An Improved AlexNet Model and Cepstral Coefficient-Based Classification of Autism Using EEG
Autism is a neurodevelopmental disorder that cannot be completely cured, but early intervention during childhood can improve outcomes. Identifying autism spectrum disorder (ASD) has relied on subjective detection methods that involve questionnaires, medical professionals, and therapists and are subj...
Saved in:
Published in | Clinical EEG and neuroscience p. 15500594231178274 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.01.2024
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Abstract | Autism is a neurodevelopmental disorder that cannot be completely cured, but early intervention during childhood can improve outcomes. Identifying autism spectrum disorder (ASD) has relied on subjective detection methods that involve questionnaires, medical professionals, and therapists and are subject to observer variability. The need for early diagnosis and the limitations of subjective detection methods has led researchers to explore machine learning-based approaches, such as Random Forests, K-Nearest Neighbors, Naive Bayes, and Support Vector Machines, to predict ASD meltdowns. In recent years, deep learning techniques have gained traction for early ASD detection. This study evaluates the performance of various deep learning networks, including AlexNet, VGG16, and ResNet50, using 5 cepstral coefficient features for ASD detection. The main contributions of this study are the utilization of Cepstral Coefficients in the processing stage to construct spectrograms and the modification of the AlexNet architecture for precise classification. Experimental observations indicate that the AlexNet with Linear Frequency Cepstral Coefficients (LFCC) yields the highest accuracy of 85.1%, while a customized AlexNet with LFCC achieves 90% accuracy. |
---|---|
AbstractList | Autism is a neurodevelopmental disorder that cannot be completely cured, but early intervention during childhood can improve outcomes. Identifying autism spectrum disorder (ASD) has relied on subjective detection methods that involve questionnaires, medical professionals, and therapists and are subject to observer variability. The need for early diagnosis and the limitations of subjective detection methods has led researchers to explore machine learning-based approaches, such as Random Forests, K-Nearest Neighbors, Naive Bayes, and Support Vector Machines, to predict ASD meltdowns. In recent years, deep learning techniques have gained traction for early ASD detection. This study evaluates the performance of various deep learning networks, including AlexNet, VGG16, and ResNet50, using 5 cepstral coefficient features for ASD detection. The main contributions of this study are the utilization of Cepstral Coefficients in the processing stage to construct spectrograms and the modification of the AlexNet architecture for precise classification. Experimental observations indicate that the AlexNet with Linear Frequency Cepstral Coefficients (LFCC) yields the highest accuracy of 85.1%, while a customized AlexNet with LFCC achieves 90% accuracy. |
Author | Kabilan, S Niranjan, M Menaka, R Saranya, S Karthik, R |
Author_xml | – sequence: 1 givenname: R orcidid: 0000-0002-8652-191X surname: Menaka fullname: Menaka, R organization: Centre for Cyber Physical Systems, School of Electronics Engineering, Vellore Institute of Technology, Chennai, India – sequence: 2 givenname: R surname: Karthik fullname: Karthik, R organization: Centre for Cyber Physical Systems, School of Electronics Engineering, Vellore Institute of Technology, Chennai, India – sequence: 3 givenname: S orcidid: 0000-0001-9140-3267 surname: Saranya fullname: Saranya, S organization: School of Electronics Engineering, Vellore Institute of Technology, Chennai, India – sequence: 4 givenname: M surname: Niranjan fullname: Niranjan, M organization: School of Electronics Engineering, Vellore Institute of Technology, Chennai, India – sequence: 5 givenname: S surname: Kabilan fullname: Kabilan, S organization: School of Electronics Engineering, Vellore Institute of Technology, Chennai, India |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37246419$$D View this record in MEDLINE/PubMed |
BookMark | eNo1j1FLwzAUhYMozk1_gC-SP1DNvW3S9LGWOQdTX9yTDyNLbiTSpqXpRP-9A_XpcD4OH5w5O419JMauQdwClOUdSCmErArMj1VjWZywCwRVZRIFztg8pQ8hcoV5cc5meYmFKqC6YG915OtuGPtPcrxu6euZJv7UO2q5iY43NKRpNC1vevI-2EBxyu5NOo6b1qQUjsxMoY-897w-TCF1fJtCfOfL5eqSnXnTJrr6ywXbPixfm8ds87JaN_Ums7nSU0ZOaQREzKU1ZNXe-spJpAoUOvQAzpa-AOntXgAoI4QlLSphtbJea4ELdvPrHQ77jtxuGENnxu_d_0v8AT0uU8k |
CitedBy_id | crossref_primary_10_1088_1741_2552_ad9681 crossref_primary_10_3233_THC_240550 crossref_primary_10_1007_s42979_024_03507_8 crossref_primary_10_4015_S1016237224500406 crossref_primary_10_3233_THC_240644 crossref_primary_10_57197_JDR_2024_0036 crossref_primary_10_1016_j_neunet_2025_107337 crossref_primary_10_3390_app142411702 |
ContentType | Journal Article |
DBID | NPM |
DOI | 10.1177/15500594231178274 |
DatabaseName | PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2169-5202 |
ExternalDocumentID | 37246419 |
Genre | Journal Article |
GroupedDBID | --- .2E .2J .2N 01A 0R~ 29B 4.4 53G 54M 5GY 7X7 8R4 8R5 AABOD AACMV AACTG AAEWN AAGMC AAJPV AAKGS AAQXI AARDL AATAA AATBZ AAUAS ABAWP ABCCA ABCJG ABJNI ABLUO ABNCE ABPNF ABQXT ABUJY ABVFX ACABN ACARO ACDXX ACFEJ ACGFS ACGZU ACIWK ACJER ACJTF ACLFY ACLZU ACOXC ACPRK ACROE ACSIQ ACTQU ACUAV ACUIR ACXKE ACXMB ADBBV ADNON ADRRZ ADVBO ADZYD AECGH AEDTQ AEKYL AENEX AEONT AEPTA AERKM AESZF AEUHG AEUIJ AEWDL AEWHI AFKRG AFMOU AFQAA AFRAH AGHKR AGKLV AGPXR AGWFA AHDMH AHMBA AIOMO AJUZI AJXAJ ALKWR ALMA_UNASSIGNED_HOLDINGS ALTZF AMCVQ ANDLU ARTOV AUTPY AUVAJ AYAKG BBRGL BDDNI BENPR BKIIM BPACV BSEHC BWJAD BYIEH DB0 DC. DF0 DO- DV7 EBS EMOBN F5P FHBDP GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION H13 HZ~ J8X K.F M4V NPM O9- OVD P.B P2P Q2X ROL RXW S01 SAUOL SCNPE SFC SHG SPQ SPV TEORI |
ID | FETCH-LOGICAL-c368t-ed682122235caec6bcf9d52e9162d2f11dc7f415fcb0116a00ce8090c86cf8802 |
IngestDate | Wed Feb 19 02:24:03 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | AlexNet ResNet50 cepstral coefficients VGG16 autism |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c368t-ed682122235caec6bcf9d52e9162d2f11dc7f415fcb0116a00ce8090c86cf8802 |
ORCID | 0000-0002-8652-191X 0000-0001-9140-3267 |
PMID | 37246419 |
ParticipantIDs | pubmed_primary_37246419 |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Clinical EEG and neuroscience |
PublicationTitleAlternate | Clin EEG Neurosci |
PublicationYear | 2024 |
SSID | ssj0036234 |
Score | 2.4130657 |
Snippet | Autism is a neurodevelopmental disorder that cannot be completely cured, but early intervention during childhood can improve outcomes. Identifying autism... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 15500594231178274 |
Title | An Improved AlexNet Model and Cepstral Coefficient-Based Classification of Autism Using EEG |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37246419 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF58gHgR32_ZgzeJJNtkmxxrqYrSnioIHmSzD3zQWLAX_fV-u5u0qVVRLyHMJmHZmcx-MzsPQo4NFwrAXAR5xGQQx6EMMo27lOs8DU2qpbb5zt0ev7yJr26T20lIkMsuGeWn8v3LvJL_cBU08NVmyf6Bs-OPgoB78BdXcBjXX_HYevScUwCo0Waq9PTINTfz6f9tPXR-DPzz2hWKwP4SnGHXUr4Vpg0SGgPGFqb5OjjxEQSdzkUdtLar7EnQ3ZdrRTAnobO6EM9iKgTxGlN-eHyeolkPdPEmppyuvUfQnrwntlt3Q7C45obQTl2xiGcwa0NWU4fW_rEFYQAiI0AR349nVmm7Y-Mfn8W6DweOi40mi3ns1ezPo5_qaFdD82QeFoVtkWr9On7Pxi7eiMszb1uOa2Yuy2Spev-T_eFwSH-VrJQGBG15aVgjc7pYJ0vdMkRig9y1CloJBS2FgjqhoGAdrYSCzggFnRYK-mKoFwrqhIKC-Zvk5rzTb18GZQeNQDZ4Ogq04imwCSBgIoWWPJcmUwnTsAmYYiaKlGwaQDgjc3sgJ8JQ6jTMQplyaaDZ2RZZKF4KvUNoQyWpUE3gZwHQKQEMYZaJTOaJiqD11S7Z9styP_RlUu6rBdv7dmSfLE9E6YAsGvyX-hAgb5QfOf58AEIAS9k |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Improved+AlexNet+Model+and+Cepstral+Coefficient-Based+Classification+of+Autism+Using+EEG&rft.jtitle=Clinical+EEG+and+neuroscience&rft.au=Menaka%2C+R&rft.au=Karthik%2C+R&rft.au=Saranya%2C+S&rft.au=Niranjan%2C+M&rft.date=2024-01-01&rft.eissn=2169-5202&rft.spage=15500594231178274&rft_id=info:doi/10.1177%2F15500594231178274&rft_id=info%3Apmid%2F37246419&rft_id=info%3Apmid%2F37246419&rft.externalDocID=37246419 |