A machine learning approach to identify stochastic resonance in human perceptual thresholds
Stochastic resonance (SR) is achieved when a faint signal is improved with the addition of the appropriate amount of white noise. Perceptual thresholds are expected to follow a characteristic performance improvement curve as a function of the white noise level added (i.e., thresholds are reduced wit...
Saved in:
Published in | Journal of neuroscience methods Vol. 374; p. 109559 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
15.05.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0165-0270 1872-678X 1872-678X |
DOI | 10.1016/j.jneumeth.2022.109559 |
Cover
Abstract | Stochastic resonance (SR) is achieved when a faint signal is improved with the addition of the appropriate amount of white noise. Perceptual thresholds are expected to follow a characteristic performance improvement curve as a function of the white noise level added (i.e., thresholds are reduced with an optimal amount of added white noise, beyond which excessive white noise is no longer beneficial). Since SR exhibition in perceptual thresholds is defined by a shape rather than a statistical difference, the presence of SR is typically identified qualitatively. The current state-of-the-art is for blinded human judges to categorize the presence of SR by visually examining data. While categorizations are made with subject data intermixed within a balanced, simulated dataset, which accounts for false positives, this method is still subjective and prone to human error.
We use a logistic regression (LR) trained on engineered features in order to quantitatively classify exhibition of SR. The LR was trained on datasets simulated from a model for SR performance enhancement.
We implemented the algorithmic classification process in 6 perceptual threshold test cases, informed by the literature and parameters were defined by experimental subject data.
Comparison to Existing Method(s): We report algorithmic classifications of SR exhibition, considering the 6 test cases, that outperform existing subjective methods in accuracy (p < 0.05).
We demonstrate that algorithmic classification can effectively identify SR in perceptual thresholds, providing a rigorous, objective, and quantitative approach to identifying the presence of SR.
•To identify stochastic resonance in noisy data, we proposed using machine learning.•Machine learning was applied to 6 representative cases, demonstrating robustness.•Machine learning outperformed current subjective methods in classification accuracy.•The machine learning rigorously and objectively identifies stochastic resonance. |
---|---|
AbstractList | Stochastic resonance (SR) is achieved when a faint signal is improved with the addition of the appropriate amount of white noise. Perceptual thresholds are expected to follow a characteristic performance improvement curve as a function of the white noise level added (i.e., thresholds are reduced with an optimal amount of added white noise, beyond which excessive white noise is no longer beneficial). Since SR exhibition in perceptual thresholds is defined by a shape rather than a statistical difference, the presence of SR is typically identified qualitatively. The current state-of-the-art is for blinded human judges to categorize the presence of SR by visually examining data. While categorizations are made with subject data intermixed within a balanced, simulated dataset, which accounts for false positives, this method is still subjective and prone to human error.BACKGROUNDStochastic resonance (SR) is achieved when a faint signal is improved with the addition of the appropriate amount of white noise. Perceptual thresholds are expected to follow a characteristic performance improvement curve as a function of the white noise level added (i.e., thresholds are reduced with an optimal amount of added white noise, beyond which excessive white noise is no longer beneficial). Since SR exhibition in perceptual thresholds is defined by a shape rather than a statistical difference, the presence of SR is typically identified qualitatively. The current state-of-the-art is for blinded human judges to categorize the presence of SR by visually examining data. While categorizations are made with subject data intermixed within a balanced, simulated dataset, which accounts for false positives, this method is still subjective and prone to human error.We use a logistic regression (LR) trained on engineered features in order to quantitatively classify exhibition of SR. The LR was trained on datasets simulated from a model for SR performance enhancement.NEW METHODWe use a logistic regression (LR) trained on engineered features in order to quantitatively classify exhibition of SR. The LR was trained on datasets simulated from a model for SR performance enhancement.We implemented the algorithmic classification process in 6 perceptual threshold test cases, informed by the literature and parameters were defined by experimental subject data. Comparison to Existing Method(s): We report algorithmic classifications of SR exhibition, considering the 6 test cases, that outperform existing subjective methods in accuracy (p < 0.05).RESULTSWe implemented the algorithmic classification process in 6 perceptual threshold test cases, informed by the literature and parameters were defined by experimental subject data. Comparison to Existing Method(s): We report algorithmic classifications of SR exhibition, considering the 6 test cases, that outperform existing subjective methods in accuracy (p < 0.05).We demonstrate that algorithmic classification can effectively identify SR in perceptual thresholds, providing a rigorous, objective, and quantitative approach to identifying the presence of SR.CONCLUSIONSWe demonstrate that algorithmic classification can effectively identify SR in perceptual thresholds, providing a rigorous, objective, and quantitative approach to identifying the presence of SR. Stochastic resonance (SR) is achieved when a faint signal is improved with the addition of the appropriate amount of white noise. Perceptual thresholds are expected to follow a characteristic performance improvement curve as a function of the white noise level added (i.e., thresholds are reduced with an optimal amount of added white noise, beyond which excessive white noise is no longer beneficial). Since SR exhibition in perceptual thresholds is defined by a shape rather than a statistical difference, the presence of SR is typically identified qualitatively. The current state-of-the-art is for blinded human judges to categorize the presence of SR by visually examining data. While categorizations are made with subject data intermixed within a balanced, simulated dataset, which accounts for false positives, this method is still subjective and prone to human error. We use a logistic regression (LR) trained on engineered features in order to quantitatively classify exhibition of SR. The LR was trained on datasets simulated from a model for SR performance enhancement. We implemented the algorithmic classification process in 6 perceptual threshold test cases, informed by the literature and parameters were defined by experimental subject data. Comparison to Existing Method(s): We report algorithmic classifications of SR exhibition, considering the 6 test cases, that outperform existing subjective methods in accuracy (p < 0.05). We demonstrate that algorithmic classification can effectively identify SR in perceptual thresholds, providing a rigorous, objective, and quantitative approach to identifying the presence of SR. •To identify stochastic resonance in noisy data, we proposed using machine learning.•Machine learning was applied to 6 representative cases, demonstrating robustness.•Machine learning outperformed current subjective methods in classification accuracy.•The machine learning rigorously and objectively identifies stochastic resonance. Stochastic resonance (SR) is achieved when a faint signal is improved with the addition of the appropriate amount of white noise. Perceptual thresholds are expected to follow a characteristic performance improvement curve as a function of the white noise level added (i.e., thresholds are reduced with an optimal amount of added white noise, beyond which excessive white noise is no longer beneficial). Since SR exhibition in perceptual thresholds is defined by a shape rather than a statistical difference, the presence of SR is typically identified qualitatively. The current state-of-the-art is for blinded human judges to categorize the presence of SR by visually examining data. While categorizations are made with subject data intermixed within a balanced, simulated dataset, which accounts for false positives, this method is still subjective and prone to human error. We use a logistic regression (LR) trained on engineered features in order to quantitatively classify exhibition of SR. The LR was trained on datasets simulated from a model for SR performance enhancement. We implemented the algorithmic classification process in 6 perceptual threshold test cases, informed by the literature and parameters were defined by experimental subject data. Comparison to Existing Method(s): We report algorithmic classifications of SR exhibition, considering the 6 test cases, that outperform existing subjective methods in accuracy (p < 0.05). We demonstrate that algorithmic classification can effectively identify SR in perceptual thresholds, providing a rigorous, objective, and quantitative approach to identifying the presence of SR. |
ArticleNumber | 109559 |
Author | Clark, Torin K. Durell, Abigail Anderson, Allison P. Voros, Jamie Rise, Rachel Sherman, Sage |
Author_xml | – sequence: 1 givenname: Jamie surname: Voros fullname: Voros, Jamie – sequence: 2 givenname: Rachel surname: Rise fullname: Rise, Rachel – sequence: 3 givenname: Sage surname: Sherman fullname: Sherman, Sage – sequence: 4 givenname: Abigail surname: Durell fullname: Durell, Abigail – sequence: 5 givenname: Allison P. surname: Anderson fullname: Anderson, Allison P. – sequence: 6 givenname: Torin K. surname: Clark fullname: Clark, Torin K. email: torin.clark@colorado.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35292308$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkMFq3DAQhkVJSTZpXiHo2Is3Y8mSvdBDQ2jaQqCXFgo9iIk8rrXYkivJhbx9FDZ7ySUgEPz6_hnxnbMTHzwxdlXDtoZaX--3e0_rTHncChCihDuldu_Ypu5aUem2-33CNgVUFYgWzth5SnsAaHagT9mZVGInJHQb9ueGz2hH54lPhNE7_5fjssRQQp4Ddz357IZHnnKwI6bsLI-UgkdviTvPx3VGzxeKlpa84sTzWN7HMPXpA3s_4JTo8uW-YL_uvvy8_Vbd__j6_fbmvrJSd7kaQEvbEcLDAErWiE031EKXAyVum37QUrcNaNsraZWWpFFZaRs1oGxUKy_Yx8Pc8u1_K6VsZpcsTRN6CmsyQjcAClTdFPTqBV0fZurNEt2M8dEchRTg0wGwMaQUaTDWZcwu-BzRTaYG8-zf7M3Rv3n2bw7-S12_qh83vFn8fChSEfXfUTTJOiqOexfJZtMH99aIJ_2rpFE |
CitedBy_id | crossref_primary_10_1007_s00415_023_12085_3 crossref_primary_10_1007_s00415_024_12419_9 crossref_primary_10_1007_s00221_024_06984_8 crossref_primary_10_1016_j_physa_2023_129020 |
Cites_doi | 10.1038/1597 10.1016/j.heares.2007.01.027 10.1007/s00221-015-4501-8 10.1103/PhysRevE.62.1104 10.1103/PhysRevLett.78.1186 10.3389/fnins.2018.00578 10.3758/BF03194543 10.1007/s00221-012-3217-2 10.1088/1741-2560/4/2/R01 10.1103/PhysRevLett.72.3120 10.1063/1.166341 10.1109/AERO47225.2020.9172477 10.1016/j.brs.2018.03.017 10.1016/j.neuroscience.2018.12.031 10.3389/fnins.2021.640984 10.1016/j.neulet.2007.01.030 10.1038/383770a0 10.1038/s41598-017-12906-2 10.1186/1743-0003-10-105 10.1016/S0925-2312(99)00042-9 10.1023/A:1009715923555 10.1371/journal.pone.0002860 10.1038/nm0896-928 10.1016/j.clinph.2003.09.014 10.1121/1.1910407 10.1023/A:1009778005914 10.3389/fneur.2018.00083 10.1038/s41598-021-91808-w 10.1038/373033a0 10.1109/34.824819 10.1214/aos/1024691079 10.1007/s00221-012-3354-7 10.1038/s41598-020-59374-9 10.1007/s00221-011-2557-7 10.1145/380995.380999 10.1016/S0006-8993(00)02475-6 10.1371/journal.pcbi.1000348 10.1103/PhysRevLett.62.349 10.1088/0305-4470/14/11/006 10.1103/PhysRevE.56.923 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. Copyright © 2022 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Copyright © 2022 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.jneumeth.2022.109559 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1872-678X |
ExternalDocumentID | 35292308 10_1016_j_jneumeth_2022_109559 S0165027022000863 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5RE 7-5 71M 8P~ 9JM AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAXLA AAXUO ABCQJ ABFNM ABFRF ABJNI ABMAC ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGWIK AGYEJ AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM L7B M2V M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPCBC SSN SSZ T5K ~G- .55 .GJ 29L 53G 5VS AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMQ HVGLF HZ~ R2- RIG SEW SNS SSH WUQ X7M ZGI CGR CUY CVF ECM EIF NPM 7X8 EFKBS |
ID | FETCH-LOGICAL-c368t-f063c8ea0bf0531aa48f1261260c8e74df6367406cd53c563e6a5c3c45fa34573 |
IEDL.DBID | AIKHN |
ISSN | 0165-0270 1872-678X |
IngestDate | Fri Sep 05 04:18:59 EDT 2025 Wed Feb 19 02:24:28 EST 2025 Thu Apr 24 23:11:15 EDT 2025 Tue Jul 01 02:57:16 EDT 2025 Fri Feb 23 02:41:09 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | False positives White noise Logistic regression Perceptual thresholds Stochastic resonance (SR) Classification |
Language | English |
License | Copyright © 2022 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c368t-f063c8ea0bf0531aa48f1261260c8e74df6367406cd53c563e6a5c3c45fa34573 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 35292308 |
PQID | 2640050514 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2640050514 pubmed_primary_35292308 crossref_citationtrail_10_1016_j_jneumeth_2022_109559 crossref_primary_10_1016_j_jneumeth_2022_109559 elsevier_sciencedirect_doi_10_1016_j_jneumeth_2022_109559 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-15 |
PublicationDateYYYYMMDD | 2022-05-15 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of neuroscience methods |
PublicationTitleAlternate | J Neurosci Methods |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Burges (bib6) 1998; 2 Taylor, Douglas Creelman (bib39) 1967; 441 Keywan, Jahn, Wuehr (bib20) 2019; 399 Itzcovich, Massimo, Sannita (bib15) 2017; 7 Morse, Evans (bib30) 1996; 2 Voros (bib42) 2021; 15 Karmali, Shomesh, Yongwoo, Daniel M (bib18) 2016; 234 Breiman (bib5) 1998; 26 Sherman, Sage O.. 2019. Evaluating Enhanced Auditory Perception Augmentation via Stochastic Resonance. The University of Colorado, Boulder. Voros, Jamie L. et al., 2020. Multi-Modal Stochastic Resonance to Enhance Astronaut Perceptual Performance: Experimental Design. In: Proceedings of the IEEE Aerospace Conference, Big Sky, MT. Friedman (bib12) 1997; 1 McDonnell, Abbott (bib28) 2009; 5 Simonotto (bib38) 1997; 78 Xie, Junyuan, Ross Girshcik, Ali Farhadi, 2016. Unsupervised deep embedding for clustering analysis. In: Proceedings of the International Conference on Machine Learning, PMLR, 478–487. Duda, Peter, Stork (bib10) 2001 Jaramillo, Wiesenfeld (bib17) 1998; 1 Ward (bib43) 2001; 46 Ries (bib35) 2007; 228 Riani, Simonotto (bib33) 1994; 72 Lim, Merfeld (bib24) 2012; 222 Zeng, Fu, Morse (bib46) 2000; 869 Simonotto (bib37) 1999; 26–27 Chaudhuri, Merfeld (bib7) 2013; 225 Piana, Canfora, Riani (bib32) 2000; 62 Wiesenfeld, Moss (bib44) 1995; 373 Bennett, Campbell (bib2) 2000; 2 Assländer (bib1) 2021; 11 Leek (bib23) 2001; 63 Manjarrez (bib27) 2007; 415 Voros, Jamie L. , 2020. Cross Modal Stochastic Resonance in Perceptual Thresholds with Galvanic Vestibular Stimulation, The University of Colorado, Boulder. Benzi, Sutera, Vulpiani (bib3) 1981; 14 van Boxtel (bib4) 2019; 19 Keywan, Badarna, Jahn, Wuehr (bib19) 2020; 10 Moss, Ward, Sannita (bib31) 2004; 115 Krauss, Tziridis, Schilling, Schulze (bib22) 2018; 12 Gammaitoni, Marchesoni, Menichella-Saetta, Santucci (bib14) 1989; 62 Keywan, Wuehr, Pradhan, Jahn (bib21) 2018; 9 Lugo, Doti, Faubert (bib26) 2008; 3 Lotte (bib25) 2007; 4 Merfeld (bib29) 2011; 210 Jain, Duin, Jianchang Mao (bib16) 2000; 22 Richardson, Imhoff, Grigg, Collins (bib34) 1998; 8 Collins, Thomas, Grigg (bib9) 1997; 56 Enders, Pilwon, Michelle, Na (bib11) 2013; 10 Collins, Thomas, Grigg (bib8) 1996; 383 Galvan-Garza, Clark, Mulavara, Oman (bib13) 2018; 11 Lotte (10.1016/j.jneumeth.2022.109559_bib25) 2007; 4 Assländer (10.1016/j.jneumeth.2022.109559_bib1) 2021; 11 Jain (10.1016/j.jneumeth.2022.109559_bib16) 2000; 22 Taylor (10.1016/j.jneumeth.2022.109559_bib39) 1967; 441 McDonnell (10.1016/j.jneumeth.2022.109559_bib28) 2009; 5 Benzi (10.1016/j.jneumeth.2022.109559_bib3) 1981; 14 Duda (10.1016/j.jneumeth.2022.109559_bib10) 2001 Moss (10.1016/j.jneumeth.2022.109559_bib31) 2004; 115 Keywan (10.1016/j.jneumeth.2022.109559_bib21) 2018; 9 Simonotto (10.1016/j.jneumeth.2022.109559_bib38) 1997; 78 Richardson (10.1016/j.jneumeth.2022.109559_bib34) 1998; 8 Chaudhuri (10.1016/j.jneumeth.2022.109559_bib7) 2013; 225 Keywan (10.1016/j.jneumeth.2022.109559_bib19) 2020; 10 Wiesenfeld (10.1016/j.jneumeth.2022.109559_bib44) 1995; 373 Enders (10.1016/j.jneumeth.2022.109559_bib11) 2013; 10 Galvan-Garza (10.1016/j.jneumeth.2022.109559_bib13) 2018; 11 Krauss (10.1016/j.jneumeth.2022.109559_bib22) 2018; 12 Gammaitoni (10.1016/j.jneumeth.2022.109559_bib14) 1989; 62 10.1016/j.jneumeth.2022.109559_bib40 Piana (10.1016/j.jneumeth.2022.109559_bib32) 2000; 62 Morse (10.1016/j.jneumeth.2022.109559_bib30) 1996; 2 10.1016/j.jneumeth.2022.109559_bib41 Burges (10.1016/j.jneumeth.2022.109559_bib6) 1998; 2 Manjarrez (10.1016/j.jneumeth.2022.109559_bib27) 2007; 415 10.1016/j.jneumeth.2022.109559_bib45 Bennett (10.1016/j.jneumeth.2022.109559_bib2) 2000; 2 Itzcovich (10.1016/j.jneumeth.2022.109559_bib15) 2017; 7 Zeng (10.1016/j.jneumeth.2022.109559_bib46) 2000; 869 Collins (10.1016/j.jneumeth.2022.109559_bib9) 1997; 56 Keywan (10.1016/j.jneumeth.2022.109559_bib20) 2019; 399 Riani (10.1016/j.jneumeth.2022.109559_bib33) 1994; 72 Simonotto (10.1016/j.jneumeth.2022.109559_bib37) 1999; 26–27 Lugo (10.1016/j.jneumeth.2022.109559_bib26) 2008; 3 Leek (10.1016/j.jneumeth.2022.109559_bib23) 2001; 63 Ward (10.1016/j.jneumeth.2022.109559_bib43) 2001; 46 Merfeld (10.1016/j.jneumeth.2022.109559_bib29) 2011; 210 Voros (10.1016/j.jneumeth.2022.109559_bib42) 2021; 15 Karmali (10.1016/j.jneumeth.2022.109559_bib18) 2016; 234 10.1016/j.jneumeth.2022.109559_bib36 Friedman (10.1016/j.jneumeth.2022.109559_bib12) 1997; 1 Lim (10.1016/j.jneumeth.2022.109559_bib24) 2012; 222 Jaramillo (10.1016/j.jneumeth.2022.109559_bib17) 1998; 1 Collins (10.1016/j.jneumeth.2022.109559_bib8) 1996; 383 Ries (10.1016/j.jneumeth.2022.109559_bib35) 2007; 228 Breiman (10.1016/j.jneumeth.2022.109559_bib5) 1998; 26 van Boxtel (10.1016/j.jneumeth.2022.109559_bib4) 2019; 19 |
References_xml | – volume: 5 year: 2009 ident: bib28 article-title: What is stochastic resonance? definitions, misconceptions, debates, and its relevance to biology publication-title: PLoS Comput. Biol. – volume: 46 year: 2001 ident: bib43 article-title: Noise can help as well as hinder seeing and hearing publication-title: Bull. Am. Phys. Soc. – volume: 2 start-page: 121 year: 1998 end-page: 167 ident: bib6 article-title: A tutorial on support vector machines for pattern recognition publication-title: Data Min. Knowl. Discov. – volume: 14 year: 1981 ident: bib3 article-title: The mechanism of stochastic resonance publication-title: J. Phys. A Math. Gen. – volume: 2 start-page: 1 year: 2000 end-page: 13 ident: bib2 article-title: Support Vector Machines: Hype or Hallelujah? publication-title: ACM SIGKDD Explor. Newsl. – volume: 383 year: 1996 ident: bib8 article-title: Noise-enhanced tactile sensation publication-title: Nature – volume: 11 start-page: 12327 year: 2021 ident: bib1 article-title: No evidence for stochastic resonance effects on standing balance when applying noisy galvanic vestibular stimulation in young healthy adults publication-title: Sci. Rep. – volume: 373 start-page: 33 year: 1995 end-page: 36 ident: bib44 article-title: Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs publication-title: Nature – volume: 228 start-page: 136 year: 2007 end-page: 143 ident: bib35 article-title: The influence of noise type and level upon stochastic resonance in human audition publication-title: Hear. Res. – volume: 26 start-page: 801 year: 1998 end-page: 849 ident: bib5 article-title: Arcing classifier (with discussion and a rejoinder by the author) publication-title: Ann. Stat. – volume: 3 year: 2008 ident: bib26 article-title: Ubiquitous crossmodal stochastic resonance in humans: auditory noise facilitates tactile, visual and proprioceptive sensations publication-title: PLoS One – volume: 1 start-page: 55 year: 1997 end-page: 77 ident: bib12 article-title: On bias, variance, 0/1-loss, and the curse-of-dimensionality data publication-title: Data Min. Knowl. Discov. – volume: 22 start-page: 4 year: 2000 end-page: 37 ident: bib16 article-title: Statistical pattern recognition: a review publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 1 start-page: 384 year: 1998 end-page: 388 ident: bib17 article-title: Mechanoelectrical transduction assisted by brownian motion: a role for noise in the auditory system publication-title: Nat. Neurosci. – volume: 15 year: 2021 ident: bib42 article-title: Galvanic vestibular stimulation produces cross-modal improvements in visual thresholds publication-title: Front. Neurosci. – volume: 415 start-page: 231 year: 2007 end-page: 236 ident: bib27 article-title: Effects of auditory noise on the psychophysical detection of visual signals: cross-modal stochastic resonance publication-title: Neurosci. Lett. – volume: 10 start-page: 105 year: 2013 ident: bib11 article-title: Remote vibrotactile noise improves light touch sensation in stroke survivors’ fingertips via stochastic resonance publication-title: J. Neuroeng. Rehabil. – volume: 62 start-page: 1104 year: 2000 end-page: 1109 ident: bib32 article-title: Role of noise in image processing by the human perceptive system publication-title: Phys. Rev. E – volume: 26–27 start-page: 511 year: 1999 end-page: 516 ident: bib37 article-title: FMRI studies of visual cortical activity during noise stimulation publication-title: Neurocomputing – reference: Voros, Jamie L. , 2020. Cross Modal Stochastic Resonance in Perceptual Thresholds with Galvanic Vestibular Stimulation, The University of Colorado, Boulder. – volume: 56 start-page: 923 year: 1997 end-page: 926 ident: bib9 article-title: Noise-mediated enhancements and decrements in human tactile sensation publication-title: Phys. Rev. E – volume: 441 start-page: 782 year: 1967 end-page: 787 ident: bib39 article-title: PEST:Efficient Estimates on Probability Functions publication-title: J. Acoust.Soc. Am. – volume: 78 start-page: 1186 year: 1997 end-page: 1189 ident: bib38 article-title: Visual perception of stochastic resonance publication-title: Phys. Rev. Lett. – reference: Voros, Jamie L. et al., 2020. Multi-Modal Stochastic Resonance to Enhance Astronaut Perceptual Performance: Experimental Design. In: Proceedings of the IEEE Aerospace Conference, Big Sky, MT. – volume: 8 start-page: 599 year: 1998 end-page: 603 ident: bib34 article-title: Using electrical noise to enhance the ability of humans to detect subthreshold mechanical cutaneous stimuli publication-title: Chaos Interdiscip. J. Nonlinear Sci. – volume: 2 start-page: 928 year: 1996 end-page: 932 ident: bib30 article-title: Enhancement of vowel coding for cochlear implants by addition of noise publication-title: Nat. Med. – volume: 210 start-page: 389 year: 2011 end-page: 405 ident: bib29 article-title: Signal detection theory and vestibular thresholds: i. basic theory and practical considerations publication-title: Exp. Brain Res. – reference: Xie, Junyuan, Ross Girshcik, Ali Farhadi, 2016. Unsupervised deep embedding for clustering analysis. In: Proceedings of the International Conference on Machine Learning, PMLR, 478–487. – reference: Sherman, Sage O.. 2019. Evaluating Enhanced Auditory Perception Augmentation via Stochastic Resonance. The University of Colorado, Boulder. – volume: 234 start-page: 773 year: 2016 end-page: 789 ident: bib18 article-title: Determining thresholds using adaptive procedures and psychometric fits: evaluating efficiency using theory, simulations, and human experiments publication-title: Exp. Brain Res. – volume: 12 start-page: 578 year: 2018 ident: bib22 article-title: Cross-modal stochastic resonance as a universal principle to enhance sensory processing publication-title: Front. Neurosci. – volume: 399 start-page: 161 year: 2019 end-page: 166 ident: bib20 article-title: Noisy galvanic vestibular stimulation primarily affects otolith-mediated motion perception publication-title: Neuroscience – volume: 115 start-page: 267 year: 2004 end-page: 281 ident: bib31 article-title: Stochastic resonance and sensory information processing: a tutorial and review of application publication-title: Clin. Neurophysiol. – volume: 72 start-page: 3120 year: 1994 end-page: 3123 ident: bib33 article-title: Stochastic resonance in the perceptual interpretation of ambiguous figures: a neural network model publication-title: Phys. Rev. Lett. – volume: 11 start-page: 716 year: 2018 end-page: 722 ident: bib13 article-title: Exhibition of stochastic resonance in vestibular tilt motion perception publication-title: Brain Stimul. – volume: 19 start-page: 19 year: 2019 ident: bib4 article-title: Modeling stochastic resonance in humans: the influence of lapse rate publication-title: J. Vis. – volume: 9 start-page: 83 year: 2018 ident: bib21 article-title: Noisy galvanic stimulation improves roll-tilt vestibular perception in healthy subjects publication-title: Front. Neurol. – volume: 62 start-page: 349 year: 1989 end-page: 352 ident: bib14 article-title: Stochastic resonance in bistable systems publication-title: Phys. Rev. Lett. – volume: 7 start-page: 12840 year: 2017 ident: bib15 article-title: Stochastic resonance improves vision in the severely impaired publication-title: Sci. Rep. – volume: 225 start-page: 133 year: 2013 end-page: 146 ident: bib7 article-title: Signal detection theory and vestibular perception: iii. estimating unbiased fit parameters for psychometric functions publication-title: Exp. Brain Res. – year: 2001 ident: bib10 publication-title: Pattern Classification – volume: 4 year: 2007 ident: bib25 article-title: A review of classification algorithms for eeg-based brain–computer interfaces publication-title: J. Neural Eng. – volume: 869 start-page: 251 year: 2000 end-page: 255 ident: bib46 article-title: Human hearing enhanced by noise publication-title: Brain Res. – volume: 222 start-page: 303 year: 2012 end-page: 320 ident: bib24 article-title: Signal detection theory and vestibular perception: ii. fitting perceptual thresholds as a function of frequency publication-title: Exp. Brain Res. – volume: 10 start-page: 2545 year: 2020 ident: bib19 article-title: No evidence for after-effects of noisy galvanic vestibular stimulation on motion perception publication-title: Sci. Rep. – volume: 63 start-page: 1279 year: 2001 end-page: 1292 ident: bib23 article-title: Adaptive procedures in psychophysical research publication-title: Percept. Psychophys. – volume: 1 start-page: 384 issue: 5 year: 1998 ident: 10.1016/j.jneumeth.2022.109559_bib17 article-title: Mechanoelectrical transduction assisted by brownian motion: a role for noise in the auditory system publication-title: Nat. Neurosci. doi: 10.1038/1597 – volume: 228 start-page: 136 issue: 1–2 year: 2007 ident: 10.1016/j.jneumeth.2022.109559_bib35 article-title: The influence of noise type and level upon stochastic resonance in human audition publication-title: Hear. Res. doi: 10.1016/j.heares.2007.01.027 – volume: 234 start-page: 773 issue: 3 year: 2016 ident: 10.1016/j.jneumeth.2022.109559_bib18 article-title: Determining thresholds using adaptive procedures and psychometric fits: evaluating efficiency using theory, simulations, and human experiments publication-title: Exp. Brain Res. doi: 10.1007/s00221-015-4501-8 – volume: 62 start-page: 1104 issue: 1 year: 2000 ident: 10.1016/j.jneumeth.2022.109559_bib32 article-title: Role of noise in image processing by the human perceptive system publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.62.1104 – volume: 78 start-page: 1186 issue: 6 year: 1997 ident: 10.1016/j.jneumeth.2022.109559_bib38 article-title: Visual perception of stochastic resonance publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.78.1186 – volume: 46 year: 2001 ident: 10.1016/j.jneumeth.2022.109559_bib43 article-title: Noise can help as well as hinder seeing and hearing publication-title: Bull. Am. Phys. Soc. – ident: 10.1016/j.jneumeth.2022.109559_bib45 – volume: 12 start-page: 578 year: 2018 ident: 10.1016/j.jneumeth.2022.109559_bib22 article-title: Cross-modal stochastic resonance as a universal principle to enhance sensory processing publication-title: Front. Neurosci. doi: 10.3389/fnins.2018.00578 – volume: 63 start-page: 1279 issue: 8 year: 2001 ident: 10.1016/j.jneumeth.2022.109559_bib23 article-title: Adaptive procedures in psychophysical research publication-title: Percept. Psychophys. doi: 10.3758/BF03194543 – volume: 222 start-page: 303 issue: 3 year: 2012 ident: 10.1016/j.jneumeth.2022.109559_bib24 article-title: Signal detection theory and vestibular perception: ii. fitting perceptual thresholds as a function of frequency publication-title: Exp. Brain Res. doi: 10.1007/s00221-012-3217-2 – volume: 4 issue: 2 year: 2007 ident: 10.1016/j.jneumeth.2022.109559_bib25 article-title: A review of classification algorithms for eeg-based brain–computer interfaces publication-title: J. Neural Eng. doi: 10.1088/1741-2560/4/2/R01 – year: 2001 ident: 10.1016/j.jneumeth.2022.109559_bib10 – volume: 72 start-page: 3120 issue: 19 year: 1994 ident: 10.1016/j.jneumeth.2022.109559_bib33 article-title: Stochastic resonance in the perceptual interpretation of ambiguous figures: a neural network model publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.72.3120 – volume: 8 start-page: 599 issue: 3 year: 1998 ident: 10.1016/j.jneumeth.2022.109559_bib34 article-title: Using electrical noise to enhance the ability of humans to detect subthreshold mechanical cutaneous stimuli publication-title: Chaos Interdiscip. J. Nonlinear Sci. doi: 10.1063/1.166341 – ident: 10.1016/j.jneumeth.2022.109559_bib41 doi: 10.1109/AERO47225.2020.9172477 – volume: 11 start-page: 716 issue: 4 year: 2018 ident: 10.1016/j.jneumeth.2022.109559_bib13 article-title: Exhibition of stochastic resonance in vestibular tilt motion perception publication-title: Brain Stimul. doi: 10.1016/j.brs.2018.03.017 – volume: 399 start-page: 161 year: 2019 ident: 10.1016/j.jneumeth.2022.109559_bib20 article-title: Noisy galvanic vestibular stimulation primarily affects otolith-mediated motion perception publication-title: Neuroscience doi: 10.1016/j.neuroscience.2018.12.031 – volume: 15 year: 2021 ident: 10.1016/j.jneumeth.2022.109559_bib42 article-title: Galvanic vestibular stimulation produces cross-modal improvements in visual thresholds publication-title: Front. Neurosci. doi: 10.3389/fnins.2021.640984 – ident: 10.1016/j.jneumeth.2022.109559_bib36 – volume: 415 start-page: 231 issue: 3 year: 2007 ident: 10.1016/j.jneumeth.2022.109559_bib27 article-title: Effects of auditory noise on the psychophysical detection of visual signals: cross-modal stochastic resonance publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2007.01.030 – volume: 383 issue: 6603 year: 1996 ident: 10.1016/j.jneumeth.2022.109559_bib8 article-title: Noise-enhanced tactile sensation publication-title: Nature doi: 10.1038/383770a0 – volume: 7 start-page: 12840 issue: 1 year: 2017 ident: 10.1016/j.jneumeth.2022.109559_bib15 article-title: Stochastic resonance improves vision in the severely impaired publication-title: Sci. Rep. doi: 10.1038/s41598-017-12906-2 – volume: 10 start-page: 105 issue: 1 year: 2013 ident: 10.1016/j.jneumeth.2022.109559_bib11 article-title: Remote vibrotactile noise improves light touch sensation in stroke survivors’ fingertips via stochastic resonance publication-title: J. Neuroeng. Rehabil. doi: 10.1186/1743-0003-10-105 – volume: 26–27 start-page: 511 year: 1999 ident: 10.1016/j.jneumeth.2022.109559_bib37 article-title: FMRI studies of visual cortical activity during noise stimulation publication-title: Neurocomputing doi: 10.1016/S0925-2312(99)00042-9 – volume: 2 start-page: 121 issue: 2 year: 1998 ident: 10.1016/j.jneumeth.2022.109559_bib6 article-title: A tutorial on support vector machines for pattern recognition publication-title: Data Min. Knowl. Discov. doi: 10.1023/A:1009715923555 – volume: 3 issue: 8 year: 2008 ident: 10.1016/j.jneumeth.2022.109559_bib26 article-title: Ubiquitous crossmodal stochastic resonance in humans: auditory noise facilitates tactile, visual and proprioceptive sensations publication-title: PLoS One doi: 10.1371/journal.pone.0002860 – volume: 2 start-page: 928 issue: 8 year: 1996 ident: 10.1016/j.jneumeth.2022.109559_bib30 article-title: Enhancement of vowel coding for cochlear implants by addition of noise publication-title: Nat. Med. doi: 10.1038/nm0896-928 – volume: 115 start-page: 267 issue: 2 year: 2004 ident: 10.1016/j.jneumeth.2022.109559_bib31 article-title: Stochastic resonance and sensory information processing: a tutorial and review of application publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2003.09.014 – volume: 441 start-page: 782 issue: 4A year: 1967 ident: 10.1016/j.jneumeth.2022.109559_bib39 article-title: PEST:Efficient Estimates on Probability Functions publication-title: J. Acoust.Soc. Am. doi: 10.1121/1.1910407 – volume: 1 start-page: 55 issue: 1 year: 1997 ident: 10.1016/j.jneumeth.2022.109559_bib12 article-title: On bias, variance, 0/1-loss, and the curse-of-dimensionality data publication-title: Data Min. Knowl. Discov. doi: 10.1023/A:1009778005914 – volume: 9 start-page: 83 year: 2018 ident: 10.1016/j.jneumeth.2022.109559_bib21 article-title: Noisy galvanic stimulation improves roll-tilt vestibular perception in healthy subjects publication-title: Front. Neurol. doi: 10.3389/fneur.2018.00083 – volume: 11 start-page: 12327 year: 2021 ident: 10.1016/j.jneumeth.2022.109559_bib1 article-title: No evidence for stochastic resonance effects on standing balance when applying noisy galvanic vestibular stimulation in young healthy adults publication-title: Sci. Rep. doi: 10.1038/s41598-021-91808-w – volume: 19 start-page: 19 issue: 13 year: 2019 ident: 10.1016/j.jneumeth.2022.109559_bib4 article-title: Modeling stochastic resonance in humans: the influence of lapse rate publication-title: J. Vis. – volume: 373 start-page: 33 issue: 6509 year: 1995 ident: 10.1016/j.jneumeth.2022.109559_bib44 article-title: Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs publication-title: Nature doi: 10.1038/373033a0 – volume: 22 start-page: 4 issue: 1 year: 2000 ident: 10.1016/j.jneumeth.2022.109559_bib16 article-title: Statistical pattern recognition: a review publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.824819 – volume: 26 start-page: 801 issue: 3 year: 1998 ident: 10.1016/j.jneumeth.2022.109559_bib5 article-title: Arcing classifier (with discussion and a rejoinder by the author) publication-title: Ann. Stat. doi: 10.1214/aos/1024691079 – volume: 225 start-page: 133 issue: 1 year: 2013 ident: 10.1016/j.jneumeth.2022.109559_bib7 article-title: Signal detection theory and vestibular perception: iii. estimating unbiased fit parameters for psychometric functions publication-title: Exp. Brain Res. doi: 10.1007/s00221-012-3354-7 – volume: 10 start-page: 2545 issue: 1 year: 2020 ident: 10.1016/j.jneumeth.2022.109559_bib19 article-title: No evidence for after-effects of noisy galvanic vestibular stimulation on motion perception publication-title: Sci. Rep. doi: 10.1038/s41598-020-59374-9 – ident: 10.1016/j.jneumeth.2022.109559_bib40 – volume: 210 start-page: 389 issue: 3–4 year: 2011 ident: 10.1016/j.jneumeth.2022.109559_bib29 article-title: Signal detection theory and vestibular thresholds: i. basic theory and practical considerations publication-title: Exp. Brain Res. doi: 10.1007/s00221-011-2557-7 – volume: 2 start-page: 1 issue: 2 year: 2000 ident: 10.1016/j.jneumeth.2022.109559_bib2 article-title: Support Vector Machines: Hype or Hallelujah? publication-title: ACM SIGKDD Explor. Newsl. doi: 10.1145/380995.380999 – volume: 869 start-page: 251 issue: 1–2 year: 2000 ident: 10.1016/j.jneumeth.2022.109559_bib46 article-title: Human hearing enhanced by noise publication-title: Brain Res. doi: 10.1016/S0006-8993(00)02475-6 – volume: 5 issue: 5 year: 2009 ident: 10.1016/j.jneumeth.2022.109559_bib28 article-title: What is stochastic resonance? definitions, misconceptions, debates, and its relevance to biology publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1000348 – volume: 62 start-page: 349 issue: 4 year: 1989 ident: 10.1016/j.jneumeth.2022.109559_bib14 article-title: Stochastic resonance in bistable systems publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.62.349 – volume: 14 issue: 11 year: 1981 ident: 10.1016/j.jneumeth.2022.109559_bib3 article-title: The mechanism of stochastic resonance publication-title: J. Phys. A Math. Gen. doi: 10.1088/0305-4470/14/11/006 – volume: 56 start-page: 923 issue: 1 year: 1997 ident: 10.1016/j.jneumeth.2022.109559_bib9 article-title: Noise-mediated enhancements and decrements in human tactile sensation publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.56.923 |
SSID | ssj0004906 |
Score | 2.38969 |
Snippet | Stochastic resonance (SR) is achieved when a faint signal is improved with the addition of the appropriate amount of white noise. Perceptual thresholds are... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 109559 |
SubjectTerms | Classification False positives Humans Logistic regression Machine Learning Perceptual thresholds Stochastic Processes Stochastic resonance (SR) White noise |
Title | A machine learning approach to identify stochastic resonance in human perceptual thresholds |
URI | https://dx.doi.org/10.1016/j.jneumeth.2022.109559 https://www.ncbi.nlm.nih.gov/pubmed/35292308 https://www.proquest.com/docview/2640050514 |
Volume | 374 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qBfEivq0vVhBvsUk2mybHUpSq6EUFwcOy2W60RdNi04MXf7szm40PUDx4TMiSJd_uzjeZxwdwGHKVZIEJPTSvFGYUHS8dmNTLNCJOivCJlW-7vIr7t9H5nbhrQK-uhaG0Snf2V2e6Pa3dnbb7mu3JcNi-pkIcn8qpQkvM-RzMhzyNRRPmu2cX_avP8sjUSmzS8xSy9L8UCo-OR4WZkVgzuophSM2VBLUt_dlG_cZBrS06XYYlRyJZt5rnCjRMsQpr3QId6OdXdsRsWqf9X74KC5cuer4G9132bHMnDXNiEQ-s7inOyjEb2qLd_JUhIdSPijo4M_TGx9STw7BhwaygH5tUuTAznEGJK2FKAazpOtyentz0-p4TV_A0j5PSy5Gb6MQoP8tpHyoVJXlA_cRiH293okEe87iD5l4PEDQRcxMrobmORK54JDp8A5rFuDBbwAIehEqniHOG_k8eKZMIxRMq8DPorpgWiPpzSu06j5MAxpOsU8xGsoZBEgyygqEF7Y9xk6r3xp8j0hot-W0VSTQQf449qOGVuMUobqIKM55NJXJGK_gXRC3YrHD_mA_yV6TIfrL9jzfvwCJdUU5CIHahWb7MzB5SnTLbh7njt2DfLeh3w-79WA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JbtswEB0kDtD0UmRr6zYLCwS5qZZEUctRCBo48XJpAhjogaBoKrHRyEYtH_L3naGoNAVa-JCrJEKEHsl5o1kewHnIVVoEJvTQvFKYUSReNjWZV2hEnBThUyvfNhrH_bvoZiImW3DZ1sJQWqU7-5sz3Z7W7krPfc3ecjbrfadCHJ_KqUJLzPk27EQCvb0O7OTXg_74T3lkZiU26XkKWfovCoXnX-eVWZNYM7qKYUjNlQS1Lf23jfofB7W26GoP3jkSyfJmnvuwZaoDOMwrdKAfn9gFs2md9n_5AbwZuej5IfzI2aPNnTTMiUXcs7anOKsXbGaLdssnhoRQPyjq4MzQG19QTw7DZhWzgn5s2eTCrHEGNa6EFQWwVkdwd_Xt9rLvOXEFT_M4rb0SuYlOjfKLkvahUlFaBtRPLPbxchJNy5jHCZp7PUXQRMxNrITmOhKl4pFI-HvoVIvKfAQW8CBUOkOcC_R_ykiZVCieUoGfQXfFdEG0n1Nq13mcBDB-yjbFbC5bGCTBIBsYutB7Hrdsem9sHJG1aMm_VpFEA7Fx7JcWXolbjOImqjKL9UoiZ7SCf0HUhQ8N7s_zQf6KFNlPP73izWew278dDeXwejz4DG_pDuUnBOIYOvWvtTlB2lMXp25Z_wbVw_9H |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+machine+learning+approach+to+identify+stochastic+resonance+in+human+perceptual+thresholds&rft.jtitle=Journal+of+neuroscience+methods&rft.au=Voros%2C+Jamie&rft.au=Rise%2C+Rachel&rft.au=Sherman%2C+Sage&rft.au=Durell%2C+Abigail&rft.date=2022-05-15&rft.eissn=1872-678X&rft.volume=374&rft.spage=109559&rft_id=info:doi/10.1016%2Fj.jneumeth.2022.109559&rft_id=info%3Apmid%2F35292308&rft.externalDocID=35292308 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0270&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0270&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0270&client=summon |