A Product’s Kansei Appearance Design Method Based on Conditional-Controlled AI Image Generation

Accurately grasping users’ Kansei needs and rapidly transforming them into product design solutions are key factors in enhancing product competitiveness and sustainability. This paper proposes a product appearance design method based on Kansei engineering and AI image generation technology, integrat...

Full description

Saved in:
Bibliographic Details
Published inSustainability Vol. 16; no. 20; p. 8837
Main Authors Du, Yuanjian, Liu, Xiaoxue, Cai, Mobing, Park, Kyungjin
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Accurately grasping users’ Kansei needs and rapidly transforming them into product design solutions are key factors in enhancing product competitiveness and sustainability. This paper proposes a product appearance design method based on Kansei engineering and AI image generation technology, integrating other approaches, with household indoor hydroponics as the research subject. First, the web crawler is used to obtain product image samples and user online reviews, and factor analysis (FA) is applied to quickly extract users’ Kansei needs. Second, product morphology is used to deconstruct and encode product appearances. Partial least squares regression (PLSR) is then employed to map and quantify the relationships between Kansei needs and design elements, yielding optimal design solutions and one-dimensional sketches. These sketches are subsequently used as controlled conditions in Stable Diffusion (SD), combined with a team-trained Lora model, to generate two-dimensional colored sketches in batches. Finally, evaluations verify that the generated design solutions are satisfactory and meet users’ Kansei needs. The results indicate that the proposed product appearance design method not only holds significant implications for the sustainable development of Kansei engineering in product design but also greatly enhances the efficiency of the design process, providing new insights into integrating new technologies and scientific research methods in the field of product design.
AbstractList Accurately grasping users’ Kansei needs and rapidly transforming them into product design solutions are key factors in enhancing product competitiveness and sustainability. This paper proposes a product appearance design method based on Kansei engineering and AI image generation technology, integrating other approaches, with household indoor hydroponics as the research subject. First, the web crawler is used to obtain product image samples and user online reviews, and factor analysis (FA) is applied to quickly extract users’ Kansei needs. Second, product morphology is used to deconstruct and encode product appearances. Partial least squares regression (PLSR) is then employed to map and quantify the relationships between Kansei needs and design elements, yielding optimal design solutions and one-dimensional sketches. These sketches are subsequently used as controlled conditions in Stable Diffusion (SD), combined with a team-trained Lora model, to generate two-dimensional colored sketches in batches. Finally, evaluations verify that the generated design solutions are satisfactory and meet users’ Kansei needs. The results indicate that the proposed product appearance design method not only holds significant implications for the sustainable development of Kansei engineering in product design but also greatly enhances the efficiency of the design process, providing new insights into integrating new technologies and scientific research methods in the field of product design.
Audience Academic
Author Du, Yuanjian
Cai, Mobing
Liu, Xiaoxue
Park, Kyungjin
Author_xml – sequence: 1
  givenname: Yuanjian
  orcidid: 0009-0000-4121-7458
  surname: Du
  fullname: Du, Yuanjian
– sequence: 2
  givenname: Xiaoxue
  orcidid: 0009-0008-1458-1121
  surname: Liu
  fullname: Liu, Xiaoxue
– sequence: 3
  givenname: Mobing
  orcidid: 0009-0002-7844-3576
  surname: Cai
  fullname: Cai, Mobing
– sequence: 4
  givenname: Kyungjin
  surname: Park
  fullname: Park, Kyungjin
BookMark eNptkc9OGzEQxq2KSkDKhSewxAmkpf6TeHePS2jTqCAQhfNq1jubOtrYwfZK7Y3X4PX6JDhNpRKE5-CR5_dZn745JHvWWSTkmLNzKUv2OQxcCVYUMv9ADgTLecbZhO296vfJUQhLlo6UvOTqgEBFb71rBx3_PD0H-h1sQEOr9RrBg9VILzGYhaXXGH-6ll5AwJY6S6fOtiYaZ6HPUh-96_s0qeZ0voIF0hla9LABPpGPHfQBj_7dI_Lw9cv99Ft2dTObT6urTEtVxAx50-WY3DOhRSNVkzOV65YpJSaiLIXSTQuCaaXzcac4xwaAtSUXoCcyR5AjcrL9d-3d44Ah1ks3-OQv1JKnWDgThUrU-ZZaQI-1sZ2LHnSqFldGpzw7k96rgo_HvFTlOAlOdwSJifgrLmAIoZ7_uNtlz7as9i4Ej1299mYF_nfNWb1ZUf1_RQlmb2Bt4t_EkiPTvyd5AV5ok-c
CitedBy_id crossref_primary_10_3390_e27030319
crossref_primary_10_1016_j_aei_2025_103118
Cites_doi 10.1111/1540-5885.1430190
10.1155/2011/295074
10.1007/s11042-018-5968-7
10.1016/j.displa.2023.102623
10.1080/09544828.2014.944488
10.1016/0169-8141(94)00052-5
10.3390/su141710556
10.1016/j.aei.2023.102058
10.1080/09544828.2022.2078660
10.1016/j.ergon.2011.01.011
10.1080/09544828.2018.1471671
10.1016/j.buildenv.2017.06.004
10.1016/j.aei.2021.101457
10.1016/j.cie.2019.06.001
10.1002/hfm.20628
10.1016/j.cie.2011.01.011
10.1080/00207543.2021.1949641
10.1016/j.ergon.2010.01.009
10.21037/qims-20-1078
10.1016/j.jclepro.2017.05.189
10.3390/agriculture13061191
10.1016/j.ergon.2015.03.009
10.1109/ACCESS.2021.3101619
10.1016/j.eswa.2011.01.083
10.1007/s00163-002-0023-z
10.1007/978-3-319-10831-5_36
10.1016/j.ergon.2020.102985
10.1109/CVPR52688.2022.01042
10.5057/ijae.IJAE-D-15-00022
10.1016/j.aei.2018.02.002
10.1016/j.ergon.2016.09.010
10.3390/app8122397
10.1080/00140139.2011.616229
10.1016/j.destud.2019.02.003
10.3233/JIFS-192032
10.1016/j.eswa.2010.12.047
10.1016/j.tele.2016.08.002
10.1016/j.ergon.2019.102829
10.3390/app14177444
10.1002/mar.20546
10.1016/j.procir.2015.03.004
10.1080/23311916.2023.2175882
10.1007/s11063-022-10777-x
10.1002/hfm.20316
10.1016/j.jenvp.2018.07.010
10.1016/j.enbuild.2017.12.043
10.1016/j.cie.2018.05.011
10.1016/j.ergon.2013.04.003
10.1007/978-3-030-80829-7_134
10.53106/160792642022072304021
10.1145/3065386
10.1016/j.apergo.2018.08.014
10.1109/ICCV51070.2023.00355
10.3390/app10041198
10.14716/ijtech.v8i6.689
10.1145/3097983.3098176
10.1016/j.aei.2018.11.002
10.1016/j.promfg.2015.07.750
10.3390/su16083132
10.1016/j.cie.2021.107913
10.1016/j.ergon.2020.102940
10.1080/09544828.2021.1928023
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
4U-
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.3390/su16208837
DatabaseName CrossRef
Gale In Context: Science
University Readers
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
University Readers
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
Engineering
EISSN 2071-1050
ExternalDocumentID A814419694
10_3390_su16208837
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 29Q
2WC
2XV
4P2
5VS
7XC
8FE
8FH
A8Z
AAHBH
AAYXX
ACHQT
ADBBV
ADMLS
AENEX
AFKRA
AFMMW
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
E3Z
ECGQY
FRS
GX1
IAO
IEP
ISR
ITC
KQ8
ML.
MODMG
M~E
OK1
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
PMFND
4U-
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c368t-e1bf7e08802c2b36b7067cd0662529926cbda20c6c74f611ebaa0d912ac537ea3
IEDL.DBID BENPR
ISSN 2071-1050
IngestDate Mon Jun 30 15:06:32 EDT 2025
Tue Jun 10 20:58:43 EDT 2025
Fri Jun 27 05:15:42 EDT 2025
Thu Apr 24 22:48:33 EDT 2025
Tue Jul 01 02:04:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c368t-e1bf7e08802c2b36b7067cd0662529926cbda20c6c74f611ebaa0d912ac537ea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0000-4121-7458
0009-0002-7844-3576
0009-0008-1458-1121
OpenAccessLink https://www.proquest.com/docview/3120810286?pq-origsite=%requestingapplication%
PQID 3120810286
PQPubID 2032327
ParticipantIDs proquest_journals_3120810286
gale_infotracacademiconefile_A814419694
gale_incontextgauss_ISR_A814419694
crossref_primary_10_3390_su16208837
crossref_citationtrail_10_3390_su16208837
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sustainability
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Hartono (ref_65) 2017; 8
Cheng (ref_19) 2021; 11
Goodfellow (ref_45) 2014; 27
Ponce (ref_46) 2018; 163
Razza (ref_42) 2015; 3
Elasri (ref_21) 2022; 54
ref_57
Krizhevsky (ref_44) 2017; 60
ref_56
Kulatunga (ref_2) 2015; 26
Zhou (ref_47) 2021; 9
ref_55
ref_53
Llinares (ref_27) 2011; 41
Guo (ref_33) 2016; 26
Wang (ref_68) 2011; 38
ref_18
Wu (ref_51) 2024; 81
Ahmed (ref_17) 2003; 14
Alppay (ref_41) 2023; 10
Kim (ref_4) 2019; 74
Matsubara (ref_71) 2011; 2011
Westerman (ref_7) 2012; 29
Nagamachi (ref_13) 1995; 15
ref_66
Kittidecha (ref_67) 2016; 15
Tobias (ref_69) 1995; Volume 20
ref_20
Zhao (ref_22) 2024; 36
Guo (ref_12) 2020; 76
ref_62
Shieh (ref_6) 2018; 36
Park (ref_34) 2013; 23
Ritchey (ref_37) 2015; 4
Lee (ref_15) 2022; 51
Lai (ref_61) 2022; 165
ref_72
Kang (ref_31) 2020; 39
Hartono (ref_23) 2020; 79
Castilla (ref_28) 2017; 122
ref_35
ref_77
ref_32
ref_76
ref_73
Dyllick (ref_1) 2017; 162
Guo (ref_58) 2014; 25
Woo (ref_60) 2022; 23
Ragatz (ref_3) 1997; 14
Li (ref_59) 2018; 29
Lee (ref_8) 2019; 135
Chen (ref_24) 2015; 48
Li (ref_10) 2021; 32
Hsiao (ref_43) 2013; 43
Ho (ref_52) 2020; 33
Chiu (ref_30) 2018; 38
Jin (ref_64) 2022; 60
Atmadja (ref_75) 2022; Volume 998
Hsiao (ref_38) 2010; 40
Castilla (ref_29) 2018; 58
Yang (ref_39) 2011; 60
Wang (ref_74) 2023; 12
Yang (ref_5) 2023; 57
Chang (ref_14) 2016; 56
ref_40
Chai (ref_49) 2018; 77
Yeh (ref_25) 2018; 120
Liu (ref_36) 2022; 33
Dhariwal (ref_54) 2021; 34
Hartono (ref_26) 2011; 54
ref_48
ref_9
Hsiao (ref_70) 2017; 34
Zabotto (ref_11) 2019; 74
Self (ref_16) 2019; 63
Cheng (ref_63) 2011; 38
References_xml – volume: Volume 998
  start-page: 012048
  year: 2022
  ident: ref_75
  article-title: Indoor Hydroponic System Using IoT-Based LED
  publication-title: IOP Conference Series: Earth and Environmental Science
– volume: 14
  start-page: 190
  year: 1997
  ident: ref_3
  article-title: Success factors for integrating suppliers into new product development
  publication-title: J. Prod. Innov. Manag. Int. Publ. Prod. Dev. Manag. Assoc.
  doi: 10.1111/1540-5885.1430190
– volume: 2011
  start-page: 295074
  year: 2011
  ident: ref_71
  article-title: Kansei Analysis of the Japanese Residential Garden and Development of a Low-Cost Virtual Reality Kansei Engineering System for Gardens
  publication-title: Adv. Hum.-Comput. Interact.
  doi: 10.1155/2011/295074
– ident: ref_55
– volume: 77
  start-page: 22339
  year: 2018
  ident: ref_49
  article-title: A one-to-many conditional generative adversarial network framework for multiple image-to-image translations
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-018-5968-7
– volume: 81
  start-page: 102623
  year: 2024
  ident: ref_51
  article-title: An AIGC-empowered methodology to product color matching design
  publication-title: Displays
  doi: 10.1016/j.displa.2023.102623
– volume: 25
  start-page: 194
  year: 2014
  ident: ref_58
  article-title: Emotional design method of product presented in multi-dimensional variables based on Kansei Engineering
  publication-title: J. Eng. Des.
  doi: 10.1080/09544828.2014.944488
– volume: 15
  start-page: 3
  year: 1995
  ident: ref_13
  article-title: Kansei engineering: A new ergonomic consumer-oriented technology for product development
  publication-title: Int. J. Ind. Ergon.
  doi: 10.1016/0169-8141(94)00052-5
– ident: ref_18
  doi: 10.3390/su141710556
– volume: 34
  start-page: 8780
  year: 2021
  ident: ref_54
  article-title: Diffusion models beat gans on image synthesis
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 57
  start-page: 102058
  year: 2023
  ident: ref_5
  article-title: A product form design method integrating Kansei engineering and diffusion model
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2023.102058
– volume: 33
  start-page: 412
  year: 2022
  ident: ref_36
  article-title: Study on product form design via Kansei engineering and virtual reality
  publication-title: J. Eng. Des.
  doi: 10.1080/09544828.2022.2078660
– volume: 41
  start-page: 233
  year: 2011
  ident: ref_27
  article-title: Kano’s model in Kansei Engineering to evaluate subjective real estate consumer preferences
  publication-title: Int. J. Ind. Ergon.
  doi: 10.1016/j.ergon.2011.01.011
– volume: 29
  start-page: 358
  year: 2018
  ident: ref_59
  article-title: Dynamic mapping of design elements and affective responses: A machine learning based method for affective design
  publication-title: J. Eng. Des.
  doi: 10.1080/09544828.2018.1471671
– volume: 122
  start-page: 72
  year: 2017
  ident: ref_28
  article-title: Subjective assessment of university classroom environment
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2017.06.004
– volume: 51
  start-page: 101457
  year: 2022
  ident: ref_15
  article-title: Soccer shoe recommendation system based on multitechnology integration for digital transformation
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2021.101457
– volume: 135
  start-page: 275
  year: 2019
  ident: ref_8
  article-title: Service quality driven approach for innovative retail service system design and evaluation: A case study
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2019.06.001
– volume: 26
  start-page: 301
  year: 2016
  ident: ref_33
  article-title: Application of evolutionary neural networks on optimization design of mobile phone based on user’s emotional needs
  publication-title: Hum. Factors Ergon. Manuf. Serv. Ind.
  doi: 10.1002/hfm.20628
– volume: 60
  start-page: 760
  year: 2011
  ident: ref_39
  article-title: Constructing a hybrid Kansei engineering system based on multiple affective responses: Application to product form design
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2011.01.011
– volume: 60
  start-page: 6708
  year: 2022
  ident: ref_64
  article-title: Mining online reviews with a Kansei-integrated Kano model for innovative product design
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2021.1949641
– volume: 40
  start-page: 237
  year: 2010
  ident: ref_38
  article-title: Product-form design model based on genetic algorithms
  publication-title: Int. J. Ind. Ergon.
  doi: 10.1016/j.ergon.2010.01.009
– volume: 11
  start-page: 2792
  year: 2021
  ident: ref_19
  article-title: Applications of artificial intelligence in nuclear medicine image generation
  publication-title: Quant. Imaging Med. Surg.
  doi: 10.21037/qims-20-1078
– volume: 162
  start-page: 346
  year: 2017
  ident: ref_1
  article-title: Towards true product sustainability
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2017.05.189
– ident: ref_77
  doi: 10.3390/agriculture13061191
– volume: 48
  start-page: 46
  year: 2015
  ident: ref_24
  article-title: Applying Kansei engineering to design logistics services–A case of home delivery service
  publication-title: Int. J. Ind. Ergon.
  doi: 10.1016/j.ergon.2015.03.009
– volume: 9
  start-page: 108992
  year: 2021
  ident: ref_47
  article-title: Evaluation and design method for product form aesthetics based on deep learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3101619
– volume: 38
  start-page: 8738
  year: 2011
  ident: ref_68
  article-title: A hybrid Kansei engineering design expert system based on grey system theory and support vector regression
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.01.083
– volume: 14
  start-page: 1
  year: 2003
  ident: ref_17
  article-title: Understanding the differences between how novice and experienced designers approach design tasks
  publication-title: Res. Eng. Des.
  doi: 10.1007/s00163-002-0023-z
– ident: ref_66
– volume: 12
  start-page: 90
  year: 2023
  ident: ref_74
  article-title: Research on AI Painting Generation Technology Based on the [Stable Diffusion]
  publication-title: Int. J. Adv. Smart Converg.
– ident: ref_9
  doi: 10.1007/978-3-319-10831-5_36
– volume: 79
  start-page: 102985
  year: 2020
  ident: ref_23
  article-title: The modified Kansei Engineering-based application for sustainable service design
  publication-title: Int. J. Ind. Ergon.
  doi: 10.1016/j.ergon.2020.102985
– ident: ref_56
  doi: 10.1109/CVPR52688.2022.01042
– volume: 15
  start-page: 325
  year: 2016
  ident: ref_67
  article-title: Application of affective engineering and fuzzy analytical hierarchy process in thai ceramic manufacturing
  publication-title: Int. J. Affect. Eng.
  doi: 10.5057/ijae.IJAE-D-15-00022
– ident: ref_72
– volume: 36
  start-page: 31
  year: 2018
  ident: ref_6
  article-title: Comparison of multi-objective evolutionary algorithms in hybrid Kansei engineering system for product form design
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2018.02.002
– volume: 56
  start-page: 97
  year: 2016
  ident: ref_14
  article-title: Kansei assessment of the constituent elements and the overall interrelations in car steering wheel design
  publication-title: Int. J. Ind. Ergon.
  doi: 10.1016/j.ergon.2016.09.010
– ident: ref_40
  doi: 10.3390/app8122397
– ident: ref_20
– volume: 54
  start-page: 987
  year: 2011
  ident: ref_26
  article-title: How the Kano model contributes to Kansei engineering in services
  publication-title: Ergonomics
  doi: 10.1080/00140139.2011.616229
– ident: ref_53
– volume: 63
  start-page: 1
  year: 2019
  ident: ref_16
  article-title: Communication through design sketches: Implications for stakeholder interpretation during concept design
  publication-title: Des. Stud.
  doi: 10.1016/j.destud.2019.02.003
– volume: 36
  start-page: 11127
  year: 2024
  ident: ref_22
  article-title: Uni-controlnet: All-in-one control to text-to-image diffusion models
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_76
– volume: 39
  start-page: 1131
  year: 2020
  ident: ref_31
  article-title: Aesthetic product design combining with rough set theory and fuzzy quality function deployment
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.3233/JIFS-192032
– volume: 38
  start-page: 7143
  year: 2011
  ident: ref_63
  article-title: Integrating data mining with KJ method to classify bridge construction defects
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.12.047
– volume: 34
  start-page: 284
  year: 2017
  ident: ref_70
  article-title: Logistics service design for cross-border E-commerce using Kansei engineering with text-mining-based online content analysis
  publication-title: Telemat. Inform.
  doi: 10.1016/j.tele.2016.08.002
– volume: 33
  start-page: 6840
  year: 2020
  ident: ref_52
  article-title: Denoising diffusion probabilistic models
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 74
  start-page: 102829
  year: 2019
  ident: ref_11
  article-title: Automatic digital mood boards to connect users and designers with Kansei engineering
  publication-title: Int. J. Ind. Ergon.
  doi: 10.1016/j.ergon.2019.102829
– ident: ref_50
  doi: 10.3390/app14177444
– volume: 29
  start-page: 595
  year: 2012
  ident: ref_7
  article-title: Product design: Preference for rounded versus angular design elements
  publication-title: Psychol. Mark.
  doi: 10.1002/mar.20546
– volume: 26
  start-page: 87
  year: 2015
  ident: ref_2
  article-title: Sustainable manufacturing based decision support model for product design and development process
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2015.03.004
– volume: 10
  start-page: 2175882
  year: 2023
  ident: ref_41
  article-title: Application of Kansei engineering to Turkish coffee makers: Connections between hedonic factors and design features
  publication-title: Cogent Eng.
  doi: 10.1080/23311916.2023.2175882
– volume: 54
  start-page: 4609
  year: 2022
  ident: ref_21
  article-title: Image generation: A review
  publication-title: Neural Process. Lett.
  doi: 10.1007/s11063-022-10777-x
– volume: 23
  start-page: 279
  year: 2013
  ident: ref_34
  article-title: Developing elements of user experience for mobile phones and services: Survey, interview, and observation approaches
  publication-title: Hum. Factors Ergon. Manuf. Serv. Ind.
  doi: 10.1002/hfm.20316
– volume: 58
  start-page: 52
  year: 2018
  ident: ref_29
  article-title: Affective evaluation of the luminous environment in university classrooms
  publication-title: J. Environ. Psychol.
  doi: 10.1016/j.jenvp.2018.07.010
– volume: 163
  start-page: 111
  year: 2018
  ident: ref_46
  article-title: Deep learning for automatic usability evaluations based on images: A case study of the usability heuristics of thermostats
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.12.043
– volume: 120
  start-page: 401
  year: 2018
  ident: ref_25
  article-title: Applying Kansei Engineering and data mining to design door-to-door delivery service
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2018.05.011
– ident: ref_73
– volume: 43
  start-page: 264
  year: 2013
  ident: ref_43
  article-title: A study on bicycle appearance preference by using FCE and FAHP
  publication-title: Int. J. Ind. Ergon.
  doi: 10.1016/j.ergon.2013.04.003
– ident: ref_32
  doi: 10.1007/978-3-030-80829-7_134
– volume: 23
  start-page: 863
  year: 2022
  ident: ref_60
  article-title: Research on the sensory feeling of product design for electric toothbrush based on Kansei engineering and Back propagation neural network
  publication-title: J. Internet Technol.
  doi: 10.53106/160792642022072304021
– volume: 60
  start-page: 84
  year: 2017
  ident: ref_44
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– volume: 74
  start-page: 145
  year: 2019
  ident: ref_4
  article-title: Mining affective experience for a Kansei design study on a recliner
  publication-title: Appl. Ergon.
  doi: 10.1016/j.apergo.2018.08.014
– ident: ref_57
  doi: 10.1109/ICCV51070.2023.00355
– ident: ref_35
  doi: 10.3390/app10041198
– volume: 8
  start-page: 1070
  year: 2017
  ident: ref_65
  article-title: How Kansei Engineering, Kano and QFD can improve logistics services
  publication-title: Int. J. Technol.
  doi: 10.14716/ijtech.v8i6.689
– ident: ref_48
  doi: 10.1145/3097983.3098176
– volume: 38
  start-page: 826
  year: 2018
  ident: ref_30
  article-title: Utilizing text mining and Kansei Engineering to support data-driven design automation at conceptual design stage
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2018.11.002
– volume: 4
  start-page: 1
  year: 2015
  ident: ref_37
  article-title: Applications of general morphological analysis
  publication-title: Acta Morphologica Generalis
– volume: 3
  start-page: 6228
  year: 2015
  ident: ref_42
  article-title: Affective perception of disposable razors: A Kansei engineering approach
  publication-title: Procedia Manuf.
  doi: 10.1016/j.promfg.2015.07.750
– ident: ref_62
  doi: 10.3390/su16083132
– volume: 27
  start-page: 2672
  year: 2014
  ident: ref_45
  article-title: Generative adversarial nets
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 165
  start-page: 107913
  year: 2022
  ident: ref_61
  article-title: Kansei engineering for new energy vehicle exterior design: An internet big data mining approach
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2021.107913
– volume: 76
  start-page: 102940
  year: 2020
  ident: ref_12
  article-title: A proposal of the event-related potential method to effectively identify Kansei words for assessing product design features in Kansei engineering research
  publication-title: Int. J. Ind. Ergon.
  doi: 10.1016/j.ergon.2020.102940
– volume: 32
  start-page: 559
  year: 2021
  ident: ref_10
  article-title: Product innovation concept generation based on deep learning and Kansei engineering
  publication-title: J. Eng. Des.
  doi: 10.1080/09544828.2021.1928023
– volume: Volume 20
  start-page: 1250
  year: 1995
  ident: ref_69
  article-title: An introduction to partial least squares regression
  publication-title: Proceedings of the Twentieth Annual SAS Users Group International Conference
SSID ssj0000331916
Score 2.3701887
Snippet Accurately grasping users’ Kansei needs and rapidly transforming them into product design solutions are key factors in enhancing product competitiveness and...
SourceID proquest
gale
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 8837
SubjectTerms Aesthetics
Artificial intelligence
Consumers
Deep learning
Design techniques
Engineering
Engineering design
Ergonomics
Hypotheses
Image processing
Methods
Morphology
Product design
Product development
Product differentiation
Sustainable development
User needs
Title A Product’s Kansei Appearance Design Method Based on Conditional-Controlled AI Image Generation
URI https://www.proquest.com/docview/3120810286
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NTtwwEB6V5QA9VLCA2BaQRStVPUTEduIkp2pZlrJUIERB2lsU_6SqRBPaLPe-Bq_Hk3Qm8bIgIc6e_I4933g88w3AJ4uQXJYWPTfFdRBluOa0cCYoI5NxYxV6uFScfHauTq6j02k89QG3xqdVzm1ia6htbShGfiC5QPRCNFRfb_8E1DWKTld9C40lWEYTnKY9WD4cn19cPkZZQolTjKuOl1Ti_h71yxXeKaXG50-Q6GV73ILM8Rq8894hG3bqXIc3rurDyrx4uOnD2yf8gX3YGi_K1PAyv06bDSiG7KKjcn34d9-w74hH7hdDjxPnNamZHbWJG-ys7R_NDhHKLKsrNqrpBLuNDgajLon9BkeGEzb5jYaHdSTVJLAJ18fjq9FJ4JspBEaqdBY4rsvE4YeHwggtlU4Qp4wlAvgYIUkoo20hQqNMEpWKc6eLIrQZF4WJZeIKuQW9qq7cNjBnQkn1t06lWRRbq5UTluvYSp2YyPABfJn_2Nx4pnFqeHGT446DlJAvlDCAj4-ytx2_xotS-6SfnAgrKsqI-VncNU0--XGZD1PaEmYqiwbw2QuVNT7OFL7AAF-aOK6eSe7M9Zz7Jdvkiwn2_vXhD7Aq0LPpMvp2oDf7e-d20TOZ6T0__fZg6duU_wf1juVo
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6V9FA4IAhUpBRY8SPEwcK7a6_jA0JpmiomTVSVVurNeH-MkFq74FSIG6_BS_BQPAkz_mmKVHHr2WN7tTP7zezuzDcALy265Dy3GLkprr0gxjWnhTNeHpiYG6swwqXi5PlCTY-DDyfhyRr87mphKK2yw8QaqG1p6Iz8reQCvRd6Q_X-_KtHXaPodrVrodGYxcz9-I5btupdsov6fSXE3uRoPPXargKekWq49BzXeeRwcfnCCC2VjhCwjSUm9BCxWSijbSZ8o0wU5Ipzp7PMtzEXmQll5DKJ370F64FUvujB-s5kcXB4earjSzRprhoeVCljH-2JKxz5kBqtX_F81-N_7dT27sHdNhplo8Z87sOaK_qw0RUrV324c4WvsA-bk1VZHL7W4kL1ALIRO2ioY__8_FWxGfo_94VhhIsTRmbFdutEETav-1WzHXSdlpUFG5d0Y16fRnrjJmn-FJ-MEpacIdCxhhSbBB7C8Y1M8yb0irJwj4A540uq93VqGAehtVo5YbkOrdSRCQwfwJtuYlPTMptTg43TFHc4pIR0pYQBvLiUPW_4PK6Vek76SYkgo6AMnM_ZRVWlycfDdDSkLWis4mAAr1uhvMTfmawtaMBBE6fWP5LbnZ7TFiKqdGXQW_9__Aw2pkfz_XQ_Wcwew22BUVWTTbgNveW3C_cEo6KlftqaIoNPN239fwGcuyFf
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEC2FicRyQDAQMRCgxSLEwYq7226PDwhNZlHMkNEoECk3x70YIQU74IkQN36DX-Fz-BKqvGSCFHHL2eWt63VVdXfVK4AXFl1ynluM3BTXXhDjnNPCGS8PTMyNVRjhUnHy_kLtHQbvjsKjDfjd1cJQWmVnE2tDbUtDe-Q7kgv0XugN1U7epkUsJ7O3p1896iBFJ61dO40GInP34zsu36o3yQR1_VKI2fTjeM9rOwx4RqrhynNc55HDieYLI7RUOkLjbSyxoodop4Uy2mbCN8pEQa44dzrLfBtzkZlQRi6T-NxrsBnRqqgHm7vTxfLgfIfHlwhvrhpOVCljH7HFFf7FkJquX_CCl_uC2sHN7sDtNjJlowZKd2HDFX240RUuV324dYG7sA9b03WJHN7W2ojqHmQjtmxoZP_8_FWxOfpC95lhtIsDRhBjkzpphO3XvavZLrpRy8qCjUs6Pa93Jr1xk0B_gldGCUu-oNFjDUE2CdyHwysZ5i3oFWXhHgBzxpdU--vUMA5Ca7VywnIdWqkjExg-gNfdwKamZTmnZhsnKa52SAnpWgkDeH4ue9pwe1wq9Yz0kxJZRkGw-5SdVVWafDhIR0NajsYqDgbwqhXKS3ydydriBvxo4tf6R3K703PamosqXYP74f8vP4XriPr0fbKYP4KbAgOsJrFwG3qrb2fuMQZIK_2kRSKD46sG_1_WVyWU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Product%E2%80%99s+Kansei+Appearance+Design+Method+Based+on+Conditional-Controlled+AI+Image+Generation&rft.jtitle=Sustainability&rft.au=Du%2C+Yuanjian&rft.au=Liu%2C+Xiaoxue&rft.au=Cai%2C+Mobing&rft.au=Park%2C+Kyungjin&rft.date=2024-10-01&rft.issn=2071-1050&rft.eissn=2071-1050&rft.volume=16&rft.issue=20&rft.spage=8837&rft_id=info:doi/10.3390%2Fsu16208837&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_su16208837
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2071-1050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2071-1050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2071-1050&client=summon