident: bib46
  article-title: Human hearing enhanced by noise
  publication-title: Brain Res.
– volume: 222
  start-page: 303
  year: 2012
  end-page: 320
  ident: bib24
  article-title: Signal detection theory and vestibular perception: ii. fitting perceptual thresholds as a function of frequency
  publication-title: Exp. Brain Res.
– volume: 10
  start-page: 2545
  year: 2020
  ident: bib19
  article-title: No evidence for after-effects of noisy galvanic vestibular stimulation on motion perception
  publication-title: Sci. Rep.
– volume: 63
  start-page: 1279
  year: 2001
  end-page: 1292
  ident: bib23
  article-title: Adaptive procedures in psychophysical research
  publication-title: Percept. Psychophys.
– volume: 1
  start-page: 384
  issue: 5
  year: 1998
  ident: 10.1016/j.jneumeth.2022.109559_bib17
  article-title: Mechanoelectrical transduction assisted by brownian motion: a role for noise in the auditory system
  publication-title: Nat. Neurosci.
  doi: 10.1038/1597
– volume: 228
  start-page: 136
  issue: 1–2
  year: 2007
  ident: 10.1016/j.jneumeth.2022.109559_bib35
  article-title: The influence of noise type and level upon stochastic resonance in human audition
  publication-title: Hear. Res.
  doi: 10.1016/j.heares.2007.01.027
– volume: 234
  start-page: 773
  issue: 3
  year: 2016
  ident: 10.1016/j.jneumeth.2022.109559_bib18
  article-title: Determining thresholds using adaptive procedures and psychometric fits: evaluating efficiency using theory, simulations, and human experiments
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-015-4501-8
– volume: 62
  start-page: 1104
  issue: 1
  year: 2000
  ident: 10.1016/j.jneumeth.2022.109559_bib32
  article-title: Role of noise in image processing by the human perceptive system
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.62.1104
– volume: 78
  start-page: 1186
  issue: 6
  year: 1997
  ident: 10.1016/j.jneumeth.2022.109559_bib38
  article-title: Visual perception of stochastic resonance
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.78.1186
– volume: 46
  year: 2001
  ident: 10.1016/j.jneumeth.2022.109559_bib43
  article-title: Noise can help as well as hinder seeing and hearing
  publication-title: Bull. Am. Phys. Soc.
– ident: 10.1016/j.jneumeth.2022.109559_bib45
– volume: 12
  start-page: 578
  year: 2018
  ident: 10.1016/j.jneumeth.2022.109559_bib22
  article-title: Cross-modal stochastic resonance as a universal principle to enhance sensory processing
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2018.00578
– volume: 63
  start-page: 1279
  issue: 8
  year: 2001
  ident: 10.1016/j.jneumeth.2022.109559_bib23
  article-title: Adaptive procedures in psychophysical research
  publication-title: Percept. Psychophys.
  doi: 10.3758/BF03194543
– volume: 222
  start-page: 303
  issue: 3
  year: 2012
  ident: 10.1016/j.jneumeth.2022.109559_bib24
  article-title: Signal detection theory and vestibular perception: ii. fitting perceptual thresholds as a function of frequency
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-012-3217-2
– volume: 4
  issue: 2
  year: 2007
  ident: 10.1016/j.jneumeth.2022.109559_bib25
  article-title: A review of classification algorithms for eeg-based brain–computer interfaces
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/4/2/R01
– year: 2001
  ident: 10.1016/j.jneumeth.2022.109559_bib10
– volume: 72
  start-page: 3120
  issue: 19
  year: 1994
  ident: 10.1016/j.jneumeth.2022.109559_bib33
  article-title: Stochastic resonance in the perceptual interpretation of ambiguous figures: a neural network model
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.72.3120
– volume: 8
  start-page: 599
  issue: 3
  year: 1998
  ident: 10.1016/j.jneumeth.2022.109559_bib34
  article-title: Using electrical noise to enhance the ability of humans to detect subthreshold mechanical cutaneous stimuli
  publication-title: Chaos Interdiscip. J. Nonlinear Sci.
  doi: 10.1063/1.166341
– ident: 10.1016/j.jneumeth.2022.109559_bib41
  doi: 10.1109/AERO47225.2020.9172477
– volume: 11
  start-page: 716
  issue: 4
  year: 2018
  ident: 10.1016/j.jneumeth.2022.109559_bib13
  article-title: Exhibition of stochastic resonance in vestibular tilt motion perception
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2018.03.017
– volume: 399
  start-page: 161
  year: 2019
  ident: 10.1016/j.jneumeth.2022.109559_bib20
  article-title: Noisy galvanic vestibular stimulation primarily affects otolith-mediated motion perception
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2018.12.031
– volume: 15
  year: 2021
  ident: 10.1016/j.jneumeth.2022.109559_bib42
  article-title: Galvanic vestibular stimulation produces cross-modal improvements in visual thresholds
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2021.640984
– ident: 10.1016/j.jneumeth.2022.109559_bib36
– volume: 415
  start-page: 231
  issue: 3
  year: 2007
  ident: 10.1016/j.jneumeth.2022.109559_bib27
  article-title: Effects of auditory noise on the psychophysical detection of visual signals: cross-modal stochastic resonance
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2007.01.030
– volume: 383
  issue: 6603
  year: 1996
  ident: 10.1016/j.jneumeth.2022.109559_bib8
  article-title: Noise-enhanced tactile sensation
  publication-title: Nature
  doi: 10.1038/383770a0
– volume: 7
  start-page: 12840
  issue: 1
  year: 2017
  ident: 10.1016/j.jneumeth.2022.109559_bib15
  article-title: Stochastic resonance improves vision in the severely impaired
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-12906-2
– volume: 10
  start-page: 105
  issue: 1
  year: 2013
  ident: 10.1016/j.jneumeth.2022.109559_bib11
  article-title: Remote vibrotactile noise improves light touch sensation in stroke survivors’ fingertips via stochastic resonance
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-10-105
– volume: 26–27
  start-page: 511
  year: 1999
  ident: 10.1016/j.jneumeth.2022.109559_bib37
  article-title: FMRI studies of visual cortical activity during noise stimulation
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(99)00042-9
– volume: 2
  start-page: 121
  issue: 2
  year: 1998
  ident: 10.1016/j.jneumeth.2022.109559_bib6
  article-title: A tutorial on support vector machines for pattern recognition
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1023/A:1009715923555
– volume: 3
  issue: 8
  year: 2008
  ident: 10.1016/j.jneumeth.2022.109559_bib26
  article-title: Ubiquitous crossmodal stochastic resonance in humans: auditory noise facilitates tactile, visual and proprioceptive sensations
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0002860
– volume: 2
  start-page: 928
  issue: 8
  year: 1996
  ident: 10.1016/j.jneumeth.2022.109559_bib30
  article-title: Enhancement of vowel coding for cochlear implants by addition of noise
  publication-title: Nat. Med.
  doi: 10.1038/nm0896-928
– volume: 115
  start-page: 267
  issue: 2
  year: 2004
  ident: 10.1016/j.jneumeth.2022.109559_bib31
  article-title: Stochastic resonance and sensory information processing: a tutorial and review of application
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2003.09.014
– volume: 441
  start-page: 782
  issue: 4A
  year: 1967
  ident: 10.1016/j.jneumeth.2022.109559_bib39
  article-title: PEST:Efficient Estimates on Probability Functions
  publication-title: J. Acoust.Soc. Am.
  doi: 10.1121/1.1910407
– volume: 1
  start-page: 55
  issue: 1
  year: 1997
  ident: 10.1016/j.jneumeth.2022.109559_bib12
  article-title: On bias, variance, 0/1-loss, and the curse-of-dimensionality data
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1023/A:1009778005914
– volume: 9
  start-page: 83
  year: 2018
  ident: 10.1016/j.jneumeth.2022.109559_bib21
  article-title: Noisy galvanic stimulation improves roll-tilt vestibular perception in healthy subjects
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2018.00083
– volume: 11
  start-page: 12327
  year: 2021
  ident: 10.1016/j.jneumeth.2022.109559_bib1
  article-title: No evidence for stochastic resonance effects on standing balance when applying noisy galvanic vestibular stimulation in young healthy adults
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-91808-w
– volume: 19
  start-page: 19
  issue: 13
  year: 2019
  ident: 10.1016/j.jneumeth.2022.109559_bib4
  article-title: Modeling stochastic resonance in humans: the influence of lapse rate
  publication-title: J. Vis.
– volume: 373
  start-page: 33
  issue: 6509
  year: 1995
  ident: 10.1016/j.jneumeth.2022.109559_bib44
  article-title: Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs
  publication-title: Nature
  doi: 10.1038/373033a0
– volume: 22
  start-page: 4
  issue: 1
  year: 2000
  ident: 10.1016/j.jneumeth.2022.109559_bib16
  article-title: Statistical pattern recognition: a review
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.824819
– volume: 26
  start-page: 801
  issue: 3
  year: 1998
  ident: 10.1016/j.jneumeth.2022.109559_bib5
  article-title: Arcing classifier (with discussion and a rejoinder by the author)
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1024691079
– volume: 225
  start-page: 133
  issue: 1
  year: 2013
  ident: 10.1016/j.jneumeth.2022.109559_bib7
  article-title: Signal detection theory and vestibular perception: iii. estimating unbiased fit parameters for psychometric functions
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-012-3354-7
– volume: 10
  start-page: 2545
  issue: 1
  year: 2020
  ident: 10.1016/j.jneumeth.2022.109559_bib19
  article-title: No evidence for after-effects of noisy galvanic vestibular stimulation on motion perception
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-59374-9
– ident: 10.1016/j.jneumeth.2022.109559_bib40
– volume: 210
  start-page: 389
  issue: 3–4
  year: 2011
  ident: 10.1016/j.jneumeth.2022.109559_bib29
  article-title: Signal detection theory and vestibular thresholds: i. basic theory and practical considerations
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-011-2557-7
– volume: 2
  start-page: 1
  issue: 2
  year: 2000
  ident: 10.1016/j.jneumeth.2022.109559_bib2
  article-title: Support Vector Machines: Hype or Hallelujah?
  publication-title: ACM SIGKDD Explor. Newsl.
  doi: 10.1145/380995.380999
– volume: 869
  start-page: 251
  issue: 1–2
  year: 2000
  ident: 10.1016/j.jneumeth.2022.109559_bib46
  article-title: Human hearing enhanced by noise
  publication-title: Brain Res.
  doi: 10.1016/S0006-8993(00)02475-6
– volume: 5
  issue: 5
  year: 2009
  ident: 10.1016/j.jneumeth.2022.109559_bib28
  article-title: What is stochastic resonance? definitions, misconceptions, debates, and its relevance to biology
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1000348
– volume: 62
  start-page: 349
  issue: 4
  year: 1989
  ident: 10.1016/j.jneumeth.2022.109559_bib14
  article-title: Stochastic resonance in bistable systems
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.62.349
– volume: 14
  issue: 11
  year: 1981
  ident: 10.1016/j.jneumeth.2022.109559_bib3
  article-title: The mechanism of stochastic resonance
  publication-title: J. Phys. A Math. Gen.
  doi: 10.1088/0305-4470/14/11/006
– volume: 56
  start-page: 923
  issue: 1
  year: 1997
  ident: 10.1016/j.jneumeth.2022.109559_bib9
  article-title: Noise-mediated enhancements and decrements in human tactile sensation
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.56.923
SSID ssj0004906
Score 2.38969
Snippet Stochastic resonance (SR) is achieved when a faint signal is improved with the addition of the appropriate amount of white noise. Perceptual thresholds are...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 109559
SubjectTerms Classification
False positives
Humans
Logistic regression
Machine Learning
Perceptual thresholds
Stochastic Processes
Stochastic resonance (SR)
White noise
Title A machine learning approach to identify stochastic resonance in human perceptual thresholds
URI https://dx.doi.org/10.1016/j.jneumeth.2022.109559
https://www.ncbi.nlm.nih.gov/pubmed/35292308
https://www.proquest.com/docview/2640050514
Volume 374
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qBfEivq0vVhBvsUk2mybHUpSq6EUFwcOy2W60RdNi04MXf7szm40PUDx4TMiSJd_uzjeZxwdwGHKVZIEJPTSvFGYUHS8dmNTLNCJOivCJlW-7vIr7t9H5nbhrQK-uhaG0Snf2V2e6Pa3dnbb7mu3JcNi-pkIcn8qpQkvM-RzMhzyNRRPmu2cX_avP8sjUSmzS8xSy9L8UCo-OR4WZkVgzuophSM2VBLUt_dlG_cZBrS06XYYlRyJZt5rnCjRMsQpr3QId6OdXdsRsWqf9X74KC5cuer4G9132bHMnDXNiEQ-s7inOyjEb2qLd_JUhIdSPijo4M_TGx9STw7BhwaygH5tUuTAznEGJK2FKAazpOtyentz0-p4TV_A0j5PSy5Gb6MQoP8tpHyoVJXlA_cRiH293okEe87iD5l4PEDQRcxMrobmORK54JDp8A5rFuDBbwAIehEqniHOG_k8eKZMIxRMq8DPorpgWiPpzSu06j5MAxpOsU8xGsoZBEgyygqEF7Y9xk6r3xp8j0hot-W0VSTQQf449qOGVuMUobqIKM55NJXJGK_gXRC3YrHD_mA_yV6TIfrL9jzfvwCJdUU5CIHahWb7MzB5SnTLbh7njt2DfLeh3w-79WA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JbtswEB0kDtD0UmRr6zYLCwS5qZZEUctRCBo48XJpAhjogaBoKrHRyEYtH_L3naGoNAVa-JCrJEKEHsl5o1kewHnIVVoEJvTQvFKYUSReNjWZV2hEnBThUyvfNhrH_bvoZiImW3DZ1sJQWqU7-5sz3Z7W7krPfc3ecjbrfadCHJ_KqUJLzPk27EQCvb0O7OTXg_74T3lkZiU26XkKWfovCoXnX-eVWZNYM7qKYUjNlQS1Lf23jfofB7W26GoP3jkSyfJmnvuwZaoDOMwrdKAfn9gFs2md9n_5AbwZuej5IfzI2aPNnTTMiUXcs7anOKsXbGaLdssnhoRQPyjq4MzQG19QTw7DZhWzgn5s2eTCrHEGNa6EFQWwVkdwd_Xt9rLvOXEFT_M4rb0SuYlOjfKLkvahUlFaBtRPLPbxchJNy5jHCZp7PUXQRMxNrITmOhKl4pFI-HvoVIvKfAQW8CBUOkOcC_R_ykiZVCieUoGfQXfFdEG0n1Nq13mcBDB-yjbFbC5bGCTBIBsYutB7Hrdsem9sHJG1aMm_VpFEA7Fx7JcWXolbjOImqjKL9UoiZ7SCf0HUhQ8N7s_zQf6KFNlPP73izWew278dDeXwejz4DG_pDuUnBOIYOvWvtTlB2lMXp25Z_wbVw_9H
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+machine+learning+approach+to+identify+stochastic+resonance+in+human+perceptual+thresholds&rft.jtitle=Journal+of+neuroscience+methods&rft.au=Voros%2C+Jamie&rft.au=Rise%2C+Rachel&rft.au=Sherman%2C+Sage&rft.au=Durell%2C+Abigail&rft.date=2022-05-15&rft.eissn=1872-678X&rft.volume=374&rft.spage=109559&rft_id=info:doi/10.1016%2Fj.jneumeth.2022.109559&rft_id=info%3Apmid%2F35292308&rft.externalDocID=35292308
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0270&client=summon