An Improved AlexNet Model and Cepstral Coefficient-Based Classification of Autism Using EEG

Autism is a neurodevelopmental disorder that cannot be completely cured, but early intervention during childhood can improve outcomes. Identifying autism spectrum disorder (ASD) has relied on subjective detection methods that involve questionnaires, medical professionals, and therapists and are subj...

Full description

Saved in:
Bibliographic Details
Published inClinical EEG and neuroscience p. 15500594231178274
Main Authors Menaka, R, Karthik, R, Saranya, S, Niranjan, M, Kabilan, S
Format Journal Article
LanguageEnglish
Published United States 01.01.2024
Subjects
Online AccessGet more information

Cover

Loading…
Abstract Autism is a neurodevelopmental disorder that cannot be completely cured, but early intervention during childhood can improve outcomes. Identifying autism spectrum disorder (ASD) has relied on subjective detection methods that involve questionnaires, medical professionals, and therapists and are subject to observer variability. The need for early diagnosis and the limitations of subjective detection methods has led researchers to explore machine learning-based approaches, such as Random Forests, K-Nearest Neighbors, Naive Bayes, and Support Vector Machines, to predict ASD meltdowns. In recent years, deep learning techniques have gained traction for early ASD detection. This study evaluates the performance of various deep learning networks, including AlexNet, VGG16, and ResNet50, using 5 cepstral coefficient features for ASD detection. The main contributions of this study are the utilization of Cepstral Coefficients in the processing stage to construct spectrograms and the modification of the AlexNet architecture for precise classification. Experimental observations indicate that the AlexNet with Linear Frequency Cepstral Coefficients (LFCC) yields the highest accuracy of 85.1%, while a customized AlexNet with LFCC achieves 90% accuracy.
AbstractList Autism is a neurodevelopmental disorder that cannot be completely cured, but early intervention during childhood can improve outcomes. Identifying autism spectrum disorder (ASD) has relied on subjective detection methods that involve questionnaires, medical professionals, and therapists and are subject to observer variability. The need for early diagnosis and the limitations of subjective detection methods has led researchers to explore machine learning-based approaches, such as Random Forests, K-Nearest Neighbors, Naive Bayes, and Support Vector Machines, to predict ASD meltdowns. In recent years, deep learning techniques have gained traction for early ASD detection. This study evaluates the performance of various deep learning networks, including AlexNet, VGG16, and ResNet50, using 5 cepstral coefficient features for ASD detection. The main contributions of this study are the utilization of Cepstral Coefficients in the processing stage to construct spectrograms and the modification of the AlexNet architecture for precise classification. Experimental observations indicate that the AlexNet with Linear Frequency Cepstral Coefficients (LFCC) yields the highest accuracy of 85.1%, while a customized AlexNet with LFCC achieves 90% accuracy.
Author Kabilan, S
Niranjan, M
Menaka, R
Saranya, S
Karthik, R
Author_xml – sequence: 1
  givenname: R
  orcidid: 0000-0002-8652-191X
  surname: Menaka
  fullname: Menaka, R
  organization: Centre for Cyber Physical Systems, School of Electronics Engineering, Vellore Institute of Technology, Chennai, India
– sequence: 2
  givenname: R
  surname: Karthik
  fullname: Karthik, R
  organization: Centre for Cyber Physical Systems, School of Electronics Engineering, Vellore Institute of Technology, Chennai, India
– sequence: 3
  givenname: S
  orcidid: 0000-0001-9140-3267
  surname: Saranya
  fullname: Saranya, S
  organization: School of Electronics Engineering, Vellore Institute of Technology, Chennai, India
– sequence: 4
  givenname: M
  surname: Niranjan
  fullname: Niranjan, M
  organization: School of Electronics Engineering, Vellore Institute of Technology, Chennai, India
– sequence: 5
  givenname: S
  surname: Kabilan
  fullname: Kabilan, S
  organization: School of Electronics Engineering, Vellore Institute of Technology, Chennai, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37246419$$D View this record in MEDLINE/PubMed
BookMark eNo1j1FLwzAUhYMozk1_gC-SP1DNvW3S9LGWOQdTX9yTDyNLbiTSpqXpRP-9A_XpcD4OH5w5O419JMauQdwClOUdSCmErArMj1VjWZywCwRVZRIFztg8pQ8hcoV5cc5meYmFKqC6YG915OtuGPtPcrxu6euZJv7UO2q5iY43NKRpNC1vevI-2EBxyu5NOo6b1qQUjsxMoY-897w-TCF1fJtCfOfL5eqSnXnTJrr6ywXbPixfm8ds87JaN_Ums7nSU0ZOaQREzKU1ZNXe-spJpAoUOvQAzpa-AOntXgAoI4QlLSphtbJea4ELdvPrHQ77jtxuGENnxu_d_0v8AT0uU8k
CitedBy_id crossref_primary_10_1088_1741_2552_ad9681
crossref_primary_10_3233_THC_240550
crossref_primary_10_1007_s42979_024_03507_8
crossref_primary_10_4015_S1016237224500406
crossref_primary_10_3233_THC_240644
crossref_primary_10_57197_JDR_2024_0036
crossref_primary_10_1016_j_neunet_2025_107337
crossref_primary_10_3390_app142411702
ContentType Journal Article
DBID NPM
DOI 10.1177/15500594231178274
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
EISSN 2169-5202
ExternalDocumentID 37246419
Genre Journal Article
GroupedDBID ---
.2E
.2J
.2N
01A
0R~
29B
4.4
53G
54M
5GY
7X7
8R4
8R5
AABOD
AACMV
AACTG
AAEWN
AAGMC
AAJPV
AAKGS
AAQXI
AARDL
AATAA
AATBZ
AAUAS
ABAWP
ABCCA
ABCJG
ABJNI
ABLUO
ABNCE
ABPNF
ABQXT
ABUJY
ABVFX
ACABN
ACARO
ACDXX
ACFEJ
ACGFS
ACGZU
ACIWK
ACJER
ACJTF
ACLFY
ACLZU
ACOXC
ACPRK
ACROE
ACSIQ
ACTQU
ACUAV
ACUIR
ACXKE
ACXMB
ADBBV
ADNON
ADRRZ
ADVBO
ADZYD
AECGH
AEDTQ
AEKYL
AENEX
AEONT
AEPTA
AERKM
AESZF
AEUHG
AEUIJ
AEWDL
AEWHI
AFKRG
AFMOU
AFQAA
AFRAH
AGHKR
AGKLV
AGPXR
AGWFA
AHDMH
AHMBA
AIOMO
AJUZI
AJXAJ
ALKWR
ALMA_UNASSIGNED_HOLDINGS
ALTZF
AMCVQ
ANDLU
ARTOV
AUTPY
AUVAJ
AYAKG
BBRGL
BDDNI
BENPR
BKIIM
BPACV
BSEHC
BWJAD
BYIEH
DB0
DC.
DF0
DO-
DV7
EBS
EMOBN
F5P
FHBDP
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
H13
HZ~
J8X
K.F
M4V
NPM
O9-
OVD
P.B
P2P
Q2X
ROL
RXW
S01
SAUOL
SCNPE
SFC
SHG
SPQ
SPV
TEORI
ID FETCH-LOGICAL-c368t-ed682122235caec6bcf9d52e9162d2f11dc7f415fcb0116a00ce8090c86cf8802
IngestDate Wed Feb 19 02:24:03 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords AlexNet
ResNet50
cepstral coefficients
VGG16
autism
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c368t-ed682122235caec6bcf9d52e9162d2f11dc7f415fcb0116a00ce8090c86cf8802
ORCID 0000-0002-8652-191X
0000-0001-9140-3267
PMID 37246419
ParticipantIDs pubmed_primary_37246419
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Clinical EEG and neuroscience
PublicationTitleAlternate Clin EEG Neurosci
PublicationYear 2024
SSID ssj0036234
Score 2.4130657
Snippet Autism is a neurodevelopmental disorder that cannot be completely cured, but early intervention during childhood can improve outcomes. Identifying autism...
SourceID pubmed
SourceType Index Database
StartPage 15500594231178274
Title An Improved AlexNet Model and Cepstral Coefficient-Based Classification of Autism Using EEG
URI https://www.ncbi.nlm.nih.gov/pubmed/37246419
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF58gHgR32_ZgzeJJNtkmxxrqYrSnioIHmSzD3zQWLAX_fV-u5u0qVVRLyHMJmHZmcx-MzsPQo4NFwrAXAR5xGQQx6EMMo27lOs8DU2qpbb5zt0ev7yJr26T20lIkMsuGeWn8v3LvJL_cBU08NVmyf6Bs-OPgoB78BdXcBjXX_HYevScUwCo0Waq9PTINTfz6f9tPXR-DPzz2hWKwP4SnGHXUr4Vpg0SGgPGFqb5OjjxEQSdzkUdtLar7EnQ3ZdrRTAnobO6EM9iKgTxGlN-eHyeolkPdPEmppyuvUfQnrwntlt3Q7C45obQTl2xiGcwa0NWU4fW_rEFYQAiI0AR349nVmm7Y-Mfn8W6DweOi40mi3ns1ezPo5_qaFdD82QeFoVtkWr9On7Pxi7eiMszb1uOa2Yuy2Spev-T_eFwSH-VrJQGBG15aVgjc7pYJ0vdMkRig9y1CloJBS2FgjqhoGAdrYSCzggFnRYK-mKoFwrqhIKC-Zvk5rzTb18GZQeNQDZ4Ogq04imwCSBgIoWWPJcmUwnTsAmYYiaKlGwaQDgjc3sgJ8JQ6jTMQplyaaDZ2RZZKF4KvUNoQyWpUE3gZwHQKQEMYZaJTOaJiqD11S7Z9styP_RlUu6rBdv7dmSfLE9E6YAsGvyX-hAgb5QfOf58AEIAS9k
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Improved+AlexNet+Model+and+Cepstral+Coefficient-Based+Classification+of+Autism+Using+EEG&rft.jtitle=Clinical+EEG+and+neuroscience&rft.au=Menaka%2C+R&rft.au=Karthik%2C+R&rft.au=Saranya%2C+S&rft.au=Niranjan%2C+M&rft.date=2024-01-01&rft.eissn=2169-5202&rft.spage=15500594231178274&rft_id=info:doi/10.1177%2F15500594231178274&rft_id=info%3Apmid%2F37246419&rft_id=info%3Apmid%2F37246419&rft.externalDocID=37246419