A Product’s Kansei Appearance Design Method Based on Conditional-Controlled AI Image Generation
Accurately grasping users’ Kansei needs and rapidly transforming them into product design solutions are key factors in enhancing product competitiveness and sustainability. This paper proposes a product appearance design method based on Kansei engineering and AI image generation technology, integrat...
Saved in:
Published in | Sustainability Vol. 16; no. 20; p. 8837 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.10.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Accurately grasping users’ Kansei needs and rapidly transforming them into product design solutions are key factors in enhancing product competitiveness and sustainability. This paper proposes a product appearance design method based on Kansei engineering and AI image generation technology, integrating other approaches, with household indoor hydroponics as the research subject. First, the web crawler is used to obtain product image samples and user online reviews, and factor analysis (FA) is applied to quickly extract users’ Kansei needs. Second, product morphology is used to deconstruct and encode product appearances. Partial least squares regression (PLSR) is then employed to map and quantify the relationships between Kansei needs and design elements, yielding optimal design solutions and one-dimensional sketches. These sketches are subsequently used as controlled conditions in Stable Diffusion (SD), combined with a team-trained Lora model, to generate two-dimensional colored sketches in batches. Finally, evaluations verify that the generated design solutions are satisfactory and meet users’ Kansei needs. The results indicate that the proposed product appearance design method not only holds significant implications for the sustainable development of Kansei engineering in product design but also greatly enhances the efficiency of the design process, providing new insights into integrating new technologies and scientific research methods in the field of product design. |
---|---|
AbstractList | Accurately grasping users’ Kansei needs and rapidly transforming them into product design solutions are key factors in enhancing product competitiveness and sustainability. This paper proposes a product appearance design method based on Kansei engineering and AI image generation technology, integrating other approaches, with household indoor hydroponics as the research subject. First, the web crawler is used to obtain product image samples and user online reviews, and factor analysis (FA) is applied to quickly extract users’ Kansei needs. Second, product morphology is used to deconstruct and encode product appearances. Partial least squares regression (PLSR) is then employed to map and quantify the relationships between Kansei needs and design elements, yielding optimal design solutions and one-dimensional sketches. These sketches are subsequently used as controlled conditions in Stable Diffusion (SD), combined with a team-trained Lora model, to generate two-dimensional colored sketches in batches. Finally, evaluations verify that the generated design solutions are satisfactory and meet users’ Kansei needs. The results indicate that the proposed product appearance design method not only holds significant implications for the sustainable development of Kansei engineering in product design but also greatly enhances the efficiency of the design process, providing new insights into integrating new technologies and scientific research methods in the field of product design. |
Audience | Academic |
Author | Du, Yuanjian Cai, Mobing Liu, Xiaoxue Park, Kyungjin |
Author_xml | – sequence: 1 givenname: Yuanjian orcidid: 0009-0000-4121-7458 surname: Du fullname: Du, Yuanjian – sequence: 2 givenname: Xiaoxue orcidid: 0009-0008-1458-1121 surname: Liu fullname: Liu, Xiaoxue – sequence: 3 givenname: Mobing orcidid: 0009-0002-7844-3576 surname: Cai fullname: Cai, Mobing – sequence: 4 givenname: Kyungjin surname: Park fullname: Park, Kyungjin |
BookMark | eNptkc9OGzEQxq2KSkDKhSewxAmkpf6TeHePS2jTqCAQhfNq1jubOtrYwfZK7Y3X4PX6JDhNpRKE5-CR5_dZn745JHvWWSTkmLNzKUv2OQxcCVYUMv9ADgTLecbZhO296vfJUQhLlo6UvOTqgEBFb71rBx3_PD0H-h1sQEOr9RrBg9VILzGYhaXXGH-6ll5AwJY6S6fOtiYaZ6HPUh-96_s0qeZ0voIF0hla9LABPpGPHfQBj_7dI_Lw9cv99Ft2dTObT6urTEtVxAx50-WY3DOhRSNVkzOV65YpJSaiLIXSTQuCaaXzcac4xwaAtSUXoCcyR5AjcrL9d-3d44Ah1ks3-OQv1JKnWDgThUrU-ZZaQI-1sZ2LHnSqFldGpzw7k96rgo_HvFTlOAlOdwSJifgrLmAIoZ7_uNtlz7as9i4Ej1299mYF_nfNWb1ZUf1_RQlmb2Bt4t_EkiPTvyd5AV5ok-c |
CitedBy_id | crossref_primary_10_3390_e27030319 crossref_primary_10_1016_j_aei_2025_103118 |
Cites_doi | 10.1111/1540-5885.1430190 10.1155/2011/295074 10.1007/s11042-018-5968-7 10.1016/j.displa.2023.102623 10.1080/09544828.2014.944488 10.1016/0169-8141(94)00052-5 10.3390/su141710556 10.1016/j.aei.2023.102058 10.1080/09544828.2022.2078660 10.1016/j.ergon.2011.01.011 10.1080/09544828.2018.1471671 10.1016/j.buildenv.2017.06.004 10.1016/j.aei.2021.101457 10.1016/j.cie.2019.06.001 10.1002/hfm.20628 10.1016/j.cie.2011.01.011 10.1080/00207543.2021.1949641 10.1016/j.ergon.2010.01.009 10.21037/qims-20-1078 10.1016/j.jclepro.2017.05.189 10.3390/agriculture13061191 10.1016/j.ergon.2015.03.009 10.1109/ACCESS.2021.3101619 10.1016/j.eswa.2011.01.083 10.1007/s00163-002-0023-z 10.1007/978-3-319-10831-5_36 10.1016/j.ergon.2020.102985 10.1109/CVPR52688.2022.01042 10.5057/ijae.IJAE-D-15-00022 10.1016/j.aei.2018.02.002 10.1016/j.ergon.2016.09.010 10.3390/app8122397 10.1080/00140139.2011.616229 10.1016/j.destud.2019.02.003 10.3233/JIFS-192032 10.1016/j.eswa.2010.12.047 10.1016/j.tele.2016.08.002 10.1016/j.ergon.2019.102829 10.3390/app14177444 10.1002/mar.20546 10.1016/j.procir.2015.03.004 10.1080/23311916.2023.2175882 10.1007/s11063-022-10777-x 10.1002/hfm.20316 10.1016/j.jenvp.2018.07.010 10.1016/j.enbuild.2017.12.043 10.1016/j.cie.2018.05.011 10.1016/j.ergon.2013.04.003 10.1007/978-3-030-80829-7_134 10.53106/160792642022072304021 10.1145/3065386 10.1016/j.apergo.2018.08.014 10.1109/ICCV51070.2023.00355 10.3390/app10041198 10.14716/ijtech.v8i6.689 10.1145/3097983.3098176 10.1016/j.aei.2018.11.002 10.1016/j.promfg.2015.07.750 10.3390/su16083132 10.1016/j.cie.2021.107913 10.1016/j.ergon.2020.102940 10.1080/09544828.2021.1928023 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ISR 4U- ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS |
DOI | 10.3390/su16208837 |
DatabaseName | CrossRef Gale In Context: Science University Readers ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database University Readers ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Environmental Sciences Engineering |
EISSN | 2071-1050 |
ExternalDocumentID | A814419694 10_3390_su16208837 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | 29Q 2WC 2XV 4P2 5VS 7XC 8FE 8FH A8Z AAHBH AAYXX ACHQT ADBBV ADMLS AENEX AFKRA AFMMW ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION E3Z ECGQY FRS GX1 IAO IEP ISR ITC KQ8 ML. MODMG M~E OK1 P2P PHGZM PHGZT PIMPY PROAC TR2 PMFND 4U- ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c368t-e1bf7e08802c2b36b7067cd0662529926cbda20c6c74f611ebaa0d912ac537ea3 |
IEDL.DBID | BENPR |
ISSN | 2071-1050 |
IngestDate | Mon Jun 30 15:06:32 EDT 2025 Tue Jun 10 20:58:43 EDT 2025 Fri Jun 27 05:15:42 EDT 2025 Thu Apr 24 22:48:33 EDT 2025 Tue Jul 01 02:04:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c368t-e1bf7e08802c2b36b7067cd0662529926cbda20c6c74f611ebaa0d912ac537ea3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0000-4121-7458 0009-0002-7844-3576 0009-0008-1458-1121 |
OpenAccessLink | https://www.proquest.com/docview/3120810286?pq-origsite=%requestingapplication% |
PQID | 3120810286 |
PQPubID | 2032327 |
ParticipantIDs | proquest_journals_3120810286 gale_infotracacademiconefile_A814419694 gale_incontextgauss_ISR_A814419694 crossref_primary_10_3390_su16208837 crossref_citationtrail_10_3390_su16208837 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-01 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Sustainability |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_50 Hartono (ref_65) 2017; 8 Cheng (ref_19) 2021; 11 Goodfellow (ref_45) 2014; 27 Ponce (ref_46) 2018; 163 Razza (ref_42) 2015; 3 Elasri (ref_21) 2022; 54 ref_57 Krizhevsky (ref_44) 2017; 60 ref_56 Kulatunga (ref_2) 2015; 26 Zhou (ref_47) 2021; 9 ref_55 ref_53 Llinares (ref_27) 2011; 41 Guo (ref_33) 2016; 26 Wang (ref_68) 2011; 38 ref_18 Wu (ref_51) 2024; 81 Ahmed (ref_17) 2003; 14 Alppay (ref_41) 2023; 10 Kim (ref_4) 2019; 74 Matsubara (ref_71) 2011; 2011 Westerman (ref_7) 2012; 29 Nagamachi (ref_13) 1995; 15 ref_66 Kittidecha (ref_67) 2016; 15 Tobias (ref_69) 1995; Volume 20 ref_20 Zhao (ref_22) 2024; 36 Guo (ref_12) 2020; 76 ref_62 Shieh (ref_6) 2018; 36 Park (ref_34) 2013; 23 Ritchey (ref_37) 2015; 4 Lee (ref_15) 2022; 51 Lai (ref_61) 2022; 165 ref_72 Kang (ref_31) 2020; 39 Hartono (ref_23) 2020; 79 Castilla (ref_28) 2017; 122 ref_35 ref_77 ref_32 ref_76 ref_73 Dyllick (ref_1) 2017; 162 Guo (ref_58) 2014; 25 Woo (ref_60) 2022; 23 Ragatz (ref_3) 1997; 14 Li (ref_59) 2018; 29 Lee (ref_8) 2019; 135 Chen (ref_24) 2015; 48 Li (ref_10) 2021; 32 Hsiao (ref_43) 2013; 43 Ho (ref_52) 2020; 33 Chiu (ref_30) 2018; 38 Jin (ref_64) 2022; 60 Atmadja (ref_75) 2022; Volume 998 Hsiao (ref_38) 2010; 40 Castilla (ref_29) 2018; 58 Yang (ref_39) 2011; 60 Wang (ref_74) 2023; 12 Yang (ref_5) 2023; 57 Chang (ref_14) 2016; 56 ref_40 Chai (ref_49) 2018; 77 Yeh (ref_25) 2018; 120 Liu (ref_36) 2022; 33 Dhariwal (ref_54) 2021; 34 Hartono (ref_26) 2011; 54 ref_48 ref_9 Hsiao (ref_70) 2017; 34 Zabotto (ref_11) 2019; 74 Self (ref_16) 2019; 63 Cheng (ref_63) 2011; 38 |
References_xml | – volume: Volume 998 start-page: 012048 year: 2022 ident: ref_75 article-title: Indoor Hydroponic System Using IoT-Based LED publication-title: IOP Conference Series: Earth and Environmental Science – volume: 14 start-page: 190 year: 1997 ident: ref_3 article-title: Success factors for integrating suppliers into new product development publication-title: J. Prod. Innov. Manag. Int. Publ. Prod. Dev. Manag. Assoc. doi: 10.1111/1540-5885.1430190 – volume: 2011 start-page: 295074 year: 2011 ident: ref_71 article-title: Kansei Analysis of the Japanese Residential Garden and Development of a Low-Cost Virtual Reality Kansei Engineering System for Gardens publication-title: Adv. Hum.-Comput. Interact. doi: 10.1155/2011/295074 – ident: ref_55 – volume: 77 start-page: 22339 year: 2018 ident: ref_49 article-title: A one-to-many conditional generative adversarial network framework for multiple image-to-image translations publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-018-5968-7 – volume: 81 start-page: 102623 year: 2024 ident: ref_51 article-title: An AIGC-empowered methodology to product color matching design publication-title: Displays doi: 10.1016/j.displa.2023.102623 – volume: 25 start-page: 194 year: 2014 ident: ref_58 article-title: Emotional design method of product presented in multi-dimensional variables based on Kansei Engineering publication-title: J. Eng. Des. doi: 10.1080/09544828.2014.944488 – volume: 15 start-page: 3 year: 1995 ident: ref_13 article-title: Kansei engineering: A new ergonomic consumer-oriented technology for product development publication-title: Int. J. Ind. Ergon. doi: 10.1016/0169-8141(94)00052-5 – ident: ref_18 doi: 10.3390/su141710556 – volume: 34 start-page: 8780 year: 2021 ident: ref_54 article-title: Diffusion models beat gans on image synthesis publication-title: Adv. Neural Inf. Process. Syst. – volume: 57 start-page: 102058 year: 2023 ident: ref_5 article-title: A product form design method integrating Kansei engineering and diffusion model publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2023.102058 – volume: 33 start-page: 412 year: 2022 ident: ref_36 article-title: Study on product form design via Kansei engineering and virtual reality publication-title: J. Eng. Des. doi: 10.1080/09544828.2022.2078660 – volume: 41 start-page: 233 year: 2011 ident: ref_27 article-title: Kano’s model in Kansei Engineering to evaluate subjective real estate consumer preferences publication-title: Int. J. Ind. Ergon. doi: 10.1016/j.ergon.2011.01.011 – volume: 29 start-page: 358 year: 2018 ident: ref_59 article-title: Dynamic mapping of design elements and affective responses: A machine learning based method for affective design publication-title: J. Eng. Des. doi: 10.1080/09544828.2018.1471671 – volume: 122 start-page: 72 year: 2017 ident: ref_28 article-title: Subjective assessment of university classroom environment publication-title: Build. Environ. doi: 10.1016/j.buildenv.2017.06.004 – volume: 51 start-page: 101457 year: 2022 ident: ref_15 article-title: Soccer shoe recommendation system based on multitechnology integration for digital transformation publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2021.101457 – volume: 135 start-page: 275 year: 2019 ident: ref_8 article-title: Service quality driven approach for innovative retail service system design and evaluation: A case study publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2019.06.001 – volume: 26 start-page: 301 year: 2016 ident: ref_33 article-title: Application of evolutionary neural networks on optimization design of mobile phone based on user’s emotional needs publication-title: Hum. Factors Ergon. Manuf. Serv. Ind. doi: 10.1002/hfm.20628 – volume: 60 start-page: 760 year: 2011 ident: ref_39 article-title: Constructing a hybrid Kansei engineering system based on multiple affective responses: Application to product form design publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2011.01.011 – volume: 60 start-page: 6708 year: 2022 ident: ref_64 article-title: Mining online reviews with a Kansei-integrated Kano model for innovative product design publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2021.1949641 – volume: 40 start-page: 237 year: 2010 ident: ref_38 article-title: Product-form design model based on genetic algorithms publication-title: Int. J. Ind. Ergon. doi: 10.1016/j.ergon.2010.01.009 – volume: 11 start-page: 2792 year: 2021 ident: ref_19 article-title: Applications of artificial intelligence in nuclear medicine image generation publication-title: Quant. Imaging Med. Surg. doi: 10.21037/qims-20-1078 – volume: 162 start-page: 346 year: 2017 ident: ref_1 article-title: Towards true product sustainability publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2017.05.189 – ident: ref_77 doi: 10.3390/agriculture13061191 – volume: 48 start-page: 46 year: 2015 ident: ref_24 article-title: Applying Kansei engineering to design logistics services–A case of home delivery service publication-title: Int. J. Ind. Ergon. doi: 10.1016/j.ergon.2015.03.009 – volume: 9 start-page: 108992 year: 2021 ident: ref_47 article-title: Evaluation and design method for product form aesthetics based on deep learning publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3101619 – volume: 38 start-page: 8738 year: 2011 ident: ref_68 article-title: A hybrid Kansei engineering design expert system based on grey system theory and support vector regression publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.01.083 – volume: 14 start-page: 1 year: 2003 ident: ref_17 article-title: Understanding the differences between how novice and experienced designers approach design tasks publication-title: Res. Eng. Des. doi: 10.1007/s00163-002-0023-z – ident: ref_66 – volume: 12 start-page: 90 year: 2023 ident: ref_74 article-title: Research on AI Painting Generation Technology Based on the [Stable Diffusion] publication-title: Int. J. Adv. Smart Converg. – ident: ref_9 doi: 10.1007/978-3-319-10831-5_36 – volume: 79 start-page: 102985 year: 2020 ident: ref_23 article-title: The modified Kansei Engineering-based application for sustainable service design publication-title: Int. J. Ind. Ergon. doi: 10.1016/j.ergon.2020.102985 – ident: ref_56 doi: 10.1109/CVPR52688.2022.01042 – volume: 15 start-page: 325 year: 2016 ident: ref_67 article-title: Application of affective engineering and fuzzy analytical hierarchy process in thai ceramic manufacturing publication-title: Int. J. Affect. Eng. doi: 10.5057/ijae.IJAE-D-15-00022 – ident: ref_72 – volume: 36 start-page: 31 year: 2018 ident: ref_6 article-title: Comparison of multi-objective evolutionary algorithms in hybrid Kansei engineering system for product form design publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2018.02.002 – volume: 56 start-page: 97 year: 2016 ident: ref_14 article-title: Kansei assessment of the constituent elements and the overall interrelations in car steering wheel design publication-title: Int. J. Ind. Ergon. doi: 10.1016/j.ergon.2016.09.010 – ident: ref_40 doi: 10.3390/app8122397 – ident: ref_20 – volume: 54 start-page: 987 year: 2011 ident: ref_26 article-title: How the Kano model contributes to Kansei engineering in services publication-title: Ergonomics doi: 10.1080/00140139.2011.616229 – ident: ref_53 – volume: 63 start-page: 1 year: 2019 ident: ref_16 article-title: Communication through design sketches: Implications for stakeholder interpretation during concept design publication-title: Des. Stud. doi: 10.1016/j.destud.2019.02.003 – volume: 36 start-page: 11127 year: 2024 ident: ref_22 article-title: Uni-controlnet: All-in-one control to text-to-image diffusion models publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_76 – volume: 39 start-page: 1131 year: 2020 ident: ref_31 article-title: Aesthetic product design combining with rough set theory and fuzzy quality function deployment publication-title: J. Intell. Fuzzy Syst. doi: 10.3233/JIFS-192032 – volume: 38 start-page: 7143 year: 2011 ident: ref_63 article-title: Integrating data mining with KJ method to classify bridge construction defects publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.12.047 – volume: 34 start-page: 284 year: 2017 ident: ref_70 article-title: Logistics service design for cross-border E-commerce using Kansei engineering with text-mining-based online content analysis publication-title: Telemat. Inform. doi: 10.1016/j.tele.2016.08.002 – volume: 33 start-page: 6840 year: 2020 ident: ref_52 article-title: Denoising diffusion probabilistic models publication-title: Adv. Neural Inf. Process. Syst. – volume: 74 start-page: 102829 year: 2019 ident: ref_11 article-title: Automatic digital mood boards to connect users and designers with Kansei engineering publication-title: Int. J. Ind. Ergon. doi: 10.1016/j.ergon.2019.102829 – ident: ref_50 doi: 10.3390/app14177444 – volume: 29 start-page: 595 year: 2012 ident: ref_7 article-title: Product design: Preference for rounded versus angular design elements publication-title: Psychol. Mark. doi: 10.1002/mar.20546 – volume: 26 start-page: 87 year: 2015 ident: ref_2 article-title: Sustainable manufacturing based decision support model for product design and development process publication-title: Procedia CIRP doi: 10.1016/j.procir.2015.03.004 – volume: 10 start-page: 2175882 year: 2023 ident: ref_41 article-title: Application of Kansei engineering to Turkish coffee makers: Connections between hedonic factors and design features publication-title: Cogent Eng. doi: 10.1080/23311916.2023.2175882 – volume: 54 start-page: 4609 year: 2022 ident: ref_21 article-title: Image generation: A review publication-title: Neural Process. Lett. doi: 10.1007/s11063-022-10777-x – volume: 23 start-page: 279 year: 2013 ident: ref_34 article-title: Developing elements of user experience for mobile phones and services: Survey, interview, and observation approaches publication-title: Hum. Factors Ergon. Manuf. Serv. Ind. doi: 10.1002/hfm.20316 – volume: 58 start-page: 52 year: 2018 ident: ref_29 article-title: Affective evaluation of the luminous environment in university classrooms publication-title: J. Environ. Psychol. doi: 10.1016/j.jenvp.2018.07.010 – volume: 163 start-page: 111 year: 2018 ident: ref_46 article-title: Deep learning for automatic usability evaluations based on images: A case study of the usability heuristics of thermostats publication-title: Energy Build. doi: 10.1016/j.enbuild.2017.12.043 – volume: 120 start-page: 401 year: 2018 ident: ref_25 article-title: Applying Kansei Engineering and data mining to design door-to-door delivery service publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2018.05.011 – ident: ref_73 – volume: 43 start-page: 264 year: 2013 ident: ref_43 article-title: A study on bicycle appearance preference by using FCE and FAHP publication-title: Int. J. Ind. Ergon. doi: 10.1016/j.ergon.2013.04.003 – ident: ref_32 doi: 10.1007/978-3-030-80829-7_134 – volume: 23 start-page: 863 year: 2022 ident: ref_60 article-title: Research on the sensory feeling of product design for electric toothbrush based on Kansei engineering and Back propagation neural network publication-title: J. Internet Technol. doi: 10.53106/160792642022072304021 – volume: 60 start-page: 84 year: 2017 ident: ref_44 article-title: Imagenet classification with deep convolutional neural networks publication-title: Commun. ACM doi: 10.1145/3065386 – volume: 74 start-page: 145 year: 2019 ident: ref_4 article-title: Mining affective experience for a Kansei design study on a recliner publication-title: Appl. Ergon. doi: 10.1016/j.apergo.2018.08.014 – ident: ref_57 doi: 10.1109/ICCV51070.2023.00355 – ident: ref_35 doi: 10.3390/app10041198 – volume: 8 start-page: 1070 year: 2017 ident: ref_65 article-title: How Kansei Engineering, Kano and QFD can improve logistics services publication-title: Int. J. Technol. doi: 10.14716/ijtech.v8i6.689 – ident: ref_48 doi: 10.1145/3097983.3098176 – volume: 38 start-page: 826 year: 2018 ident: ref_30 article-title: Utilizing text mining and Kansei Engineering to support data-driven design automation at conceptual design stage publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2018.11.002 – volume: 4 start-page: 1 year: 2015 ident: ref_37 article-title: Applications of general morphological analysis publication-title: Acta Morphologica Generalis – volume: 3 start-page: 6228 year: 2015 ident: ref_42 article-title: Affective perception of disposable razors: A Kansei engineering approach publication-title: Procedia Manuf. doi: 10.1016/j.promfg.2015.07.750 – ident: ref_62 doi: 10.3390/su16083132 – volume: 27 start-page: 2672 year: 2014 ident: ref_45 article-title: Generative adversarial nets publication-title: Adv. Neural Inf. Process. Syst. – volume: 165 start-page: 107913 year: 2022 ident: ref_61 article-title: Kansei engineering for new energy vehicle exterior design: An internet big data mining approach publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2021.107913 – volume: 76 start-page: 102940 year: 2020 ident: ref_12 article-title: A proposal of the event-related potential method to effectively identify Kansei words for assessing product design features in Kansei engineering research publication-title: Int. J. Ind. Ergon. doi: 10.1016/j.ergon.2020.102940 – volume: 32 start-page: 559 year: 2021 ident: ref_10 article-title: Product innovation concept generation based on deep learning and Kansei engineering publication-title: J. Eng. Des. doi: 10.1080/09544828.2021.1928023 – volume: Volume 20 start-page: 1250 year: 1995 ident: ref_69 article-title: An introduction to partial least squares regression publication-title: Proceedings of the Twentieth Annual SAS Users Group International Conference |
SSID | ssj0000331916 |
Score | 2.3701887 |
Snippet | Accurately grasping users’ Kansei needs and rapidly transforming them into product design solutions are key factors in enhancing product competitiveness and... |
SourceID | proquest gale crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 8837 |
SubjectTerms | Aesthetics Artificial intelligence Consumers Deep learning Design techniques Engineering Engineering design Ergonomics Hypotheses Image processing Methods Morphology Product design Product development Product differentiation Sustainable development User needs |
Title | A Product’s Kansei Appearance Design Method Based on Conditional-Controlled AI Image Generation |
URI | https://www.proquest.com/docview/3120810286 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NTtwwEB6V5QA9VLCA2BaQRStVPUTEduIkp2pZlrJUIERB2lsU_6SqRBPaLPe-Bq_Hk3Qm8bIgIc6e_I4933g88w3AJ4uQXJYWPTfFdRBluOa0cCYoI5NxYxV6uFScfHauTq6j02k89QG3xqdVzm1ia6htbShGfiC5QPRCNFRfb_8E1DWKTld9C40lWEYTnKY9WD4cn19cPkZZQolTjKuOl1Ti_h71yxXeKaXG50-Q6GV73ILM8Rq8894hG3bqXIc3rurDyrx4uOnD2yf8gX3YGi_K1PAyv06bDSiG7KKjcn34d9-w74hH7hdDjxPnNamZHbWJG-ys7R_NDhHKLKsrNqrpBLuNDgajLon9BkeGEzb5jYaHdSTVJLAJ18fjq9FJ4JspBEaqdBY4rsvE4YeHwggtlU4Qp4wlAvgYIUkoo20hQqNMEpWKc6eLIrQZF4WJZeIKuQW9qq7cNjBnQkn1t06lWRRbq5UTluvYSp2YyPABfJn_2Nx4pnFqeHGT446DlJAvlDCAj4-ytx2_xotS-6SfnAgrKsqI-VncNU0--XGZD1PaEmYqiwbw2QuVNT7OFL7AAF-aOK6eSe7M9Zz7Jdvkiwn2_vXhD7Aq0LPpMvp2oDf7e-d20TOZ6T0__fZg6duU_wf1juVo |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6V9FA4IAhUpBRY8SPEwcK7a6_jA0JpmiomTVSVVurNeH-MkFq74FSIG6_BS_BQPAkz_mmKVHHr2WN7tTP7zezuzDcALy265Dy3GLkprr0gxjWnhTNeHpiYG6swwqXi5PlCTY-DDyfhyRr87mphKK2yw8QaqG1p6Iz8reQCvRd6Q_X-_KtHXaPodrVrodGYxcz9-I5btupdsov6fSXE3uRoPPXargKekWq49BzXeeRwcfnCCC2VjhCwjSUm9BCxWSijbSZ8o0wU5Ipzp7PMtzEXmQll5DKJ370F64FUvujB-s5kcXB4earjSzRprhoeVCljH-2JKxz5kBqtX_F81-N_7dT27sHdNhplo8Z87sOaK_qw0RUrV324c4WvsA-bk1VZHL7W4kL1ALIRO2ioY__8_FWxGfo_94VhhIsTRmbFdutEETav-1WzHXSdlpUFG5d0Y16fRnrjJmn-FJ-MEpacIdCxhhSbBB7C8Y1M8yb0irJwj4A540uq93VqGAehtVo5YbkOrdSRCQwfwJtuYlPTMptTg43TFHc4pIR0pYQBvLiUPW_4PK6Vek76SYkgo6AMnM_ZRVWlycfDdDSkLWis4mAAr1uhvMTfmawtaMBBE6fWP5LbnZ7TFiKqdGXQW_9__Aw2pkfz_XQ_Wcwew22BUVWTTbgNveW3C_cEo6KlftqaIoNPN239fwGcuyFf |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEC2FicRyQDAQMRCgxSLEwYq7226PDwhNZlHMkNEoECk3x70YIQU74IkQN36DX-Fz-BKqvGSCFHHL2eWt63VVdXfVK4AXFl1ynluM3BTXXhDjnNPCGS8PTMyNVRjhUnHy_kLtHQbvjsKjDfjd1cJQWmVnE2tDbUtDe-Q7kgv0XugN1U7epkUsJ7O3p1896iBFJ61dO40GInP34zsu36o3yQR1_VKI2fTjeM9rOwx4RqrhynNc55HDieYLI7RUOkLjbSyxoodop4Uy2mbCN8pEQa44dzrLfBtzkZlQRi6T-NxrsBnRqqgHm7vTxfLgfIfHlwhvrhpOVCljH7HFFf7FkJquX_CCl_uC2sHN7sDtNjJlowZKd2HDFX240RUuV324dYG7sA9b03WJHN7W2ojqHmQjtmxoZP_8_FWxOfpC95lhtIsDRhBjkzpphO3XvavZLrpRy8qCjUs6Pa93Jr1xk0B_gldGCUu-oNFjDUE2CdyHwysZ5i3oFWXhHgBzxpdU--vUMA5Ca7VywnIdWqkjExg-gNfdwKamZTmnZhsnKa52SAnpWgkDeH4ue9pwe1wq9Yz0kxJZRkGw-5SdVVWafDhIR0NajsYqDgbwqhXKS3ydydriBvxo4tf6R3K703PamosqXYP74f8vP4XriPr0fbKYP4KbAgOsJrFwG3qrb2fuMQZIK_2kRSKD46sG_1_WVyWU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Product%E2%80%99s+Kansei+Appearance+Design+Method+Based+on+Conditional-Controlled+AI+Image+Generation&rft.jtitle=Sustainability&rft.au=Du%2C+Yuanjian&rft.au=Liu%2C+Xiaoxue&rft.au=Cai%2C+Mobing&rft.au=Park%2C+Kyungjin&rft.date=2024-10-01&rft.issn=2071-1050&rft.eissn=2071-1050&rft.volume=16&rft.issue=20&rft.spage=8837&rft_id=info:doi/10.3390%2Fsu16208837&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_su16208837 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2071-1050&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2071-1050&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2071-1050&client=summon |