Laser soliton microcombs heterogeneously integrated on silicon

The realization of optical frequency combs, light sources with precisely spaced frequencies across a broad spectrum of wavelengths, in dielectric microresonators has affected a range of applications from imaging and ranging to precision time keeping and metrology. Xiang et al. demonstrate that the e...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 373; no. 6550; pp. 99 - 103
Main Authors Xiang, Chao, Liu, Junqiu, Guo, Joel, Chang, Lin, Wang, Rui Ning, Weng, Wenle, Peters, Jonathan, Xie, Weiqiang, Zhang, Zeyu, Riemensberger, Johann, Selvidge, Jennifer, Kippenberg, Tobias J., Bowers, John E.
Format Journal Article
LanguageEnglish
Published Washington The American Association for the Advancement of Science 02.07.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The realization of optical frequency combs, light sources with precisely spaced frequencies across a broad spectrum of wavelengths, in dielectric microresonators has affected a range of applications from imaging and ranging to precision time keeping and metrology. Xiang et al. demonstrate that the entire system, the laser-pumping system and the comb-generating microresonators, can be combined into an integrated silicon-based platform. Compatibility with foundry fabrication methods will enable this innovation to have a major impact on coherent communications, optical interconnects, and low-noise microwave generation. Science , abh2076, this issue p. 99 Optical microresonator frequency combs are realized in an integrated Si-based platform. Silicon photonics enables wafer-scale integration of optical functionalities on chip. Silicon-based laser frequency combs can provide integrated sources of mutually coherent laser lines for terabit-per-second transceivers, parallel coherent light detection and ranging, or photonics-assisted signal processing. We report heterogeneously integrated laser soliton microcombs combining both indium phospide/silicon (InP/Si) semiconductor lasers and ultralow-loss silicon nitride (Si 3 N 4 ) microresonators on a monolithic silicon substrate. Thousands of devices can be produced from a single wafer by using complementary metal-oxide-semiconductor–compatible techniques. With on-chip electrical control of the laser-microresonator relative optical phase, these devices can output single-soliton microcombs with a 100-gigahertz repetition rate. Furthermore, we observe laser frequency noise reduction due to self-injection locking of the InP/Si laser to the Si 3 N 4 microresonator. Our approach provides a route for large-volume, low-cost manufacturing of narrow-linewidth, chip-based frequency combs for next-generation high-capacity transceivers, data centers, space and mobile platforms.
AbstractList Silicon photonics enables wafer-scale integration of optical functionalities on chip. Silicon-based laser frequency combs can provide integrated sources of mutually coherent laser lines for terabit-per-second transceivers, parallel coherent light detection and ranging, or photonics-assisted signal processing. We report heterogeneously integrated laser soliton microcombs combining both indium phospide/silicon (InP/Si) semiconductor lasers and ultralow-loss silicon nitride (Si3N4) microresonators on a monolithic silicon substrate. Thousands of devices can be produced from a single wafer by using complementary metal-oxide-semiconductor-compatible techniques. With on-chip electrical control of the laser-microresonator relative optical phase, these devices can output single-soliton microcombs with a 100-gigahertz repetition rate. Furthermore, we observe laser frequency noise reduction due to self-injection locking of the InP/Si laser to the Si3N4 microresonator. Our approach provides a route for large-volume, low-cost manufacturing of narrow-linewidth, chip-based frequency combs for next-generation high-capacity transceivers, data centers, space and mobile platforms.Silicon photonics enables wafer-scale integration of optical functionalities on chip. Silicon-based laser frequency combs can provide integrated sources of mutually coherent laser lines for terabit-per-second transceivers, parallel coherent light detection and ranging, or photonics-assisted signal processing. We report heterogeneously integrated laser soliton microcombs combining both indium phospide/silicon (InP/Si) semiconductor lasers and ultralow-loss silicon nitride (Si3N4) microresonators on a monolithic silicon substrate. Thousands of devices can be produced from a single wafer by using complementary metal-oxide-semiconductor-compatible techniques. With on-chip electrical control of the laser-microresonator relative optical phase, these devices can output single-soliton microcombs with a 100-gigahertz repetition rate. Furthermore, we observe laser frequency noise reduction due to self-injection locking of the InP/Si laser to the Si3N4 microresonator. Our approach provides a route for large-volume, low-cost manufacturing of narrow-linewidth, chip-based frequency combs for next-generation high-capacity transceivers, data centers, space and mobile platforms.
The realization of optical frequency combs, light sources with precisely spaced frequencies across a broad spectrum of wavelengths, in dielectric microresonators has affected a range of applications from imaging and ranging to precision time keeping and metrology. Xiang et al. demonstrate that the entire system, the laser-pumping system and the comb-generating microresonators, can be combined into an integrated silicon-based platform. Compatibility with foundry fabrication methods will enable this innovation to have a major impact on coherent communications, optical interconnects, and low-noise microwave generation. Science , abh2076, this issue p. 99 Optical microresonator frequency combs are realized in an integrated Si-based platform. Silicon photonics enables wafer-scale integration of optical functionalities on chip. Silicon-based laser frequency combs can provide integrated sources of mutually coherent laser lines for terabit-per-second transceivers, parallel coherent light detection and ranging, or photonics-assisted signal processing. We report heterogeneously integrated laser soliton microcombs combining both indium phospide/silicon (InP/Si) semiconductor lasers and ultralow-loss silicon nitride (Si 3 N 4 ) microresonators on a monolithic silicon substrate. Thousands of devices can be produced from a single wafer by using complementary metal-oxide-semiconductor–compatible techniques. With on-chip electrical control of the laser-microresonator relative optical phase, these devices can output single-soliton microcombs with a 100-gigahertz repetition rate. Furthermore, we observe laser frequency noise reduction due to self-injection locking of the InP/Si laser to the Si 3 N 4 microresonator. Our approach provides a route for large-volume, low-cost manufacturing of narrow-linewidth, chip-based frequency combs for next-generation high-capacity transceivers, data centers, space and mobile platforms.
Chip-based frequency combsThe realization of optical frequency combs, light sources with precisely spaced frequencies across a broad spectrum of wavelengths, in dielectric microresonators has affected a range of applications from imaging and ranging to precision time keeping and metrology. Xiang et al. demonstrate that the entire system, the laser-pumping system and the comb-generating microresonators, can be combined into an integrated silicon-based platform. Compatibility with foundry fabrication methods will enable this innovation to have a major impact on coherent communications, optical interconnects, and low-noise microwave generation.Science, abh2076, this issue p. 99Silicon photonics enables wafer-scale integration of optical functionalities on chip. Silicon-based laser frequency combs can provide integrated sources of mutually coherent laser lines for terabit-per-second transceivers, parallel coherent light detection and ranging, or photonics-assisted signal processing. We report heterogeneously integrated laser soliton microcombs combining both indium phospide/silicon (InP/Si) semiconductor lasers and ultralow-loss silicon nitride (Si3N4) microresonators on a monolithic silicon substrate. Thousands of devices can be produced from a single wafer by using complementary metal-oxide-semiconductor–compatible techniques. With on-chip electrical control of the laser-microresonator relative optical phase, these devices can output single-soliton microcombs with a 100-gigahertz repetition rate. Furthermore, we observe laser frequency noise reduction due to self-injection locking of the InP/Si laser to the Si3N4 microresonator. Our approach provides a route for large-volume, low-cost manufacturing of narrow-linewidth, chip-based frequency combs for next-generation high-capacity transceivers, data centers, space and mobile platforms.
Author Weng, Wenle
Selvidge, Jennifer
Chang, Lin
Xie, Weiqiang
Riemensberger, Johann
Guo, Joel
Bowers, John E.
Xiang, Chao
Liu, Junqiu
Zhang, Zeyu
Wang, Rui Ning
Kippenberg, Tobias J.
Peters, Jonathan
Author_xml – sequence: 1
  givenname: Chao
  orcidid: 0000-0002-7081-0346
  surname: Xiang
  fullname: Xiang, Chao
  organization: Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
– sequence: 2
  givenname: Junqiu
  orcidid: 0000-0003-2405-6028
  surname: Liu
  fullname: Liu, Junqiu
  organization: Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland
– sequence: 3
  givenname: Joel
  orcidid: 0000-0003-0203-5170
  surname: Guo
  fullname: Guo, Joel
  organization: Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
– sequence: 4
  givenname: Lin
  surname: Chang
  fullname: Chang, Lin
  organization: Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
– sequence: 5
  givenname: Rui Ning
  orcidid: 0000-0002-5704-3971
  surname: Wang
  fullname: Wang, Rui Ning
  organization: Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland
– sequence: 6
  givenname: Wenle
  orcidid: 0000-0003-2628-5174
  surname: Weng
  fullname: Weng, Wenle
  organization: Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland
– sequence: 7
  givenname: Jonathan
  orcidid: 0000-0003-0809-1579
  surname: Peters
  fullname: Peters, Jonathan
  organization: Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
– sequence: 8
  givenname: Weiqiang
  surname: Xie
  fullname: Xie, Weiqiang
  organization: Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
– sequence: 9
  givenname: Zeyu
  orcidid: 0000-0002-7157-6272
  surname: Zhang
  fullname: Zhang, Zeyu
  organization: Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
– sequence: 10
  givenname: Johann
  orcidid: 0000-0002-3468-6501
  surname: Riemensberger
  fullname: Riemensberger, Johann
  organization: Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland
– sequence: 11
  givenname: Jennifer
  orcidid: 0000-0001-8860-2679
  surname: Selvidge
  fullname: Selvidge, Jennifer
  organization: Materials Department, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
– sequence: 12
  givenname: Tobias J.
  orcidid: 0000-0002-3408-886X
  surname: Kippenberg
  fullname: Kippenberg, Tobias J.
  organization: Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland
– sequence: 13
  givenname: John E.
  orcidid: 0000-0003-4270-8296
  surname: Bowers
  fullname: Bowers, John E.
  organization: Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA., Materials Department, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
BookMark eNp1kL1rwzAQxUVJoUnauauhSxcn-rAlaymU0C8IdGlnISvnRMGWUkkZ8t9XaTIFOh3c_d7x3pugkfMOELoneEYI5fNoLDgDM91uKBb8Co0JlnUpKWYjNMaY8bLBor5Bkxi3GOebZGP0tNQRQhF9b5N3xWBN8MYPbSw2kCD4NTjw-9gfCusSrINOsCoyGG1vjXe36LrTfYS785yi79eXr8V7ufx8-1g8L0vDeJNKIKRqu461TDYgcM06RlfACW9WkrKWECCGgqm0yEsheSUYxbUQlZHQMA5sih5Pf3fB_-whJjXYaKDv9Z89ReuqqQjmTZXRhwt06_fBZXdHSnAipZCZqk9UzhtjgE4Zm3Sy3qWgba8IVsdW1blVdW416-YXul2wgw6HfxW_CFR-8A
CitedBy_id crossref_primary_10_1016_j_optlastec_2023_109118
crossref_primary_10_1557_s43579_023_00435_1
crossref_primary_10_1038_s41467_024_55321_8
crossref_primary_10_1186_s43593_022_00027_x
crossref_primary_10_1007_s12541_023_00915_3
crossref_primary_10_1038_s41566_021_00901_z
crossref_primary_10_1364_OL_475075
crossref_primary_10_1364_OE_446903
crossref_primary_10_1103_PhysRevLett_133_083803
crossref_primary_10_1126_sciadv_add8252
crossref_primary_10_1038_s41377_022_01006_0
crossref_primary_10_1002_lpor_202100184
crossref_primary_10_1002_lpor_202200219
crossref_primary_10_1109_JLT_2023_3240130
crossref_primary_10_1109_JPHOT_2023_3324756
crossref_primary_10_1063_5_0233250
crossref_primary_10_1021_acsphotonics_2c00562
crossref_primary_10_1021_acsphotonics_4c00725
crossref_primary_10_1038_s41467_022_30966_5
crossref_primary_10_1002_adfm_202307461
crossref_primary_10_1038_s41566_025_01617_0
crossref_primary_10_1038_s41928_024_01294_x
crossref_primary_10_1007_s11433_022_1957_3
crossref_primary_10_1039_D3NR01149F
crossref_primary_10_1038_s41586_023_06251_w
crossref_primary_10_1515_nanoph_2024_0149
crossref_primary_10_3788_PI_2024_R09
crossref_primary_10_1021_acsami_4c04597
crossref_primary_10_1364_OPTICA_478710
crossref_primary_10_1126_sciadv_adl1548
crossref_primary_10_1088_1361_6463_ad8453
crossref_primary_10_1016_j_optlastec_2025_112627
crossref_primary_10_3788_AOS240925
crossref_primary_10_1364_AOP_470264
crossref_primary_10_1002_adfm_202417334
crossref_primary_10_1109_JSTQE_2024_3377249
crossref_primary_10_1364_PRJ_452936
crossref_primary_10_1038_s41377_023_01172_9
crossref_primary_10_3390_mi13122125
crossref_primary_10_1364_PRJ_458472
crossref_primary_10_1364_PRJ_437798
crossref_primary_10_1038_s41467_024_48224_1
crossref_primary_10_1103_PhysRevLett_130_153802
crossref_primary_10_1038_s41566_023_01175_3
crossref_primary_10_3788_AOS240810
crossref_primary_10_1002_lpor_202100147
crossref_primary_10_1016_j_optlastec_2024_110779
crossref_primary_10_3390_mi14030604
crossref_primary_10_1063_5_0141384
crossref_primary_10_1038_s41586_024_07078_9
crossref_primary_10_1021_acsphotonics_4c01485
crossref_primary_10_1063_5_0191602
crossref_primary_10_1038_s41467_022_30911_6
crossref_primary_10_1364_PRJ_459478
crossref_primary_10_1515_nanoph_2022_0575
crossref_primary_10_1038_s41566_022_01144_2
crossref_primary_10_1364_PRJ_517719
crossref_primary_10_1063_5_0089362
crossref_primary_10_1038_s41566_024_01418_x
crossref_primary_10_1063_5_0208011
crossref_primary_10_1126_science_abq8422
crossref_primary_10_3788_COL202523_022601
crossref_primary_10_1186_s43593_024_00075_5
crossref_primary_10_1063_5_0214254
crossref_primary_10_1021_acs_cgd_3c01279
crossref_primary_10_1038_s41566_023_01193_1
crossref_primary_10_1557_s43577_022_00337_y
crossref_primary_10_1021_acsphotonics_3c01247
crossref_primary_10_1103_PhysRevApplied_18_034068
crossref_primary_10_1021_acs_langmuir_4c03513
crossref_primary_10_1364_OPTICA_462055
crossref_primary_10_1038_s44310_024_00030_9
crossref_primary_10_1038_s41586_023_06730_0
crossref_primary_10_1038_s41467_022_33101_6
crossref_primary_10_1364_OPTCON_461886
crossref_primary_10_1002_lpor_202200663
crossref_primary_10_1109_JSTQE_2022_3203159
crossref_primary_10_3390_app12041836
crossref_primary_10_1364_OL_515912
crossref_primary_10_1038_s41586_024_07058_z
crossref_primary_10_1039_D3TC00400G
crossref_primary_10_1002_adma_202203889
crossref_primary_10_1016_j_optcom_2024_131214
crossref_primary_10_1038_s41467_024_52269_7
crossref_primary_10_1038_s42005_024_01824_1
crossref_primary_10_1364_PRJ_470243
crossref_primary_10_1038_s42005_023_01452_1
crossref_primary_10_1063_5_0114020
crossref_primary_10_1364_OE_519235
crossref_primary_10_1109_JLT_2022_3226782
crossref_primary_10_32628_IJSRST2411332
crossref_primary_10_1515_nanoph_2024_0732
crossref_primary_10_1002_adom_202201008
crossref_primary_10_1038_s41699_024_00440_5
crossref_primary_10_1002_lpor_202400508
crossref_primary_10_1364_PRJ_511627
crossref_primary_10_1103_PhysRevA_105_013524
crossref_primary_10_1126_sciadv_abp9006
crossref_primary_10_1038_s41586_024_07057_0
crossref_primary_10_1016_j_optcom_2025_131506
crossref_primary_10_1109_JLT_2023_3243471
crossref_primary_10_1038_s41377_022_00998_z
crossref_primary_10_1016_j_optcom_2025_131626
crossref_primary_10_1038_s41566_021_00882_z
crossref_primary_10_1038_s41467_022_35746_9
crossref_primary_10_1109_JSTQE_2021_3126124
crossref_primary_10_1038_s41586_024_07457_2
crossref_primary_10_1080_23746149_2024_2360598
crossref_primary_10_1038_s41377_023_01225_z
crossref_primary_10_1364_PRJ_516274
crossref_primary_10_3788_COL202422_071403
crossref_primary_10_1364_AOP_455976
crossref_primary_10_1109_JPHOT_2024_3376424
crossref_primary_10_1103_PhysRevA_106_053508
crossref_primary_10_3788_LOP241587
crossref_primary_10_1364_PRJ_452631
crossref_primary_10_1364_OPTICA_529673
crossref_primary_10_1364_PRJ_507560
crossref_primary_10_37188_lam_2023_024
crossref_primary_10_1002_lpor_202201028
crossref_primary_10_1364_PRJ_454816
crossref_primary_10_1109_JPHOT_2022_3227173
crossref_primary_10_3390_photonics11030212
crossref_primary_10_1038_s41467_022_29431_0
crossref_primary_10_1038_s41467_023_44314_8
crossref_primary_10_1364_OL_513721
crossref_primary_10_1063_5_0088119
crossref_primary_10_1063_5_0197236
crossref_primary_10_1038_s41467_022_30901_8
crossref_primary_10_1364_AOP_529288
crossref_primary_10_11648_j_ijssn_20251301_11
crossref_primary_10_1002_lpor_202301329
crossref_primary_10_1088_1752_7163_acc6e4
crossref_primary_10_1038_s41566_025_01624_1
crossref_primary_10_1016_j_optlastec_2024_110927
crossref_primary_10_1364_OL_539647
crossref_primary_10_3788_AOS241178
crossref_primary_10_1007_s11467_022_1245_3
crossref_primary_10_1002_admt_202300998
crossref_primary_10_1364_PRJ_446898
crossref_primary_10_1364_JOSAB_485041
crossref_primary_10_1038_s41566_022_01110_y
crossref_primary_10_1364_OPTICA_522378
crossref_primary_10_1007_s12633_024_03098_2
crossref_primary_10_1063_5_0173243
crossref_primary_10_1364_OE_450100
crossref_primary_10_1364_OPTICA_503022
crossref_primary_10_1038_s41467_022_35506_9
crossref_primary_10_1364_OL_440907
crossref_primary_10_1364_OPTCON_523724
crossref_primary_10_1103_PhysRevLett_128_033901
crossref_primary_10_1038_s41467_022_30542_x
crossref_primary_10_1364_OE_503637
crossref_primary_10_1016_j_pquantelec_2022_100437
crossref_primary_10_1038_s41467_021_26804_9
crossref_primary_10_1016_j_apsusc_2023_158685
crossref_primary_10_1038_s41586_025_08662_3
crossref_primary_10_3788_COL202422_081301
crossref_primary_10_1364_OPTICA_484200
crossref_primary_10_1364_OL_528621
crossref_primary_10_1063_5_0221409
crossref_primary_10_1364_OE_492977
crossref_primary_10_3390_cryst12101477
crossref_primary_10_1364_OE_440206
crossref_primary_10_1063_5_0133040
crossref_primary_10_1103_PhysRevX_15_011061
crossref_primary_10_1364_OE_439212
crossref_primary_10_1038_s41586_022_04579_3
crossref_primary_10_1038_s41566_024_01413_2
crossref_primary_10_1109_JLT_2023_3336991
crossref_primary_10_1038_s41377_024_01643_7
crossref_primary_10_1364_OE_498671
crossref_primary_10_1364_OE_444493
crossref_primary_10_3788_LOP241786
crossref_primary_10_1109_JPHOT_2023_3325088
crossref_primary_10_1186_s43593_024_00071_9
crossref_primary_10_1109_JLT_2024_3415161
crossref_primary_10_1038_s41566_023_01367_x
crossref_primary_10_1002_adpr_202400082
crossref_primary_10_1063_5_0128130
crossref_primary_10_1088_1402_4896_aceb25
crossref_primary_10_1109_JSTQE_2024_3398419
crossref_primary_10_1364_PRJ_449267
crossref_primary_10_3390_photonics11121164
crossref_primary_10_1038_s41377_025_01753_w
crossref_primary_10_1063_5_0123236
crossref_primary_10_1364_OE_510228
crossref_primary_10_1007_s40820_022_00957_8
crossref_primary_10_1103_PhysRevApplied_20_014015
crossref_primary_10_1063_5_0123230
crossref_primary_10_1364_PRJ_489942
crossref_primary_10_1038_s41467_024_48544_2
crossref_primary_10_1038_s41566_023_01246_5
crossref_primary_10_1038_s41566_021_00945_1
crossref_primary_10_1002_lpor_202100511
crossref_primary_10_1063_5_0173287
crossref_primary_10_1038_s41377_023_01329_6
crossref_primary_10_1038_s41566_023_01158_4
crossref_primary_10_1109_JSTQE_2024_3451301
crossref_primary_10_1364_OL_439720
crossref_primary_10_1002_lpor_202200158
crossref_primary_10_1364_OME_502179
crossref_primary_10_1364_OL_474710
crossref_primary_10_1002_lpor_202400343
crossref_primary_10_29026_oea_2025_240257
crossref_primary_10_1364_PRJ_459403
crossref_primary_10_3788_AOS240976
crossref_primary_10_1364_OL_448326
crossref_primary_10_1515_nanoph_2022_0146
crossref_primary_10_1364_PRJ_455165
crossref_primary_10_1103_PhysRevLett_130_133602
crossref_primary_10_1038_s41566_022_01120_w
crossref_primary_10_1002_lpor_202301221
crossref_primary_10_1364_PRJ_496232
crossref_primary_10_3788_AOS231593
crossref_primary_10_1364_OE_478009
crossref_primary_10_3390_photonics9100754
crossref_primary_10_1002_qute_202400311
crossref_primary_10_1103_PhysRevApplied_17_024030
crossref_primary_10_1109_JLT_2023_3276769
crossref_primary_10_1038_s41467_022_35728_x
crossref_primary_10_1063_5_0105164
Cites_doi 10.1103/PhysRevLett.93.083904
10.1002/9781118148167
10.1109/JLT.2015.2465382
10.1038/s41586-020-2465-8
10.1109/MNANO.2019.2891369
10.1364/OPTICA.3.001071
10.37188/lam.2021.005
10.1364/OE.25.028167
10.1016/S0030-4018(98)00355-1
10.1364/OL.41.002565
10.1038/s41467-021-21973-z
10.1364/OPTICA.3.000020
10.1364/OE.24.000687
10.1109/JSTQE.2016.2593103
10.1038/s41567-019-0635-0
10.21203/rs.3.rs-134626/v1
10.1038/s41586-018-0551-y
10.1126/science.aan8083
10.1126/science.aay3676
10.1038/s41467-020-15005-5
10.1364/OL.39.000084
10.1364/OPTICA.4.000619
10.1038/nphoton.2013.183
10.1038/ncomms8957
10.1038/nature11727
10.1364/OPTICA.3.001171
10.1038/s41566-021-00761-7
10.1103/PhysRevApplied.7.024026
10.1038/ncomms8371
10.1364/OL.394121
10.1038/s41586-020-2358-x
10.1364/OPTICA.5.001347
10.1103/PhysRevA.89.063814
10.1364/OPTICA.3.000823
10.1038/s41586-018-0598-9
10.1038/s41566-019-0358-x
10.1038/s41467-020-20196-y
10.1364/PRJ.3.0000B1
10.1038/nphoton.2009.138
10.1364/OL.41.003134
10.1038/s41566-020-0617-x
10.1038/s42005-019-0249-y
10.1002/lpor.201700256
10.1364/OPTICA.384026
10.1116/1.2943667
10.1063/1.5120004
10.1103/PhysRevA.99.061801
10.1038/s41566-019-0378-6
ContentType Journal Article
Copyright Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Copyright_xml – notice: Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
– notice: Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
DBID AAYXX
CITATION
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
DOI 10.1126/science.abh2076
DatabaseName CrossRef
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 103
ExternalDocumentID 10_1126_science_abh2076
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
AAYXX
ABCQX
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AFBNE
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ASPBG
AVWKF
BKF
BLC
C45
CITATION
CS3
DB2
DU5
EBS
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPY
ISE
JCF
JLS
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
RHI
RXW
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c368t-e114bff3b398e7053f32de6168d923b11e1c2ec4a7e61796473205774c9e836e3
ISSN 0036-8075
1095-9203
IngestDate Thu Jul 10 23:57:13 EDT 2025
Fri Jul 25 19:20:17 EDT 2025
Thu Apr 24 23:02:00 EDT 2025
Tue Jul 01 01:35:33 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6550
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c368t-e114bff3b398e7053f32de6168d923b11e1c2ec4a7e61796473205774c9e836e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7081-0346
0000-0002-7157-6272
0000-0003-4270-8296
0000-0003-2628-5174
0000-0003-0809-1579
0000-0003-2405-6028
0000-0001-8860-2679
0000-0003-0203-5170
0000-0002-3468-6501
0000-0002-3408-886X
0000-0002-5704-3971
PQID 2547619979
PQPubID 1256
PageCount 5
ParticipantIDs proquest_miscellaneous_2548410684
proquest_journals_2547619979
crossref_citationtrail_10_1126_science_abh2076
crossref_primary_10_1126_science_abh2076
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-02
20210702
PublicationDateYYYYMMDD 2021-07-02
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-02
  day: 02
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationYear 2021
Publisher The American Association for the Advancement of Science
Publisher_xml – name: The American Association for the Advancement of Science
References e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_50_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
References_xml – ident: e_1_3_2_34_2
  doi: 10.1103/PhysRevLett.93.083904
– ident: e_1_3_2_30_2
  doi: 10.1002/9781118148167
– ident: e_1_3_2_20_2
  doi: 10.1109/JLT.2015.2465382
– ident: e_1_3_2_12_2
– ident: e_1_3_2_44_2
  doi: 10.1038/s41586-020-2465-8
– ident: e_1_3_2_24_2
  doi: 10.1109/MNANO.2019.2891369
– ident: e_1_3_2_39_2
  doi: 10.1364/OPTICA.3.001071
– ident: e_1_3_2_22_2
  doi: 10.37188/lam.2021.005
– ident: e_1_3_2_15_2
  doi: 10.1364/OE.25.028167
– ident: e_1_3_2_41_2
  doi: 10.1016/S0030-4018(98)00355-1
– ident: e_1_3_2_42_2
  doi: 10.1364/OL.41.002565
– ident: e_1_3_2_10_2
  doi: 10.1038/s41467-021-21973-z
– ident: e_1_3_2_8_2
  doi: 10.1364/OPTICA.3.000020
– ident: e_1_3_2_33_2
– ident: e_1_3_2_43_2
  doi: 10.1364/OE.24.000687
– ident: e_1_3_2_29_2
  doi: 10.1109/JSTQE.2016.2593103
– ident: e_1_3_2_31_2
  doi: 10.1038/s41567-019-0635-0
– ident: e_1_3_2_51_2
  doi: 10.21203/rs.3.rs-134626/v1
– ident: e_1_3_2_47_2
  doi: 10.1038/s41586-018-0551-y
– ident: e_1_3_2_4_2
  doi: 10.1126/science.aan8083
– ident: e_1_3_2_2_2
  doi: 10.1126/science.aay3676
– ident: e_1_3_2_45_2
  doi: 10.1038/s41467-020-15005-5
– ident: e_1_3_2_50_2
  doi: 10.1364/OL.39.000084
– ident: e_1_3_2_9_2
  doi: 10.1364/OPTICA.4.000619
– ident: e_1_3_2_5_2
  doi: 10.1038/nphoton.2013.183
– ident: e_1_3_2_13_2
  doi: 10.1038/ncomms8957
– ident: e_1_3_2_23_2
  doi: 10.1038/nature11727
– ident: e_1_3_2_7_2
  doi: 10.1364/OPTICA.3.001171
– ident: e_1_3_2_18_2
  doi: 10.1038/s41566-021-00761-7
– ident: e_1_3_2_35_2
  doi: 10.1103/PhysRevApplied.7.024026
– ident: e_1_3_2_14_2
  doi: 10.1038/ncomms8371
– ident: e_1_3_2_28_2
  doi: 10.1364/OL.394121
– ident: e_1_3_2_16_2
  doi: 10.1038/s41586-020-2358-x
– ident: e_1_3_2_38_2
  doi: 10.1364/OPTICA.5.001347
– ident: e_1_3_2_40_2
  doi: 10.1103/PhysRevA.89.063814
– ident: e_1_3_2_46_2
  doi: 10.1364/OPTICA.3.000823
– ident: e_1_3_2_19_2
  doi: 10.1038/s41586-018-0598-9
– ident: e_1_3_2_6_2
  doi: 10.1038/s41566-019-0358-x
– ident: e_1_3_2_17_2
  doi: 10.1038/s41467-020-20196-y
– ident: e_1_3_2_52_2
  doi: 10.1364/PRJ.3.0000B1
– ident: e_1_3_2_36_2
  doi: 10.1038/nphoton.2009.138
– ident: e_1_3_2_37_2
  doi: 10.1364/OL.41.003134
– ident: e_1_3_2_11_2
  doi: 10.1038/s41566-020-0617-x
– ident: e_1_3_2_3_2
  doi: 10.1038/s42005-019-0249-y
– ident: e_1_3_2_48_2
  doi: 10.1002/lpor.201700256
– ident: e_1_3_2_25_2
  doi: 10.1364/OPTICA.384026
– ident: e_1_3_2_27_2
  doi: 10.1116/1.2943667
– ident: e_1_3_2_21_2
  doi: 10.1063/1.5120004
– ident: e_1_3_2_32_2
  doi: 10.1103/PhysRevA.99.061801
– ident: e_1_3_2_49_2
  doi: 10.1038/s41566-019-0378-6
SSID ssj0009593
Score 2.7045577
Snippet The realization of optical frequency combs, light sources with precisely spaced frequencies across a broad spectrum of wavelengths, in dielectric...
Chip-based frequency combsThe realization of optical frequency combs, light sources with precisely spaced frequencies across a broad spectrum of wavelengths,...
Silicon photonics enables wafer-scale integration of optical functionalities on chip. Silicon-based laser frequency combs can provide integrated sources of...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 99
SubjectTerms Coherent light
Data centers
Fabrication
Frequency locking
Indium phosphides
Laser pumping
Lasers
Lidar
Light sources
Metal oxide semiconductors
Noise generation
Noise reduction
Optical frequency
Optical interconnects
Photonics
Semiconductor lasers
Semiconductors
Signal processing
Silicon
Silicon nitride
Silicon substrates
Solitary waves
Transceivers
Wavelengths
Title Laser soliton microcombs heterogeneously integrated on silicon
URI https://www.proquest.com/docview/2547619979
https://www.proquest.com/docview/2548410684
Volume 373
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELZgExIviA0QhYGCxMMQSpXYqZO8IHVl1YSq8dJKfYti56JV6lJY2ofx6znHFycbRRq8RJVrN9Xd-Xx3_u6OsY-gkyiEvDTdy8w1o9Z-HhXcDyWeDUFRxKOyAcheyotF9G05WnYg9ia7ZKuG-tfevJL_4SqOIV9Nluw_cNb9KA7gZ-QvPpHD-HwQj2d4BN18rg2EDZl4bbB1-BpVo_mH5NrgOkDHfn3bFYUozOVAvVoj_6u-XdpucbQ33R1Oj3MOjDi2kIEWQUDLeuGE5YoC0JOrfOPQPqudzQCpfq52DvGzs5c-G3Agj0kbvZ5RPXAKR_Cwga72IpRhYJo_8sBqLdgzRmpX2BYmJF9yZOvPkh61TZP-VO-9hpQwzNUVD-I9hbQvv2fTxWyWzc-X88fskKMHgSrwcHz29Wx6vyKz-29U96mXUdW-4K7JcvfEbsyQ-XP2jPwHb2yF4Yg9guqYPbEdRW-P2RFxpPZOqaD4pxfsSyMnHsmJ18mJd09OvE5OPJxIcvKSLabn88mFT30zfC1ksvUBfVxVlkKJNIEYtWwpeAESt1-B5rwKQwg1Bx3lMQ42qciCo9keRzqFREgQr9hBtangNfNKqSBFqz_OBRrWOs3BOOwqEqZSW8rlgA1b0mSaisqb3ibrrHEuucyIlhnRcsBO3YIftp7K36eetLTOaNPVGR9FJvCGimXAPrivUSWae668oZaZgwookEn05gFz3rKnnRyfsIPtzQ7eoaG5Ve9JZH4D3RuB0g
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Laser+soliton+microcombs+heterogeneously+integrated+on+silicon&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Xiang%2C+Chao&rft.au=Liu%2C+Junqiu&rft.au=Guo%2C+Joel&rft.au=Chang%2C+Lin&rft.date=2021-07-02&rft.issn=1095-9203&rft.eissn=1095-9203&rft.volume=373&rft.issue=6550&rft.spage=99&rft_id=info:doi/10.1126%2Fscience.abh2076&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon