Sensing system for salinity testing using laser-induced graphene sensors
•A low-cost salinity system was developed and implemented.•Laser ablated graphene was formed from commercial polyimide films.•The photo-thermally induced graphene was transferred to Kapton tapes to form sensor patches.•Salt samples with different concentrations were tested with these sensor patches...
Saved in:
Published in | Sensors and actuators. A. Physical. Vol. 264; pp. 107 - 116 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
01.09.2017
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A low-cost salinity system was developed and implemented.•Laser ablated graphene was formed from commercial polyimide films.•The photo-thermally induced graphene was transferred to Kapton tapes to form sensor patches.•Salt samples with different concentrations were tested with these sensor patches via serial dilution.•A microcontroller based system was formed to enhance the signal conditioning circuit.
The paper presents the development and implementation of a low-cost salinity sensing system. Commercial polymer films were laser ablated at specific conditions to form graphene-based sensors on flexible Kapton substrates. Sodium chloride was considered as the primary constituent for testing due to its prominent presence in water bodies. The sensor was characterized by testing different concentrations of sodium chloride. A standard curve was developed to perform real-time testing with a sample taken from sea water of unknown concentration. The sensitivity and resolution of these graphene sensors for the experimental solutions were 1.07Ω/ppm and 1ppm respectively. The developed system was validated by testing it with a real sample and cross checking it on the calibration curve. The signal conditioning circuit was further enhanced by embedding a microcontroller to the designed system. The obtained results did provide a platform for implementation of a low-cost salinity sensing system that could be used in marine applications. |
---|---|
AbstractList | The paper presents the development and implementation of a low-cost salinity sensing system. Commercial polymer films were laser ablated at specific conditions to form graphene-based sensors on flexible Kapton substrates. Sodium chloride was considered as the primary constituent for testing due to its prominent presence in water bodies. The sensor was characterized by testing different concentrations of sodium chloride. A standard curve was developed to perform real-time testing with a sample taken from sea water of unknown concentration. The sensitivity and resolution of these graphene sensors for the experimental solutions were 1.07 Ω/ppm and 1 ppm respectively. The developed system was validated by testing it with a real sample and cross checking it on the calibration curve. The signal conditioning circuit was further enhanced by embedding a microcontroller to the designed system. The obtained results did provide a platform for implementation of a low-cost salinity sensing system that could be used in marine applications. •A low-cost salinity system was developed and implemented.•Laser ablated graphene was formed from commercial polyimide films.•The photo-thermally induced graphene was transferred to Kapton tapes to form sensor patches.•Salt samples with different concentrations were tested with these sensor patches via serial dilution.•A microcontroller based system was formed to enhance the signal conditioning circuit. The paper presents the development and implementation of a low-cost salinity sensing system. Commercial polymer films were laser ablated at specific conditions to form graphene-based sensors on flexible Kapton substrates. Sodium chloride was considered as the primary constituent for testing due to its prominent presence in water bodies. The sensor was characterized by testing different concentrations of sodium chloride. A standard curve was developed to perform real-time testing with a sample taken from sea water of unknown concentration. The sensitivity and resolution of these graphene sensors for the experimental solutions were 1.07Ω/ppm and 1ppm respectively. The developed system was validated by testing it with a real sample and cross checking it on the calibration curve. The signal conditioning circuit was further enhanced by embedding a microcontroller to the designed system. The obtained results did provide a platform for implementation of a low-cost salinity sensing system that could be used in marine applications. |
Author | Nag, Anindya Mukhopadhyay, Subhas Chandra Kosel, Jürgen |
Author_xml | – sequence: 1 givenname: Anindya surname: Nag fullname: Nag, Anindya email: anindya1991@gmail.com organization: Faculty of Science and Engineering, Macquarie University Sydney, NSW, Australia – sequence: 2 givenname: Subhas Chandra surname: Mukhopadhyay fullname: Mukhopadhyay, Subhas Chandra organization: Faculty of Science and Engineering, Macquarie University Sydney, NSW, Australia – sequence: 3 givenname: Jürgen surname: Kosel fullname: Kosel, Jürgen organization: Computer, Electrical and Mathematical Sciences & Engineering Division, King Abdullah University of Science and Technology (KAUST), Saudi Arabia |
BookMark | eNp9kD1PwzAQhi1UJNrCD2CLxJxwjtPEFhOqgCJVYgBmy3XOxVHqFNtB6r_HpUwMTDfc-9zHMyMTNzgk5JpCQYHWt10RnCpKoE0BvADgZ2RKecNyBrWYkCmIssqrsmouyCyEDgAYa5opWb2iC9Zts3AIEXeZGXwWVG-djYcsYojH3viT6FVAn1vXjhrbbOvV_gMdZiENGHy4JOdG9QGvfuucvD8-vC1X-frl6Xl5v841q3nMsa25qAVWuKnMZsOF4YwBXVCmFwi60go4QmlKhcKwRdW2iPWmbtAYKqAVbE5uTnP3fvgc04GyG0bv0kpJRb0ADqKBlGpOKe2HEDwaqW1U0Q4uemV7SUEetclOJm3yqE0Cl0lbIukfcu_tTvnDv8zdicH0-JdFL4O26JIm61FH2Q72H_obSC-I4w |
CitedBy_id | crossref_primary_10_1063_5_0160660 crossref_primary_10_1016_j_compositesb_2017_09_049 crossref_primary_10_3390_s21082818 crossref_primary_10_1002_adma_202008701 crossref_primary_10_1016_j_sna_2021_113172 crossref_primary_10_3390_jmse10122024 crossref_primary_10_1016_j_sna_2018_12_020 crossref_primary_10_3390_s21113602 crossref_primary_10_3390_ma15134504 crossref_primary_10_1002_adem_202100195 crossref_primary_10_1016_j_sna_2017_11_022 crossref_primary_10_1016_j_sna_2024_116046 crossref_primary_10_1016_j_sna_2017_11_023 crossref_primary_10_3390_nano12060950 crossref_primary_10_1016_j_jallcom_2025_179106 crossref_primary_10_1016_j_sna_2024_115753 crossref_primary_10_1002_adfm_202205158 crossref_primary_10_3390_s21041261 crossref_primary_10_1016_j_sna_2018_04_031 crossref_primary_10_3390_s19061462 crossref_primary_10_3390_s19071706 crossref_primary_10_1021_acsami_3c07687 crossref_primary_10_3390_mi12091037 crossref_primary_10_3390_mi13071153 crossref_primary_10_1080_1536383X_2025_2454397 crossref_primary_10_1016_j_sna_2018_01_044 crossref_primary_10_1016_j_sna_2019_03_053 crossref_primary_10_1016_j_sna_2024_115088 crossref_primary_10_1016_j_sna_2024_115363 crossref_primary_10_1016_j_compag_2024_108758 crossref_primary_10_1007_s10553_022_01439_8 crossref_primary_10_1016_j_sna_2022_113743 crossref_primary_10_1109_JSEN_2020_2992730 crossref_primary_10_1016_j_nantod_2018_12_003 crossref_primary_10_1016_j_talanta_2020_121951 crossref_primary_10_1016_j_measurement_2022_112348 crossref_primary_10_1109_ACCESS_2020_3046656 crossref_primary_10_3390_ijerph17145220 crossref_primary_10_1016_j_rinma_2019_100009 crossref_primary_10_1109_JSEN_2021_3054985 crossref_primary_10_1007_s40820_020_00496_0 crossref_primary_10_1021_acsami_9b10408 crossref_primary_10_1021_acsami_1c05614 crossref_primary_10_3788_CJL231372 crossref_primary_10_1016_j_carbon_2020_04_031 crossref_primary_10_1088_2515_7639_ab9522 crossref_primary_10_1021_acsomega_1c06093 crossref_primary_10_1016_j_matdes_2022_110971 crossref_primary_10_1002_eom2_70003 crossref_primary_10_1002_admi_201801110 crossref_primary_10_1016_j_talanta_2020_120734 crossref_primary_10_1021_acsomega_2c00268 crossref_primary_10_1021_acsanm_1c00299 crossref_primary_10_1002_bio_4373 crossref_primary_10_1016_j_microc_2025_112776 crossref_primary_10_1016_j_sna_2020_111949 crossref_primary_10_1109_JSEN_2024_3448632 crossref_primary_10_1016_j_compscitech_2022_109529 crossref_primary_10_1016_j_sna_2020_112355 crossref_primary_10_1016_j_sna_2022_113767 crossref_primary_10_1063_5_0017769 crossref_primary_10_1002_adma_201803621 crossref_primary_10_1016_j_apmt_2021_100953 crossref_primary_10_1016_j_sna_2021_113301 crossref_primary_10_2514_1_A35710 crossref_primary_10_1007_s13204_022_02560_0 crossref_primary_10_3390_s22145137 |
Cites_doi | 10.1016/j.sna.2016.10.023 10.1016/j.bios.2012.04.042 10.1016/j.sna.2011.11.006 10.1039/C4MH00147H 10.1088/0957-0233/20/1/015204 10.1109/JSTQE.2011.2159705 10.1109/JPROC.2004.826603 10.1155/2013/529674 10.1016/j.snb.2009.04.019 10.1016/j.jfoodeng.2012.08.026 10.1109/JSEN.2016.2617878 10.1038/ncomms6714 10.1016/j.snb.2015.06.137 10.3390/s121217588 10.1016/j.orgel.2008.12.001 10.1007/s002160000493 10.1016/j.sna.2011.09.024 10.1016/j.jmmm.2014.11.067 10.1109/JSEN.2007.903335 10.1063/1.2890156 10.1109/JSEN.2014.2368989 10.1038/ncomms4132 10.1364/AO.51.003017 10.1109/TIM.2006.876541 10.1109/JPROC.2010.2040550 10.1364/OE.19.020003 10.1063/1.3432446 10.1088/0957-0233/17/8/024 10.1007/s10712-013-9244-0 10.1039/c0cc00674b 10.1002/adma.201504015 10.1016/S1369-7021(11)70186-9 10.1002/aelm.201600081 10.1021/nn1005232 |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. Copyright Elsevier BV Sep 1, 2017 |
Copyright_xml | – notice: 2017 Elsevier B.V. – notice: Copyright Elsevier BV Sep 1, 2017 |
DBID | AAYXX CITATION 7TB 7U5 8FD FR3 L7M |
DOI | 10.1016/j.sna.2017.08.008 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3069 |
EndPage | 116 |
ExternalDocumentID | 10_1016_j_sna_2017_08_008 S0924424717309743 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABMAC ABNEU ABYKQ ACDAQ ACFVG ACGFS ACIWK ACRLP ADBBV ADECG ADEZE ADTZH AEBSH AECPX AEKER AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LY7 M36 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSK SSQ SST SSZ T5K TN5 YK3 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN AJQLL ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HMU HVGLF HZ~ R2- SCB SCH SET SEW SSH WUQ 7TB 7U5 8FD EFKBS FR3 L7M |
ID | FETCH-LOGICAL-c368t-ed68969e4eb4fbb89f83301513c5e0c4ca08e02f2ae9f354ddee6b67eff190d93 |
IEDL.DBID | .~1 |
ISSN | 0924-4247 |
IngestDate | Fri Jul 25 06:10:07 EDT 2025 Tue Jul 01 01:05:25 EDT 2025 Thu Apr 24 22:52:16 EDT 2025 Fri Feb 23 02:21:11 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Salinity measurement Polyimide Salt concentration Graphene Laser-induced |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c368t-ed68969e4eb4fbb89f83301513c5e0c4ca08e02f2ae9f354ddee6b67eff190d93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | http://hdl.handle.net/10754/625346 |
PQID | 1965080970 |
PQPubID | 2045401 |
PageCount | 10 |
ParticipantIDs | proquest_journals_1965080970 crossref_citationtrail_10_1016_j_sna_2017_08_008 crossref_primary_10_1016_j_sna_2017_08_008 elsevier_sciencedirect_doi_10_1016_j_sna_2017_08_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-09-01 2017-09-00 20170901 |
PublicationDateYYYYMMDD | 2017-09-01 |
PublicationDate_xml | – month: 09 year: 2017 text: 2017-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Sensors and actuators. A. Physical. |
PublicationYear | 2017 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Yaqoob, Phan, Uddin, Chung (bib0140) 2015; 221 (bib0010) 2012 Wu, Guan, Lu, Tam (bib0015) 2011; 19 Men, Lu, Chen (bib0050) 2008; 103 Malarde, Wu, Grosso, de la Tocnaye, Le Menn (bib0225) 2008; 20 Wong, Salleo (bib0085) 2009 Diaz-Herrera, Esteban, Navarrete, Le Haitre, González-Cano (bib0220) 2006; 17 Herzer, Hoeppener, Schubert (bib0175) 2010; 46 (bib0185) 2017 (bib0210) 2017 Wang, Wang, Li, Tong (bib0025) 2012; 51 Rahman, Harun, Yasin, Phang, Damanhuri, Arof (bib0065) 2011; 171 Mamishev, Sundara-Rajan, Yang, Du, Zahn (bib0235) 2004; 92 Gadani, Rana, Bhatnagar, Prajapati, Vyas (bib0055) 2012 Jeong, Lee, Choi, Lee, Kim, Lee (bib0155) 2010; 96 Alfadhel, Kosel (bib0120) 2015; 27 Briand, Oprea, Courbat, Bârsan (bib0110) 2011; 14 Gong, Schwalb, Wang, Chen, Tang, Si (bib0165) 2014; 5 Mukhopadhyay, Gooneratne, Gupta, Demidenko (bib0195) 2006; 55 Rahman, Mukhopadhyay, Yu (bib0240) 2014 Rahman (bib0205) 2014 Nag, Mukhopadhyay, Kosel (bib0095) 2016; 251 Kwak, Choi, Kim, Kim, Yoon, Ahn (bib0160) 2012; 37 Le Vine, Lagerloef, Torrusio (bib0060) 2010; 98 Li, Kavaldzhiev, Kosel (bib0115) 2015; 378 (bib0245) 2017 Khan, Tinku, Lorenzelli, Dahiya (bib0135) 2015; 15 Rahman, Mukhopadhyay, Yu, Goicoechea, Matias, Gooneratne (bib0200) 2013; 114 Robinson, Nakkeeran (bib0020) 2012 Jonsson, Smedfors, Nyholm, Thornell (bib0075) 2013; 2013 Ghoneim, Zidan, Alnassar, Hanna, Kosel, Salama (bib0125) 2015; 1 Zang, Zhang, Di, Zhu (bib0145) 2015; 2 Reul, Fournier, Boutin, Hernandez, Maes, Chapron (bib0045) 2014; 35 Dobrzynska, Gijs (bib0150) 2012; 173 (bib0005) 2017 Huber, Klimant, Krause, Werner, Mayr, Wolfbeis (bib0040) 2000; 368 Wu, Fu, Au, Guan, Tam (bib0215) 2011 Alnassar, Ivanov, Kosel (bib0130) 2016; 2 (bib0035) 2017 Mukhopadhyay, Gooneratne (bib0190) 2007; 7 Grosso, Le Menn, De La, Wu, Malardé (bib0230) 2010; 57 Hu, Kim, Lee, Peumans, Cui (bib0170) 2010; 4 Bhat (bib0080) 2005 Nag, Mukhopadhyay, Kosel (bib0090) 2016; 17 Roberts, Mannsfeld, Stoltenberg, Bao (bib0100) 2009; 10 Lin, Peng, Liu, Ruiz-Zepeda, Ye, Samuel (bib0180) 2014; 5 Scudiero, Berti, Teatini, Morari (bib0070) 2012; 12 Oprea, Courbat, Bârsan, Briand, De Rooij, Weimar (bib0105) 2009; 140 Rahman, Harun, Yasin, Ahmad (bib0030) 2012; 18 Rahman (10.1016/j.sna.2017.08.008_bib0065) 2011; 171 (10.1016/j.sna.2017.08.008_bib0245) 2017 Rahman (10.1016/j.sna.2017.08.008_bib0240) 2014 Nag (10.1016/j.sna.2017.08.008_bib0095) 2016; 251 Li (10.1016/j.sna.2017.08.008_bib0115) 2015; 378 Roberts (10.1016/j.sna.2017.08.008_bib0100) 2009; 10 Mamishev (10.1016/j.sna.2017.08.008_bib0235) 2004; 92 Le Vine (10.1016/j.sna.2017.08.008_bib0060) 2010; 98 Malarde (10.1016/j.sna.2017.08.008_bib0225) 2008; 20 Gong (10.1016/j.sna.2017.08.008_bib0165) 2014; 5 Mukhopadhyay (10.1016/j.sna.2017.08.008_bib0190) 2007; 7 Wu (10.1016/j.sna.2017.08.008_bib0215) 2011 Grosso (10.1016/j.sna.2017.08.008_bib0230) 2010; 57 Men (10.1016/j.sna.2017.08.008_bib0050) 2008; 103 Reul (10.1016/j.sna.2017.08.008_bib0045) 2014; 35 Jeong (10.1016/j.sna.2017.08.008_bib0155) 2010; 96 Rahman (10.1016/j.sna.2017.08.008_bib0205) 2014 Wang (10.1016/j.sna.2017.08.008_bib0025) 2012; 51 Wu (10.1016/j.sna.2017.08.008_bib0015) 2011; 19 (10.1016/j.sna.2017.08.008_bib0035) 2017 Ghoneim (10.1016/j.sna.2017.08.008_bib0125) 2015; 1 Alnassar (10.1016/j.sna.2017.08.008_bib0130) 2016; 2 Hu (10.1016/j.sna.2017.08.008_bib0170) 2010; 4 Huber (10.1016/j.sna.2017.08.008_bib0040) 2000; 368 (10.1016/j.sna.2017.08.008_bib0010) 2012 (10.1016/j.sna.2017.08.008_bib0185) 2017 (10.1016/j.sna.2017.08.008_bib0210) 2017 Robinson (10.1016/j.sna.2017.08.008_bib0020) 2012 Rahman (10.1016/j.sna.2017.08.008_bib0030) 2012; 18 Yaqoob (10.1016/j.sna.2017.08.008_bib0140) 2015; 221 Zang (10.1016/j.sna.2017.08.008_bib0145) 2015; 2 Rahman (10.1016/j.sna.2017.08.008_bib0200) 2013; 114 Khan (10.1016/j.sna.2017.08.008_bib0135) 2015; 15 Nag (10.1016/j.sna.2017.08.008_bib0090) 2016; 17 Alfadhel (10.1016/j.sna.2017.08.008_bib0120) 2015; 27 Dobrzynska (10.1016/j.sna.2017.08.008_bib0150) 2012; 173 Jonsson (10.1016/j.sna.2017.08.008_bib0075) 2013; 2013 Gadani (10.1016/j.sna.2017.08.008_bib0055) 2012 Briand (10.1016/j.sna.2017.08.008_bib0110) 2011; 14 Mukhopadhyay (10.1016/j.sna.2017.08.008_bib0195) 2006; 55 Herzer (10.1016/j.sna.2017.08.008_bib0175) 2010; 46 Bhat (10.1016/j.sna.2017.08.008_bib0080) 2005 Scudiero (10.1016/j.sna.2017.08.008_bib0070) 2012; 12 (10.1016/j.sna.2017.08.008_bib0005) 2017 Diaz-Herrera (10.1016/j.sna.2017.08.008_bib0220) 2006; 17 Wong (10.1016/j.sna.2017.08.008_bib0085) 2009 Oprea (10.1016/j.sna.2017.08.008_bib0105) 2009; 140 Kwak (10.1016/j.sna.2017.08.008_bib0160) 2012; 37 Lin (10.1016/j.sna.2017.08.008_bib0180) 2014; 5 |
References_xml | – volume: 140 start-page: 227 year: 2009 end-page: 232 ident: bib0105 article-title: Temperature, humidity and gas sensors integrated on plastic foil for low power applications publication-title: Sens. Actuators B – start-page: 37 year: 2014 end-page: 71 ident: bib0240 article-title: Experimental Investigation: Impedance Characterization publication-title: Novel sensors for food inspection: modelling, fabrication and experimentation – volume: 27 start-page: 7888 year: 2015 end-page: 7892 ident: bib0120 article-title: Magnetic nanocomposite cilia tactile sensor publication-title: Adv. Mater. – start-page: 2015 year: 2017 end-page: 2016 ident: bib0035 article-title: Murray-Darling Basin Authority Annual Report – volume: 4 start-page: 2955 year: 2010 end-page: 2963 ident: bib0170 article-title: Scalable coating and properties of transparent, flexible, silver nanowire electrodes publication-title: ACS Nano – volume: 17 start-page: 2227 year: 2006 ident: bib0220 article-title: In situ salinity measurements in seawater with a fibre-optic probe publication-title: Meas. Sci. Technol. – volume: 18 start-page: 1529 year: 2012 end-page: 1533 ident: bib0030 article-title: Fiber-optic salinity sensor using fiber-optic displacement measurement with flat and concave mirror publication-title: IEEE J. Sel. Top. Quantum Electron. – volume: 1 year: 2015 ident: bib0125 article-title: Thin PZT–Based ferroelectric capacitors on flexible silicon for nonvolatile memory applications publication-title: Adva. Electron. Mater. – volume: 15 start-page: 3146 year: 2015 end-page: 3155 ident: bib0135 article-title: Flexible tactile sensors using screen-printed P (VDF-TrFE) and MWCNT/PDMS composites publication-title: IEEE Sens. J. – volume: 96 start-page: 213105 year: 2010 ident: bib0155 article-title: Flexible room-temperature NO 2 gas sensors based on carbon nanotubes/reduced graphene hybrid films publication-title: Appl. Phys. Lett. – volume: 37 start-page: 82 year: 2012 end-page: 87 ident: bib0160 article-title: Flexible glucose sensor using CVD-grown graphene-based field effect transistor publication-title: Biosens. Bioelectron. – year: 2017 ident: bib0210 article-title: EIS Spectrum Analyzer – volume: 10 start-page: 377 year: 2009 end-page: 383 ident: bib0100 article-title: Flexible, plastic transistor-based chemical sensors publication-title: Org. Electron. – volume: 92 start-page: 808 year: 2004 end-page: 845 ident: bib0235 article-title: Interdigital sensors and transducers publication-title: Proceedings of the IEEE – volume: 221 start-page: 760 year: 2015 end-page: 768 ident: bib0140 article-title: Highly flexible room temperature NO 2 sensor based on MWCNTs-WO 3 nanoparticles hybrid on a PET substrate publication-title: Sens. Actuators B – year: 2011 ident: bib0215 article-title: High-sensitivity salinity sensor realized with photonic crystal fiber Sagnac interferometer publication-title: 21st International Conference on Optical Fibre Sensors (OFS21 – volume: 55 start-page: 1331 year: 2006 end-page: 1338 ident: bib0195 article-title: A low-cost sensing system for quality monitoring of dairy products publication-title: IEEE Trans. Instrum. Meas. – year: 2017 ident: bib0245 article-title: Kapton Properties – volume: 57 start-page: 151 year: 2010 end-page: 156 ident: bib0230 article-title: Practical versus absolute salinity measurements: New advances in high performance seawater salinity sensors publication-title: Deep Sea Research Part I: Oceanographic Research Papers – volume: 19 start-page: 20003 year: 2011 end-page: 20008 ident: bib0015 article-title: Salinity sensor based on polyimide-coated photonic crystal fiber publication-title: Opt. Express – volume: 51 start-page: 3017 year: 2012 end-page: 3023 ident: bib0025 article-title: Modeling optical microfiber loops for seawater sensing publication-title: Appl. Opt. – volume: 378 start-page: 499 year: 2015 end-page: 505 ident: bib0115 article-title: Flexible magnetoimpedance sensor publication-title: J. Magn. Magn. Mater. – year: 2017 ident: bib0185 article-title: Graphene Paints a Corrosion-free Future – volume: 46 start-page: 5634 year: 2010 end-page: 5652 ident: bib0175 article-title: Fabrication of patterned silane based self-assembled monolayers by photolithography and surface reactions on silicon-oxide substrates publication-title: Chem. Commun. – volume: 17 start-page: 7 year: 2016 end-page: 13 ident: bib0090 article-title: Tactile sensing from laser-Ablated metallized PET films publication-title: IEEE Sens. J. – start-page: 11 year: 2014 end-page: 35 ident: bib0205 article-title: Novel Planar Interdigital Sensors, Novel Sensors for Food Inspection: Modelling, Fabrication and Experimentation – year: 2012 ident: bib0010 article-title: Changes in Marine Salinity Levels – year: 2012 ident: bib0055 article-title: Effect of Salinity on the Dielectric Properties of Water – volume: 5 year: 2014 ident: bib0180 article-title: Laser-induced porous graphene films from commercial polymers publication-title: Nat. Commun. – year: 2005 ident: bib0080 article-title: Salinity (conductivity) Sensor Based on Parallel Plate Capacitors – year: 2017 ident: bib0005 article-title: Natural Environment – volume: 2 start-page: 140 year: 2015 end-page: 156 ident: bib0145 article-title: Advances of flexible pressure sensors toward artificial intelligence and health care applications publication-title: Mater. Horiz. – volume: 5 year: 2014 ident: bib0165 article-title: A wearable and highly sensitive pressure sensor with ultrathin gold nanowires publication-title: Nat. Commun. – volume: 35 start-page: 681 year: 2014 end-page: 722 ident: bib0045 article-title: Sea surface salinity observations from space with the SMOS satellite: a new means to monitor the marine branch of the water cycle publication-title: Surv. Geophys. – year: 2009 ident: bib0085 article-title: Flexible Electronics: Materials and Applications – volume: 20 start-page: 015204 year: 2008 ident: bib0225 article-title: High-resolution and compact refractometer for salinity measurements publication-title: Meas. Sci. Technol. – volume: 2 year: 2016 ident: bib0130 article-title: Flexible magnetoelectric nanocomposites with tunable properties publication-title: Adv. Electronic Mater. – volume: 103 start-page: 053107 year: 2008 ident: bib0050 article-title: A multiplexed fiber Bragg grating sensor for simultaneous salinity and temperature measurement publication-title: J. Appl. Phys. – volume: 251 start-page: 148 year: 2016 end-page: 155 ident: bib0095 article-title: Flexible carbon nanotube nanocomposite sensor for multiple physiological parameter monitoring publication-title: Sens. Actuat. A: Phys. – volume: 114 start-page: 346 year: 2013 end-page: 360 ident: bib0200 article-title: Detection of bacterial endotoxin in food: new planar interdigital sensors based approach publication-title: J. Food Eng. – volume: 171 start-page: 219 year: 2011 end-page: 222 ident: bib0065 article-title: Tapered plastic multimode fiber sensor for salinity detection publication-title: Sensor Actuat. A: Phys. – start-page: 495 year: 2012 end-page: 499 ident: bib0020 article-title: Photonic crystal based sensor for sensing the salinity of seawater, Advances in Engineering publication-title: Science and Management (ICAESM) – volume: 98 start-page: 688 year: 2010 end-page: 703 ident: bib0060 article-title: Aquarius and remote sensing of sea surface salinity from space publication-title: Proceedings of the IEEE – volume: 173 start-page: 127 year: 2012 end-page: 135 ident: bib0150 article-title: Flexible polyimide-based force sensor publication-title: Sens. Actuat. A: Phys. – volume: 14 start-page: 416 year: 2011 end-page: 423 ident: bib0110 article-title: Making environmental sensors on plastic foil publication-title: Mater. Today – volume: 2013 start-page: 1 year: 2013 end-page: 11 ident: bib0075 article-title: Towards chip-based salinity measurements for small submersibles and biologgers publication-title: Int. J. Oceanogr. – volume: 7 start-page: 1340 year: 2007 end-page: 1346 ident: bib0190 article-title: A novel planar-type biosensor for noninvasive meat inspection publication-title: Sen. J. IEEE – volume: 368 start-page: 196 year: 2000 end-page: 202 ident: bib0040 article-title: Optical sensor for seawater salinity publication-title: Fresenius' J. Anal. chem. – volume: 12 start-page: 17588 year: 2012 end-page: 17607 ident: bib0070 article-title: Simultaneous monitoring of soil water content and salinity with a low-cost capacitance-resistance probe publication-title: Sensors – volume: 251 start-page: 148 year: 2016 ident: 10.1016/j.sna.2017.08.008_bib0095 article-title: Flexible carbon nanotube nanocomposite sensor for multiple physiological parameter monitoring publication-title: Sens. Actuat. A: Phys. doi: 10.1016/j.sna.2016.10.023 – year: 2011 ident: 10.1016/j.sna.2017.08.008_bib0215 article-title: High-sensitivity salinity sensor realized with photonic crystal fiber Sagnac interferometer – volume: 1 year: 2015 ident: 10.1016/j.sna.2017.08.008_bib0125 article-title: Thin PZT–Based ferroelectric capacitors on flexible silicon for nonvolatile memory applications publication-title: Adva. Electron. Mater. – volume: 37 start-page: 82 year: 2012 ident: 10.1016/j.sna.2017.08.008_bib0160 article-title: Flexible glucose sensor using CVD-grown graphene-based field effect transistor publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2012.04.042 – volume: 173 start-page: 127 year: 2012 ident: 10.1016/j.sna.2017.08.008_bib0150 article-title: Flexible polyimide-based force sensor publication-title: Sens. Actuat. A: Phys. doi: 10.1016/j.sna.2011.11.006 – volume: 2 start-page: 140 year: 2015 ident: 10.1016/j.sna.2017.08.008_bib0145 article-title: Advances of flexible pressure sensors toward artificial intelligence and health care applications publication-title: Mater. Horiz. doi: 10.1039/C4MH00147H – volume: 20 start-page: 015204 year: 2008 ident: 10.1016/j.sna.2017.08.008_bib0225 article-title: High-resolution and compact refractometer for salinity measurements publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/20/1/015204 – volume: 18 start-page: 1529 year: 2012 ident: 10.1016/j.sna.2017.08.008_bib0030 article-title: Fiber-optic salinity sensor using fiber-optic displacement measurement with flat and concave mirror publication-title: IEEE J. Sel. Top. Quantum Electron. doi: 10.1109/JSTQE.2011.2159705 – year: 2012 ident: 10.1016/j.sna.2017.08.008_bib0055 – volume: 92 start-page: 808 year: 2004 ident: 10.1016/j.sna.2017.08.008_bib0235 article-title: Interdigital sensors and transducers publication-title: Proceedings of the IEEE doi: 10.1109/JPROC.2004.826603 – volume: 2013 start-page: 1 year: 2013 ident: 10.1016/j.sna.2017.08.008_bib0075 article-title: Towards chip-based salinity measurements for small submersibles and biologgers publication-title: Int. J. Oceanogr. doi: 10.1155/2013/529674 – year: 2012 ident: 10.1016/j.sna.2017.08.008_bib0010 – year: 2017 ident: 10.1016/j.sna.2017.08.008_bib0210 – volume: 140 start-page: 227 year: 2009 ident: 10.1016/j.sna.2017.08.008_bib0105 article-title: Temperature, humidity and gas sensors integrated on plastic foil for low power applications publication-title: Sens. Actuators B doi: 10.1016/j.snb.2009.04.019 – volume: 114 start-page: 346 year: 2013 ident: 10.1016/j.sna.2017.08.008_bib0200 article-title: Detection of bacterial endotoxin in food: new planar interdigital sensors based approach publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2012.08.026 – volume: 17 start-page: 7 year: 2016 ident: 10.1016/j.sna.2017.08.008_bib0090 article-title: Tactile sensing from laser-Ablated metallized PET films publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2016.2617878 – volume: 5 year: 2014 ident: 10.1016/j.sna.2017.08.008_bib0180 article-title: Laser-induced porous graphene films from commercial polymers publication-title: Nat. Commun. doi: 10.1038/ncomms6714 – volume: 221 start-page: 760 year: 2015 ident: 10.1016/j.sna.2017.08.008_bib0140 article-title: Highly flexible room temperature NO 2 sensor based on MWCNTs-WO 3 nanoparticles hybrid on a PET substrate publication-title: Sens. Actuators B doi: 10.1016/j.snb.2015.06.137 – volume: 12 start-page: 17588 year: 2012 ident: 10.1016/j.sna.2017.08.008_bib0070 article-title: Simultaneous monitoring of soil water content and salinity with a low-cost capacitance-resistance probe publication-title: Sensors doi: 10.3390/s121217588 – volume: 10 start-page: 377 year: 2009 ident: 10.1016/j.sna.2017.08.008_bib0100 article-title: Flexible, plastic transistor-based chemical sensors publication-title: Org. Electron. doi: 10.1016/j.orgel.2008.12.001 – volume: 368 start-page: 196 year: 2000 ident: 10.1016/j.sna.2017.08.008_bib0040 article-title: Optical sensor for seawater salinity publication-title: Fresenius' J. Anal. chem. doi: 10.1007/s002160000493 – year: 2009 ident: 10.1016/j.sna.2017.08.008_bib0085 – start-page: 495 year: 2012 ident: 10.1016/j.sna.2017.08.008_bib0020 article-title: Photonic crystal based sensor for sensing the salinity of seawater, Advances in Engineering – volume: 171 start-page: 219 year: 2011 ident: 10.1016/j.sna.2017.08.008_bib0065 article-title: Tapered plastic multimode fiber sensor for salinity detection publication-title: Sensor Actuat. A: Phys. doi: 10.1016/j.sna.2011.09.024 – volume: 378 start-page: 499 year: 2015 ident: 10.1016/j.sna.2017.08.008_bib0115 article-title: Flexible magnetoimpedance sensor publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2014.11.067 – volume: 7 start-page: 1340 year: 2007 ident: 10.1016/j.sna.2017.08.008_bib0190 article-title: A novel planar-type biosensor for noninvasive meat inspection publication-title: Sen. J. IEEE doi: 10.1109/JSEN.2007.903335 – volume: 103 start-page: 053107 year: 2008 ident: 10.1016/j.sna.2017.08.008_bib0050 article-title: A multiplexed fiber Bragg grating sensor for simultaneous salinity and temperature measurement publication-title: J. Appl. Phys. doi: 10.1063/1.2890156 – start-page: 11 year: 2014 ident: 10.1016/j.sna.2017.08.008_bib0205 – start-page: 2015 year: 2017 ident: 10.1016/j.sna.2017.08.008_bib0035 – volume: 57 start-page: 151 year: 2010 ident: 10.1016/j.sna.2017.08.008_bib0230 article-title: Practical versus absolute salinity measurements: New advances in high performance seawater salinity sensors – start-page: 37 year: 2014 ident: 10.1016/j.sna.2017.08.008_bib0240 article-title: Experimental Investigation: Impedance Characterization – year: 2017 ident: 10.1016/j.sna.2017.08.008_bib0185 – volume: 15 start-page: 3146 year: 2015 ident: 10.1016/j.sna.2017.08.008_bib0135 article-title: Flexible tactile sensors using screen-printed P (VDF-TrFE) and MWCNT/PDMS composites publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2014.2368989 – volume: 5 year: 2014 ident: 10.1016/j.sna.2017.08.008_bib0165 article-title: A wearable and highly sensitive pressure sensor with ultrathin gold nanowires publication-title: Nat. Commun. doi: 10.1038/ncomms4132 – volume: 51 start-page: 3017 year: 2012 ident: 10.1016/j.sna.2017.08.008_bib0025 article-title: Modeling optical microfiber loops for seawater sensing publication-title: Appl. Opt. doi: 10.1364/AO.51.003017 – volume: 55 start-page: 1331 year: 2006 ident: 10.1016/j.sna.2017.08.008_bib0195 article-title: A low-cost sensing system for quality monitoring of dairy products publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2006.876541 – volume: 98 start-page: 688 year: 2010 ident: 10.1016/j.sna.2017.08.008_bib0060 article-title: Aquarius and remote sensing of sea surface salinity from space publication-title: Proceedings of the IEEE doi: 10.1109/JPROC.2010.2040550 – volume: 19 start-page: 20003 year: 2011 ident: 10.1016/j.sna.2017.08.008_bib0015 article-title: Salinity sensor based on polyimide-coated photonic crystal fiber publication-title: Opt. Express doi: 10.1364/OE.19.020003 – volume: 96 start-page: 213105 year: 2010 ident: 10.1016/j.sna.2017.08.008_bib0155 article-title: Flexible room-temperature NO 2 gas sensors based on carbon nanotubes/reduced graphene hybrid films publication-title: Appl. Phys. Lett. doi: 10.1063/1.3432446 – volume: 17 start-page: 2227 year: 2006 ident: 10.1016/j.sna.2017.08.008_bib0220 article-title: In situ salinity measurements in seawater with a fibre-optic probe publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/17/8/024 – volume: 35 start-page: 681 year: 2014 ident: 10.1016/j.sna.2017.08.008_bib0045 article-title: Sea surface salinity observations from space with the SMOS satellite: a new means to monitor the marine branch of the water cycle publication-title: Surv. Geophys. doi: 10.1007/s10712-013-9244-0 – volume: 46 start-page: 5634 year: 2010 ident: 10.1016/j.sna.2017.08.008_bib0175 article-title: Fabrication of patterned silane based self-assembled monolayers by photolithography and surface reactions on silicon-oxide substrates publication-title: Chem. Commun. doi: 10.1039/c0cc00674b – year: 2017 ident: 10.1016/j.sna.2017.08.008_bib0245 – volume: 27 start-page: 7888 year: 2015 ident: 10.1016/j.sna.2017.08.008_bib0120 article-title: Magnetic nanocomposite cilia tactile sensor publication-title: Adv. Mater. doi: 10.1002/adma.201504015 – year: 2017 ident: 10.1016/j.sna.2017.08.008_bib0005 – year: 2005 ident: 10.1016/j.sna.2017.08.008_bib0080 – volume: 14 start-page: 416 year: 2011 ident: 10.1016/j.sna.2017.08.008_bib0110 article-title: Making environmental sensors on plastic foil publication-title: Mater. Today doi: 10.1016/S1369-7021(11)70186-9 – volume: 2 year: 2016 ident: 10.1016/j.sna.2017.08.008_bib0130 article-title: Flexible magnetoelectric nanocomposites with tunable properties publication-title: Adv. Electronic Mater. doi: 10.1002/aelm.201600081 – volume: 4 start-page: 2955 year: 2010 ident: 10.1016/j.sna.2017.08.008_bib0170 article-title: Scalable coating and properties of transparent, flexible, silver nanowire electrodes publication-title: ACS Nano doi: 10.1021/nn1005232 |
SSID | ssj0003377 |
Score | 2.5058756 |
Snippet | •A low-cost salinity system was developed and implemented.•Laser ablated graphene was formed from commercial polyimide films.•The photo-thermally induced... The paper presents the development and implementation of a low-cost salinity sensing system. Commercial polymer films were laser ablated at specific conditions... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 107 |
SubjectTerms | Circuit design Detection Embedded systems Graphene Kapton (trademark) Laser-induced Lasers Polyimide Polyimide resins Polymer films Salinity Salinity measurement Salt concentration Seawater Sensors Sodium chloride Substrates |
Title | Sensing system for salinity testing using laser-induced graphene sensors |
URI | https://dx.doi.org/10.1016/j.sna.2017.08.008 https://www.proquest.com/docview/1965080970 |
Volume | 264 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIpCqTIwIYW6yeXhsaqoAogupVI3y0lsVITSqkkHFn47d3nwEurAEinJ2YrO9ufP8fk7xq54GoITJ4ENwjh48QJbpGFqp8ZTWgAyWEP_Ox4nfjSD-7k3b7FRcxaGwipr7K8wvUTr-km_9mZ_tVj0pxyXDuAAbSNzrJMUPwEC6uU3719hHq5bZl8kY5usm53NMsYrz0h6aBCUKp6UYfLvuekXSpdTz_iA7dec0RpWn3XIWjo7YnvflASPWTSlQPTs2aqUmS2kolau6NRj8WYVpKSB7zalBdJlvbZxKY6NmlqlYDXinZVjBct1fsJm49unUWTXSRLsxPXDwtapHwpfaNAxmDgOhQldHLTewE08zRNIFA81d4yDrjeuBwhn2o_9QBuDXCAV7ilrZ8tMnzHLI2UbBxLuKABsQ2SOoBTJ66hEKB13GG_cI5NaQZwSWbzKJlTsRaJHJXlUUnJLHnbY9WeRVSWfsc0YGp_LH31AIrxvK9Zt2kfWAzCXJJSIZFgE_Px_tV6wXbqrwsm6rF2sN_oS-UcR98oO1mM7w7uHaPIBSMfaHQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV05T8MwFLYqGIABcYqjgAdYkEKN41wDA-JQocBSkNiMk9gIhNKqSYW68Kf4g7znJFxCHZC6ZIgPWZ9f3hE_f4-QXZaGgsdJ4IjIcHh4gROlYeqkxlM6EuDBGvzfcX3jt-_E5b133yDv9V0YTKusdH-p0622rt60KjRb_aenVpdB6CC4wGNkBnPWFaw7evQKcVt-dHEKm7zH-fnZ7UnbqUoLOInrh4WjUz-M_EgLHQsTx2FkQgjswfq5iadZIhLFQs244bBg43oClID2Yz_QxoAFTZGBCfT-tAB1gWUTDt6-8kpc15Z7xNU5uLz6KNUmleUZch0dBpY2FEta_m0Mf5kFa-vOF8h85aTS4xKHRdLQ2RKZ-0ZduEzaXcx8zx5pSQVNwfelucJrlsWIFkjdAW1D2wP8cz1wIPYHKUqpZcgGBUtzmKA3yFfI3USgWyVTWS_Ta4R6SKXDRcK4EgKEBlxVoRTy-agkUjpeJ6yGRyYVZTlWzniRdW7aswREJSIqsZomC9fJ_ueQfsnXMa6zqDGXP4ROgj0ZN6xZ74-svvhcIjMjeN9RwDb-N-sOmWnfXl_Jq4ubziaZxZYyl61JporBUG-B81PE21bYKHmYtHR_AN0JF0g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensing+system+for+salinity+testing+using+laser-induced+graphene+sensors&rft.jtitle=Sensors+and+actuators.+A.+Physical.&rft.au=Nag%2C+Anindya&rft.au=Mukhopadhyay%2C+Subhas+Chandra&rft.au=Kosel%2C+J%C3%BCrgen&rft.date=2017-09-01&rft.pub=Elsevier+BV&rft.issn=0924-4247&rft.eissn=1873-3069&rft.volume=264&rft.spage=107&rft_id=info:doi/10.1016%2Fj.sna.2017.08.008&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-4247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-4247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-4247&client=summon |