Sensing system for salinity testing using laser-induced graphene sensors

•A low-cost salinity system was developed and implemented.•Laser ablated graphene was formed from commercial polyimide films.•The photo-thermally induced graphene was transferred to Kapton tapes to form sensor patches.•Salt samples with different concentrations were tested with these sensor patches...

Full description

Saved in:
Bibliographic Details
Published inSensors and actuators. A. Physical. Vol. 264; pp. 107 - 116
Main Authors Nag, Anindya, Mukhopadhyay, Subhas Chandra, Kosel, Jürgen
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 01.09.2017
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A low-cost salinity system was developed and implemented.•Laser ablated graphene was formed from commercial polyimide films.•The photo-thermally induced graphene was transferred to Kapton tapes to form sensor patches.•Salt samples with different concentrations were tested with these sensor patches via serial dilution.•A microcontroller based system was formed to enhance the signal conditioning circuit. The paper presents the development and implementation of a low-cost salinity sensing system. Commercial polymer films were laser ablated at specific conditions to form graphene-based sensors on flexible Kapton substrates. Sodium chloride was considered as the primary constituent for testing due to its prominent presence in water bodies. The sensor was characterized by testing different concentrations of sodium chloride. A standard curve was developed to perform real-time testing with a sample taken from sea water of unknown concentration. The sensitivity and resolution of these graphene sensors for the experimental solutions were 1.07Ω/ppm and 1ppm respectively. The developed system was validated by testing it with a real sample and cross checking it on the calibration curve. The signal conditioning circuit was further enhanced by embedding a microcontroller to the designed system. The obtained results did provide a platform for implementation of a low-cost salinity sensing system that could be used in marine applications.
AbstractList The paper presents the development and implementation of a low-cost salinity sensing system. Commercial polymer films were laser ablated at specific conditions to form graphene-based sensors on flexible Kapton substrates. Sodium chloride was considered as the primary constituent for testing due to its prominent presence in water bodies. The sensor was characterized by testing different concentrations of sodium chloride. A standard curve was developed to perform real-time testing with a sample taken from sea water of unknown concentration. The sensitivity and resolution of these graphene sensors for the experimental solutions were 1.07 Ω/ppm and 1 ppm respectively. The developed system was validated by testing it with a real sample and cross checking it on the calibration curve. The signal conditioning circuit was further enhanced by embedding a microcontroller to the designed system. The obtained results did provide a platform for implementation of a low-cost salinity sensing system that could be used in marine applications.
•A low-cost salinity system was developed and implemented.•Laser ablated graphene was formed from commercial polyimide films.•The photo-thermally induced graphene was transferred to Kapton tapes to form sensor patches.•Salt samples with different concentrations were tested with these sensor patches via serial dilution.•A microcontroller based system was formed to enhance the signal conditioning circuit. The paper presents the development and implementation of a low-cost salinity sensing system. Commercial polymer films were laser ablated at specific conditions to form graphene-based sensors on flexible Kapton substrates. Sodium chloride was considered as the primary constituent for testing due to its prominent presence in water bodies. The sensor was characterized by testing different concentrations of sodium chloride. A standard curve was developed to perform real-time testing with a sample taken from sea water of unknown concentration. The sensitivity and resolution of these graphene sensors for the experimental solutions were 1.07Ω/ppm and 1ppm respectively. The developed system was validated by testing it with a real sample and cross checking it on the calibration curve. The signal conditioning circuit was further enhanced by embedding a microcontroller to the designed system. The obtained results did provide a platform for implementation of a low-cost salinity sensing system that could be used in marine applications.
Author Nag, Anindya
Mukhopadhyay, Subhas Chandra
Kosel, Jürgen
Author_xml – sequence: 1
  givenname: Anindya
  surname: Nag
  fullname: Nag, Anindya
  email: anindya1991@gmail.com
  organization: Faculty of Science and Engineering, Macquarie University Sydney, NSW, Australia
– sequence: 2
  givenname: Subhas Chandra
  surname: Mukhopadhyay
  fullname: Mukhopadhyay, Subhas Chandra
  organization: Faculty of Science and Engineering, Macquarie University Sydney, NSW, Australia
– sequence: 3
  givenname: Jürgen
  surname: Kosel
  fullname: Kosel, Jürgen
  organization: Computer, Electrical and Mathematical Sciences & Engineering Division, King Abdullah University of Science and Technology (KAUST), Saudi Arabia
BookMark eNp9kD1PwzAQhi1UJNrCD2CLxJxwjtPEFhOqgCJVYgBmy3XOxVHqFNtB6r_HpUwMTDfc-9zHMyMTNzgk5JpCQYHWt10RnCpKoE0BvADgZ2RKecNyBrWYkCmIssqrsmouyCyEDgAYa5opWb2iC9Zts3AIEXeZGXwWVG-djYcsYojH3viT6FVAn1vXjhrbbOvV_gMdZiENGHy4JOdG9QGvfuucvD8-vC1X-frl6Xl5v841q3nMsa25qAVWuKnMZsOF4YwBXVCmFwi60go4QmlKhcKwRdW2iPWmbtAYKqAVbE5uTnP3fvgc04GyG0bv0kpJRb0ADqKBlGpOKe2HEDwaqW1U0Q4uemV7SUEetclOJm3yqE0Cl0lbIukfcu_tTvnDv8zdicH0-JdFL4O26JIm61FH2Q72H_obSC-I4w
CitedBy_id crossref_primary_10_1063_5_0160660
crossref_primary_10_1016_j_compositesb_2017_09_049
crossref_primary_10_3390_s21082818
crossref_primary_10_1002_adma_202008701
crossref_primary_10_1016_j_sna_2021_113172
crossref_primary_10_3390_jmse10122024
crossref_primary_10_1016_j_sna_2018_12_020
crossref_primary_10_3390_s21113602
crossref_primary_10_3390_ma15134504
crossref_primary_10_1002_adem_202100195
crossref_primary_10_1016_j_sna_2017_11_022
crossref_primary_10_1016_j_sna_2024_116046
crossref_primary_10_1016_j_sna_2017_11_023
crossref_primary_10_3390_nano12060950
crossref_primary_10_1016_j_jallcom_2025_179106
crossref_primary_10_1016_j_sna_2024_115753
crossref_primary_10_1002_adfm_202205158
crossref_primary_10_3390_s21041261
crossref_primary_10_1016_j_sna_2018_04_031
crossref_primary_10_3390_s19061462
crossref_primary_10_3390_s19071706
crossref_primary_10_1021_acsami_3c07687
crossref_primary_10_3390_mi12091037
crossref_primary_10_3390_mi13071153
crossref_primary_10_1080_1536383X_2025_2454397
crossref_primary_10_1016_j_sna_2018_01_044
crossref_primary_10_1016_j_sna_2019_03_053
crossref_primary_10_1016_j_sna_2024_115088
crossref_primary_10_1016_j_sna_2024_115363
crossref_primary_10_1016_j_compag_2024_108758
crossref_primary_10_1007_s10553_022_01439_8
crossref_primary_10_1016_j_sna_2022_113743
crossref_primary_10_1109_JSEN_2020_2992730
crossref_primary_10_1016_j_nantod_2018_12_003
crossref_primary_10_1016_j_talanta_2020_121951
crossref_primary_10_1016_j_measurement_2022_112348
crossref_primary_10_1109_ACCESS_2020_3046656
crossref_primary_10_3390_ijerph17145220
crossref_primary_10_1016_j_rinma_2019_100009
crossref_primary_10_1109_JSEN_2021_3054985
crossref_primary_10_1007_s40820_020_00496_0
crossref_primary_10_1021_acsami_9b10408
crossref_primary_10_1021_acsami_1c05614
crossref_primary_10_3788_CJL231372
crossref_primary_10_1016_j_carbon_2020_04_031
crossref_primary_10_1088_2515_7639_ab9522
crossref_primary_10_1021_acsomega_1c06093
crossref_primary_10_1016_j_matdes_2022_110971
crossref_primary_10_1002_eom2_70003
crossref_primary_10_1002_admi_201801110
crossref_primary_10_1016_j_talanta_2020_120734
crossref_primary_10_1021_acsomega_2c00268
crossref_primary_10_1021_acsanm_1c00299
crossref_primary_10_1002_bio_4373
crossref_primary_10_1016_j_microc_2025_112776
crossref_primary_10_1016_j_sna_2020_111949
crossref_primary_10_1109_JSEN_2024_3448632
crossref_primary_10_1016_j_compscitech_2022_109529
crossref_primary_10_1016_j_sna_2020_112355
crossref_primary_10_1016_j_sna_2022_113767
crossref_primary_10_1063_5_0017769
crossref_primary_10_1002_adma_201803621
crossref_primary_10_1016_j_apmt_2021_100953
crossref_primary_10_1016_j_sna_2021_113301
crossref_primary_10_2514_1_A35710
crossref_primary_10_1007_s13204_022_02560_0
crossref_primary_10_3390_s22145137
Cites_doi 10.1016/j.sna.2016.10.023
10.1016/j.bios.2012.04.042
10.1016/j.sna.2011.11.006
10.1039/C4MH00147H
10.1088/0957-0233/20/1/015204
10.1109/JSTQE.2011.2159705
10.1109/JPROC.2004.826603
10.1155/2013/529674
10.1016/j.snb.2009.04.019
10.1016/j.jfoodeng.2012.08.026
10.1109/JSEN.2016.2617878
10.1038/ncomms6714
10.1016/j.snb.2015.06.137
10.3390/s121217588
10.1016/j.orgel.2008.12.001
10.1007/s002160000493
10.1016/j.sna.2011.09.024
10.1016/j.jmmm.2014.11.067
10.1109/JSEN.2007.903335
10.1063/1.2890156
10.1109/JSEN.2014.2368989
10.1038/ncomms4132
10.1364/AO.51.003017
10.1109/TIM.2006.876541
10.1109/JPROC.2010.2040550
10.1364/OE.19.020003
10.1063/1.3432446
10.1088/0957-0233/17/8/024
10.1007/s10712-013-9244-0
10.1039/c0cc00674b
10.1002/adma.201504015
10.1016/S1369-7021(11)70186-9
10.1002/aelm.201600081
10.1021/nn1005232
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright Elsevier BV Sep 1, 2017
Copyright_xml – notice: 2017 Elsevier B.V.
– notice: Copyright Elsevier BV Sep 1, 2017
DBID AAYXX
CITATION
7TB
7U5
8FD
FR3
L7M
DOI 10.1016/j.sna.2017.08.008
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList Solid State and Superconductivity Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3069
EndPage 116
ExternalDocumentID 10_1016_j_sna_2017_08_008
S0924424717309743
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABMAC
ABNEU
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACRLP
ADBBV
ADECG
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LY7
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSK
SSQ
SST
SSZ
T5K
TN5
YK3
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
AJQLL
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMU
HVGLF
HZ~
R2-
SCB
SCH
SET
SEW
SSH
WUQ
7TB
7U5
8FD
EFKBS
FR3
L7M
ID FETCH-LOGICAL-c368t-ed68969e4eb4fbb89f83301513c5e0c4ca08e02f2ae9f354ddee6b67eff190d93
IEDL.DBID .~1
ISSN 0924-4247
IngestDate Fri Jul 25 06:10:07 EDT 2025
Tue Jul 01 01:05:25 EDT 2025
Thu Apr 24 22:52:16 EDT 2025
Fri Feb 23 02:21:11 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Salinity measurement
Polyimide
Salt concentration
Graphene
Laser-induced
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c368t-ed68969e4eb4fbb89f83301513c5e0c4ca08e02f2ae9f354ddee6b67eff190d93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink http://hdl.handle.net/10754/625346
PQID 1965080970
PQPubID 2045401
PageCount 10
ParticipantIDs proquest_journals_1965080970
crossref_citationtrail_10_1016_j_sna_2017_08_008
crossref_primary_10_1016_j_sna_2017_08_008
elsevier_sciencedirect_doi_10_1016_j_sna_2017_08_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-09-01
2017-09-00
20170901
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Sensors and actuators. A. Physical.
PublicationYear 2017
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Yaqoob, Phan, Uddin, Chung (bib0140) 2015; 221
(bib0010) 2012
Wu, Guan, Lu, Tam (bib0015) 2011; 19
Men, Lu, Chen (bib0050) 2008; 103
Malarde, Wu, Grosso, de la Tocnaye, Le Menn (bib0225) 2008; 20
Wong, Salleo (bib0085) 2009
Diaz-Herrera, Esteban, Navarrete, Le Haitre, González-Cano (bib0220) 2006; 17
Herzer, Hoeppener, Schubert (bib0175) 2010; 46
(bib0185) 2017
(bib0210) 2017
Wang, Wang, Li, Tong (bib0025) 2012; 51
Rahman, Harun, Yasin, Phang, Damanhuri, Arof (bib0065) 2011; 171
Mamishev, Sundara-Rajan, Yang, Du, Zahn (bib0235) 2004; 92
Gadani, Rana, Bhatnagar, Prajapati, Vyas (bib0055) 2012
Jeong, Lee, Choi, Lee, Kim, Lee (bib0155) 2010; 96
Alfadhel, Kosel (bib0120) 2015; 27
Briand, Oprea, Courbat, Bârsan (bib0110) 2011; 14
Gong, Schwalb, Wang, Chen, Tang, Si (bib0165) 2014; 5
Mukhopadhyay, Gooneratne, Gupta, Demidenko (bib0195) 2006; 55
Rahman, Mukhopadhyay, Yu (bib0240) 2014
Rahman (bib0205) 2014
Nag, Mukhopadhyay, Kosel (bib0095) 2016; 251
Kwak, Choi, Kim, Kim, Yoon, Ahn (bib0160) 2012; 37
Le Vine, Lagerloef, Torrusio (bib0060) 2010; 98
Li, Kavaldzhiev, Kosel (bib0115) 2015; 378
(bib0245) 2017
Khan, Tinku, Lorenzelli, Dahiya (bib0135) 2015; 15
Rahman, Mukhopadhyay, Yu, Goicoechea, Matias, Gooneratne (bib0200) 2013; 114
Robinson, Nakkeeran (bib0020) 2012
Jonsson, Smedfors, Nyholm, Thornell (bib0075) 2013; 2013
Ghoneim, Zidan, Alnassar, Hanna, Kosel, Salama (bib0125) 2015; 1
Zang, Zhang, Di, Zhu (bib0145) 2015; 2
Reul, Fournier, Boutin, Hernandez, Maes, Chapron (bib0045) 2014; 35
Dobrzynska, Gijs (bib0150) 2012; 173
(bib0005) 2017
Huber, Klimant, Krause, Werner, Mayr, Wolfbeis (bib0040) 2000; 368
Wu, Fu, Au, Guan, Tam (bib0215) 2011
Alnassar, Ivanov, Kosel (bib0130) 2016; 2
(bib0035) 2017
Mukhopadhyay, Gooneratne (bib0190) 2007; 7
Grosso, Le Menn, De La, Wu, Malardé (bib0230) 2010; 57
Hu, Kim, Lee, Peumans, Cui (bib0170) 2010; 4
Bhat (bib0080) 2005
Nag, Mukhopadhyay, Kosel (bib0090) 2016; 17
Roberts, Mannsfeld, Stoltenberg, Bao (bib0100) 2009; 10
Lin, Peng, Liu, Ruiz-Zepeda, Ye, Samuel (bib0180) 2014; 5
Scudiero, Berti, Teatini, Morari (bib0070) 2012; 12
Oprea, Courbat, Bârsan, Briand, De Rooij, Weimar (bib0105) 2009; 140
Rahman, Harun, Yasin, Ahmad (bib0030) 2012; 18
Rahman (10.1016/j.sna.2017.08.008_bib0065) 2011; 171
(10.1016/j.sna.2017.08.008_bib0245) 2017
Rahman (10.1016/j.sna.2017.08.008_bib0240) 2014
Nag (10.1016/j.sna.2017.08.008_bib0095) 2016; 251
Li (10.1016/j.sna.2017.08.008_bib0115) 2015; 378
Roberts (10.1016/j.sna.2017.08.008_bib0100) 2009; 10
Mamishev (10.1016/j.sna.2017.08.008_bib0235) 2004; 92
Le Vine (10.1016/j.sna.2017.08.008_bib0060) 2010; 98
Malarde (10.1016/j.sna.2017.08.008_bib0225) 2008; 20
Gong (10.1016/j.sna.2017.08.008_bib0165) 2014; 5
Mukhopadhyay (10.1016/j.sna.2017.08.008_bib0190) 2007; 7
Wu (10.1016/j.sna.2017.08.008_bib0215) 2011
Grosso (10.1016/j.sna.2017.08.008_bib0230) 2010; 57
Men (10.1016/j.sna.2017.08.008_bib0050) 2008; 103
Reul (10.1016/j.sna.2017.08.008_bib0045) 2014; 35
Jeong (10.1016/j.sna.2017.08.008_bib0155) 2010; 96
Rahman (10.1016/j.sna.2017.08.008_bib0205) 2014
Wang (10.1016/j.sna.2017.08.008_bib0025) 2012; 51
Wu (10.1016/j.sna.2017.08.008_bib0015) 2011; 19
(10.1016/j.sna.2017.08.008_bib0035) 2017
Ghoneim (10.1016/j.sna.2017.08.008_bib0125) 2015; 1
Alnassar (10.1016/j.sna.2017.08.008_bib0130) 2016; 2
Hu (10.1016/j.sna.2017.08.008_bib0170) 2010; 4
Huber (10.1016/j.sna.2017.08.008_bib0040) 2000; 368
(10.1016/j.sna.2017.08.008_bib0010) 2012
(10.1016/j.sna.2017.08.008_bib0185) 2017
(10.1016/j.sna.2017.08.008_bib0210) 2017
Robinson (10.1016/j.sna.2017.08.008_bib0020) 2012
Rahman (10.1016/j.sna.2017.08.008_bib0030) 2012; 18
Yaqoob (10.1016/j.sna.2017.08.008_bib0140) 2015; 221
Zang (10.1016/j.sna.2017.08.008_bib0145) 2015; 2
Rahman (10.1016/j.sna.2017.08.008_bib0200) 2013; 114
Khan (10.1016/j.sna.2017.08.008_bib0135) 2015; 15
Nag (10.1016/j.sna.2017.08.008_bib0090) 2016; 17
Alfadhel (10.1016/j.sna.2017.08.008_bib0120) 2015; 27
Dobrzynska (10.1016/j.sna.2017.08.008_bib0150) 2012; 173
Jonsson (10.1016/j.sna.2017.08.008_bib0075) 2013; 2013
Gadani (10.1016/j.sna.2017.08.008_bib0055) 2012
Briand (10.1016/j.sna.2017.08.008_bib0110) 2011; 14
Mukhopadhyay (10.1016/j.sna.2017.08.008_bib0195) 2006; 55
Herzer (10.1016/j.sna.2017.08.008_bib0175) 2010; 46
Bhat (10.1016/j.sna.2017.08.008_bib0080) 2005
Scudiero (10.1016/j.sna.2017.08.008_bib0070) 2012; 12
(10.1016/j.sna.2017.08.008_bib0005) 2017
Diaz-Herrera (10.1016/j.sna.2017.08.008_bib0220) 2006; 17
Wong (10.1016/j.sna.2017.08.008_bib0085) 2009
Oprea (10.1016/j.sna.2017.08.008_bib0105) 2009; 140
Kwak (10.1016/j.sna.2017.08.008_bib0160) 2012; 37
Lin (10.1016/j.sna.2017.08.008_bib0180) 2014; 5
References_xml – volume: 140
  start-page: 227
  year: 2009
  end-page: 232
  ident: bib0105
  article-title: Temperature, humidity and gas sensors integrated on plastic foil for low power applications
  publication-title: Sens. Actuators B
– start-page: 37
  year: 2014
  end-page: 71
  ident: bib0240
  article-title: Experimental Investigation: Impedance Characterization
  publication-title: Novel sensors for food inspection: modelling, fabrication and experimentation
– volume: 27
  start-page: 7888
  year: 2015
  end-page: 7892
  ident: bib0120
  article-title: Magnetic nanocomposite cilia tactile sensor
  publication-title: Adv. Mater.
– start-page: 2015
  year: 2017
  end-page: 2016
  ident: bib0035
  article-title: Murray-Darling Basin Authority Annual Report
– volume: 4
  start-page: 2955
  year: 2010
  end-page: 2963
  ident: bib0170
  article-title: Scalable coating and properties of transparent, flexible, silver nanowire electrodes
  publication-title: ACS Nano
– volume: 17
  start-page: 2227
  year: 2006
  ident: bib0220
  article-title: In situ salinity measurements in seawater with a fibre-optic probe
  publication-title: Meas. Sci. Technol.
– volume: 18
  start-page: 1529
  year: 2012
  end-page: 1533
  ident: bib0030
  article-title: Fiber-optic salinity sensor using fiber-optic displacement measurement with flat and concave mirror
  publication-title: IEEE J. Sel. Top. Quantum Electron.
– volume: 1
  year: 2015
  ident: bib0125
  article-title: Thin PZT–Based ferroelectric capacitors on flexible silicon for nonvolatile memory applications
  publication-title: Adva. Electron. Mater.
– volume: 15
  start-page: 3146
  year: 2015
  end-page: 3155
  ident: bib0135
  article-title: Flexible tactile sensors using screen-printed P (VDF-TrFE) and MWCNT/PDMS composites
  publication-title: IEEE Sens. J.
– volume: 96
  start-page: 213105
  year: 2010
  ident: bib0155
  article-title: Flexible room-temperature NO 2 gas sensors based on carbon nanotubes/reduced graphene hybrid films
  publication-title: Appl. Phys. Lett.
– volume: 37
  start-page: 82
  year: 2012
  end-page: 87
  ident: bib0160
  article-title: Flexible glucose sensor using CVD-grown graphene-based field effect transistor
  publication-title: Biosens. Bioelectron.
– year: 2017
  ident: bib0210
  article-title: EIS Spectrum Analyzer
– volume: 10
  start-page: 377
  year: 2009
  end-page: 383
  ident: bib0100
  article-title: Flexible, plastic transistor-based chemical sensors
  publication-title: Org. Electron.
– volume: 92
  start-page: 808
  year: 2004
  end-page: 845
  ident: bib0235
  article-title: Interdigital sensors and transducers
  publication-title: Proceedings of the IEEE
– volume: 221
  start-page: 760
  year: 2015
  end-page: 768
  ident: bib0140
  article-title: Highly flexible room temperature NO 2 sensor based on MWCNTs-WO 3 nanoparticles hybrid on a PET substrate
  publication-title: Sens. Actuators B
– year: 2011
  ident: bib0215
  article-title: High-sensitivity salinity sensor realized with photonic crystal fiber Sagnac interferometer
  publication-title: 21st International Conference on Optical Fibre Sensors (OFS21
– volume: 55
  start-page: 1331
  year: 2006
  end-page: 1338
  ident: bib0195
  article-title: A low-cost sensing system for quality monitoring of dairy products
  publication-title: IEEE Trans. Instrum. Meas.
– year: 2017
  ident: bib0245
  article-title: Kapton Properties
– volume: 57
  start-page: 151
  year: 2010
  end-page: 156
  ident: bib0230
  article-title: Practical versus absolute salinity measurements: New advances in high performance seawater salinity sensors
  publication-title: Deep Sea Research Part I: Oceanographic Research Papers
– volume: 19
  start-page: 20003
  year: 2011
  end-page: 20008
  ident: bib0015
  article-title: Salinity sensor based on polyimide-coated photonic crystal fiber
  publication-title: Opt. Express
– volume: 51
  start-page: 3017
  year: 2012
  end-page: 3023
  ident: bib0025
  article-title: Modeling optical microfiber loops for seawater sensing
  publication-title: Appl. Opt.
– volume: 378
  start-page: 499
  year: 2015
  end-page: 505
  ident: bib0115
  article-title: Flexible magnetoimpedance sensor
  publication-title: J. Magn. Magn. Mater.
– year: 2017
  ident: bib0185
  article-title: Graphene Paints a Corrosion-free Future
– volume: 46
  start-page: 5634
  year: 2010
  end-page: 5652
  ident: bib0175
  article-title: Fabrication of patterned silane based self-assembled monolayers by photolithography and surface reactions on silicon-oxide substrates
  publication-title: Chem. Commun.
– volume: 17
  start-page: 7
  year: 2016
  end-page: 13
  ident: bib0090
  article-title: Tactile sensing from laser-Ablated metallized PET films
  publication-title: IEEE Sens. J.
– start-page: 11
  year: 2014
  end-page: 35
  ident: bib0205
  article-title: Novel Planar Interdigital Sensors, Novel Sensors for Food Inspection: Modelling, Fabrication and Experimentation
– year: 2012
  ident: bib0010
  article-title: Changes in Marine Salinity Levels
– year: 2012
  ident: bib0055
  article-title: Effect of Salinity on the Dielectric Properties of Water
– volume: 5
  year: 2014
  ident: bib0180
  article-title: Laser-induced porous graphene films from commercial polymers
  publication-title: Nat. Commun.
– year: 2005
  ident: bib0080
  article-title: Salinity (conductivity) Sensor Based on Parallel Plate Capacitors
– year: 2017
  ident: bib0005
  article-title: Natural Environment
– volume: 2
  start-page: 140
  year: 2015
  end-page: 156
  ident: bib0145
  article-title: Advances of flexible pressure sensors toward artificial intelligence and health care applications
  publication-title: Mater. Horiz.
– volume: 5
  year: 2014
  ident: bib0165
  article-title: A wearable and highly sensitive pressure sensor with ultrathin gold nanowires
  publication-title: Nat. Commun.
– volume: 35
  start-page: 681
  year: 2014
  end-page: 722
  ident: bib0045
  article-title: Sea surface salinity observations from space with the SMOS satellite: a new means to monitor the marine branch of the water cycle
  publication-title: Surv. Geophys.
– year: 2009
  ident: bib0085
  article-title: Flexible Electronics: Materials and Applications
– volume: 20
  start-page: 015204
  year: 2008
  ident: bib0225
  article-title: High-resolution and compact refractometer for salinity measurements
  publication-title: Meas. Sci. Technol.
– volume: 2
  year: 2016
  ident: bib0130
  article-title: Flexible magnetoelectric nanocomposites with tunable properties
  publication-title: Adv. Electronic Mater.
– volume: 103
  start-page: 053107
  year: 2008
  ident: bib0050
  article-title: A multiplexed fiber Bragg grating sensor for simultaneous salinity and temperature measurement
  publication-title: J. Appl. Phys.
– volume: 251
  start-page: 148
  year: 2016
  end-page: 155
  ident: bib0095
  article-title: Flexible carbon nanotube nanocomposite sensor for multiple physiological parameter monitoring
  publication-title: Sens. Actuat. A: Phys.
– volume: 114
  start-page: 346
  year: 2013
  end-page: 360
  ident: bib0200
  article-title: Detection of bacterial endotoxin in food: new planar interdigital sensors based approach
  publication-title: J. Food Eng.
– volume: 171
  start-page: 219
  year: 2011
  end-page: 222
  ident: bib0065
  article-title: Tapered plastic multimode fiber sensor for salinity detection
  publication-title: Sensor Actuat. A: Phys.
– start-page: 495
  year: 2012
  end-page: 499
  ident: bib0020
  article-title: Photonic crystal based sensor for sensing the salinity of seawater, Advances in Engineering
  publication-title: Science and Management (ICAESM)
– volume: 98
  start-page: 688
  year: 2010
  end-page: 703
  ident: bib0060
  article-title: Aquarius and remote sensing of sea surface salinity from space
  publication-title: Proceedings of the IEEE
– volume: 173
  start-page: 127
  year: 2012
  end-page: 135
  ident: bib0150
  article-title: Flexible polyimide-based force sensor
  publication-title: Sens. Actuat. A: Phys.
– volume: 14
  start-page: 416
  year: 2011
  end-page: 423
  ident: bib0110
  article-title: Making environmental sensors on plastic foil
  publication-title: Mater. Today
– volume: 2013
  start-page: 1
  year: 2013
  end-page: 11
  ident: bib0075
  article-title: Towards chip-based salinity measurements for small submersibles and biologgers
  publication-title: Int. J. Oceanogr.
– volume: 7
  start-page: 1340
  year: 2007
  end-page: 1346
  ident: bib0190
  article-title: A novel planar-type biosensor for noninvasive meat inspection
  publication-title: Sen. J. IEEE
– volume: 368
  start-page: 196
  year: 2000
  end-page: 202
  ident: bib0040
  article-title: Optical sensor for seawater salinity
  publication-title: Fresenius' J. Anal. chem.
– volume: 12
  start-page: 17588
  year: 2012
  end-page: 17607
  ident: bib0070
  article-title: Simultaneous monitoring of soil water content and salinity with a low-cost capacitance-resistance probe
  publication-title: Sensors
– volume: 251
  start-page: 148
  year: 2016
  ident: 10.1016/j.sna.2017.08.008_bib0095
  article-title: Flexible carbon nanotube nanocomposite sensor for multiple physiological parameter monitoring
  publication-title: Sens. Actuat. A: Phys.
  doi: 10.1016/j.sna.2016.10.023
– year: 2011
  ident: 10.1016/j.sna.2017.08.008_bib0215
  article-title: High-sensitivity salinity sensor realized with photonic crystal fiber Sagnac interferometer
– volume: 1
  year: 2015
  ident: 10.1016/j.sna.2017.08.008_bib0125
  article-title: Thin PZT–Based ferroelectric capacitors on flexible silicon for nonvolatile memory applications
  publication-title: Adva. Electron. Mater.
– volume: 37
  start-page: 82
  year: 2012
  ident: 10.1016/j.sna.2017.08.008_bib0160
  article-title: Flexible glucose sensor using CVD-grown graphene-based field effect transistor
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2012.04.042
– volume: 173
  start-page: 127
  year: 2012
  ident: 10.1016/j.sna.2017.08.008_bib0150
  article-title: Flexible polyimide-based force sensor
  publication-title: Sens. Actuat. A: Phys.
  doi: 10.1016/j.sna.2011.11.006
– volume: 2
  start-page: 140
  year: 2015
  ident: 10.1016/j.sna.2017.08.008_bib0145
  article-title: Advances of flexible pressure sensors toward artificial intelligence and health care applications
  publication-title: Mater. Horiz.
  doi: 10.1039/C4MH00147H
– volume: 20
  start-page: 015204
  year: 2008
  ident: 10.1016/j.sna.2017.08.008_bib0225
  article-title: High-resolution and compact refractometer for salinity measurements
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/20/1/015204
– volume: 18
  start-page: 1529
  year: 2012
  ident: 10.1016/j.sna.2017.08.008_bib0030
  article-title: Fiber-optic salinity sensor using fiber-optic displacement measurement with flat and concave mirror
  publication-title: IEEE J. Sel. Top. Quantum Electron.
  doi: 10.1109/JSTQE.2011.2159705
– year: 2012
  ident: 10.1016/j.sna.2017.08.008_bib0055
– volume: 92
  start-page: 808
  year: 2004
  ident: 10.1016/j.sna.2017.08.008_bib0235
  article-title: Interdigital sensors and transducers
  publication-title: Proceedings of the IEEE
  doi: 10.1109/JPROC.2004.826603
– volume: 2013
  start-page: 1
  year: 2013
  ident: 10.1016/j.sna.2017.08.008_bib0075
  article-title: Towards chip-based salinity measurements for small submersibles and biologgers
  publication-title: Int. J. Oceanogr.
  doi: 10.1155/2013/529674
– year: 2012
  ident: 10.1016/j.sna.2017.08.008_bib0010
– year: 2017
  ident: 10.1016/j.sna.2017.08.008_bib0210
– volume: 140
  start-page: 227
  year: 2009
  ident: 10.1016/j.sna.2017.08.008_bib0105
  article-title: Temperature, humidity and gas sensors integrated on plastic foil for low power applications
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2009.04.019
– volume: 114
  start-page: 346
  year: 2013
  ident: 10.1016/j.sna.2017.08.008_bib0200
  article-title: Detection of bacterial endotoxin in food: new planar interdigital sensors based approach
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2012.08.026
– volume: 17
  start-page: 7
  year: 2016
  ident: 10.1016/j.sna.2017.08.008_bib0090
  article-title: Tactile sensing from laser-Ablated metallized PET films
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2016.2617878
– volume: 5
  year: 2014
  ident: 10.1016/j.sna.2017.08.008_bib0180
  article-title: Laser-induced porous graphene films from commercial polymers
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6714
– volume: 221
  start-page: 760
  year: 2015
  ident: 10.1016/j.sna.2017.08.008_bib0140
  article-title: Highly flexible room temperature NO 2 sensor based on MWCNTs-WO 3 nanoparticles hybrid on a PET substrate
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2015.06.137
– volume: 12
  start-page: 17588
  year: 2012
  ident: 10.1016/j.sna.2017.08.008_bib0070
  article-title: Simultaneous monitoring of soil water content and salinity with a low-cost capacitance-resistance probe
  publication-title: Sensors
  doi: 10.3390/s121217588
– volume: 10
  start-page: 377
  year: 2009
  ident: 10.1016/j.sna.2017.08.008_bib0100
  article-title: Flexible, plastic transistor-based chemical sensors
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2008.12.001
– volume: 368
  start-page: 196
  year: 2000
  ident: 10.1016/j.sna.2017.08.008_bib0040
  article-title: Optical sensor for seawater salinity
  publication-title: Fresenius' J. Anal. chem.
  doi: 10.1007/s002160000493
– year: 2009
  ident: 10.1016/j.sna.2017.08.008_bib0085
– start-page: 495
  year: 2012
  ident: 10.1016/j.sna.2017.08.008_bib0020
  article-title: Photonic crystal based sensor for sensing the salinity of seawater, Advances in Engineering
– volume: 171
  start-page: 219
  year: 2011
  ident: 10.1016/j.sna.2017.08.008_bib0065
  article-title: Tapered plastic multimode fiber sensor for salinity detection
  publication-title: Sensor Actuat. A: Phys.
  doi: 10.1016/j.sna.2011.09.024
– volume: 378
  start-page: 499
  year: 2015
  ident: 10.1016/j.sna.2017.08.008_bib0115
  article-title: Flexible magnetoimpedance sensor
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2014.11.067
– volume: 7
  start-page: 1340
  year: 2007
  ident: 10.1016/j.sna.2017.08.008_bib0190
  article-title: A novel planar-type biosensor for noninvasive meat inspection
  publication-title: Sen. J. IEEE
  doi: 10.1109/JSEN.2007.903335
– volume: 103
  start-page: 053107
  year: 2008
  ident: 10.1016/j.sna.2017.08.008_bib0050
  article-title: A multiplexed fiber Bragg grating sensor for simultaneous salinity and temperature measurement
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2890156
– start-page: 11
  year: 2014
  ident: 10.1016/j.sna.2017.08.008_bib0205
– start-page: 2015
  year: 2017
  ident: 10.1016/j.sna.2017.08.008_bib0035
– volume: 57
  start-page: 151
  year: 2010
  ident: 10.1016/j.sna.2017.08.008_bib0230
  article-title: Practical versus absolute salinity measurements: New advances in high performance seawater salinity sensors
– start-page: 37
  year: 2014
  ident: 10.1016/j.sna.2017.08.008_bib0240
  article-title: Experimental Investigation: Impedance Characterization
– year: 2017
  ident: 10.1016/j.sna.2017.08.008_bib0185
– volume: 15
  start-page: 3146
  year: 2015
  ident: 10.1016/j.sna.2017.08.008_bib0135
  article-title: Flexible tactile sensors using screen-printed P (VDF-TrFE) and MWCNT/PDMS composites
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2014.2368989
– volume: 5
  year: 2014
  ident: 10.1016/j.sna.2017.08.008_bib0165
  article-title: A wearable and highly sensitive pressure sensor with ultrathin gold nanowires
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4132
– volume: 51
  start-page: 3017
  year: 2012
  ident: 10.1016/j.sna.2017.08.008_bib0025
  article-title: Modeling optical microfiber loops for seawater sensing
  publication-title: Appl. Opt.
  doi: 10.1364/AO.51.003017
– volume: 55
  start-page: 1331
  year: 2006
  ident: 10.1016/j.sna.2017.08.008_bib0195
  article-title: A low-cost sensing system for quality monitoring of dairy products
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2006.876541
– volume: 98
  start-page: 688
  year: 2010
  ident: 10.1016/j.sna.2017.08.008_bib0060
  article-title: Aquarius and remote sensing of sea surface salinity from space
  publication-title: Proceedings of the IEEE
  doi: 10.1109/JPROC.2010.2040550
– volume: 19
  start-page: 20003
  year: 2011
  ident: 10.1016/j.sna.2017.08.008_bib0015
  article-title: Salinity sensor based on polyimide-coated photonic crystal fiber
  publication-title: Opt. Express
  doi: 10.1364/OE.19.020003
– volume: 96
  start-page: 213105
  year: 2010
  ident: 10.1016/j.sna.2017.08.008_bib0155
  article-title: Flexible room-temperature NO 2 gas sensors based on carbon nanotubes/reduced graphene hybrid films
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3432446
– volume: 17
  start-page: 2227
  year: 2006
  ident: 10.1016/j.sna.2017.08.008_bib0220
  article-title: In situ salinity measurements in seawater with a fibre-optic probe
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/17/8/024
– volume: 35
  start-page: 681
  year: 2014
  ident: 10.1016/j.sna.2017.08.008_bib0045
  article-title: Sea surface salinity observations from space with the SMOS satellite: a new means to monitor the marine branch of the water cycle
  publication-title: Surv. Geophys.
  doi: 10.1007/s10712-013-9244-0
– volume: 46
  start-page: 5634
  year: 2010
  ident: 10.1016/j.sna.2017.08.008_bib0175
  article-title: Fabrication of patterned silane based self-assembled monolayers by photolithography and surface reactions on silicon-oxide substrates
  publication-title: Chem. Commun.
  doi: 10.1039/c0cc00674b
– year: 2017
  ident: 10.1016/j.sna.2017.08.008_bib0245
– volume: 27
  start-page: 7888
  year: 2015
  ident: 10.1016/j.sna.2017.08.008_bib0120
  article-title: Magnetic nanocomposite cilia tactile sensor
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504015
– year: 2017
  ident: 10.1016/j.sna.2017.08.008_bib0005
– year: 2005
  ident: 10.1016/j.sna.2017.08.008_bib0080
– volume: 14
  start-page: 416
  year: 2011
  ident: 10.1016/j.sna.2017.08.008_bib0110
  article-title: Making environmental sensors on plastic foil
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(11)70186-9
– volume: 2
  year: 2016
  ident: 10.1016/j.sna.2017.08.008_bib0130
  article-title: Flexible magnetoelectric nanocomposites with tunable properties
  publication-title: Adv. Electronic Mater.
  doi: 10.1002/aelm.201600081
– volume: 4
  start-page: 2955
  year: 2010
  ident: 10.1016/j.sna.2017.08.008_bib0170
  article-title: Scalable coating and properties of transparent, flexible, silver nanowire electrodes
  publication-title: ACS Nano
  doi: 10.1021/nn1005232
SSID ssj0003377
Score 2.5058756
Snippet •A low-cost salinity system was developed and implemented.•Laser ablated graphene was formed from commercial polyimide films.•The photo-thermally induced...
The paper presents the development and implementation of a low-cost salinity sensing system. Commercial polymer films were laser ablated at specific conditions...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107
SubjectTerms Circuit design
Detection
Embedded systems
Graphene
Kapton (trademark)
Laser-induced
Lasers
Polyimide
Polyimide resins
Polymer films
Salinity
Salinity measurement
Salt concentration
Seawater
Sensors
Sodium chloride
Substrates
Title Sensing system for salinity testing using laser-induced graphene sensors
URI https://dx.doi.org/10.1016/j.sna.2017.08.008
https://www.proquest.com/docview/1965080970
Volume 264
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIpCqTIwIYW6yeXhsaqoAogupVI3y0lsVITSqkkHFn47d3nwEurAEinJ2YrO9ufP8fk7xq54GoITJ4ENwjh48QJbpGFqp8ZTWgAyWEP_Ox4nfjSD-7k3b7FRcxaGwipr7K8wvUTr-km_9mZ_tVj0pxyXDuAAbSNzrJMUPwEC6uU3719hHq5bZl8kY5usm53NMsYrz0h6aBCUKp6UYfLvuekXSpdTz_iA7dec0RpWn3XIWjo7YnvflASPWTSlQPTs2aqUmS2kolau6NRj8WYVpKSB7zalBdJlvbZxKY6NmlqlYDXinZVjBct1fsJm49unUWTXSRLsxPXDwtapHwpfaNAxmDgOhQldHLTewE08zRNIFA81d4yDrjeuBwhn2o_9QBuDXCAV7ilrZ8tMnzHLI2UbBxLuKABsQ2SOoBTJ66hEKB13GG_cI5NaQZwSWbzKJlTsRaJHJXlUUnJLHnbY9WeRVSWfsc0YGp_LH31AIrxvK9Zt2kfWAzCXJJSIZFgE_Px_tV6wXbqrwsm6rF2sN_oS-UcR98oO1mM7w7uHaPIBSMfaHQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV05T8MwFLYqGIABcYqjgAdYkEKN41wDA-JQocBSkNiMk9gIhNKqSYW68Kf4g7znJFxCHZC6ZIgPWZ9f3hE_f4-QXZaGgsdJ4IjIcHh4gROlYeqkxlM6EuDBGvzfcX3jt-_E5b133yDv9V0YTKusdH-p0622rt60KjRb_aenVpdB6CC4wGNkBnPWFaw7evQKcVt-dHEKm7zH-fnZ7UnbqUoLOInrh4WjUz-M_EgLHQsTx2FkQgjswfq5iadZIhLFQs244bBg43oClID2Yz_QxoAFTZGBCfT-tAB1gWUTDt6-8kpc15Z7xNU5uLz6KNUmleUZch0dBpY2FEta_m0Mf5kFa-vOF8h85aTS4xKHRdLQ2RKZ-0ZduEzaXcx8zx5pSQVNwfelucJrlsWIFkjdAW1D2wP8cz1wIPYHKUqpZcgGBUtzmKA3yFfI3USgWyVTWS_Ta4R6SKXDRcK4EgKEBlxVoRTy-agkUjpeJ6yGRyYVZTlWzniRdW7aswREJSIqsZomC9fJ_ueQfsnXMa6zqDGXP4ROgj0ZN6xZ74-svvhcIjMjeN9RwDb-N-sOmWnfXl_Jq4ubziaZxZYyl61JporBUG-B81PE21bYKHmYtHR_AN0JF0g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensing+system+for+salinity+testing+using+laser-induced+graphene+sensors&rft.jtitle=Sensors+and+actuators.+A.+Physical.&rft.au=Nag%2C+Anindya&rft.au=Mukhopadhyay%2C+Subhas+Chandra&rft.au=Kosel%2C+J%C3%BCrgen&rft.date=2017-09-01&rft.pub=Elsevier+BV&rft.issn=0924-4247&rft.eissn=1873-3069&rft.volume=264&rft.spage=107&rft_id=info:doi/10.1016%2Fj.sna.2017.08.008&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-4247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-4247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-4247&client=summon