Laser soliton microcombs heterogeneously integrated on silicon
The realization of optical frequency combs, light sources with precisely spaced frequencies across a broad spectrum of wavelengths, in dielectric microresonators has affected a range of applications from imaging and ranging to precision time keeping and metrology. Xiang et al. demonstrate that the e...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 373; no. 6550; pp. 99 - 103 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington
The American Association for the Advancement of Science
02.07.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The realization of optical frequency combs, light sources with precisely spaced frequencies across a broad spectrum of wavelengths, in dielectric microresonators has affected a range of applications from imaging and ranging to precision time keeping and metrology. Xiang
et al.
demonstrate that the entire system, the laser-pumping system and the comb-generating microresonators, can be combined into an integrated silicon-based platform. Compatibility with foundry fabrication methods will enable this innovation to have a major impact on coherent communications, optical interconnects, and low-noise microwave generation.
Science
, abh2076, this issue p.
99
Optical microresonator frequency combs are realized in an integrated Si-based platform.
Silicon photonics enables wafer-scale integration of optical functionalities on chip. Silicon-based laser frequency combs can provide integrated sources of mutually coherent laser lines for terabit-per-second transceivers, parallel coherent light detection and ranging, or photonics-assisted signal processing. We report heterogeneously integrated laser soliton microcombs combining both indium phospide/silicon (InP/Si) semiconductor lasers and ultralow-loss silicon nitride (Si
3
N
4
) microresonators on a monolithic silicon substrate. Thousands of devices can be produced from a single wafer by using complementary metal-oxide-semiconductor–compatible techniques. With on-chip electrical control of the laser-microresonator relative optical phase, these devices can output single-soliton microcombs with a 100-gigahertz repetition rate. Furthermore, we observe laser frequency noise reduction due to self-injection locking of the InP/Si laser to the Si
3
N
4
microresonator. Our approach provides a route for large-volume, low-cost manufacturing of narrow-linewidth, chip-based frequency combs for next-generation high-capacity transceivers, data centers, space and mobile platforms. |
---|---|
AbstractList | Silicon photonics enables wafer-scale integration of optical functionalities on chip. Silicon-based laser frequency combs can provide integrated sources of mutually coherent laser lines for terabit-per-second transceivers, parallel coherent light detection and ranging, or photonics-assisted signal processing. We report heterogeneously integrated laser soliton microcombs combining both indium phospide/silicon (InP/Si) semiconductor lasers and ultralow-loss silicon nitride (Si3N4) microresonators on a monolithic silicon substrate. Thousands of devices can be produced from a single wafer by using complementary metal-oxide-semiconductor-compatible techniques. With on-chip electrical control of the laser-microresonator relative optical phase, these devices can output single-soliton microcombs with a 100-gigahertz repetition rate. Furthermore, we observe laser frequency noise reduction due to self-injection locking of the InP/Si laser to the Si3N4 microresonator. Our approach provides a route for large-volume, low-cost manufacturing of narrow-linewidth, chip-based frequency combs for next-generation high-capacity transceivers, data centers, space and mobile platforms.Silicon photonics enables wafer-scale integration of optical functionalities on chip. Silicon-based laser frequency combs can provide integrated sources of mutually coherent laser lines for terabit-per-second transceivers, parallel coherent light detection and ranging, or photonics-assisted signal processing. We report heterogeneously integrated laser soliton microcombs combining both indium phospide/silicon (InP/Si) semiconductor lasers and ultralow-loss silicon nitride (Si3N4) microresonators on a monolithic silicon substrate. Thousands of devices can be produced from a single wafer by using complementary metal-oxide-semiconductor-compatible techniques. With on-chip electrical control of the laser-microresonator relative optical phase, these devices can output single-soliton microcombs with a 100-gigahertz repetition rate. Furthermore, we observe laser frequency noise reduction due to self-injection locking of the InP/Si laser to the Si3N4 microresonator. Our approach provides a route for large-volume, low-cost manufacturing of narrow-linewidth, chip-based frequency combs for next-generation high-capacity transceivers, data centers, space and mobile platforms. The realization of optical frequency combs, light sources with precisely spaced frequencies across a broad spectrum of wavelengths, in dielectric microresonators has affected a range of applications from imaging and ranging to precision time keeping and metrology. Xiang et al. demonstrate that the entire system, the laser-pumping system and the comb-generating microresonators, can be combined into an integrated silicon-based platform. Compatibility with foundry fabrication methods will enable this innovation to have a major impact on coherent communications, optical interconnects, and low-noise microwave generation. Science , abh2076, this issue p. 99 Optical microresonator frequency combs are realized in an integrated Si-based platform. Silicon photonics enables wafer-scale integration of optical functionalities on chip. Silicon-based laser frequency combs can provide integrated sources of mutually coherent laser lines for terabit-per-second transceivers, parallel coherent light detection and ranging, or photonics-assisted signal processing. We report heterogeneously integrated laser soliton microcombs combining both indium phospide/silicon (InP/Si) semiconductor lasers and ultralow-loss silicon nitride (Si 3 N 4 ) microresonators on a monolithic silicon substrate. Thousands of devices can be produced from a single wafer by using complementary metal-oxide-semiconductor–compatible techniques. With on-chip electrical control of the laser-microresonator relative optical phase, these devices can output single-soliton microcombs with a 100-gigahertz repetition rate. Furthermore, we observe laser frequency noise reduction due to self-injection locking of the InP/Si laser to the Si 3 N 4 microresonator. Our approach provides a route for large-volume, low-cost manufacturing of narrow-linewidth, chip-based frequency combs for next-generation high-capacity transceivers, data centers, space and mobile platforms. Chip-based frequency combsThe realization of optical frequency combs, light sources with precisely spaced frequencies across a broad spectrum of wavelengths, in dielectric microresonators has affected a range of applications from imaging and ranging to precision time keeping and metrology. Xiang et al. demonstrate that the entire system, the laser-pumping system and the comb-generating microresonators, can be combined into an integrated silicon-based platform. Compatibility with foundry fabrication methods will enable this innovation to have a major impact on coherent communications, optical interconnects, and low-noise microwave generation.Science, abh2076, this issue p. 99Silicon photonics enables wafer-scale integration of optical functionalities on chip. Silicon-based laser frequency combs can provide integrated sources of mutually coherent laser lines for terabit-per-second transceivers, parallel coherent light detection and ranging, or photonics-assisted signal processing. We report heterogeneously integrated laser soliton microcombs combining both indium phospide/silicon (InP/Si) semiconductor lasers and ultralow-loss silicon nitride (Si3N4) microresonators on a monolithic silicon substrate. Thousands of devices can be produced from a single wafer by using complementary metal-oxide-semiconductor–compatible techniques. With on-chip electrical control of the laser-microresonator relative optical phase, these devices can output single-soliton microcombs with a 100-gigahertz repetition rate. Furthermore, we observe laser frequency noise reduction due to self-injection locking of the InP/Si laser to the Si3N4 microresonator. Our approach provides a route for large-volume, low-cost manufacturing of narrow-linewidth, chip-based frequency combs for next-generation high-capacity transceivers, data centers, space and mobile platforms. |
Author | Weng, Wenle Selvidge, Jennifer Chang, Lin Xie, Weiqiang Riemensberger, Johann Guo, Joel Bowers, John E. Xiang, Chao Liu, Junqiu Zhang, Zeyu Wang, Rui Ning Kippenberg, Tobias J. Peters, Jonathan |
Author_xml | – sequence: 1 givenname: Chao orcidid: 0000-0002-7081-0346 surname: Xiang fullname: Xiang, Chao organization: Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA – sequence: 2 givenname: Junqiu orcidid: 0000-0003-2405-6028 surname: Liu fullname: Liu, Junqiu organization: Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland – sequence: 3 givenname: Joel orcidid: 0000-0003-0203-5170 surname: Guo fullname: Guo, Joel organization: Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA – sequence: 4 givenname: Lin surname: Chang fullname: Chang, Lin organization: Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA – sequence: 5 givenname: Rui Ning orcidid: 0000-0002-5704-3971 surname: Wang fullname: Wang, Rui Ning organization: Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland – sequence: 6 givenname: Wenle orcidid: 0000-0003-2628-5174 surname: Weng fullname: Weng, Wenle organization: Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland – sequence: 7 givenname: Jonathan orcidid: 0000-0003-0809-1579 surname: Peters fullname: Peters, Jonathan organization: Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA – sequence: 8 givenname: Weiqiang surname: Xie fullname: Xie, Weiqiang organization: Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA – sequence: 9 givenname: Zeyu orcidid: 0000-0002-7157-6272 surname: Zhang fullname: Zhang, Zeyu organization: Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA – sequence: 10 givenname: Johann orcidid: 0000-0002-3468-6501 surname: Riemensberger fullname: Riemensberger, Johann organization: Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland – sequence: 11 givenname: Jennifer orcidid: 0000-0001-8860-2679 surname: Selvidge fullname: Selvidge, Jennifer organization: Materials Department, University of California, Santa Barbara, Santa Barbara, CA 93106, USA – sequence: 12 givenname: Tobias J. orcidid: 0000-0002-3408-886X surname: Kippenberg fullname: Kippenberg, Tobias J. organization: Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland – sequence: 13 givenname: John E. orcidid: 0000-0003-4270-8296 surname: Bowers fullname: Bowers, John E. organization: Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA., Materials Department, University of California, Santa Barbara, Santa Barbara, CA 93106, USA |
BookMark | eNp1kL1rwzAQxUVJoUnauauhSxcn-rAlaymU0C8IdGlnISvnRMGWUkkZ8t9XaTIFOh3c_d7x3pugkfMOELoneEYI5fNoLDgDM91uKBb8Co0JlnUpKWYjNMaY8bLBor5Bkxi3GOebZGP0tNQRQhF9b5N3xWBN8MYPbSw2kCD4NTjw-9gfCusSrINOsCoyGG1vjXe36LrTfYS785yi79eXr8V7ufx8-1g8L0vDeJNKIKRqu461TDYgcM06RlfACW9WkrKWECCGgqm0yEsheSUYxbUQlZHQMA5sih5Pf3fB_-whJjXYaKDv9Z89ReuqqQjmTZXRhwt06_fBZXdHSnAipZCZqk9UzhtjgE4Zm3Sy3qWgba8IVsdW1blVdW416-YXul2wgw6HfxW_CFR-8A |
CitedBy_id | crossref_primary_10_1016_j_optlastec_2023_109118 crossref_primary_10_1557_s43579_023_00435_1 crossref_primary_10_1038_s41467_024_55321_8 crossref_primary_10_1186_s43593_022_00027_x crossref_primary_10_1007_s12541_023_00915_3 crossref_primary_10_1038_s41566_021_00901_z crossref_primary_10_1364_OL_475075 crossref_primary_10_1364_OE_446903 crossref_primary_10_1103_PhysRevLett_133_083803 crossref_primary_10_1126_sciadv_add8252 crossref_primary_10_1038_s41377_022_01006_0 crossref_primary_10_1002_lpor_202100184 crossref_primary_10_1002_lpor_202200219 crossref_primary_10_1109_JLT_2023_3240130 crossref_primary_10_1109_JPHOT_2023_3324756 crossref_primary_10_1063_5_0233250 crossref_primary_10_1021_acsphotonics_2c00562 crossref_primary_10_1021_acsphotonics_4c00725 crossref_primary_10_1038_s41467_022_30966_5 crossref_primary_10_1002_adfm_202307461 crossref_primary_10_1038_s41566_025_01617_0 crossref_primary_10_1038_s41928_024_01294_x crossref_primary_10_1007_s11433_022_1957_3 crossref_primary_10_1039_D3NR01149F crossref_primary_10_1038_s41586_023_06251_w crossref_primary_10_1515_nanoph_2024_0149 crossref_primary_10_3788_PI_2024_R09 crossref_primary_10_1021_acsami_4c04597 crossref_primary_10_1364_OPTICA_478710 crossref_primary_10_1126_sciadv_adl1548 crossref_primary_10_1088_1361_6463_ad8453 crossref_primary_10_1016_j_optlastec_2025_112627 crossref_primary_10_3788_AOS240925 crossref_primary_10_1364_AOP_470264 crossref_primary_10_1002_adfm_202417334 crossref_primary_10_1109_JSTQE_2024_3377249 crossref_primary_10_1364_PRJ_452936 crossref_primary_10_1038_s41377_023_01172_9 crossref_primary_10_3390_mi13122125 crossref_primary_10_1364_PRJ_458472 crossref_primary_10_1364_PRJ_437798 crossref_primary_10_1038_s41467_024_48224_1 crossref_primary_10_1103_PhysRevLett_130_153802 crossref_primary_10_1038_s41566_023_01175_3 crossref_primary_10_3788_AOS240810 crossref_primary_10_1002_lpor_202100147 crossref_primary_10_1016_j_optlastec_2024_110779 crossref_primary_10_3390_mi14030604 crossref_primary_10_1063_5_0141384 crossref_primary_10_1038_s41586_024_07078_9 crossref_primary_10_1021_acsphotonics_4c01485 crossref_primary_10_1063_5_0191602 crossref_primary_10_1038_s41467_022_30911_6 crossref_primary_10_1364_PRJ_459478 crossref_primary_10_1515_nanoph_2022_0575 crossref_primary_10_1038_s41566_022_01144_2 crossref_primary_10_1364_PRJ_517719 crossref_primary_10_1063_5_0089362 crossref_primary_10_1038_s41566_024_01418_x crossref_primary_10_1063_5_0208011 crossref_primary_10_1126_science_abq8422 crossref_primary_10_3788_COL202523_022601 crossref_primary_10_1186_s43593_024_00075_5 crossref_primary_10_1063_5_0214254 crossref_primary_10_1021_acs_cgd_3c01279 crossref_primary_10_1038_s41566_023_01193_1 crossref_primary_10_1557_s43577_022_00337_y crossref_primary_10_1021_acsphotonics_3c01247 crossref_primary_10_1103_PhysRevApplied_18_034068 crossref_primary_10_1021_acs_langmuir_4c03513 crossref_primary_10_1364_OPTICA_462055 crossref_primary_10_1038_s44310_024_00030_9 crossref_primary_10_1038_s41586_023_06730_0 crossref_primary_10_1038_s41467_022_33101_6 crossref_primary_10_1364_OPTCON_461886 crossref_primary_10_1002_lpor_202200663 crossref_primary_10_1109_JSTQE_2022_3203159 crossref_primary_10_3390_app12041836 crossref_primary_10_1364_OL_515912 crossref_primary_10_1038_s41586_024_07058_z crossref_primary_10_1039_D3TC00400G crossref_primary_10_1002_adma_202203889 crossref_primary_10_1016_j_optcom_2024_131214 crossref_primary_10_1038_s41467_024_52269_7 crossref_primary_10_1038_s42005_024_01824_1 crossref_primary_10_1364_PRJ_470243 crossref_primary_10_1038_s42005_023_01452_1 crossref_primary_10_1063_5_0114020 crossref_primary_10_1364_OE_519235 crossref_primary_10_1109_JLT_2022_3226782 crossref_primary_10_32628_IJSRST2411332 crossref_primary_10_1515_nanoph_2024_0732 crossref_primary_10_1002_adom_202201008 crossref_primary_10_1038_s41699_024_00440_5 crossref_primary_10_1002_lpor_202400508 crossref_primary_10_1364_PRJ_511627 crossref_primary_10_1103_PhysRevA_105_013524 crossref_primary_10_1126_sciadv_abp9006 crossref_primary_10_1038_s41586_024_07057_0 crossref_primary_10_1016_j_optcom_2025_131506 crossref_primary_10_1109_JLT_2023_3243471 crossref_primary_10_1038_s41377_022_00998_z crossref_primary_10_1016_j_optcom_2025_131626 crossref_primary_10_1038_s41566_021_00882_z crossref_primary_10_1038_s41467_022_35746_9 crossref_primary_10_1109_JSTQE_2021_3126124 crossref_primary_10_1038_s41586_024_07457_2 crossref_primary_10_1080_23746149_2024_2360598 crossref_primary_10_1038_s41377_023_01225_z crossref_primary_10_1364_PRJ_516274 crossref_primary_10_3788_COL202422_071403 crossref_primary_10_1364_AOP_455976 crossref_primary_10_1109_JPHOT_2024_3376424 crossref_primary_10_1103_PhysRevA_106_053508 crossref_primary_10_3788_LOP241587 crossref_primary_10_1364_PRJ_452631 crossref_primary_10_1364_OPTICA_529673 crossref_primary_10_1364_PRJ_507560 crossref_primary_10_37188_lam_2023_024 crossref_primary_10_1002_lpor_202201028 crossref_primary_10_1364_PRJ_454816 crossref_primary_10_1109_JPHOT_2022_3227173 crossref_primary_10_3390_photonics11030212 crossref_primary_10_1038_s41467_022_29431_0 crossref_primary_10_1038_s41467_023_44314_8 crossref_primary_10_1364_OL_513721 crossref_primary_10_1063_5_0088119 crossref_primary_10_1063_5_0197236 crossref_primary_10_1038_s41467_022_30901_8 crossref_primary_10_1364_AOP_529288 crossref_primary_10_11648_j_ijssn_20251301_11 crossref_primary_10_1002_lpor_202301329 crossref_primary_10_1088_1752_7163_acc6e4 crossref_primary_10_1038_s41566_025_01624_1 crossref_primary_10_1016_j_optlastec_2024_110927 crossref_primary_10_1364_OL_539647 crossref_primary_10_3788_AOS241178 crossref_primary_10_1007_s11467_022_1245_3 crossref_primary_10_1002_admt_202300998 crossref_primary_10_1364_PRJ_446898 crossref_primary_10_1364_JOSAB_485041 crossref_primary_10_1038_s41566_022_01110_y crossref_primary_10_1364_OPTICA_522378 crossref_primary_10_1007_s12633_024_03098_2 crossref_primary_10_1063_5_0173243 crossref_primary_10_1364_OE_450100 crossref_primary_10_1364_OPTICA_503022 crossref_primary_10_1038_s41467_022_35506_9 crossref_primary_10_1364_OL_440907 crossref_primary_10_1364_OPTCON_523724 crossref_primary_10_1103_PhysRevLett_128_033901 crossref_primary_10_1038_s41467_022_30542_x crossref_primary_10_1364_OE_503637 crossref_primary_10_1016_j_pquantelec_2022_100437 crossref_primary_10_1038_s41467_021_26804_9 crossref_primary_10_1016_j_apsusc_2023_158685 crossref_primary_10_1038_s41586_025_08662_3 crossref_primary_10_3788_COL202422_081301 crossref_primary_10_1364_OPTICA_484200 crossref_primary_10_1364_OL_528621 crossref_primary_10_1063_5_0221409 crossref_primary_10_1364_OE_492977 crossref_primary_10_3390_cryst12101477 crossref_primary_10_1364_OE_440206 crossref_primary_10_1063_5_0133040 crossref_primary_10_1103_PhysRevX_15_011061 crossref_primary_10_1364_OE_439212 crossref_primary_10_1038_s41586_022_04579_3 crossref_primary_10_1038_s41566_024_01413_2 crossref_primary_10_1109_JLT_2023_3336991 crossref_primary_10_1038_s41377_024_01643_7 crossref_primary_10_1364_OE_498671 crossref_primary_10_1364_OE_444493 crossref_primary_10_3788_LOP241786 crossref_primary_10_1109_JPHOT_2023_3325088 crossref_primary_10_1186_s43593_024_00071_9 crossref_primary_10_1109_JLT_2024_3415161 crossref_primary_10_1038_s41566_023_01367_x crossref_primary_10_1002_adpr_202400082 crossref_primary_10_1063_5_0128130 crossref_primary_10_1088_1402_4896_aceb25 crossref_primary_10_1109_JSTQE_2024_3398419 crossref_primary_10_1364_PRJ_449267 crossref_primary_10_3390_photonics11121164 crossref_primary_10_1038_s41377_025_01753_w crossref_primary_10_1063_5_0123236 crossref_primary_10_1364_OE_510228 crossref_primary_10_1007_s40820_022_00957_8 crossref_primary_10_1103_PhysRevApplied_20_014015 crossref_primary_10_1063_5_0123230 crossref_primary_10_1364_PRJ_489942 crossref_primary_10_1038_s41467_024_48544_2 crossref_primary_10_1038_s41566_023_01246_5 crossref_primary_10_1038_s41566_021_00945_1 crossref_primary_10_1002_lpor_202100511 crossref_primary_10_1063_5_0173287 crossref_primary_10_1038_s41377_023_01329_6 crossref_primary_10_1038_s41566_023_01158_4 crossref_primary_10_1109_JSTQE_2024_3451301 crossref_primary_10_1364_OL_439720 crossref_primary_10_1002_lpor_202200158 crossref_primary_10_1364_OME_502179 crossref_primary_10_1364_OL_474710 crossref_primary_10_1002_lpor_202400343 crossref_primary_10_29026_oea_2025_240257 crossref_primary_10_1364_PRJ_459403 crossref_primary_10_3788_AOS240976 crossref_primary_10_1364_OL_448326 crossref_primary_10_1515_nanoph_2022_0146 crossref_primary_10_1364_PRJ_455165 crossref_primary_10_1103_PhysRevLett_130_133602 crossref_primary_10_1038_s41566_022_01120_w crossref_primary_10_1002_lpor_202301221 crossref_primary_10_1364_PRJ_496232 crossref_primary_10_3788_AOS231593 crossref_primary_10_1364_OE_478009 crossref_primary_10_3390_photonics9100754 crossref_primary_10_1002_qute_202400311 crossref_primary_10_1103_PhysRevApplied_17_024030 crossref_primary_10_1109_JLT_2023_3276769 crossref_primary_10_1038_s41467_022_35728_x crossref_primary_10_1063_5_0105164 |
Cites_doi | 10.1103/PhysRevLett.93.083904 10.1002/9781118148167 10.1109/JLT.2015.2465382 10.1038/s41586-020-2465-8 10.1109/MNANO.2019.2891369 10.1364/OPTICA.3.001071 10.37188/lam.2021.005 10.1364/OE.25.028167 10.1016/S0030-4018(98)00355-1 10.1364/OL.41.002565 10.1038/s41467-021-21973-z 10.1364/OPTICA.3.000020 10.1364/OE.24.000687 10.1109/JSTQE.2016.2593103 10.1038/s41567-019-0635-0 10.21203/rs.3.rs-134626/v1 10.1038/s41586-018-0551-y 10.1126/science.aan8083 10.1126/science.aay3676 10.1038/s41467-020-15005-5 10.1364/OL.39.000084 10.1364/OPTICA.4.000619 10.1038/nphoton.2013.183 10.1038/ncomms8957 10.1038/nature11727 10.1364/OPTICA.3.001171 10.1038/s41566-021-00761-7 10.1103/PhysRevApplied.7.024026 10.1038/ncomms8371 10.1364/OL.394121 10.1038/s41586-020-2358-x 10.1364/OPTICA.5.001347 10.1103/PhysRevA.89.063814 10.1364/OPTICA.3.000823 10.1038/s41586-018-0598-9 10.1038/s41566-019-0358-x 10.1038/s41467-020-20196-y 10.1364/PRJ.3.0000B1 10.1038/nphoton.2009.138 10.1364/OL.41.003134 10.1038/s41566-020-0617-x 10.1038/s42005-019-0249-y 10.1002/lpor.201700256 10.1364/OPTICA.384026 10.1116/1.2943667 10.1063/1.5120004 10.1103/PhysRevA.99.061801 10.1038/s41566-019-0378-6 |
ContentType | Journal Article |
Copyright | Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. |
Copyright_xml | – notice: Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works – notice: Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. |
DBID | AAYXX CITATION 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
DOI | 10.1126/science.abh2076 |
DatabaseName | CrossRef Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 103 |
ExternalDocumentID | 10_1126_science_abh2076 |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYXX ABCQX ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADUKH ADXHL AEGBM AENEX AETEA AFBNE AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ASPBG AVWKF BKF BLC C45 CITATION CS3 DB2 DU5 EBS EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPY ISE JCF JLS JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ RHI RXW SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c368t-e114bff3b398e7053f32de6168d923b11e1c2ec4a7e61796473205774c9e836e3 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Thu Jul 10 23:57:13 EDT 2025 Fri Jul 25 19:20:17 EDT 2025 Thu Apr 24 23:02:00 EDT 2025 Tue Jul 01 01:35:33 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6550 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c368t-e114bff3b398e7053f32de6168d923b11e1c2ec4a7e61796473205774c9e836e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7081-0346 0000-0002-7157-6272 0000-0003-4270-8296 0000-0003-2628-5174 0000-0003-0809-1579 0000-0003-2405-6028 0000-0001-8860-2679 0000-0003-0203-5170 0000-0002-3468-6501 0000-0002-3408-886X 0000-0002-5704-3971 |
PQID | 2547619979 |
PQPubID | 1256 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2548410684 proquest_journals_2547619979 crossref_citationtrail_10_1126_science_abh2076 crossref_primary_10_1126_science_abh2076 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-02 20210702 |
PublicationDateYYYYMMDD | 2021-07-02 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationYear | 2021 |
Publisher | The American Association for the Advancement of Science |
Publisher_xml | – name: The American Association for the Advancement of Science |
References | e_1_3_2_49_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_50_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 |
References_xml | – ident: e_1_3_2_34_2 doi: 10.1103/PhysRevLett.93.083904 – ident: e_1_3_2_30_2 doi: 10.1002/9781118148167 – ident: e_1_3_2_20_2 doi: 10.1109/JLT.2015.2465382 – ident: e_1_3_2_12_2 – ident: e_1_3_2_44_2 doi: 10.1038/s41586-020-2465-8 – ident: e_1_3_2_24_2 doi: 10.1109/MNANO.2019.2891369 – ident: e_1_3_2_39_2 doi: 10.1364/OPTICA.3.001071 – ident: e_1_3_2_22_2 doi: 10.37188/lam.2021.005 – ident: e_1_3_2_15_2 doi: 10.1364/OE.25.028167 – ident: e_1_3_2_41_2 doi: 10.1016/S0030-4018(98)00355-1 – ident: e_1_3_2_42_2 doi: 10.1364/OL.41.002565 – ident: e_1_3_2_10_2 doi: 10.1038/s41467-021-21973-z – ident: e_1_3_2_8_2 doi: 10.1364/OPTICA.3.000020 – ident: e_1_3_2_33_2 – ident: e_1_3_2_43_2 doi: 10.1364/OE.24.000687 – ident: e_1_3_2_29_2 doi: 10.1109/JSTQE.2016.2593103 – ident: e_1_3_2_31_2 doi: 10.1038/s41567-019-0635-0 – ident: e_1_3_2_51_2 doi: 10.21203/rs.3.rs-134626/v1 – ident: e_1_3_2_47_2 doi: 10.1038/s41586-018-0551-y – ident: e_1_3_2_4_2 doi: 10.1126/science.aan8083 – ident: e_1_3_2_2_2 doi: 10.1126/science.aay3676 – ident: e_1_3_2_45_2 doi: 10.1038/s41467-020-15005-5 – ident: e_1_3_2_50_2 doi: 10.1364/OL.39.000084 – ident: e_1_3_2_9_2 doi: 10.1364/OPTICA.4.000619 – ident: e_1_3_2_5_2 doi: 10.1038/nphoton.2013.183 – ident: e_1_3_2_13_2 doi: 10.1038/ncomms8957 – ident: e_1_3_2_23_2 doi: 10.1038/nature11727 – ident: e_1_3_2_7_2 doi: 10.1364/OPTICA.3.001171 – ident: e_1_3_2_18_2 doi: 10.1038/s41566-021-00761-7 – ident: e_1_3_2_35_2 doi: 10.1103/PhysRevApplied.7.024026 – ident: e_1_3_2_14_2 doi: 10.1038/ncomms8371 – ident: e_1_3_2_28_2 doi: 10.1364/OL.394121 – ident: e_1_3_2_16_2 doi: 10.1038/s41586-020-2358-x – ident: e_1_3_2_38_2 doi: 10.1364/OPTICA.5.001347 – ident: e_1_3_2_40_2 doi: 10.1103/PhysRevA.89.063814 – ident: e_1_3_2_46_2 doi: 10.1364/OPTICA.3.000823 – ident: e_1_3_2_19_2 doi: 10.1038/s41586-018-0598-9 – ident: e_1_3_2_6_2 doi: 10.1038/s41566-019-0358-x – ident: e_1_3_2_17_2 doi: 10.1038/s41467-020-20196-y – ident: e_1_3_2_52_2 doi: 10.1364/PRJ.3.0000B1 – ident: e_1_3_2_36_2 doi: 10.1038/nphoton.2009.138 – ident: e_1_3_2_37_2 doi: 10.1364/OL.41.003134 – ident: e_1_3_2_11_2 doi: 10.1038/s41566-020-0617-x – ident: e_1_3_2_3_2 doi: 10.1038/s42005-019-0249-y – ident: e_1_3_2_48_2 doi: 10.1002/lpor.201700256 – ident: e_1_3_2_25_2 doi: 10.1364/OPTICA.384026 – ident: e_1_3_2_27_2 doi: 10.1116/1.2943667 – ident: e_1_3_2_21_2 doi: 10.1063/1.5120004 – ident: e_1_3_2_32_2 doi: 10.1103/PhysRevA.99.061801 – ident: e_1_3_2_49_2 doi: 10.1038/s41566-019-0378-6 |
SSID | ssj0009593 |
Score | 2.7045577 |
Snippet | The realization of optical frequency combs, light sources with precisely spaced frequencies across a broad spectrum of wavelengths, in dielectric... Chip-based frequency combsThe realization of optical frequency combs, light sources with precisely spaced frequencies across a broad spectrum of wavelengths,... Silicon photonics enables wafer-scale integration of optical functionalities on chip. Silicon-based laser frequency combs can provide integrated sources of... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 99 |
SubjectTerms | Coherent light Data centers Fabrication Frequency locking Indium phosphides Laser pumping Lasers Lidar Light sources Metal oxide semiconductors Noise generation Noise reduction Optical frequency Optical interconnects Photonics Semiconductor lasers Semiconductors Signal processing Silicon Silicon nitride Silicon substrates Solitary waves Transceivers Wavelengths |
Title | Laser soliton microcombs heterogeneously integrated on silicon |
URI | https://www.proquest.com/docview/2547619979 https://www.proquest.com/docview/2548410684 |
Volume | 373 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELZgExIviA0QhYGCxMMQSpXYqZO8IHVl1YSq8dJKfYti56JV6lJY2ofx6znHFycbRRq8RJVrN9Xd-Xx3_u6OsY-gkyiEvDTdy8w1o9Z-HhXcDyWeDUFRxKOyAcheyotF9G05WnYg9ia7ZKuG-tfevJL_4SqOIV9Nluw_cNb9KA7gZ-QvPpHD-HwQj2d4BN18rg2EDZl4bbB1-BpVo_mH5NrgOkDHfn3bFYUozOVAvVoj_6u-XdpucbQ33R1Oj3MOjDi2kIEWQUDLeuGE5YoC0JOrfOPQPqudzQCpfq52DvGzs5c-G3Agj0kbvZ5RPXAKR_Cwga72IpRhYJo_8sBqLdgzRmpX2BYmJF9yZOvPkh61TZP-VO-9hpQwzNUVD-I9hbQvv2fTxWyWzc-X88fskKMHgSrwcHz29Wx6vyKz-29U96mXUdW-4K7JcvfEbsyQ-XP2jPwHb2yF4Yg9guqYPbEdRW-P2RFxpPZOqaD4pxfsSyMnHsmJ18mJd09OvE5OPJxIcvKSLabn88mFT30zfC1ksvUBfVxVlkKJNIEYtWwpeAESt1-B5rwKQwg1Bx3lMQ42qciCo9keRzqFREgQr9hBtangNfNKqSBFqz_OBRrWOs3BOOwqEqZSW8rlgA1b0mSaisqb3ibrrHEuucyIlhnRcsBO3YIftp7K36eetLTOaNPVGR9FJvCGimXAPrivUSWae668oZaZgwookEn05gFz3rKnnRyfsIPtzQ7eoaG5Ve9JZH4D3RuB0g |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Laser+soliton+microcombs+heterogeneously+integrated+on+silicon&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Xiang%2C+Chao&rft.au=Liu%2C+Junqiu&rft.au=Guo%2C+Joel&rft.au=Chang%2C+Lin&rft.date=2021-07-02&rft.issn=1095-9203&rft.eissn=1095-9203&rft.volume=373&rft.issue=6550&rft.spage=99&rft_id=info:doi/10.1126%2Fscience.abh2076&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |